
Neural Ensemble Search
for Uncertainty Estimation and Dataset Shift

Sheheryar Zaidi1∗ Arber Zela2∗ Thomas Elsken3,2

Chris Holmes1 Frank Hutter2,3 Yee Whye Teh1

1University of Oxford, 2University of Freiburg, 3Bosch Center for Artificial Intelligence
{szaidi, cholmes, y.w.teh}@stats.ox.ac.uk,

{zelaa, fh}@cs.uni-freiburg.de, thomas.elsken@de.bosch.com

Abstract

Ensembles of neural networks achieve superior performance compared to stand-
alone networks in terms of accuracy, uncertainty calibration and robustness to
dataset shift. Deep ensembles, a state-of-the-art method for uncertainty estimation,
only ensemble random initializations of a fixed architecture. Instead, we propose
two methods for automatically constructing ensembles with varying architectures,
which implicitly trade-off individual architectures’ strengths against the ensemble’s
diversity and exploit architectural variation as a source of diversity. On a variety
of classification tasks and modern architecture search spaces, we show that the
resulting ensembles outperform deep ensembles not only in terms of accuracy but
also uncertainty calibration and robustness to dataset shift. Our further analysis and
ablation studies provide evidence of higher ensemble diversity due to architectural
variation, resulting in ensembles that can outperform deep ensembles, even when
having weaker average base learners. To foster reproducibility, our code is available:
https://github.com/automl/nes

1 Introduction

Some applications of deep learning rely only on point estimate predictions made by a neural network.
However, many critical applications also require reliable predictive uncertainty estimates and robust-
ness under the presence of dataset shift, that is, when the observed data distribution at deployment
differs from the training data distribution. Examples include medical imaging [15] and self-driving
cars [5]. Unfortunately, several studies have shown that neural networks are not always robust to
dataset shift [46, 26], nor do they exhibit calibrated predictive uncertainty, resulting in incorrect
predictions made with high confidence [21].

Deep ensembles [33] achieve state-of-the-art results for predictive uncertainty calibration and robust-
ness to dataset shift. Notably, they have been shown to outperform various approximate Bayesian
neural networks [33, 46, 22]. Deep ensembles are constructed by training a fixed architecture mul-
tiple times with different random initializations. Due to the multi-modal loss landscape [18, 54],
randomization by different initializations induces diversity among the base learners to yield a model
with better uncertainty estimates than any of the individual base learners (i.e. ensemble members).

Our work focuses on automatically selecting varying base learner architectures in the ensemble,
exploiting architectural variation as a beneficial source of diversity missing in deep ensembles
due to their fixed architecture. Such architecture selection during ensemble construction allows a
more “ensemble-aware” choice of architectures and is based on data rather than manual biases. As

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/automl/nes

discussed in Section 2, while ensembles with varying architectures has already been explored in the
literature, variation in architectures is typically limited to just varying depth and/or width, in contrast
to more complex variations, such as changes in the topology of the connections and operations
used, as considered in our work. More generally, automatic ensemble construction is well-explored
in AutoML [17, 36, 45, 43]. Our work builds on this by demonstrating that, in the context of
uncertainty estimation, automatically constructed ensembles with varying architectures outperform
deep ensembles that use state-of-the-art, or even optimal, architectures (Figure 1). Studied under
controlled settings, we assess the ensembles by various measures, including predictive performance,
uncertainty estimation and calibration, base learner performance and two ensemble diversity metrics,
showing that architectural variation is beneficial in ensembles.

1.83

1.92

Ensemble NLL

Error

EC
E

Avg. base learner NLL

Oracle NLL

1 -
 Pr

ed
. D

isa
gr

.

NES-RS NES-RE DeepEns (best arch.)

0.47

0.49

0.02

0.03

2.09

2.21 1.4

1.53

0.07

0.13

Performance metrics

Ensemble diagnostics

for all 6 metrics smaller
(i.e. closer to center)
is better

Figure 1: A comparison of a deep ensem-
ble with the best architecture (out of 15,625
possible architectures) and ensembles con-
structed by our method NES on ImageNet-
16-120 over NAS-Bench-201. Performance
metrics (smaller is better): error, negative log-
likelihood (NLL) and expected calibration error
(ECE). We also measure average base learner
NLL and two metrics for ensemble diversity
(see Section 3): oracle NLL and [1−predictive
disagreement]; small means more diversity for
both metrics. NES ensembles outperform the
deep ensemble, despite the latter having a sig-
nificantly stronger average base learner.

Note that, a priori, it is not obvious how to find a
set of diverse architectures that work well as an en-
semble. On the one hand, optimizing the base learn-
ers’ architectures in isolation may yield multiple
base learners with similar architectures (like a deep
ensemble). On the other hand, selecting the archi-
tectures randomly may yield numerous base learn-
ers with poor architectures harming the ensemble.
Moreover, as in neural architecture search (NAS),
we face the challenge of needing to traverse vast
architectural search spaces. We address these chal-
lenges in the problem of Neural Ensemble Search
(NES), an extension of NAS that aims to find a set
of complementary architectures that together form
a strong ensemble. In summary, our contributions
are as follows:

1. We present two NES algorithms for automati-
cally constructing ensembles with varying base
learner architectures. As a first step, we present
NES with random search (NES-RS), which is
simple and easily parallelizable. We further pro-
pose NES-RE inspired by regularized evolution
[48], which evolves a population of architectures
yielding performant and robust ensembles.

2. This work is the first to apply automatic ensem-
ble construction over architectures to complex,
state-of-the-art neural architecture search spaces.

3. In the context of uncertainty estimation and ro-
bustness to dataset shift, we demonstrate that ensembles constructed by NES improve upon
state-of-the-art deep ensembles. We validate our findings over five datasets and two architecture
search spaces.

2 Related Work
Ensembles and uncertainty estimation. Ensembles of neural networks [23, 32, 11] are commonly
used to boost performance. In practice, strategies for building ensembles include independently
training multiple initializations of the same network, i.e. deep ensembles [33], training base learners
on different bootstrap samples of the data [62], training with diversity-encouraging losses [40, 35,
60, 51, 29, 47] and using checkpoints during the training trajectory of a network [27, 41]. Despite
a variety of approaches, Ashukha et al. [1] found many sophisticated ensembling techniques to be
equivalent to a small-sized deep ensemble by test performance.

