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Abstract001

Escape rooms present a unique cognitive chal-002
lenge that demands exploration-driven plan-003
ning: with the sole instruction to Escape the004
room, players must actively search their envi-005
ronment, collecting information, and finding006
solutions through repeated trial and error. Moti-007
vated by this, we introduce VisEscape, a bench-008
mark of 20 virtual escape rooms specifically009
designed to evaluate AI models under these010
challenging conditions, where success depends011
not only on solving isolated puzzles but also012
on iteratively constructing and refining spatial-013
temporal knowledge of a dynamically chang-014
ing environment. On VisEscape, we observe015
that even state-of-the-art multi-modal models016
generally fail to escape the rooms, showing017
considerable variation in their progress and018
problem-solving approaches. We find that in-019
tegrating memory management and reasoning020
contributes to efficient exploration and enables021
successive hypothesis formulation and testing,022
thereby leading to significant improvements023
in dynamic and exploration-driven environ-024
ments 1.025

1 Introduction026

Realistic goals often necessitate exploration: when027

cooking with available ingredients, one must search028

through cabinets to identify ingredients and deter-029

mine how to combine them into a meal. Likewise,030

a trip to a foreign city cannot be planned without031

searching for major sights and train schedules. In032

such cases, effective planning depends on acquiring033

information through interaction with the environ-034

ment rather than having it provided a priori.035

Existing works on embodied agents have ad-036

dressed the importance of exploration, but it has037

primarily been studied in the context of decompos-038

able and explicit tasks like “Place a cleaned egg039

in a microwave” (Shridhar et al., 2020; Puig et al.,040

1We will publicly release the assets and code

Figure 1: Depiction of the exploration-driven problem-
solving in VisEscape. Agents must (1) actively explore
to uncover relevant information and (2) subsequently
formulate and test hypotheses through interaction to
solve puzzles to a successful escape.

2018; Li et al., 2021; Kim et al., 2024). However, 041

the capability of agents to autonomously search for 042

and utilize relevant information in environments 043

where tasks and solutions are not predefined has 044

not been sufficiently investigated. 045

To bridge this gap, we argue that practical eval- 046

uation of decision-making agents should assess 047

their ability to conduct self-directed exploration 048

to identify underlying objectives and subsequently 049

take reasoned actions. In particular, this entails 050

formulating hypotheses for problem-solving based 051

on information and clues gathered through explo- 052

ration. 053

To evaluate agents under these conditions, we 054

propose VisEscape, a benchmark of 20 virtual 055

escape rooms for assessing exploration-centric 056

problem-solving capacities of multimodal agents. 057

Given the implicit goal of “escape the room”, 058
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Figure 2: An illustration of an excerpt of a trajectory from VisEscape. To escape the room successfully, agents must
explore multiple directions and diverse views, and interact with various objects. Additionally, they need to infer
associations between two or more scenes in different locations to solve creative puzzles.

agents explore their surroundings, integrate rele-059

vant information, discover how to use objects, and060

solve complex puzzles to escape. Moreover, they061

must retain previously observed information and062

interpret indirect clues, and reason beyond imme-063

diate observations while dynamically adapting to064

environmental changes.065

The evaluation of various MLLMs on VisEscape066

showed that even advanced models like Claude-067

3.5-Sonnet and GPT-4o exhibited low escape rates068

of less than 10% without any hints. To test how069

memory and reasoning, which are core cognitive070

abilities for both agents and humans (), navigate the071

cognitive challenges posed by VisEscape, we ap-072

ply dedicated memory management and reasoning073

modules to models.074

We find that this integration enables models that075

were previously wholly unsuccessful in escaping076

to achieve successful escapes; achieving x2.4 en-077

hanced effectiveness and x3.8 improved efficiency.078

Through analysis, we observe that memory man-079

agement reduces repetitive actions, enabling effi-080

cient exploration, and that memory and reasoning081

exhibit a synergistic effect.082

2 Key Challenges of VisEscape083

Figure 2 illustrates an example of the problem-084

solving process required in the VisEscape. The085

game agent should execute a sequence of tasks086

comprising diverse interactions.087

1. Self-directed Exploration. As in real escape088

room games, the game agent in VisEscape receives089

no instruction except for the instruction ‘escape the090

room’. Therefore, without a clear roadmap, the091

agent must actively explore and figure out how to092

proceed through trial and error. This setup requires 093

the agent to build and adjust its mental model of 094

the environment, recognizing key objects, spatial 095

relationships, and potential interactions. Success 096

depends on the agent’s ability to hypothesize, test, 097

and adapt its understanding. The task mirrors real- 098

world reasoning challenges, where goals must be in- 099

ferred, and solutions emerge through engagement. 100

2. Long-Horizontal successive task. In the ab- 101

sence of explicit guidance, the agent must achieve 102

an average of 8.4 checkpoints (critical tasks that 103

act as bottlenecks in achieving goal completion), 104

which requires an average of 27.2 steps to suc- 105

cessfully escape, even for the oracle trajectory. The 106

considerable length of the task sequence and the de- 107

pendencies between checkpoints require the agent 108

to effectively utilize information from its past tra- 109

jectory. Success hinges on the agent’s ability to 110

integrate prior discoveries into its ongoing decision- 111

making process. 112

3 Details on Dataset Composition and 113

Construction 114

3.1 Dataset Composition 115

VisEscape consists of 20 distinct rooms. Each 116

room comprises four walls corresponding to the 117

four cardinal directions, containing multiple ob- 118

jects classified into two types: Receptacles and 119

Items, following the object categorization criteria 120

used in (Shridhar et al., 2020). Receptacles are 121

objects fixed within a room; they can be secured 122

with locks or locking mechanisms and are capable 123

of concealing or containing items. Items can be 124

collected into the inventory, and serve two func- 125

tions: facilitating interactions with other recepta- 126
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Figure 3: An illustration of each component in VisEscape.

Scene Receptacle Item Quiz Interaction

# Total 1084 118 102 27 311

# Types 662 32 23 27 37

Avg./room 54.2 5.9 5.1 1.4 15.6

Table 1: Statistics for scenes, recepta-
cles, items, quizzes, and interactions in
VisEscape.

cles or providing clues to unlock locks. VisEscape127

has 32 different receptacles and 23 different items,128

with each room containing a distinctive visual quiz.129

Each room contains an average of 5.9 receptacles130

and 5.1 items, along with one or two visual quizzes.131

Statistics and examples are presented in Table 1132

and Figure 3.133

Visual Quizzes. Escape rooms challenge play-134

ers to connect diverse pieces of information gath-135

ered through exploration, often by linking elements136

that initially appear unrelated. For example, play-137

ers may need to associate similar symbols found138

in different locations or identify how objects of139

the same color are interconnected. Recognizing140

that escape rooms are well-suited for assessing the141

capability of AI models to draw inferences from142

environmental cues and formulate hypotheses for143

problem-solving, we incorporate visual quizzes.144

We integrate one to two number or letter code145

locks paired with corresponding hand-crafted vi-146

sual quizzes into each room.147

Game Graph. To track the dynamically chang-148

ing state of the room and provide corresponding149

observations, we use a Finite State Machine (FSM).150

FSM consists of two components: states, which151

correspond to the visual observations provided152

to the agent, and transitions, which define state153

changes based on player actions and specific con-154

ditions being met.155

Actions. Agent can perform two types of ac-156

tions: movement and object interaction. For move-157

ment, the agent can inspect [object] to examine it158

closely or step back to gain a broader view. Ad-159

ditionally, it can turn to [direction] to view walls160

that are not currently visible. For object interac-161

tion, the agent can use acquired items (e.g., Unlock162

with key) or perform actions associated with visible163

objects (e.g., Turn on laptop). When the agent ob-164

serves a lock requiring a quiz answer, an additional165

action to input answer becomes available.166

At each gamestep, the agent is given actions for167

movement and other possible actions based on its168

current state and observation. When the agent per-169

forms an action that satisfies an object’s predefined170

Figure 4: Process of VisEscape construction.

conditions or corresponds to the lock’s answer, it 171

triggers state transitions according to game graph. 172

See Figure 15 for examples of object interactions. 173

3.2 VisEscape Construction 174

Figure 4 shows the creation process for rooms in 175

VisEscape. (a) Objects are created using 3D mod- 176

eling software, and those required for arrangement 177

in each room were sampled. (b) Using the sampled 178

objects, game logic that defines key checkpoints to 179

complete the game is designed through AI-human 180

collaboration. Game graph is then constructed as 181

an FSM to track the overall game state and enable 182

state transitions triggered by agent’s actions. (c) 183

Objects are arranged within the room according to 184

its setup, and visual observations are mapped to 185

corresponding game states. See Appendix B for 186

detailed explanations of each process and prompts 187

used for game logic design. 188
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Frontier MLLMs Open-source MLLMs

Model SR↑(%) GC↑(%) SPL↑(%) Step↓ Model SR↑(%) GC↑(%) SPL↑(%) Step↓

Claude 3.5 Sonnet 6.3 11.11 3.35 286.7 Qwen2.5VL-32B 1.7 5.71 0.26 298.1
GPT-4o 3.3 16.00 0.60 294.5 InternVL2.5-38B 0.0 5.75 - -
GPT-4o-mini 0.0 5.37 - - InternVL2-40B 0.0 0.0 - -
Gemini-1.5-Pro 0.0 18.51 - - LLaVA-v1.6-34B 0.0 0.0 - -
Gemini-2.0-Flash 0.0 9.54 - - LLaVA-OneVision-7B 0.0 0.0 - -

Human 82.5 95.80 51.30 52.8

Table 2: Performance comparison of various MLLMs and human performance on the VisEscape benchmark. The
best results for each metric are bolded. Refer Appendix F for detailed information on the human study. For models
that failed to escape entirely, the standard deviation is marked with "-".