Much recent interest in ensembles has been due to their state-of-the-art predictive uncertainty
estimates, with extensive empirical studies [46, 22] observing that deep ensembles outperform other
approaches for uncertainty estimation, notably including Bayesian neural networks [4, 19, 52] and
post-hoc calibration [21]. Although deep ensembles are not, technically speaking, equivalent to
Bayesian neural networks and the relationship between the two is not well understood, diversity

2

among base learners in a deep ensemble yields a model which is arguably closer to exact Bayesian
model averaging than other approximate Bayesian methods that only capture a single posterior
mode in a multi-modal landscape [54, 18]. Also, He et al. [24] draw a rigorous link between
Bayesian methods and deep ensembles for wide networks, and Pearce et al. [47] propose a technique
for approximately Bayesian ensembling. Our primary baseline is deep ensembles as they provide
state-of-the-art results in uncertainty estimation.

AutoML and ensembles of varying architectures. Automatic ensemble construction is commonly
used in AutoML [17, 28]. Prior work includes use of Bayesian optimization to tune non-architectural
hyperparameters of an ensemble’s base learners [36], posthoc ensembling of fully-connected networks
evaluated by Bayesian optimization [43] and building ensembles by iteratively adding (sub-)networks
to improve ensemble performance [10, 42]. Various approaches, including ours, rely on ensemble
selection [7]. We also note that Simonyan & Zisserman [49], He et al. [25] employ ensembles with
varying architectures but without automatic construction. Importantly, in contrast to our work, all
aforementioned works limit architectural variation to only changing width/depth or fully-connected
networks. Moreover, such ensembles have not been considered before in terms of uncertainty
estimation. Another important part of AutoML is neural architecture search (NAS), the process
of automatically designing single model architectures [14], using strategies such as reinforcement
learning [63], evolutionary algorithms [48] and gradient-based methods [39]. We use the search
spaces defined by Liu et al. [39] and Dong & Yang [13], two of the most commonly used ones in
recent literature.

Concurrent to our work, Wenzel et al. [53] consider ensembles with base learners having varying
hyperparameters using an approach similar to NES-RS. However, they focus on non-architectural
hyperparameters such as L2 regularization strength and dropout rates, keeping the architecture fixed.
As in our work, they also consider predictive uncertainty calibration and robustness to shift, finding
similar improvements over deep ensembles.

3 Visualizing Ensembles of Varying Architectures
In this section, we discuss diversity in ensembles with varying architectures and visualize base learner
predictions to add empirical evidence to the intuition that architectural variation results in more
diversity. We also define two metrics for measuring diversity used later in Section 5.

3.1 Definitions and Set-up
Let Dtrain = {(xi, yi) : i = 1, . . . , N} be the training dataset, where the input xi ∈ RD and,
assuming a classification task, the output yi ∈ {1, . . . , C}. We use Dval and Dtest for the validation
and test datasets, respectively. Denote by fθ a neural network with weights θ, so fθ(x) ∈ RC is the
predicted probability vector over the classes for input x. Let `(fθ(x), y) be the neural network’s
loss for data point (x, y). Given M networks fθ1 , . . . , fθM , we construct the ensemble F of these
networks by averaging the outputs, yielding F (x) = 1

M

∑M
i=1 fθi(x).

In addition to the ensemble’s loss `(F (x), y), we will also consider the average base learner loss and
the oracle ensemble’s loss. The average base learner loss is simply defined as 1

M

∑M
i=1 `(fθi(x), y);

we use this to measure the average base learner strength later. Similar to prior work [35, 60], the
oracle ensemble FOE composed of base learners fθ1 , . . . , fθM is defined to be the function which,
given an input x, returns the prediction of the base learner with the smallest loss for (x, y), that is,

FOE(x) = fθk(x), where k ∈ argmin
i

`(fθi(x), y).

The oracle ensemble can only be constructed if the true class y is known. We use the oracle ensemble
loss as one of the measures of diversity in base learner predictions. Intuitively, if base learners make
diverse predictions for x, the oracle ensemble is more likely to find some base learner with a small
loss, whereas if all base learners make identical predictions, the oracle ensemble yields the same
output as any (and all) base learners. Therefore, as a rule of thumb, all else being equal, smaller
oracle ensemble loss indicates more diverse base learner predictions.
Proposition 3.1. Suppose ` is negative log-likelihood (NLL). Then, the oracle ensemble loss,
ensemble loss, and average base learner loss satisfy the following inequality:

`(FOE(x), y) ≤ `(F (x), y) ≤ 1

M

M∑
i=1

`(fθi(x), y).

3

2 0 2
t-SNE dimension 1

3

2

1

0

1

2

3

t-S
NE

 d
im

en
sio

n
2

Arch_1
Arch_2
Arch_3
Arch_4
Arch_5

(a) Five different architectures, each
trained with 20 different initializations.

2 1 0 1 2
t-SNE dimension 1

2

1

0

1

2

t-S
NE

 d
im

en
sio

n
2

Fixed arch.
Varying arch.

(b) Predictions of base learners in two
ensembles, one with fixed architecture
and one with varying architectures.

Figure 2: t-SNE visualization of
base learner predictions. Each
point corresponds to one network’s
(dimension-reduced) predictions.

We refer to Appendix A for a proof. Proposition 3.1 suggests
that it can be beneficial for ensembles to not only have strong
average base learners (smaller upper bound), but also more
diversity in their predictions (smaller lower bound). There
is extensive theoretical work relating strong base learner per-
formance and diversity with the generalization properties of
ensembles [23, 61, 6, 30, 3, 20]. In Section 5, the two metrics
we use for measuring diversity are oracle ensemble loss and
(normalized) predictive disagreement, defined as the average
pairwise predictive disagreement amongst the base learners,
normalized by their average error [18].

3.2 Visualizing Similarity in Base Learner Predictions
The fixed architecture used to build deep ensembles is typ-
ically chosen to be a strong stand-alone architecture, either
hand-crafted or found by NAS. However, optimizing the base
learner’s architecture and then constructing a deep ensemble
can neglect diversity in favor of strong base learner perfor-
mance. Having base learner architectures vary allows more
diversity in their predictions. We provide empirical evidence
for this intuition by visualizing the base learners’ predictions.
Fort et al. [18] found that base learners in a deep ensemble
explore different parts of the function space by means of apply-
ing dimensionality reduction to their predictions. Building on
this, we uniformly sample five architectures from the DARTS
search space [39], train 20 initializations of each architecture
on CIFAR-10 and visualize the similarity among the networks’
predictions on the test dataset using t-SNE [50]. Experiment
details are available in Section 5 and Appendix B.