4 Examining MLLMs on VisEscape189

We evaluate the performance of various MLLMs,190

ranging from closed-source frontier models to191

open-source models on the VisEscape benchmark.192

4.1 Experiment Setup193

At each step, the model receives the current ob-194

servation, history of the last 20 observations and195

actions, held items, and available actions, from196

which it selects one executable action. For each197

room, we conducted three different trials and aver-198

aged the resulting metrics. Each experiment was199

terminated early if no significant progress occurred200

within 100 consecutive steps and was automatically201

concluded after 300 steps.202

4.2 Metrics203

We adopted widely used metrics for evaluating204

embodied agents. These include: 1. Success205

Rate (SR), which is the ratio of escape success206

in an episode; 2. Goal Completion (GC), the ratio207

of checkpoints completed at the end of an episode;208

3. Step, the total actions taken by an agent; and 4.209

Success weighted by Path Length (SPL) (Ander-210

son et al., 2018), which penalizes success rate by211

total number of steps taken.212

4.3 Results213

Table 2 presents the experimental results. For open-214

source models, none of the open-source models215

achieved a single success, except for Qwen2.5VL-216

32B. Notably, even sophisticated models such217

as Claude 3.5 Sonnet, GPT-4o, and Gemini-1.5-218

Pro demonstrated success rates below 10%. These219

results underscore the highly challenging nature220

of the exploration-centric problem-solving envi-221

ronment provided by VisEscape for AI models,222

concurrently highlighting significant avenues for223

improvement.224

For models to perform well in VisEscape, they225

must effectively execute two primary capabilities226

that VisEscape requires: exploration and iterative 227

hypothesis formulation and test. Rather than devis- 228

ing a specialized framework for the unique ‘escape 229

room’ task, we aim to analyze how modules con- 230

sidered crucial in agent modeling contribute to the 231

exploration-centric problem-solving tasks provided 232

by this benchmark. To this end, we augment Vis- 233

Escaper with Memory management and Reasoning 234

modules. 235

5 VisEscaper: Exploring Agent in 236

VisEscape 237

5.1 Memory Management Module 238

In VisEscape, agent can only observe a limited 239

portion of the room. For effective navigation and 240

exploration, the agent should maintain spatial mem- 241

ory that the agent constructs to form a coherent 242

mental map of the space. Additionally, the agent 243

must remember the actions it has attempted to learn 244

from its trials and avoid redundant efforts. 245

Therefore, we designed and applied a Mem- 246

ory Management module for the game agent (Fig- 247

ure 5-(1)). The memory module consists of struc- 248

tured spatial memory, exploration memory, and 249

salient action memory, which are constructed and 250

updated periodically. It compressively and struc- 251

turally manages memory from observation and ac- 252

tion histories accumulated over tens to hundreds of 253

steps, while also updating periodically. This allows 254

the agent to make clear decisions from a condensed 255

history, effectively mitigating its processing over- 256

load by addressing both cognitive demands and the 257

model’s inherent context window constraints. 258

For the experiment, memory construction be- 259

gins after the first 10 steps. Subsequently, mem- 260

ory management is performed every 10 steps. To 261

avoid exceeding the context length and perfor- 262

mance drop (Zhao et al., 2024) with multiple image 263

inputs, we used image captions generated by the 264

same model to replace visual observations with tex- 265
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Figure 5: An overview of memory management module and reasoning module, along with examples of inputs (gray
boxes) and outputs (colored boxes) for each module.

tual descriptions. Refer to Appendix D.2 for more266

details.267

5.2 Reasoning Module268

Exploration within escape rooms necessitates a cy-269

cle of hypothesis formulation and test. Specifically,270

the agent progresses by: 1) formulating hypotheses271

based on its memory and available information be-272

fore action-decision, and 2) analyzing the outcomes273

to determine the validity of these hypotheses. Thus,274

we designed pre-action and post-action reasoning275

for hypothesis formulation and verification.276

Pre-action reasoning, inspired by (Yao et al.,277

2023), requires the agent to ’think’ before action278

selection. This approach not only facilitates more279

effective action decision but also enables the de-280

composition and analysis of the model’s reasoning281

process; we find that the model formulates hypothe-282

ses in various ways. We will discuss this in §6.2.283

Post-action reasoning involves the agent assess-284

ing the consequences of its actions, informed by285

the executed actions and the observations made286

immediately before and after those actions. This287

allows for hypothesis evaluation, and the results288

feed into the subsequent pre-action reasoning. The289

agent might then formulate different hypotheses or290

attempt new explorations, leading to more success-291

ful subsequent attempts.292

5.3 Results293

Table 3 shows scores of VisEscaper and the dif-294

ference compared to BaseAgent. Frontier models295

improved across all metrics. For open-source mod-296

els, goal completion generally increased, though297

Figure 6: Cumulative goal completion over trajectory
time steps for BaseAgent and VisEscaper in each room.
For comparison, each agent’s progression is shown on
the same scale. Additionally, the point where 50% of
goal completion is achieved is marked.

eventually not enough for room escape. However, 298

the performance of Qwen2.5VL-32B, driven by the 299

adoption of memory management and reasoning, 300

increased to a level comparable to Claude 3.5 Son- 301

net. Notably, although higher success rates and 302

goal completion typically require more steps, all 303

models with VisEscaper nevertheless demonstrated 304

a reduction in trajectory length, leading to an im- 305

provement in SPL. These results underscore that 306

agents become more effective (achieving more) and 307

more efficient (within fewer steps) when they are 308

enabled with memory management and reasoning. 309

Furthermore, the design of VisEscaper enables 310

the agent to achieve steady progress without be- 311

coming disoriented within the expanding informa- 312

tion space. Figure 6 illustrates the cumulative goal 313

completion for BaseAgent and VisEscaper over 314

the course of a trajectory. Progress by BaseAgent 315

is concentrated early in the trajectory (half of its 316

achievements are realized within the initial 6% of 317

steps for Gemini-2.0-Flash and 20% for Claude 318

3.5 Sonnet). In contrast, VisEscaper demonstrates 319
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BaseAgent → VisEscaper (diff.)

Model SR↑(%) GC↑(%) SPL↑(%) Step↓

Frontier MLLMs
Claude 3.5 Sonnet 6.7 → 21.7 (↑15.0) 11.11 → 32.37 (↑21.26) 3.35 → 10.92 (↑7.57) 286.7 → 249.5 (↓37.2)
GPT-4o 3.3 → 13.3 (↑10.0) 16.00 → 29.02 (↑13.02) 0.60 → 3.91 (↑3.31) 294.5 → 276.2 (↓18.3)
GPT-4o-mini 0.0 → 6.7 (↑6.7) 5.37 → 21.31 (↑15.94) 0.00 → 1.05 (↑1.05) 300.0 → 291.2 (↓8.8)
Gemini-1.5-Pro 0.0 → 25.0 (↑25.0) 18.51 → 42.16 (↑23.65) 0.00 → 6.59 (↑6.59) 300.0 → 258.1 (↓41.9)
Gemini-2.0-Flash 0.0 → 23.3 (↑23.3) 9.54 → 34.40 (↑24.86) 0.00 → 6.32 (↑6.32) 300.0 → 255.0 (↓45.0)

Open-source MLLMs
Qwen2.5VL-32B 1.7 → 3.3 (↑1.6) 5.71 → 11.46 (↑5.75) 0.26 → 0.42 (↑0.16) 298.1 → 295.8 (↓2.3)
InternVL2.5-38B 0.0 → 0.0 (-) 5.75 → 6.20 (↑0.45) 0.00 → 0.00 (-) 300.0 → 300.0 (-)
InternVL2-40B 0.0 → 0.0 (-) 2.88 → 4.91 (↑2.03) 0.00 → 0.00 (-) 300.0 → 300.0 (-)
LLaVA-v1.6-34B 0.0 → 0.0 (-) 0.17 → 0.54 (↑0.37) 0.00 → 0.00 (-) 300.0 → 300.0 (-)
LLaVA-OneVision-7B 0.0 → 0.0 (-) 1.08 → 1.25 (↑0.17) 0.00 → 0.00 (-) 300.0 → 300.0 (-)

Table 3: Comparison of performance before and after applying the memory management and reasoning modules.
For ease of reference, the agent operating without these two modules (Table 2) is referred to as ‘BaseAgent’.
Standard deviation for steps is in Table 13.

consistent progression.320

Upon analyzing model trajectories, we observed321

failures predominantly occur in visual quizzes322

and are more pronounced in open-source models,323

which achieved smaller performance gains than324

frontier models even with memory and reasoning325

modules. We identified two primary reasons for326

this gap.327

First, reasoning modules significantly boost vi-328

sual quiz accuracy for Frontier models, an effect329

less evident in open-source models (Appendix C.2).330

Second, compared to Frontier models, open-source331

models tend to explore evidence less thoroughly332

and more frequently resort to brute-force attempts-333

resulting in meaningless and repetitive actions, ul-334

timately causing them to get stuck in the game335

(Appendix C.1).336

exphint

Model SR(%) GC(%) HCR↓(%) SPL (%) Step

Frontier MLLMs
Claude 3.5 Sonnet 90.0 96.33 18.87 30.46 103.1
GPT-4o 95.0 97.39 20.74 26.83 112.9
GPT-4o-mini 46.7 67.40 32.16 8.93 228.2
Gemini-1.5-Pro 71.7 82.53 20.18 18.22 163.3
Gemini-2.0-Flash 66.7 75.78 25.11 15.56 179.2
Open-source MLLMs
Qwen2.5VL-32B 61.7 73.13 30.51 12.07 197.0
InternVL2.5-38B 66.7 79.23 41.69 12.23 210.5
InternVL2-40B 8.3 48.18 61.61 0.96 291.1
LLaVA-v1.6-34B 15.0 34.79 64.97 1.47 289.8
LLaVA-OneVision-7B 8.3 41.02 62.89 0.80 294.9

Table 4: Results when hints are allowed for models.
HCR means Hint-assisted Completion Rate: the ratio
of checkpoints completed by the agent with the assis-
tance of hints, where lower is better.

5.4 Results on Hint-guided Experiment 337

However, despite overall improvements, if the 338

model becomes deadlocked in certain challeng- 339

ing checkpoints and thereby blocks subsequent 340

progress, comprehensive experimental analysis can 341

become difficult. Thus, we also experimented with 342

hint-guided setting; if the model is stuck for 30 343

steps or more, a guideline message for the next 344

checkpoint is provided to the model. More details 345

on hint-guided experiment are in Appendix A.4. 346

A comparison of performance between scores 347

from VisEscaper of Table 3 and Table 4 shows that 348

after hints are allowed, all models demonstrated a 349

significant increase in success rate and goal comple- 350

tion. Notably, Claude 3.5 Sonnet and GPT-4o es- 351

caped rooms using fewer than half the steps com- 352

pared to before receiving hints, leading to the great- 353

est improvement, especially in SPL, which captures 354

performance and efficiency together. Also, smaller 355

models still improve substantially with hints, but 356

rely on hints more frequently, as shown by higher 357

HCR. 358

6 Deep Analysis on Each Module 359

6.1 Memory Management 360

Repetitive Actions. Ideally, an escape room 361

player with good memory is less likely to repeat 362

actions or re-explore areas. Consequently, to in- 363

vestigate how memory management influences an 364

agent’s action decision within a trajectory, we ex- 365

amined the action repetition in a trajectory from 366

diverse models. We only included actions related 367

to object interaction and answer submission, since 368

inspect, turn, step back are part of the exploration 369
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Model None. Me. Re. Me&Re

Claude 3.5 Sonnet 29.1 24.3 8.5 5.7
GPT-4o 27.8 26.1 20.3 7.9
InternVL2.5-38B 27.5 30.2 34.8 21.6
LLaVA-v1.6-34B 53.7 50.8 34.1 24.6

Diff. (Avg) -1.6 -9.5

Table 5: Ratio of repetitive actions. None-BaseAgent,
Me.-BaseAgent +memory, Re.-BaseAgent +reasoning,
and Re.&Me.-VisEscaper. Diff (Avg). denotes the aver-
aged difference with or without memory.

process.370

According to Table 5, memory management en-371

abled efficient action decision by reducing the over-372

all rate of repetition actions. However, the effect373

was greater when memory management was per-374

formed with reasoning (-9.5%) compared to when375

it was performed without reasoning (-1.6%). This376

suggests that the synergy between memory manage-377

ment and reasoning capabilities allows the agent to378

more effectively utilize past experiences to avoid379

redundant actions and make more optimal deci-380

sions. Analysis of difference between models are381

suggested in Appendix C.5.382

6.2 Reasoning383

Adopting reasoning process before action decision384

enables analyzing how agents in VisEscape per-385

form reasoning and how they differ across mod-386

els. By dividing their reasoning sentence into five387

components: Observation, Recall, Planning, Hy-388

pothesizing and Guess, we analyzed how they uti-389

lize these components and combine these compo-390

nents to perform reasoning. For categorization, we391

broke down the reasoning process and performed a392

machine-based evaluation for each piece with GPT-393

4o (Achiam et al., 2023). Specifically, we analyzed394

two models (Claude 3.5 Sonnet and LLaVA-v1.6-395

34B). The proportion of each component is shown396

in Figure 7, and its composition is in Table 6. The397

top 3 most frequent component combinations were398

reported. See Appendix D.1 for the criteria used399

to divide each module and human assessment for400

ensuring reliability.401

Through decomposition, we find following re-402

sults: (Fig. 7) Memory Recall. Across both mod-403

els, they frequently referenced memory (26.9% and404

29.2%). This highlights that reasoning can be in-405

fluenced by the establishment of good memory.406

(Tab. 6) Reasoning Composition. Claude 3.5 Son-407

net exhibits longer reasoning sequences, system-408

Figure 7: Proportion of each reasoning component.
atically combining various components. Notably, 409

their reasoning often proceeds after revisiting cur- 410

rent observations and past memories. In contrast, 411

LLaVA-v1.6-34B demonstrates simpler and shorter 412

reasoning sequences. (Fig. 7 &Tab. 6) Hypoth- 413

esis Formulation. Claude 3.5 Sonnet frequently 414

attempts to formulate reasoned hypotheses, often 415

preceded by analyzing the current observation and 416

consulting its memory before formulating hypothe- 417

sis, while LLaVA-v1.6-34B rarely does so. 418

7 Replacing VLM with LLM 419

Socratic models, as represented by (Shin et al., 420

2024), is an approach that uses image captioners to 421

convert visual inputs into descriptive text inputs and 422

then uses LLMs to perform multimodal inference. 423

Given that MLLMs excel at visual perception but 424

often struggle with complex visual reasoning (Li 425

et al., 2024b; Gan et al., 2022; Liu et al., 2023b), 426

we adopt LLMs to address this gap. 427

We compared the results from two experimental 428

setups as §4.1: one where the MLLM directly pro- 429

cessed the visual inputs, and another where a LLM 430

processed image captions generated by an MLLM. 431

For controlled experiments, we used only the back- 432

bone LLM of the corresponding MLLM-refer to 433

Table 8. Across the models investigated, excluding 434

InternVL2.5-38B, improvements were observed in 435

most metrics when socratic method was adopted 436

instead of MLLMs. 437

Notably, for InternVL2.5-38B, which under- 438

performed with Qwen-32B-Instruct, switching to 439

Deepseek-R1-Distill-Qwen-32B-sharing the same 440

architecture but with reasoning capabilities en- 441

hanced by distillation from Deepseek-R1 (Guo 442

et al., 2025)—markedly improved all evaluation 443

metrics. These results suggest that: 1. Many 444

MLLMs struggle with complex reasoning in multi- 445

modal contexts—a critical capability for VisEscape, 446

and 2. Integrating strong reasoning capabilities of 447

LLMs with visual perception of VLMs can lead to 448

enhanced multimodal reasoning capability. 449
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Model Composition Ratio Length Example

Claude 3.5 Sonnet

(Obs, Recall, Plan) 18.1 127.0 [Obs] I’m facing Door with Keycard lock. [Recall] I haven’t specifically tried Entrancecard.
[Plan] I should inspect the lock.

(Obs, Recall, Hypo, Plan) 15.8 141.5 [Obs] We’re facing a door lock. [Recall] Seems to connect with the kiosk’s display.
[Hypo] This suggests we need to find four words. [Plan] Return to the kiosk to check.

(Obs, Recall, Plan, Hypo) 14.8 127.5 [Obs] We’re currently facing locked box. [Recall] Already tried some number combinations.
[Plan] Re-checking east wall poster might be worthwhile. [Hypo] We may find all primes numbers in poster.

LLaVA-v1.6-34B

(Recall, Plan) 38.5 55.3 [Recall] I’ve already inspected wardrobe &door. [Plan] I should inspect sensor lock on the door.

(Plan) 21.3 39.4 [Plan] I will inspect coffee machine to see if there are any clues or items.

(Obs, Plan) 11.7 54.4 [Obs] Locker is currently locked. [Plan] I should try to unlock it to see if there are any clues.