As shown in Figure 2a, we observe clustering of predictions
made by different initializations of a fixed architecture, sug-
gesting that base learners with varying architectures explore
different parts of the function space. Moreover, we also visu-
alize the predictions of base learners of two ensembles, each
of size M = 30, where one is a deep ensemble and the other
has varying architectures (found by NES-RS as presented in
Section 4). Figure 2b shows more diversity in the ensemble
with varying architectures than in the deep ensemble. These qualitative findings can be quantified by
measuring diversity: for the two ensembles shown in Figure 2b, we find the predictive disagreement
to be 94.6% for the ensemble constructed by NES and 76.7% for the deep ensemble (this is consistent
across independent runs). This indicates higher predictive diversity in the ensemble with varying
architectures, in line with the t-SNE results.

4 Neural Ensemble Search

In this section, we define neural ensemble search (NES). In summary, a NES algorithm optimizes the
architectures of base learners in an ensemble to minimize ensemble loss.

Given a network f : RD → RC , let L(f,D) =
∑

(x,y)∈D `(f(x), y) be the loss of f over dataset D.
Given a set of base learners {f1, . . . , fM}, let Ensemble be the function which maps {f1, . . . , fM}
to the ensemble F = 1

M

∑M
i=1 fi as defined in Section 3 . To emphasize the architecture, we use the

notation fθ,α to denote a network with architecture α ∈ A and weights θ, where A is a search space
(SS) of architectures. A NES algorithm aims to solve the following optimization problem:

min
α1,...,αM∈A

L (Ensemble(fθ1,α1
, . . . , fθM ,αM

),Dval) (1)

s.t. θi ∈ argmin
θ
L(fθ,αi

,Dtrain) for i = 1, . . . ,M

Eq. 1 is difficult to solve for at least two reasons. First, we are optimizing over M architectures, so
the search space is effectively AM , compared to it being A in typical NAS, making it more difficult

4

Select
ensemble

Sample
parent Mutate

Update
population

Figure 3: Illustration of one iteration of NES-RE. Network architectures are represented as colored
bars of different lengths illustrating different layers and widths. Starting with the current population,
ensemble selection is applied to select parent candidates, among which one is sampled as the parent.
A mutated copy of the parent is added to the population, and the oldest member is removed.

to explore fully. Second, a larger search space also increases the risk of overfitting the ensemble loss
to Dval. A possible approach here is to consider the ensemble as a single large network to which we
apply NAS, but joint training of an ensemble through a single loss has been empirically observed to
underperform training base learners independently, specially for large networks [51]. Instead, our
general approach to solve Eq. 1 consists of two steps:

1. Pool building: build a pool P = {fθ1,α1 , . . . , fθK ,αK
} of size K consisting of potential base

learners, where each fθi,αi is a network trained independently on Dtrain.

2. Ensemble selection: select M base learners (without replacement as discussed below)
fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
from P to form an ensemble which minimizes loss onDval. (We setK ≥M .)

Step 1 reduces the options for the base learner architectures, with the intention to make the search
more feasible and focus on strong architectures; step 2 then selects a performant ensemble. This
procedure also ensures that the ensemble’s base learners are trained independently. We use ensemble
selection without replacement [7] for step 2. More specifically, this is forward step-wise selection;
that is, given the set of networks P , we start with an empty ensemble and add the network from P
which minimizes ensemble loss on Dval. We repeat this without replacement until the ensemble is of
size M . ForwardSelect(P,Dval,M) denotes the resulting set of M base learners selected from P .

Note that selecting the ensemble from P is a combinatorial optimization problem; a greedy approach
such as ForwardSelect is nevertheless effective as shown by Caruana et al. [7], while keeping
computational overhead low, given the predictions of the networks on Dval. We also experimented
with various other ensemble selection algorithms, including weighted averaging, as discussed in
Section 5.2 and Appendix C.8, finding ForwardSelect to perform best.

We have not yet discussed the algorithm for building the pool in step 1; we present two approaches,
NES-RS (Section 4.1) and NES-RE (Section 4.2). NES-RS is a simple random search based algorithm,
while NES-RE is based on regularized evolution [48], a state-of-the-art NAS algorithm. Note that
while gradient-based NAS methods have recently become popular, they are not naively applicable in
our setting as the base learner selection component ForwardSelect is typically non-differentiable.

4.1 NES with Random Search
In NAS, random search (RS) is a competitive baseline on carefully designed architecture search
spaces [37, 57, 58]. Motivated by its success and simplicity, NES with random search (NES-RS)
builds the pool P by independently sampling architectures uniformly with replacement from the
search spaceA (and training them). Since the architectures of networks in P vary, applying ensemble
selection is a simple way to exploit diversity, yielding a performant ensemble. Importantly, NES-RS
is easy to parallelize, exactly like deep ensembles. See Algorithm 2 in Appendix B.3 for pseudocode.

4.2 NES with Regularized Evolution
A more guided approach for building the pool P is using regularized evolution (RE) [48]. While RS
has the benefit of simplicity by sampling architectures uniformly, the resulting pool might contain
many weak architectures, leaving few strong architectures for ForwardSelect to choose between.
RE is an evolutionary algorithm used on NAS spaces. It explores the search space by evolving (via
mutations) a population of architectures. We first briefly describe RE as background before NES-RE.
RE starts with a randomly initialized fixed-size population of architectures. At each iteration, a
subset of size m of the population is sampled, from which the best network by validation loss is
selected as the parent. A mutated copy (e.g. changing an operation in the network, see Appendix

5

Algorithm 1: NES with Regularized Evolution
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval; population size P ;

number of parent candidates m.
1 Sample P architectures α1, . . . , αP independently and uniformly from A.
2 Train each architecture αi using Dtrain, and initialize p = P = {fθ1,α1

, . . . , fθP ,αP
}.

3 while |P| < K do
4 Select m parent candidates {fθ̃1,α̃1

, . . . , fθ̃m,α̃m
} = ForwardSelect(p,Dval,m).

5 Sample uniformly a parent architecture α from {α̃1, . . . , α̃m}. // α stays in p.
6 Apply mutation to α, yielding child architecture β.
7 Train β using Dtrain and add the trained network fθ,β to p and P .
8 Remove the oldest member in p. // as done in RE [48].
9 Select base learners {fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
10 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

B.4 for examples of mutations) of the parent architecture, called the child, is trained and added to
the population, and the oldest member of the population is removed, preserving the population size.
This is iterated until the computational budget is reached, returning the history, i.e. all the networks
evaluated during the search, from which the best model is chosen by validation loss.