Table 6: The top 3 compositions of reasoning components most frequently utilized by Claude 3.5 Sonnet and
LLaVA-v1.6-34B. Token lengths are calculated using the ‘token-count’ library, set ting model as gpt-3.5-turbo.

expbase exphint

Model(MLLM / LLM) Input Modality SR↑(%) GC↑(%) SPL↑(%) Step↓ SR↑(%) GC↑(%) HCR↓(%) SPL↑(%) Step↓

InternVL2.5-38B Image 0.0 6.20 - - 66.7 79.23 41.69 12.23 210.5
InternVL2.5-38B + Base LLM Caption 1.7 9.57 0.67 295.9 35.0 53.76 38.14 7.08 245.3

InternVL2.5-38B + Base LLM (R1) Caption 10.3 19.58 7.81 261.6 80.0 87.06 25.53 19.37 166.8

InternVL2-40B Image 0.0 4.91 - - 8.3 48.18 61.61 0.96 291.1
InternVL2-40B + Base LLM Caption 0.0 3.88 - - 32.0 68.00 48.22 4.39 250.6

LLaVA-v1.6-34B Image 0.0 0.54 - - 15.0 34.79 64.97 1.47 289.8
LLaVA-v1.6-34B + Base LLM Caption 0.0 4.14 - - 38.3 61.80 50.08 4.59 257.7

LLaVA-OneVision-7B Image 0.0 1.25 - - 8.3 41.02 62.89 0.80 294.9
LLaVA-OneVision-7B + Base LLM Caption 0.0 1.62 - - 25.0 58.93 70.70 2.40 287.3

Table 7: Comparative performance of results from MLLMs and Socratic method. Experiment is conducted by
models with memory management and reasoning module. expbase and exphint denote experiments conducted without
hints and hint-guided experiments, respectively.

8 Related Works450

8.1 Interactive Environments for Evaluating451

LLM/VLM452

Text-based games have long been used to bench-453

mark LLMs, offering interactive settings to as-454

sess reasoning and behavior (Côté et al., 2019;455

Hausknecht et al., 2020; Qian et al., 2024). More456

recent benchmarks extend this to testing scientific457

knowledge (Wang et al., 2022) and ethical reason-458

ing (Pan et al., 2023). Multimodal environments459

like Minecraft and embodied agent simulators have460

further enabled evaluation on both LLM and VLM461

agents in visually grounded settings (Wang et al.;462

Liu et al., 2024; Dong et al., 2024; Guss et al., 2019;463

Kolve et al., 2017; Puig et al., 2018; Shridhar et al.;464

Manolis Savva* et al., 2019). GUI-based bench-465

marks (Deng et al., 2024, 2023; Xu et al., 2021)466

now assess how these models perceive and act on467

web interfaces, testing their ability to recognize vi-468

sual elements, reason about functions (Shahbandeh469

et al., 2024), and perform tasks (Shi et al., 2017;470

Furuta et al., 2023; Yao et al., 2022; Zhou et al.).471

8.2 LLM/VLM as an Action Decision Maker472

The effective deployment of LLM/VLM agents473

in real-world applications requires adaptability to474

dynamic and unpredictable environments (Mnih475

et al., 2013; Nagabandi et al., 2019; Zhang et al.,476

2018). Agents must reason adaptively and learn 477

continuously (Zhou et al., 2024). This is support 478

by three core capabilities: experience accumula- 479

tion (Feng et al., 2024) leveraging past interactions, 480

strategic exploration (Zhu et al., 2023) balancing 481

risk and learning, and knowledge abstraction (Zhao 482

et al., 2023; Paglieri et al., 2024) forming high- 483

level representations. Our agent incorporates two 484

modules-Memory and Reasoning (Yao et al., 2023; 485

Ke et al., 2024; Zheng et al., 2025)-to support these 486

core capabilities and enable effective performance 487

in dynamic settings. 488

9 Conclusion 489

In this study, we introduce VisEscape, a novel 490

benchmark of escape room scenarios designed to 491

rigorously test multimodal agents’ abilities to ex- 492

plore, reason, and make decisions in interactive, dy- 493

namic environments. We show that existing multi- 494

modal models struggle under these challenging con- 495

ditions. By integrating memory management and 496

reasoning, we observed that agents could achieve 497

more efficient exploration and reasoning, and noted 498

the crucial synergy between memory and reasoning. 499

Our findings underscore the importance of memory 500

and adaptive reasoning for building more capable, 501

autonomous AI systems in complex and real-world 502

tasks. 503
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10 Limitations504

While VisEscape presents a valuable benchmark505

for testing the exploration-driven problem-solving506

abilities of multimodal agents, the specific task507

of room escapes may not fully generalize to real-508

world environments where agents encounter more509

complex situations and more unfamiliar objects.510

Additionally, since the action space of VisEscape511

is discrete rather than continuous, there is a need512

to convert the conclusions drawn from multiple513

modules into feasible continuous action sequences514

for real-world execution.515
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Appendix Overview810

• In Appendix A, we provide details about our811

experimental setup and the prompt template812

used.813

• In Appendix B, we provide additional infor-814

mation about our data construction process.815

• In Appendix C, we provide results and anal-816

ysis for additional experiments that were not817

covered in the main paper.818

• In Appendix D, we provide additional details819

not extensively covered in the main paper.820

• In Appendix E, we briefly introduce and an-821

alyze works that address the topic of escape822

rooms.823

• In Appendix F, we present details about the824

human study conducted.825

A Experimental details826

A.1 Model List827

In the list below, we list the versions of the LLMs828

used in our experiments. For GPT, Gemini, and829

Claude models, we use the officially released APIs,830

and for the others, we use the model versions avail-831

able on Huggingface.832

• Claude-3.5-Sonnet (Anthropic):833

claude-3-5-sonnet-20241022834

• GPT-4o (Achiam et al., 2023):835

gpt-4o-2024-08-06836

• GPT-4o-mini (Achiam et al., 2023):837

gpt-4o-mini838

• gemini-1.5-Pro (Team et al., 2024):839

Gemini-1.5-Pro840

• gemini-2.0-Flash (Google DeepMind, 2024):841

Gemini-2.0-Flash842

• Qwen2.5-VL-32B-Instruct (Bai et al., 2025):843

Qwen/Qwen2.5-VL-32B-Instruct844

• LLaVA-v1.6-34B (Liu et al., 2023a):845

llava-hf/llava-v1.6-34b-hf846

• LLaVA-OneVision-Qwen2-7B (Li et al.,847

2024a):848

llava-hf/llava-onevision-qwen2-7b-ov-hf849

• InternVL2-40B (Chen et al., 2024): 850

OpenGVLab/InternVL2-40B 851

• InternVL2.5-38B (Chen et al., 2024): 852

OpenGVLab/InternVL2_5-38B 853

• Qwen2-7B-Instruct (Yang et al., 2024a): 854

Qwen/Qwen2-7B-Instruct 855

• Qwen2.5-32B-Instruct (Yang et al., 2024b): 856

Qwen/Qwen2.5-32B-Instruct 857

• Yi-34B (Young et al., 2024): 858

NousResearch/Nous-Hermes-2-Yi-34B 859

• DeepSeek-R1-Distill-Qwen-32B (Guo et al., 860

2025): 861

deepseek-ai/DeepSeek-R1-Distill- 862

Qwen-32B 863

A.2 MLLMs and Corresponding Backbone 864

LLMs 865

As shown in Table 7, we used only the LLM that 866

served as backbone language model of correspond- 867

ing MLLM for controlled experiments. Base LLMs 868

corresponding to each MLLMs used in Table 7 are 869

shown in Table 8. 2

Model Type Model Name

VLM InternVL2.5-38B
Base LLM Qwen2.5-32B-Instruct

Base LLM (R1) DeepSeek-R1-Distill-Qwen-32B

VLM InternVL2-40B
Base LLM Yi-34B

VLM LLaVA-v1.6-34B
Base LLM Yi-34B

VLM LLaVA-OneVision-7B
Base LLM Qwen2-7B-Instruct

Table 8: MLLMs and their corresponding base LLMs.

870

2The documents specifying the LLMs selected as language
backbone models are as follows:

• InternVL2.5-38B:
https://huggingface.co/OpenGVLab/InternVL2_5-38B

• InternVL2-40B:
https://huggingface.co/OpenGVLab/InternVL2-40B

• LLaVA-v1.6-34B:
https://huggingface.co/llava-hf/llava-v1.6-34b-hf

• LLaVA-OneVision-7B:
https://huggingface.co/llava-hf/llava-onevision-qwen2-
7b-ov-hf
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A.3 Computational Resources and871