Building on RE for NAS, we propose NES-RE to build the pool of potential base learners. NES-
RE starts by randomly initializing a population p of size P . At each iteration, we first apply
ForwardSelect to the population to select an ensemble of size m, then we uniformly sample one
base learner from this ensemble to be the parent. A mutated copy of the parent is added to p and
the oldest network is removed, as in usual regularized evolution. This process is repeated until the
computational budget is reached, and the history is returned as the pool P . See Algorithm 1 for
pseudocode and Figure 3 for an illustration.

Also, note the distinction between the population and the pool in NES-RE: the population is evolved,
whereas the pool is the set of all networks evaluated during evolution (i.e., the history) and is used
post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
candidates (line 4 in NES-RE) and choosing the final ensemble of size M (line 9 in NES-RE). In
general, m 6= M .

4.3 Ensemble Adaptation to Dataset Shift
Deep ensembles offer (some) robustness to dataset shift relative to training data. In general, one may
not know the type of shift that occurs at test time. By using an ensemble, diversity in base learner
predictions prevents the model from relying on one base learner’s predictions which may not only be
incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation data Dshift

val with a validation shift, which encapsulates one’s
belief about test-time shift. Crucially, test and validation shifts are disjoint. To adapt NES-RS
and NES-RE to return ensembles robust to shift, we propose using Dshift

val instead of Dval whenever
applying ForwardSelect to select the final ensemble. In Algorithms 1 and 2, this is in lines 9 and 3,
respectively. Our experiments show that this is highly effective against shift.

Note that in line 4 of Algorithm 1, we can also replace Dval with Dshift
val when expecting test-time shift;

we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to promote exploration of

architectures that work well both in-distribution and during shift and reduce cost by avoiding running
NES-RE once for each of Dval,Dshift

val . See Appendices C.1.3 and B.4 for further discussion.

5 Experiments

5.1 Comparison to Baselines: Uncertainty Estimation & Robustness to Dataset Shift
We compare NES to deep ensembles on different choices of architecture search space (DARTS [39]
and NAS-Bench-201 [13] search spaces) and dataset (Fashion-MNIST, CIFAR-10, CIFAR-100,

6

10 20 30
Ensemble size (M)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

En
se

m
bl

e
NL

L

CIFAR-10
DeepEns (RS)
DeepEns (AmoebaNet)
DeepEns (DARTS)
AnchoredEns (DARTS)
NES-RS
NES-RE

10 20 30
Ensemble size (M)

1.05

1.10

1.15

1.20

1.25

En
se

m
bl

e
NL

L

CIFAR-100

5 10 15
Ensemble size (M)

1.50

1.60

1.70

1.80

En
se

m
bl

e
NL

L

Tiny ImageNet

(a) No data shift

10 20 30
Ensemble size (M)

1.20

1.40

1.60

1.80

2.00

En
se

m
bl

e
NL

L

CIFAR-10

10 20 30
Ensemble size (M)

2.60

2.80

3.00

3.20

3.40

3.60

3.80

En
se

m
bl

e
NL

L

CIFAR-100

5 10 15
Ensemble size (M)

3.50

3.60

3.70

3.80

3.90

4.00

En
se

m
bl

e
NL

L

Tiny ImageNet

(b) Dataset shift: severity 5 (out of 5)

Figure 4: NLL vs. ensemble sizes on CIFAR-10, CIFAR-100 and Tiny ImageNet with and without
dataset shifts [26] over the DARTS search space. Mean NLL shown with 95% confidence intervals.

ImageNet-16-120 and Tiny ImageNet). The search spaces are cell-based, containing a rich variety of
convolutional architectures with differing cell topologies, number of connections and operations (see
Appendix B.1 for visualizations). For CIFAR-10/100 and Tiny ImageNet, we also consider dataset
shifts proposed by Hendrycks & Dietterich [26]. We use NLL, classification error and expected
calibration error (ECE) [21, 44] as our metrics, for which small values are better. Note that NLL
and ECE evaluate predictive uncertainty. Experimental/implementation details are in Appendix B,
additional experiments are in Appendix C. All evaluations are on the test dataset. Each paragraph
below highlights one of our main findings.

Baselines. One of our main baselines is deep ensembles with fixed, optimized architectures. We
consider various optimized architectures, indicated as “DeepEns (arch)”:

• On the DARTS search space, we consider the architectures found by:
1. the DARTS algorithm (DeepEns (DARTS)),
2. regularized evolution (DeepEns (AmoebaNet)),
3. random search, with the same number of networks trained as NES algorithms (DeepEns (RS)).

• On the NAS-Bench-201 search space, in addition to DeepEns (RS), we consider:
1. the architecture found by GDAS2 [12] (DeepEns (GDAS)),
2. the best architecture in the search space by validation loss (DeepEns (best arch.)).3

We also compare to anchored ensembles [47], a recent technique for approximately Bayesian en-
sembles, which explicitly regularizes each base learner towards a fresh initialization sample and
aims to induce more ensemble diversity. We use the DARTS architecture, and our implementation is
described in Appendix B.5.

NES shows improved predictive uncertainty (NLL) and robustness to dataset shift (Figure 4).
Figure 4a shows the NLL achieved by NES-RS, NES-RE and the baselines as functions of the
ensemble size M without dataset shift. We find that NES algorithms consistently outperform deep
ensembles, with NES-RE usually outperforming NES-RS. Next, we evaluate the robustness of the
ensembles to dataset shift in Figure 4b. In our setup, all base learners are trained onDtrain without data
augmentation of shifted examples. However, as explained in Section 4.3, we use a shifted validation
dataset, Dshift

val , and evaluate on a shifted test dataset, Dshift
test . The types of shifts appearing in Dshift

val are
disjoint from those in Dshift

test . The severity of the shift varies between 1-5. We refer to Appendix B and
Hendrycks & Dietterich [26] for details. The fixed architecture used in the baseline DeepEns (RS)
is selected based on its loss over Dshift

val , but the DARTS and AmoebaNet are architectures from the
literature. As shown in Figure 4b, ensembles picked by NES-RS and NES-RE are significantly more
robust to dataset shift than the baselines, highlighting the effectiveness of applying ForwardSelect
with Dshift

val . Unsurprisingly, AnchoredEns (DARTS) and DeepEns (DARTS/AmoebaNet) perform
poorly compared to the other methods, as they are not optimized to deal with dataset shift here. The
results of our experiments on Fashion-MNIST are in Appendix C.1.1. In line with the results in this
section, both NES algorithms outperform deep ensembles with NES-RE performing best.