Environments872

For closed-source models, we used the OpenAI873

API for running GPT-4o and GPT-4o-mini, and the874

Anthropic API for running Claude-3.5-Sonnet.875

For open-source models, we downloaded mod-876

els from Huggingface and served models using the877

vLLM server. We categorized the models as fol-878

lows: small models (under 10B parameters), large879

models (30 to 40B parameters). For small models,880

we allocated a single NVIDIA RTX 4090 GPU per881

model. For large models, we allocated two or four882

NVIDIA A6000 GPUs per model.883

All results reported in this paper are aggregated884

from three different runs conducted in 20 rooms.885

The time required to complete each room ranged886

from as little as 10 minutes (for models under 10B887

parameters, which often terminated early due to the888

maximum turn limit) to as long as 90 minutes (for889

Deepseek-R1-Distill-Qwen-32B, which required890

considerable time for reasoning). For closed-source891

models, GPT-4o and Claude-3.5-Sonnet cost ap-892

proximately $2–3 per room for three separate ex-893

periments, totaling about $50 for a complete run.894

A.4 Hints895

To facilitate the evaluation of the agent’s progres-896

sion along its path, all game logic in VisEscape897

is designed to be sequential. Therefore, the next898

checkpoint the agent must achieve after its cur-899

rent one is predetermined, as is the hint to guide it900

there. Hint messages are provided only during Hint-901

guided experiments if the agent gets stuck for 30902

or more steps (i.e., shows no change in checkpoint903

progression).904

Here are two examples of hint messages.905

• Object interaction: “Use key to unlock the906

wardrobe at the south wall.”907

• Answer for lock: “Solve the numberlock in908

the safe at the east wall. The answer is 8056.”909

A.5 Prompt templates910

Table 16, 17, 18, 19, 20 shows experiment prompts.911

B Dataset Construction Process912

B.1 Asset Creation Using Trimble SketchUp913

We use Trimble SketchUp to create object as-914

sets (receptacles and items) for the room escape915

dataset. Receptacles are designed with predefined916

states, such as open/closed, locked/unlocked, and917

pushed/pulled, enabling agent interactions. To ac- 918

commodate scene dynamics, we model these prede- 919

fined states and generate corresponding receptacles 920

to reflect those states. The visualized examples of 921

receptacles and items are shown in Figure 8. 922

B.2 Scene Creation Using Autodesk Revit 923

We employ Autodesk Revit to construct room es- 924

cape scenes by integrating the assets created in 925

Trimble SketchUp. Autodesk Revit enables the pre- 926

cise placement of receptacles and objects within 927

the scene to simulate realistic escape room environ- 928

ments. Each scene includes multiple viewpoints, 929

which are categorized into three types: 930

• Wall View: A view showing an entire wall on 931

one side of east, west, north, or south. This 932

view updates dynamically according to the 933

states of receptacles and items belonging to 934

each wall. 935

• Receptacle View: A close-up view of a recep- 936

tacle accessed through the “inspect” action 937

from the Wall View. It changes to reflect the 938

states of receptacles. 939

• Item View: A close-up view of an item ac- 940

cessed through the “inspect” action from the 941

Receptacle View. It provides a close-up per- 942

spective of critical elements such as locks, 943

puzzles, and other objects directly involved in 944

problem solving. 945

B.3 Enhancing Photo-realism Using Chaos 946

Enscape 947

To enhance the realism of the dataset, we use Chaos 948

Enscape, a rendering tool that processes scene 949

data generated in Autodesk Revit. Chaos Enscape 950

improves the visual fidelity of the scene, provid- 951

ing photorealistic object representations. This in- 952

creased realism facilitates effective agent reasoning 953

and interaction within the environment, enabling 954

accurate simulation and analysis of escape room 955

scenarios. Refer to Figure 9 to check the before and 956

after application of Chaos Enscape. Visualization 957

of other rooms is in Figure 17. 958

B.4 Game Logic Design 959

We used OpenAI’s web interface GPT models to 960

design efficient and automated game logic. The au- 961

thors then manually reviewed the generated game 962

logic design to ensure error-free gameplay. The 963

prompt used for game logic design is in Table 21. 964
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Figure 8: Objects created using Trimble Sketchup for VisEscape. On the left are objects of the Receptacle type, and
on the right are objects of the Item type.

Figure 9: Comparison of applying visual rendering using Chaos Enscape. The left shows the view in Autodesk
Revit before using Chaos Enscape, and the right shows the view in Chaos Enscape.

C Additional Experiments and Analysis965

C.1 Tendency of Brute-Force Approaches966

We found that when attempting to solve visual967

quizzes, smaller models frequently resorted to968

brute-force strategies—randomly trying different969

passwords or sequences without grounding their970

actions in any meaningful clues. For example, for971

problems requiring agents to arrange a given set972

of numbers in the correct order, some agents re-973

peatedly attempted various possible combinations.974

To verify whether this behavior constituted brute-975

force attempts, we directly annotated whether the976

reasoning process and the corresponding attempted-977

answer pairs indicated a brute-force approach or978

not. Specifically, we annotated actions according979

to the following rules: (1) If the reasoning was980

grounded in meaningful clues or observations, we981

did not annotate it as brute-force. (2) If the at-982

tempted answers involved repeatedly trying differ-983

ent arrangements or combinations without valid jus-984

tification, then we annotated them as brute-force. 985

Table 9 demonstrates that while Claude-3.5- 986

Sonnet and GPT-4o typically grounded their puzzle- 987

solving attempts in meaningful visual clues, GPT- 988

4o-mini, InternVL2.5-38B, and LLaVA-v1.6-34B 989

frequently resorted to brute-force approaches. Ad- 990

ditionally, models that made a greater effort to iden- 991

tify reasoning justifications for their answers ex- 992

hibited higher success rates in actual experiments. 993

This behavior partially explains why these lower- 994

performing models consistently achieved lower 995

SPL and step efficiency scores—they made more 996

attempts and failed more frequently on quizzes. 997

C.2 Reasoning and Visual quizzes 998

In VisEscape, all visual quizzes require associative 999

thinking abilities. Analyzing game trajectories of 1000

diverse models, we find that most failures were on 1001

visual quizzes. So, we investigated whether these 1002

were problems they inherently couldn’t solve, or if 1003

they failed because they couldn’t properly associate 1004
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Model Brute-force attempt ratio(%) Solved quiz ratio(%)

Claude-3.5-Sonnet 0.0 21.2
GPT-4o 0.9 25.9

GPT-4o-mini 10.7 6.3
InternVL2.5-38B 10.5 6.6
LLaVA-v1.6-34B 70.0 0.0

Table 9: Results for puzzle-solving. Brute-force at-
tempt ratio denotes the ratio of brute-force attempts
among all answers submitted for numeric or alphabetic
lock puzzles. Solved quiz ratio denotes the ratio of
correctly solved locks to the total number of locks in
VisEscape.

the key clues within the escape room environment.1005

For this, we reformed them as multi-image Visual1006

Question Answering (VQA) problems. By provid-1007

ing the model with both the clue image and the1008

target lock image, we inform them that the two im-1009

ages are related to each other, and then have them1010

solve the problem. Used prompts are in Table 22.1011

Furthermore, we compare pass@1 and pass@101012

to determine if models could correctly solve the1013

task via iterative reasoning, even when their initial1014

attempt failed. To support this repeated hypothesiz-1015

ing and testing, the model’s previously generated1016

reasoning sentence for an incorrect answer, along1017

with the incorrect answer itself, was fed back as1018

input for the subsequent attempt.1019

We selected one visual quiz from each room and1020

then evaluated the performance of each model. Ta-1021

ble 10 shows the number of correct answers by each1022

model on these 20 visual quizzes. Results show that1023

open-source models generally demonstrate lower1024

performance (Pass@1 without reasoning) on these1025

visual quizzes compared to frontier models. Also,1026

Reasoning tends to improve the number of correctly1027

solved quizzes across all models.1028

While frontier models like GPT-4o and Claude-1029

3.5-Sonnet show substantial performance gains1030

with reasoning, the extent of this improvement1031

varies, with some open-source models also show-1032

ing notable gains, particularly when more attempts1033

are allowed (e.g., InternVL2.5-38B shows a +51034

improvement in Pass@10 with reasoning).1035

Also, iterative reasoning, as indicated by the gen-1036

eral increase in scores from Pass@1 to Pass@101037

under reasoning conditions, leads to a higher num-1038

ber of correct answers. This suggests that an itera-1039

tive process of hypothesis formulation and testing1040

enables the models to reach the correct solutions.1041

Model Pass@1 Pass@10

No Reason Reason No Reason Reason

GPT-4o 9 13 (+4) 9 14 (+5)
Claude 3.5 Sonnet 6 10 (+4) 11 14 (+3)
Gemini-1.5-Pro 7 8 (+1) 9 10 (+1)
GPT-4o-mini 6 7 (+1) 7 8 (+1)
Qwen2.5VL-32B 3 5 (+2) 4 6 (+2)
InternVL2.5-38B 2 2 (+0) 3 8 (+5)
InternVL2-40B 2 2 (+0) 2 5 (+3)

Table 10: Comparison of pass@1 and pass@10 scores
for models: performance with and without reasoning.

C.3 Effect of the Exploration Memory 1042

We hypothesize that among the three components 1043

of memory management module, particularly the 1044

Exploration memory component, which tracks al- 1045

ready explored versus unexplored scenes or objects, 1046

encourages agents to seek out unseen scenes or ob- 1047

jects. To verify this, we conducted an additional 1048

ablation experiment in which we specifically re- 1049

moved the Exploration memory, while keeping the 1050

other two components (Structured spatial memory 1051

and Salient action memory) intact within the Mem- 1052

ory module. For both settings, we measured the 1053

proportion of scenes observed by the agent from the 1054

set of essential observations (as determined by the 1055

oracle trajectory) required to successfully complete 1056

the game. Figure 10 shows that InternVL2.5-38B 1057

exhibited only a slight difference in exploration of 1058

unique scenes, whereas LLaVA-v1.6-34B shows a 1059

substantial decrease.

Figure 10: Proportion of essential scenes observed by
the agent at least once within the initial 100 steps. Solid
and dotted lines denote results with and without ex-
ploration memory, respectively. Removing exploration
memory significantly reduces the number of observed
essential scenes in both models.

1060

C.4 Comparison on Progress 1061

Figure 11 illustrates the progression of goal com- 1062

pletion across all rooms during the first 100 steps. 1063
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Notably, while Claude-3.5-Sonnet performs best1064

overall, it exhibits a distinctly accelerated trajectory1065

after approximately 30-40 steps. This acceleration1066

indicates that strong models better manage accu-1067

mulated room-state changes, effectively leveraging1068

previous observations to make strategic and effi-1069

cient decisions later in the trajectory.1070

Figure 11: Average GC (Goal Completion) progression
across all rooms and experiments during the first 100
steps. The X-axis represents the number of steps, and
the Y-axis represents the goal completion at each step.
Solid lines represent results from hint-guided experi-
ment, while dotted lines represent those without any
hints.

Additionally, models exhibiting rapid progress1071

(Claude-3.5-Sonnet and GPT-4o) used fewer hints1072

compared to other models (low HCR in Ta-1073

ble 4). This indicates that rapid progress by high-1074

performing models does not stem from heavy re-1075

liance on hints; instead, they use hints selectively1076

only to resolve specific obstacles and, once past1077

these obstacles, accelerate progress by effectively1078

leveraging information accumulated up to that1079

point.1080

C.5 Repetition1081

To analyze the performance difference between1082

frontier models and open-source models, we ana-1083

lyzed repetitive actions (repeating the same action1084

in identical situations) exhibited by each model1085

within their trajectories. We observe that lower-1086

performing models frequently repeat actions they1087

have already taken throughout their trajectories,1088

getting stuck in repetitive cycles. Figure 12 shows1089

that these redundant attempts are more prevalent in1090

lower-performing models.1091

C.6 Statistics for Image Captions1092

Since the Memory module uses image captions to1093

construct and manage long-term memory, it is cru-1094

cial to evaluate how accurately the MLLM captures1095

Figure 12: The ratio of actions attempted multiple times
(two or more repetitions) within a single trajectory, dis-
tributed across the frequency of attempt counts (ranging
from 2 to 10+ repetitions). The X-axis represents the
number of repeated attempts, and the Y-axis shows the
ratio of these attempts out of all actions.

essential information about the current state of the 1096

scene. To evaluate captions, we define the ground- 1097

truth (GT) state as the complete set of all recepta- 1098

cles and items present in an image obtained from 1099

the internal game engine. We then parse the gener- 1100

ated captions and examine whether they contain the 1101

information consistent with the GT state. Table 11 1102

shows that captions generated by InternVL2.5-38B 1103

provide the most accurate information in the most 1104

concise way, even when compared to GPT-4o. 1105

Model Accuracy(%) Avg. Length

GPT-4o 73.9 47.03
GPT-4o-mini 72.8 64.46

LLaVA-v1.6-34B 63.8 91.19
InternVL2.5-38B 75.1 38.50

Table 11: Evaluation on captions generated by each
VLMs. Accuracy indicates whether the caption accu-
rately describes the current game state. Avg. Length
denotes the average length of all captions generated by
each model for every unique scene.

C.7 Full Results of LLM Experiment 1106

Table 12 includes results for GPT-4o and GPT-4o- 1107

mini, which were omitted in Table 7. When GPT- 1108

4o-mini used captions instead of images as input, 1109

there was a slight improvement across all metrics, 1110

but it did not show a significant difference com- 1111

pared to other open-source models. Notably, GPT- 1112

4o’s performance decreased in expbase but slightly 1113

improved in exphint setting. 1114

C.8 Reasoning Decompsition 1115

The proportions of reasoning components and their 1116

composition for other models are shown in Table 14 1117
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expbase exphint

Model(VLM / LLM) Input Modality SR(%) GC(%) SPL(%) Step SR(%) GC(%) HCR(%) SPL(%) Step

GPT-4o Image 13.3 29.02 3.91 276.2 95.0 97.39 20.74 26.83 112.9
GPT-4o Caption 10.0 23.54 3.42 280.7 98.3 98.00 17.39 33.60 91.8

GPT-4o-mini Image 6.7 21.31 1.05 291.2 46.7 67.40 32.16 8.93 228.2
GPT-4o-mini Caption 11.7 24.21 3.25 280.3 53.3 73.94 33.93 9.76 225.6

InternVL2.5-38B Image 0.0 6.20 0.0 - 66.7 79.23 41.69 12.23 210.5
InternVL2.5-38B + Base LLM Caption 1.7 9.57 0.67 295.9 35.0 53.76 38.14 7.08 245.3

InternVL2.5-38B + Base LLM (R1) Caption 10.3 19.58 7.81 261.6 80.0 87.06 25.53 19.37 166.8

InternVL2-40B Image 0.0 4.91 0.0 - 8.3 48.18 61.61 0.96 291.1
InternVL2-40B + Base LLM Caption 0.0 3.88 0.0 - 32.0 68.00 48.22 4.39 250.6

LLaVA-v1.6-34B Image 0.0 0.54 0.0 - 15.0 34.79 64.97 1.47 289.8
LLaVA-v1.6-34B + Base LLM Caption 0.0 4.14 0.0 - 38.3 61.80 50.08 4.59 257.7

LLaVA-OneVision-7B Image 0.0 1.25 0.0 - 8.3 41.02 62.89 0.80 294.9
LLaVA-OneVision-7B + Base LLM Caption 0.0 1.62 0.0 - 25.0 58.93 70.70 2.40 287.3

Table 12: Full results are shown in Table 4. For GPT-4o and GPT-4o-mini, we used the same model but varied the
input modality type, since they do not provide language models that receives text input only.

Model expbase exphint

Step(Mean.) Step(Std.) Step(Mean.) Step(Std.)

Claude 3.5 Sonnet 249.5 47.11 103.1 29.38
GPT-4o 276.2 67.54 112.9 38.59
GPT-4o-mini 291.2 54.82 228.2 45.98
Gemini-1.5-Pro 258.1 84.44 163.3 41.45
Gemini-2.0-Flash 255.0 48.12 179.2 41.97
Qwen2.5VL-32B 295.8 - 197 32.62
InternVL2.5-38B 300.0 12.5 210.5 52.26
InternVL2-40B 300.0 - 291.1 59.85
LLaVA-v1.6-34B 300.0 - 289.8 51.51
LLaVA-OneVision-7B 300.0 - 294.9 43.41

Table 13: Mean and standard deviation of gameplay
steps for each model. The standard deviation was cal-
culated using only successful escape trajectories. For
models that failed to escape entirely, the standard devia-
tion is marked with "-".

and Figure 13.1118

D Detailed Explanation1119

D.1 Reasoning Component1120

We have classified the reasoning processes that1121

models undertake while solving problems in Vis-1122

Escape as follows: Observation, Guess, Hypothesis1123

Formation, Planning, and Recall. The classification1124

criteria are as follows:1125

• Observation: Visually perceiving, describing,1126

or analyzing the current scene.1127

• Guess: Making a guess or assumption based1128

on priors or knowledge, without exact evi-1129

dence acquired in the environment.1130

• Hypothesis Formation: Forming a hypoth-1131

esis or idea to test in the environment, based1132

on any evidence acquired in the environment.1133

• Planning: Establishing or formulating action1134

plans within the environment.1135

• Recall: Retrieving information from history - 1136

remembering the state/location of objects, ac- 1137

tions previously performed, and other relevant 1138

details. 1139

We extract the pre-action reasoning and action 1140

performed by each model at every game step from 1141

the experimental logs, which were run with an ap- 1142

plied memory management and a reasoning mod- 1143

ule. And they are annotated using GPT-4o (Achiam 1144

et al., 2023). We set temperature as 0.0 for repro- 1145

duction. To ensure the reliability of our machine- 1146

based evaluation method, we sampled 100 in- 1147

stances for each of the categories classified by GPT- 1148

4o, totaling 500 samples. These sentences were 1149

then manually annotated by humans following the 1150

same procedure. Figure 14 shows a heatmap be- 1151

tween human and GPT-4o annotations, suggesting 1152

that while the model’s classifications largely align 1153

with human annotations, the model frequently mis- 1154

classified the Guess type as Hypothesis Formation. 1155

D.2 Memory Management Module 1156

• Structured spatial memory: This memory 1157

hierarchically stores information about room 1158

walls, the receptacles on those walls, the states 1159

of these receptacles, along with their visual 1160

information and characteristics. This serves as 1161

a directional aid for navigating toward specific 1162

receptacles or items. 1163

• Exploration memory: This memory stores 1164

information about which objects and items 1165

have been inspected so far and which have 1166

not. This encourages the agent to explore 1167

unobserved information rather than getting 1168

stuck on the information acquired thus far. 1169
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Model Composition Ratio Length

Claude 3.5 Sonnet

(Obs, Recall, Plan) 18.1 127.0

(Obs, Recall, Hypo, Plan) 15.8 141.5

(Obs, Recall, Plan, Hypo) 14.8 127.5

(Obs, Recall, Obs, Hypo, Plan) 9.5 155.2

(Obs, Recall, Hypo) 8.6 125.9

Gemini-1.5-Pro

(Obs, Plan) 28.8 28.1

(Obs, Recall, Plan) 18.6 46.1

(Plan) 17.4 6.5

(Recall, Plan) 17.0 32.8

(Recall, Obs, Plan) 6.0 43.0

GPT-4o

(Recall, Plan) 31.6 62.8

(Recall, Hypo) 13.7 53.9

(Recall, Hypo, Plan) 11.0 67.4

(Obs, Plan) 8.8 54.0

(Recall, Gue, Plan) 8.5 65.5

InternVL2.5-38B

(Recall, Plan) 23.3 76.7

(Plan) 20.9 13.1

(Recall, Obs, Plan) 11.5 90.7

(Obs, Plan) 9.6 68.7

(Obs, Recall, Plan) 8.4 93.6

LLaVA-v1.6-34B

(Recall, Plan) 38.5 55.3

(Plan) 21.3 39.4

(Obs, Plan) 11.7 54.4

(Recall, Obs, Plan) 8.9 64.0

(Obs, Recall, Plan) 6.5 67.0

Qwen2.5VL-32B

(Obs, Recall, Hypo, Plan) 16.3 219.0

(Obs, Recall, Plan) 15.7 143.1

(Recall, Obs, Hypo, Plan) 15.1 143.1

(Plan) 12.7 6.4

(Obs, Plan) 7.9 95.0

Table 14: Reasoning composition for other models.