Better uncertainty calibration versus dataset shift and classification error (Figure 5, Table 1).
We also assess the ensembles by error and ECE. In short, ECE measures the mismatch between
the model’s confidence and accuracy. Figure 5 shows the ECE achieved by the ensembles at

2We did not consider the DARTS algorithm on NAS-Bench-201, since it returns degenerate architectures
with poor performance on this space [13]. Whereas, GDAS yields state-of-the-art performance on this space.

3This is feasible, because all architectures in this search space were evaluated and are available.

7

0 2 4
Shift severity

0.05

0.10

0.15

0.20

En
se

m
bl

e
EC

E

CIFAR-10
DeepEns (RS)
DeepEns (AmoebaNet)
DeepEns (DARTS)
AnchoredEns (DARTS)
NES-RS
NES-RE

0 1 2 3 4 5
Shift severity

0.03

0.05

0.08

0.10

0.12

En
se

m
bl

e
EC

E

CIFAR-100

0 1 2 3 4 5
Shift severity

0.02

0.04

0.06

0.08

0.10

0.12

En
se

m
bl

e
EC

E

Tiny ImageNet

Figure 5: ECE vs. dataset shift severity on
CIFAR-10, CIFAR-100 and Tiny ImageNet over
the DARTS search space. No dataset shift is indi-
cated as severity 0. Ensemble size is M = 10.

250 500 750 1000
Number of nets evaluated

1.85

1.90

1.95

2.00

En
se

m
bl

e
NL

L

ImageNet-16-120
DeepEns (RS)
DeepEns (GDAS)
DeepEns (best arch.)
NES-RS
NES-RE

250 500 750 1000
Number of nets evaluated

2.125

2.150

2.175

2.200

2.225

2.250

2.275

Av
er

ag
e

ba
se

le
ar

ne
r N

LL

ImageNet-16-120

250 500 750 1000
Number of nets evaluated

1.40

1.45

1.50

1.55

1.60

1.65

Or
ac

le
 e

ns
em

bl
e

NL
L

ImageNet-16-120

Figure 6: Ensemble, average base learner and ora-
cle ensemble NLL versus budget K on ImageNet-
16-120 over the NAS-Bench-201 search space.
Ensemble size is M = 3.

varying dataset shift severities, noting that uncertainty calibration is especially important when
models are used during dataset shift. Ensembles found with NES tend to exhibit better uncertainty
calibration and are either competitive with or outperform anchored and deep ensembles for most shift
severities. Notably, on CIFAR-10, ECE is reduced by up to 40% relative to the baselines. In terms of
classification error, we find that ensembles constructed by NES outperform deep ensembles, with
reductions of up to 7 percentage points in error, shown in Table 1. As with NLL, NES-RE tends to
outperforms NES-RS.

t
Table 1: Classification error of ensembles for dif-
ferent shift severities. Best values and all values
within 95% confidence interval are bold faced.
Note that NAS-Bench-201 comes with each archi-
tecture trained with three random initializations;
therefore we set M = 3 in that case.

Dataset Shift
Severity

Classif. error (%), A = DARTS search space

DeepEns
(RS)

DeepEns
(Amoe.)

DeepEns
(DARTS)

AnchoredEns
(DARTS) NES-RS NES-RE

CIFAR-10
0 10.8±0.2 9.7 10.0 10.2 9.4±0.1 9.4±0.2

3 25.1±0.7 25.6 26.3 28.6 23.2±0.2 22.9±0.2

5 41.1±0.9 42.7 42.9 44.9 38.0±0.2 37.4±0.4

CIFAR-100
0 33.2±1.2 31.6 30.9 30.9 30.7±0.1 30.4±0.4

3 54.8±1.6 54.2 55.1 55.2 49.8±0.1 49.1±1.0

5 64.3±3.2 68.5 68.5 68.9 62.4±0.2 61.4±1.4

Tiny
ImageNet

0 37.5±0.3 38.5 39.1 42.8 37.4±0.2 37.0±0.6

3 53.8±0.6 55.4 54.6 58.7 53.0±0.2 52.7±0.2

5 70.5±0.4 71.7 71.6 73.7 69.9±0.2 70.2±0.1

(a) M = 10; DARTS search space.

Dataset Shift
Severity

Classif. error (%), A = NAS-Bench-201 search space

DeepEns
(GDAS)

DeepEns
(best arch.)

DeepEns
(RS) NES-RS NES-RE

CIFAR-10
0 8.4 7.2 7.8±0.2 7.7±0.1 7.6±0.1

3 28.7 27.1 28.3±0.3 22.0±0.2 22.5±0.1

5 47.8 46.3 37.1±0.0 32.5±0.2 33.0±0.5

CIFAR-100
0 29.9 26.4 26.3±0.4 23.3±0.3 23.5±0.2

3 60.3 54.5 57.0±0.9 46.6±0.3 46.7±0.5

5 75.3 69.9 64.5±0.0 59.7±0.2 60.0±0.6

ImageNet-16-120 0 49.9 49.9 50.5±0.6 48.1±1.0 47.9±0.4

(b) M = 3; NAS-Bench-201 search space.

Ensembles found by NES tend to be more di-
verse (Table 3). We measure ensemble diversity
using the two metrics predictive disagreement
(larger means more diverse) and oracle ensemble
NLL (smaller means more diverse) as defined in
Section 3 and average base learner NLL. Table
3 contrasts NES with the baselines in terms of
these metrics. In terms of both diversity met-
rics, ensembles constructed by NES tend to be
more diverse than anchored and deep ensembles.
Ranking of the methods is largely consistent for
different ensemble sizes M (see Appendix C).
Unsurprisingly, note that the average base learner
in NES is not always the best: by optimizing
the fixed architecture first and then ensembling
it, deep ensembles end up with a strong average
base learner at the expense of less ensemble di-
versity. Despite higher average base learner NLL,
NES ensembles perform better (recall Figure 4),
highlighting once again the importance of diver-
sity.

NES outperforms the deep ensemble of
the best architecture in the NAS-Bench-201
search space (Figure 6). Next, we compare
NES to deep ensembles over the NAS-Bench-
201 search space, which has two benefits: we demonstrate that our findings are not specific to the
DARTS search space, and NAS-Bench-201 is an exhaustively evaluated search space for which all
architectures’ trained weights are available (three initializations per architecture), allowing us to
compare NES to the deep ensemble of the best architecture by validation loss. Results shown in
Figure 6 compare the losses of the ensemble, average base learner and oracle ensemble versus the
number of networks evaluated K. Interestingly, although DeepEns (best arch.) has a significantly
stronger average base learner than the other methods, its lack of diversity, as indicated by higher oracle
ensemble loss (Figure 6) and lower predictive disagreement (Figure 1), yields a weaker ensemble
than both NES algorithms. Also, NES-RE outperforms NES-RS with a 6.6x speedup as shown in
Figure 6-left.

5.2 Analysis and Ablations

Why does NES work? What if deep ensembles use ensemble selection over initializations?
(Figure 7). NES algorithms differ from deep ensembles in two important ways: the ensembles use

8

Table 3: Diversity and base learner strength. Pre-
dictive disagreement (larger means more diverse)
and oracle ensemble NLL (smaller means more
diverse) are defined in Section 3. Despite the
stronger base learners, deep ensembles tend to be
less diverse than ensembles constructed by NES.
The results are consistent across datasets and shift
severities (Appendix C). Best values and all values
within 95% confidence interval are bold faced.

Dataset Metric Method (with M = 10)
DeepEns

(RS)
DeepEns
(Amoe.)

DeepEns
(DARTS)

AnchoredEns
(DARTS)

NES-RS NES-RE

CIFAR-10
Pred. Disagr. 0.823±0.023 0.947 0.932 0.842 0.948±0.004 0.943±0.009

Oracle NLL 0.125±0.007 0.103 0.093 0.113 0.086±0.001 0.088±0.002

Avg. bsl. NLL 0.438±0.005 0.552 0.513 0.411 0.485±0.003 0.493±0.010

CIFAR-100
Pred. Disagr. 0.831±0.027 0.946 0.935 0.839 0.934±0.006 0.943±0.014

Oracle NLL 0.635±0.040 0.502 0.509 0.583 0.498±0.008 0.487±0.014

Avg. bsl. NLL 1.405±0.028 1.552 1.491 1.290 1.467±0.022 1.487±0.036

Tiny
ImageNet

Pred. Disagr. 0.742±0.008 0.737 0.749 0.662 0.772±0.005 0.768±0.005

Oracle NLL 0.956±0.009 0.987 1.009 1.203 0.929±0.007 0.910±0.015

Avg. bsl. NLL 1.743±0.005 1.764 1.813 1.871 1.755±0.007 1.728±0.012

2 4 6 8 10 12 14
Ensemble size (M)

1.40

1.45

1.50

1.55

1.60

1.65

1.70

En
se

m
bl

e
NL

L

Tiny ImageNet
DeepEns (DARTS)
DeepEns+ES (DARTS)
DeepEns (AmoebaNet)
DeepEns+ES (AmoebaNet)
DeepEns (RS)

DeepEns+ES (RS)
NES-RS (K = 200)
NES-RS (K = 400)
NES-RE (K = 200)
NES-RE (K = 400)

Method # nets trained
Arch. Ensemble

DeepEns (DARTS) 32 10
DeepEns + ES (DARTS) 32 200
DeepEns (AmoebaNet) 25200 10
DeepEns + ES (AmoebaNet) 25200 200
DeepEns (RS) 200 10
DeepEns + ES (RS) 200 200
NES-RS (K = 200) 200
NES-RS (K = 400) 400
NES-RE (K = 200) 200
NES-RE (K = 400) 400

Figure 7: Comparison of NES to deep ensem-
bles with ensemble selection on Tiny ImageNet.
LEFT: NLL vs ensemble size. RIGHT: Cost for
Tiny ImageNet experiments reported in terms of
the number of networks trained when M = 10.
The “arch” column indicates the number of net-
works trained to first select an architecture, and
the “ensemble” column contains the number of
networks trained to build the ensemble.

varying architectures and NES utilizes ensemble selection (ForwardSelect) to pick the base learners.
On Tiny ImageNet over the DARTS search space, we conduct an experiment to explore whether the
improvement offered by NES over deep ensembles is only due to ensemble selection. The baselines
“DeepEns + ES” operate as follows: we optimize a fixed architecture for the base learners, train
K random initializations of it to form a pool and apply ForwardSelect to select an ensemble of
size M . Figure 7-left shows that both NES algorithms (each shown for two computational budgets
K = 200, 400) outperform all DeepEns + ES baselines. Figure 7-right contains the cost of each
method in terms of the number of networks trained. Note that DeepEns + ES (RS) is the most
competitive of the deep ensemble baselines, and, at an equal budget of 400, it is outperformed by
both NES algorithms. However, even at half the cost (200), NES-RE outperforms DeepEns + ES
(RS) while NES-RS performs competitively. As expected, deep ensembles with ensemble selection
consistently perform better than without ensemble selection at the expense of higher computational
cost, but do not close the gap with NES algorithms. We also re-emphasize that comparisons between
NES and deep ensembles in our experiments always fix the base learner training routine and method
for composing the ensemble, so variations in ensemble performance are only due to the architecture
choices. Therefore, to summarize, combined with the finding that NES outperforms deep ensembles
even when NES’ average base learner is weaker (as in e.g. Figure 6 and Table 3), we find architectural
variation in ensembles to be important for NES’ performance gains.

101 102 103

Validation size

1.50

2.00

2.50

3.00

3.50

En
se

m
bl

e
NL

L

Tiny ImageNet
NES-RE
NES-RS

Figure 8: Test perfor-
mance of NES algo-
rithms with varying val-
idation data sizes. Each
curve corresponds to one
particular dataset shift
severity (0-5 with 0 being
no shift). The more trans-
parent curves correspond
to higher shift severities.

Computational cost and parallelizability. The primary computational
cost involved in NES is training K networks to build the pool P . In our
experiments on the DARTS search space, we set K to be 400 for CIFAR-
10/100 and 200 for Tiny ImageNet (except Figure 7 which additionally
considers K = 400). Figure 7-right gives an example of costs for each
method. The cost of a deep ensemble with an optimized architecture
stems from the initial architecture search and the subsequent training of
M random initializations to build ensemble. We refer to Appendix B
for details and discussion of computation cost, including training times.
We note that apart from DeepEns (DARTS) and AnchoredEns (DARTS),
NES has a lower computational cost than the baselines in our experiments.
Similar to deep ensembles, training the pool for NES-RS is embarrass-
ingly parallel. Our implementation of NES-RE is also parallelized as
described in Appendix B.