Figure 13: Proportion for each reasoning component for
other models.

• Salient action memory: This memory selec- 1170

tively stores actions that are worth remember- 1171

ing, such as interactions with objects, attempt- 1172

ing to enter passwords, etc. This allows the 1173

agent to make action decisions by referencing 1174

actions it has performed in the past. 1175

D.3 Visualization of Interactions in VisEscape 1176

Figure 15 is a visualization of interactions defined 1177

in VisEscape. The size of each word is proportional 1178

to its frequency of appearance within the game. 1179

D.4 Example of Visual Quizzes 1180

Figure 16 shows two examples of visual quizzes in 1181

VisEscape. 1182

E Related works on Escape Rooms 1183

EscapeBench (Qian et al., 2024) proposes a bench- 1184

mark to evaluate creative reasoning in text-only 1185

environments, with a focus on tool use as a proxy 1186

for measuring creativity. IDEA (He et al., 2024) 1187

presents an agent that mimics the loop of human 1188

rule-learning by integrating multiple forms of rea- 1189

soning to guide its actions, focusing on solving 1190
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Figure 14: Heatmap of agreement between GPT-4o and
human annotations for reasoning type classification. In
85.6% of the instances, the category annotations from
GPT-4o and humans were identical.

Figure 15: Wordcloud of all types of actions defined in
VisEscape. We excluded “open” and “close”, which are
available on most receptacles.

Figure 16: Examples of visual quizzes that requires
associative thinking in VisEscape. For all problems,
we controlled the spatial positioning of the locks and
clue images to ensure they remain distinctly separated.
This design forces the agent not only to store each piece
of information independently but also to identify rele-
vant connections between them (such as “color” in the
example above) and reason based on the established as-
sociations between these separate pieces of information.

text-based puzzles. MM-Escape (Wang et al., 2025)1191

aims to extend the escape room paradigm by build-1192

ing an embodied environment for the evaluation of1193

MLLM agents. Departing from embodied setups,1194

our visually grounded benchmark blends tool use1195

with puzzle-solving to create a more flexible yet1196

challenging reasoning framework for evaluating1197

MLLMs. 1198

F Human Study 1199

Room SR(%) GC(%) Steps Duration(s)

1 75.0 92.5 41.8 231.3
2 100.0 100.0 67.3 319.5
3 50.0 87.5 71.1 319.5
4 75.0 93.8 112.0 447.0
5 100.0 100.0 77.3 274.5
6 100.0 100.0 37.0 117.0
7 100.0 100.0 46.8 225.0
8 100.0 100.0 53.0 567.3
9 75.0 90.0 52.0 567.3
10 75.0 91.7 54.0 204.5
11 50.0 79.2 37.8 231.3
12 75.0 92.9 31.3 144.0
13 100.0 100.0 41.5 199.8
14 100.0 100.0 57.3 468.3
15 100.0 100.0 36.0 151.0
16 100.0 100.0 40.8 106.0
17 25.0 96.9 63.3 488.3
18 100.0 100.0 40.5 399.3
19 75.0 91.7 43.8 378.5
20 75.0 100.0 50.8 530.3

Average 82.5 95.8 52.8 318.5

Table 15: Human evaluation per-room success rates,
goal completions, step counts, and time durations.

To compare the performance of AI models and 1200

human performance on escape room games, we 1201

conducted a human study. We recruited a total of 1202

20 participants, including both individuals famil- 1203

iar and those unfamiliar with escape room games, 1204

and each was instructed to complete tasks in four 1205

different rooms. Figures 18 illustrate the Gradio 1206

interface used to provide the UI for playing Vis- 1207

Escape. 1208

Table 15 presents the results of the human evalu- 1209

ation for 20 rooms, including the success rate, goal 1210

completion, number of steps, and time duration for 1211

experiments. Participants achieved high success 1212

rates in most rooms. We paid them based on the 1213

minimum hourly wage. 1214
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Variables:
direction, available_actions

Initial prompt:
You are an AI agent playing a room escape game. The room is surrounded by 4 walls, and you can
explore other walls by "turn_to_[direction]". Each wall has objects that you can interact with,
and you can inspect the object by "inspect [object]". Please read the given information and task
description below carefully and respond accordingly.

Prompt:
{Initial Prompt}
<Current Observation>{direction} side of room - [IMAGE]</Current Observation>
Based on these information, choose next action to progress in the game. You can do one of the
following actions: {available_actions}
Before you act, think first, and then act. Your thought should be in section [THINK], and your
action should be in section [ACTION]. In [ACTION], respond ONLY with the chosen action, no other
text.
[THINK]
[ACTION]

(a) Prompts for Reasoning module on initial step

Variables:
memory, salient_action_history, action_history, direction, current_scene_desc, previous_react,
available_actions, hint_guideline_text

Puzzle text [OPTIONAL: if ispuzzle mode]:
<ANSWER> is an action to input the answer to open the lock you are facing. When you choose <ANSWER>,
you should follow this format: <̈ANSWER>your answer</ANSWER>.̈

Prompt (Reason):
{Initial Prompt}
<Memory>{memory}</Memory>
<Action Memory>{salient_action_history}</Action Memory>
<Recent actions(from oldest to latest)>{action_history}</Recent actions>
<Current Observation>{direction} side of room - {current_scene_desc}</Current Observation>
<Your Thought and Action before this turn>{previous_react}</Your Thought and Action before this
turn>
{available_actions}
{Puzzle text}
Before you act, think first, and then act. If there is a hint message, you should choose action
to accomplish the guideline in hint message. {hint_guideline_text}
Your thought should be in section [THINK], and your action should be in section [ACTION]. In
[ACTION], respond ONLY with the chosen action or <ANSWER>your answer</ANSWER>, no other text.

Prompt (Retry):
{Initial Prompt}
<Memory>{memory}</Memory>
<Your Previous Action> {before_action}
<Available Actions> {available_actions}
You just performed the <Your Previous Action>, but that action is not currently available in
<Available Actions>. Referring to your memory, choose an action that is necessary to perform <Your
Previous Action>.
{hint_guideline_text}
You should choose one of the following actions:{available_actions}
Please respond following below format without any other text: [ACTION]

(b) Prompts for Reasoning module and Retry

Table 16: Prompts for the Reasoning module-before action.
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Variables:
action_history

Initial prompt:
You are an AI agent playing a room escape game. The room is surrounded by 4 walls, and you can
explore other walls by "turn_to_[direction]". Each wall has objects that you can interact with,
and you can inspect the object by "inspect [object]". Please read the given information and task
description below carefully and respond accordingly.

last_10_history (for log in action_history) :
Observation: [{log[’scene’]}]\n
Action: [{log[’action’]}]-{log[’analysis’]}

spatial_json_format:
{"direction 1" : {

"objects":["object1", "object2", ...]
},
...}

inspected_objects_json_format:
[{"object 1" : {

"state":"",
"characteristics":"",
"additional info":""

, ...}]}

Prompt:
{Initial Prompt}
<Last 10 logs(from oldest to latest)> {last_10_history} </Last 10 logs>
Here is the definition of information:
<Last 10 logs>: Sequence of observation, action-effect, next observation, next action-effect for
each turn.
Here is the task:
Construct your memory about the room, based on the last 10 logs. Follow below guidelines:
1. Identify which objects exist on each directional wall, and add the information to "[SPATIAL
MEMORY]" section.
2. If you have inspected an object via "inspect [object]", you should add the information to
"[INSPECTED OBJECTS]" section.
3. The objects that you have not inspected via "inspect [object]" should be added to "[UNINSPECTED
OBJECTS]" section.
4. Add any information from observations which is not included in [SPATIAL MEMORY] and [INSPECTED
OBJECTS] that you think is necessary for solving other problems to the "[Additional Memory]"
section.
Please respond following below format without any other text:
[SPATIAL MEMORY] {spatial_json_format}
[INSPECTED OBJECTS] {inspected_objects_json_format}
[UNINSPECTED OBJECTS] []
[ADDITIONAL MEMORY] [1. additional memory1, 2. additional memory2, ...]