Comparison of different ensemble selection algorithms. Both NES
algorithms utilize ForwardSelect as the ensemble selection algorithm
(ESA). We experimented with various other choices of ESAs, including
weighted averaging and explicit diversity regularization, as shown in
Figure 9. A detailed description of each ESA is in Appendix C.8. In
summary, our choice of ForwardSelect performs better than or at par with
all ESAs considered. Moreover, weighted averaging using stacking and Bayesian model averaging has

9

2 4 6 8 10 12 14
Ensemble size (M)

0.30

0.32

0.34

0.36

0.38

En
se

m
bl

e
NL

L

NES-RS (ForwardSelect)
NES-RS (Top M)
NES-RS (Quick and greedy)
NES-RS (ForwardSelect w/ repl.)
NES-RS (Unweighted stacking)
NES-RS (Weighted stacking)

(a) Ensemble selection
algorithms.

2 4 6 8 10 12 14
Ensemble size (M)

0.30

0.32

0.34

0.36

0.38

0.40

En
se

m
bl

e
NL

L

NES-RS (ForwardSelect)
NES-RS (ForwardSelect w/ div 0.1)
NES-RS (ForwardSelect w/ div 0.5)
NES-RS (ForwardSelect w/ div 1.0)
NES-RS (ForwardSelect w/ div 1.5)
NES-RS (ForwardSelect w/ div 2.0)
NES-RS (ForwardSelect w/ div 5.0)
NES-RS (ForwardSelect w/ div 10.0)

(b) Ensemble selection
with explicit diversity

regularization.

Figure 9: NES-RS on CIFAR-10.

4 2 0 2 4
t-SNE dimension 1

3

2

1

0

1

2

3

t-S
NE

 d
im

en
sio

n
2

0.45 0.50 0.55
NLL

0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165

Er
ro

r

Figure 10: LEFT: t-SNE of the test predictions
of 20 single random mutations (circles) from 5
parent architecture (stars). RIGHT: NLL and error
achieved by these architectures.

a very minor impact since the weights end up being close to uniform. Explicit diversity regularization,
as shown in Figure 9b, appears to slightly improve performance in some cases, provided that the
diversity regularization strength hyperparameter is appropriately tuned.

NES is insensitive to the size of validation dataset Dval. We study the sensitivity of NES to the
size of Dval. Specifically, we measure test loss of the ensembles selected using Dval of different sizes
(with as few as 10 validation samples). The results in Figure 8 indicate that NES is insensitive to
validation size for different levels of dataset shift severity, achieving almost the same loss when
using 10× fewer validation data. We provide more details in Appendix C.5 and we also discuss why
overfitting to Dval is averted during ensemble selection.

Mutations of an architecture are similar in function space and by performance. To explore how
NES-RE traverses the search space, we analyzed how mutations affect an architecture as follows.
We sampled five random architectures from the DARTS space, and for each one, we applied a
single random mutation twenty times, yielding a “family” of parent-children architectures, which are
then trained on CIFAR-10. Figure 10-left shows the result of t-SNE applied to the test predictions
of these architectures, where each color corresponds to one “family”, of which the “star” is the
parent architecture and the circles are the children architectures. The clustering demonstrates that
architectures which differ by only a single mutation are similar in function space after training.
Figure 10-right shows the NLL and error achieved by these architectures. Again, similar clustering
shows that architectures differing by a single mutation also perform similarly w.r.t. NLL and error.
This confirms that mutations allow for locally exploring the search space.

Further experiments. We also provide additional experiments in the Appendix. This includes a
comparison of ensembles built by averaging logits vs. probabilities (Appendix C.7), a comparison of
NES to ensembles with other hyperparameters being varied (either width/depth or training hyperpa-
rameters similar to Wenzel et al. [53]) (Appendix C.4) and using a weight-sharing model [2] as a
proxy to accelerate the search phase in NES (Appendix C.9).

6 Conclusion, Limitations & Broader Impact
We presented Neural Ensemble Search for automatically constructing ensembles with varying archi-
tectures and demonstrated that the resulting ensembles outperform state-of-the-art deep ensembles
in terms of uncertainty estimation and robustness to dataset shift. Our work highlights the benefit
of ensembling varying architectures. In future work, we aim to address the limitation posed by the
computational cost of NES due to building the pool P . An interesting approach in this direction
could be the use of differentiable NAS methods to simultaneously optimize base learner architectures
within a one-shot model and reduce cost [39, 56, 8]. More generally, we also hope to explore what
other hyperparameters can be varied to improve ensemble performance and how best to select them.

Our work can readily be applied to many existing ensemble-based deep learning systems to improve
their predictive performance. This work also focuses on improving uncertainty estimation in neural
networks, which is a key problem of growing importance with implications for safe deployment of
such systems. We are not aware of any direct negative societal impacts of our work, since NES is
task-agnostic and its impact depends on its applications.

10

Acknowledgments and Disclosure of Funding

AZ, TE and FH acknowledge support by the European Research Council (ERC) under the European
Union Horizon 2020 research and innovation programme through grant no. 716721, and by BMBF
grant DeToL. SZ acknowledges support from Aker Scholarship. CH wishes to acknowledge support
from The Alan Turing Institute, The Medical Research Council UK, and the EPSRC Bayes4Health
grant. The authors acknowledge support from ELLIS. We also thank Julien Siems for providing
a parallel implementation of regularized evolution and Bobby He for useful comments on the
manuscript.

References
[1] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain

uncertainty estimation and ensembling in deep learning. In International Conference on Learning Repre-
sentations (ICLR), 2020.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and
simplifying one-shot architecture search. In International Conference on Machine Learning, 2018.

[3] Yijun Bian and Huanhuan Chen. When does Diversity Help Generalization in Classification Ensembles?
ArXiv, abs/1903.06236, 2019.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1613–1622, Lille, France, 07–09 Jul 2015. PMLR.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
End to End Learning for Self-Driving Cars. CoRR, abs/1604.07316, 2016.

[6] Leo Breiman. Random forests. In Machine Learning, pages 5–32, 2001.