Table 17: Prompts for memory management module - for first run (memory construction).
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Variables:
spatial_memory, action_history

Initial prompt:
You are an AI agent playing a room escape game. The room is surrounded by 4 walls, and you can
explore other walls by "turn_to_[direction]". Each wall has objects that you can interact with,
and you can inspect the object by "inspect [object]". Please read the given information and task
description below carefully and respond accordingly.

last_10_history (for log in action_history) :
Observation: [{log[’scene’]}]\n
Action: [{log[’action’]}]-{log[’analysis’]}

spatial_json_format:
{"direction 1" : {

"objects":["object1", "object2", ...]
},
...}

inspected_objects_json_format:
[{"object 1" : {

"state":"",
"characteristics":"",
"additional info":""

, ...}]}

Prompt:
{Initial Prompt}
<Current Memory> {spatial_memory} </Current Memory>
<Last 10 logs(from oldest to latest)> {last_10_history} </Last 10 logs>
Here is the definition of each information:
<Last 10 logs>: Sequence of observation, action-effect, next observation, next action-effect for
each turn.
Here is the task:
Update your memory about the room, based on the last 10 logs. Follow below guidelines:
1. If you newly inspected an object via "inspect [object]" among objects in "[UNINSPECTED OBJECTS]"
section,

you should add the information to "[INSPECTED OBJECTS]" section.
2. Based on the information that you can obtain from last 10 logs, update <Current Memory>

if there exists any information that you can obtain from <Last 10 logs> but not in <Current
Memory>.
3. Add any information not included in spatial memory and inspected objects that you think is
necessary

for solving other problems to the "[ADDITIONAL MEMORY]" section.
Please respond following below format without any other text:
[SPATIAL MEMORY] {spatial_json_format}
[INSPECTED OBJECTS] {inspected_objects_json_format}
[UNINSPECTED OBJECTS] []
[ADDITIONAL MEMORY] [1. additional memory1, 2. additional memory2, ...]

Table 18: Prompts for Memory management module after memory construction

Variables:
previous_scene, previous_action, current_scene

Prompt:
{Initial Prompt}
<Previous Observation> : {previous_scene}
<Previous Action> : {previous_action}
<Current Observation> : {current_scene}
Here is the definition of each information:
<Previous Observation> is a description of a scene before your action, and <Current Observation>
is a description of a scene after your action.
Here is the task:
Analyze the effect of your action by comparing <Previous Observation> and <Current Observation>.
The analysis should be concise and definitive, not descriptive.
Keep it under 10 words.
[ANALYSIS]

Table 19: Prompts for Reasoning module-after action.
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Variables:
item_name

Prompt:
This image is a close-up view of an item ’{item_name}’.
Describe this image. Your description should fulfill the following rules:
1. Description should include every visual information, but concise and clear.
2. Do not start description with phrases like ’The image depicts’, ’The image shows’, etc.

(a) Prompts for getting caption from image of item-view

Variables:
object_type, items_str

This image is a close-up view of an object ’{object_type}’.
In {object_type}, the following objects are present: {items_str}
Describe this image. The names of visible objects should be expressed using the given object names
above, enclosed in "".
Your description should fulfill the following rules:
1. Description should include every visual information, but concise and clear.
2. Do not include any analysis of the scene or the room, just describe the image.
3. Do not start description with phrases like ’The image depicts’, ’The image shows’, etc.

(b) Prompts for getting caption from image of object-view

Variables:
objects

This image is a wall view of a room, with following objects: {objects}.
Describe this image. The names of visible objects should be expressed using the given object names
above, enclosed in "".
Your description should fulfill the following rules:
1. Description should include every visual information, but concise and clear.
2. Do not include any analysis of the scene or the room, just describe the image.
3. Do not start description with phrases like ’The image depicts’, ’The image shows’, etc.

(c) Prompts for getting caption from image of wall-view

Table 20: Prompts for captioning observations.
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Prompt:

You are a game designer proposing ideas for an ’Escape Room Game’. I want to create an ’Escape Room
Game’ in a room structure enclosed by four walls. Inside the room, there are various objects, and
it’s an ’Escape Room Game’ where actions initiated from a specific object trigger other objects,
allowing puzzles to be solved one by one. There are two types of objects:

1. Receptacle:
- Definition) Objects that can contain or hold other objects, such as tables, drawers, or wardrobes.
- Each Receptacle is visually distinct and has unique States. For example, a door without a lock
has two States: ’open’ and ’closed’, but a door with a lock has three States: ’locked’, ’open’, and
’closed’. Also, a drawer with two compartments can have four States depending on the open/closed
status of each compartment: ’opened_opened’, ’opened_closed’, ’closed_opened’, ’closed_closed’.
- Each Receptacle must be assigned to one of the four walls of the room.
- Receptacles can contain Items. However, considering realistic constraints, each Item must define
the "Interactable State(s)" of the Receptacle where it can be interacted with (i.e., visible).
For example, if you have a key and a wardrobe with States defined as [locked, closed, open], the
key’s interactable state for that wardrobe is [open]. Interactable States can be multiple. For
instance, for a drawer with two compartments, if a key exists in the second compartment, the key’s
interactable states are [closed_open, open_open].

2. Item:
- Definition) Objects that can be triggers for interaction with specific Receptacles and other
Items, such as keys, buttons, photos, etc. Items must be contained within a Receptacle. There are
two types of Items:
- 2-a. Applicable Item: Items that can be picked up, stored in an inventory, and applied to other
objects, such as keys or ID cards.
- 2-b. Quiz Item: Items that contain a puzzle, which, when correctly solved or triggered by a
specific action, activates a change in another specific object within the game.

Furthermore, in addition to objects, the game requires internal logic for escaping the room. For
example, a wardrobe is initially locked, but finding and applying a key from elsewhere unlocks it.
A drawer is initially locked, but solving a quiz elsewhere opens it. The game logic can be very
creative and diverse, but it must be defined according to the following constraints:

1. It must be limited to logic that changes the state of a Receptacle.
2. Actions related to game logic must be associated with an Item. For example, changing a drawer
from a ’locked’ State to a ’closed’ State via an ’apply Key’ action is game logic. However,
changing a drawer from an ’opened’ State to a ’closed’ State via a ’close’ action is not game
logic.

If these two constraints are met, the in-game logic can be expressed atomically in the following
format:
(receptacle_name.state_name_before_action, action_name(item_name),
receptacle_name.state_name_after_action, checkTrigger(interaction_name))

In summary, to design one escape room game, the following game components are needed:
- Approximately 5 Receptacles, all possible states defined for each object, and which wall they belong to.
- Approximately 5 Items, and which Receptacle they belong to.
- Approximately 5 game logic interactions, expressed in the atomic format described above.

Please design a game logic with following receptacles and items:
[Receptacle] - 2TierDrawer, Cupboard, Safe, Wardrobe, Desk, Door
[Receptacle] - Key1, key2, ID card, button, puzzle
Design an escape room game by creating interactions between objects and puzzles. Storytelling is not required, and the
game does not need to be particularly creative or innovative.

Table 21: Prompts used for game logic design.
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Figure 17: Example of rooms rendered using Chaos Enscape.

Figure 18: User Interface generated by Gradio for conducting experiments for human trajectory.
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Variables:
image1, image2, [Optional]tried_answers
{History} (if tried_answers is given):
You have tried the following answers: {tried_answers}, but they are all wrong.

Prompt:
{image1} is a hint image for the password of the lock described in {image2}.
You should guess the password of the lock solely based on the hint image.
{History}
Respond ONLY with the your answer, no other text.

(a) Prompts for multi-image VQA without reasoning.

Variables:
image1, image2, [Optional]tried_answers
{History} (if tried_answers is given):
You have tried the following answers: {tried_answers}, but they are all wrong.

Prompt:
{image1} is a hint image for the password of the lock described in {image2}.
You should guess the password of the lock solely based on the hint image.
{History}
Before you guess, think first, and then guess the password. Your thought should be in section
[Think], and your answer should be in section [Answer]. In [Answer], respond ONLY with the your
answer, no other text.
[Think]
[Answer]

(b) Prompts for multi-image VQA with reasoning.

Table 22: Prompts for multi-image VQA.
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Variables:
think, action
Prompt:
You are tasked with analyzing the logs of an AI agent in an escape room game.
I’ll give you a think-action pair that the AI agent has performed.
Your task is as follows:

1. Divide the agent’s reasoning chain into distinct units that fall into the categories explicitly
given below:
- Observation: visually perceiving, describing, or analyzing the current scene
- Guess: making a guess or assumption based on priors or knowledge, without exact evidence

acquired in the environment
- Hypothesis Formation: forming a hypothesis or idea to test in the environment, based on any

evidence acquired in the environment
- Planning: Establishing or formulating action plans within the environment
- Recall: Retrieving information from history - remembering the state/location of objects, actions
previously performed, and other relevant details

A unit could be:
- A single sentence
- Multiple sentences together
- Multiple units within a single sentence

2. If a unit does not fit into the above categories, create a new category called [None-<new
category name>] and place it there.
3. List all units in the same order as they appear in the original text. Do not reorder or
rearrange the units.

Input:
[Think]{think}
[Action]{action}

Response Format:
[Category of Unit 1]: Sentence or phrase of given [Think]
[Category of Unit 2]: Sentence or phrase of given [Think]
[Category of Unit 3]: Sentence or phrase of given [Think]
...
Response:

Table 23: Prompts for annotating components of reasoning.
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