[7] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble Selection from
Libraries of Models. In Proceedings of the Twenty-First International Conference on Machine Learning,
ICML ’04, page 18, New York, NY, USA, 2004. Association for Computing Machinery.

[8] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}: Dirichlet
neural architecture search. In International Conference on Learning Representations, 2021.

[9] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative
to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[10] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. AdaNet: Adaptive
Structural Learning of Artificial Neural Networks. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 874–883, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[11] Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier Systems, pages
1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[12] Xuanyi Dong and Yi Yang. Searching for a Robust Neural Architecture in Four GPU Hours. In Computer
Vision and Pattern Recognition (CVPR), pages 1761–1770, 2019.

[13] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search.
In International Conference on Learning Representations (ICLR), 2020.

[14] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey. Journal of
Machine Learning Research, 20(55):1–21, 2019.

[15] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542:115–,
2017.

[16] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and Efficient Hyperparameter Optimization
at Scale. In Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1437–1446, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

11

[17] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems
28, pages 2962–2970. Curran Associates, Inc., 2015.

[18] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
ArXiv, abs/1912.02757, 2019.

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of the 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun
2016. PMLR.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[21] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural Networks.
In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1321–1330, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[22] Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schön. Evaluating Scalable Bayesian Deep
Learning Methods for Robust Computer Vision. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2020.

[23] Lars K. Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001, 1990.

[24] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural tangent
kernel. In Advances in Neural Information Processing Systems, volume 33, pages 1010–1022. Curran
Associates, Inc., 2020.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[26] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common Corrup-
tions and Perturbations. In International Conference on Learning Representations (ICLR), 2019.

[27] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John Hopcroft, and Kilian Weinberger. Snapshot
Ensembles: Train 1, get m for free. In International Conference on Learning Representations (ICLR),
2017.

[28] F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning: Methods, Systems,
Challenges. Springer, 2018. In press, available at http://automl.org/book.

[29] Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing overall diversity for improved
uncertainty estimates in deep ensembles. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):4264–4271, Apr. 2020.

[30] Zhengshen Jiang, Hongzhi Liu, Bin Fu, and Zhonghai Wu. Generalized Ambiguity Decompositions for
Classification with Applications in Active Learning and Unsupervised Ensemble Pruning. In AAAI, pages
2073–2079. AAAI Press, 2017.

[31] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research),
2009.

[32] Anders Krogh and Jesper Vedelsby. Neural Network Ensembles, Cross Validation, and Active Learning.
In Advances in Neural Information Processing Systems 7, pages 231–238. MIT Press, 1995.

[33] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information Processing Systems 30,
pages 6402–6413. Curran Associates, Inc., 2017.

[34] Y. Le and X. Yang. Tiny imagenet visual recognition challenge, 2015.

[35] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why M Heads are
Better than One: Training a Diverse Ensemble of Deep Networks. arXiv e-prints, page arXiv:1511.06314,
2015.

12

[36] Julien-Charles Lévesque, Christian Gagné, and Robert Sabourin. Bayesian hyperparameter optimization
for ensemble learning. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, UAI’16, page 437–446, Arlington, Virginia, USA, 2016. AUAI Press.

[37] Liam Li and Ameet Talwalkar. Random Search and Reproducibility for Neural Architecture Search. In
UAI, page 129. AUAI Press, 2019.

[38] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture search.
arXiv preprint arXiv:1909.02453, 2019.

[39] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In
International Conference on Learning Representations (ICLR), 2019.

[40] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural networks : the official journal of
the International Neural Network Society, 12 10:1399–1404, 1999.

[41] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In International
Conference on Learning Representations (ICLR), 2017.

[42] Vladimir Macko, Charles Weill, Hanna Mazzawi, and Javier Gonzalvo. Improving Neural Architecture
Search Image Classifiers via Ensemble Learning. ArXiv, abs/1903.06236, 2019.

[43] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Towards
Automatically-Tuned Neural Networks. In ICML 2016 AutoML Workshop, 2016.

[44] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining Well Calibrated Prob-
abilities using Bayesian Binning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, page 2901–2907. AAAI Press, 2015.

[45] Randal S. Olson and Jason H. Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on Automatic Machine Learning, volume 64 of Proceedings of Machine
Learning Research, pages 66–74, New York, New York, USA, 24 Jun 2016. PMLR.

[46] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? Evaluating predictive
uncertainty under dataset shift. In Advances in Neural Information Processing Systems 32, pages 13991–
14002. Curran Associates, Inc., 2019.

[47] Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximately
bayesian ensembling. In Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research, pages 234–244, Online, 26–28
Aug 2020. PMLR.

[48] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized Evolution for Image Classifier
Architecture Search. In AAAI, pages 4780–4789. AAAI Press, 2019.

[49] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In International Conference on Learning Representations (ICLR), 2015.

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(2579-2605):85, 2008.

[51] Andrew M. Webb, Charles Reynolds, Dan-Andrei Iliescu, Henry W. J. Reeve, Mikel Luján, and Gavin
Brown. Joint Training of Neural Network Ensembles. CoRR, abs/1902.04422, 2019.

[52] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on International Conference on Machine Learning,
ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress.

[53] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for robust-
ness and uncertainty quantification. In Advances in Neural Information Processing Systems, volume 33,
pages 6514–6527. Curran Associates, Inc., 2020.

[54] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of general-
ization. In Advances in Neural Information Processing Systems, volume 33, pages 4697–4708. Curran
Associates, Inc., 2020.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv e-prints, 2017.

13

[56] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS:
Partial Channel Connections for Memory-Efficient Architecture Search. In International Conference on
Learning Representations (ICLR), 2020.

[57] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. NAS evaluation is frustratingly hard. In
International Conference on Learning Representations (ICLR), 2020.

[58] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the
Search Phase of Neural Architecture Search. In International Conference on Learning Representations
(ICLR), 2020.

[59] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-shot
neural architecture search. In International Conference on Learning Representations, 2020.

[60] Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Diverse Ensemble Evolution: Curriculum Data-Model
Marriage. In Advances in Neural Information Processing Systems 31, pages 5905–5916. Curran Associates,
Inc., 2018.

[61] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hall, 1st edition, 2012.

[62] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better than all.
Artificial Intelligence, 137(1):239 – 263, 2002.

[63] Barret Zoph and Quoc V Le. Neural Architecture Search with Reinforcement Learning. In International
Conference on Learning Representations (ICLR), 2017.

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning Transferable Architectures for
Scalable Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8697–8710, 2018.

14

