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Abstract

For knowledge intensive NLP tasks, it has been
widely accepted that accessing more informa-
tion is a contributing factor to improvements in
the model’s end-to-end performance. However,
counter-intuitively, too much context can have
a negative impact on the model when evaluated
on common question answering (QA) datasets.
In this paper, we analyze how passages can
have a detrimental effect on retrieve-then-read
architectures used in question answering. Our
empirical evidence indicates that the current
read architecture does not fully leverage the
retrieved passages and significantly degrades
its performance when using the whole passages
compared to utilizing subsets of them. Our find-
ings demonstrate that model accuracy can be
improved by 10% on two popular QA datasets
by filtering out detrimental passages. Addition-
ally, these outcomes are attained by utilizing
existing retrieval methods without further train-
ing or data. We further highlight the challenges
associated with identifying the detrimental pas-
sages. First, even with the correct context, the
model can make an incorrect prediction, pos-
ing a challenge in determining which passages
are most influential. Second, evaluation typi-
cally considers lexical matching, which is not
robust to variations of correct answers. De-
spite these limitations, our experimental results
underscore the pivotal role of identifying and
removing these detrimental passages for the
context-efficient retrieve-then-read pipeline. 1

1 Introduction

Knowledge-intensive NLP tasks such as open-
domain question answering (Rajpurkar et al., 2016;
Yang et al., 2018) and evidence-based fact veri-
fication (Thorne et al., 2018; Jiang et al., 2020)
require models to use external sources of textual
information to condition answer generation in re-
sponse to an input. This family of tasks shares a

1Code and data are available on https://github.com/
xfactlab/emnlp2023-damaging-retrieval
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Figure 1: Even when provided with correct passage
(P2) addition of further information (P4) causes the
reader model to change the prediction, highlighting is-
sues when using recall-optimized retrievers. Differences
between Exact Match (EM) score and Accumulated EM
(AcEM) indicate knowledge issues.

common architecture for modelling (Lewis et al.,
2020; Petroni et al., 2021; Thakur et al., 2021; Izac-
ard et al., 2022; Lyu et al., 2023) where a two-stage
architecture of a retriever model finds contextual
passages and passes these to a reader module that
uses this context when it generates an answer.

In this two-step pipeline, expected performance
(such as answer exact match score) increases mono-
tonically as more information is provided to the
reader model at test time. Therefore, it is com-
monly conceived that providing the reader with
more context improves overall performance (Izac-
ard and Grave, 2020; Liu et al., 2023). However,
empirical studies (Sauchuk et al., 2022) contradict
this general belief: even when true positive pas-
sages are provided to the model, the presence of
relevant but non-evidential documents can change
correct outputs to incorrect ones in a phenomena
called damaging retrieval. While this phenomena
was not thoroughly explored in the context of ques-
tion answering, it could suggest that the current
reader may be influenced by damaging retrieval,
potentially leading to a decline in performance.

In this paper, we propose an approach to address-

philhoonoh@kaist.ac.kr
thorne@kaist.ac.kr
https://github.com/xfactlab/emnlp2023-damaging-retrieval
https://github.com/xfactlab/emnlp2023-damaging-retrieval


ing this problem by identifying and removing con-
texts that are detrimental to the performance of the
model. As described in Figure 1, we treat the reader
model, FiD (Izacard and Grave, 2020), as a black-
box oracle and identify which passages are dam-
aging by evaluating how different subsets of the
retrieved context cause the answer to change. Our
experiments are conducted on two question answer-
ing tasks: Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017), evaluating
the effect of three IR systems: DPR (Karpukhin
et al., 2020), SEAL (Bevilacqua et al., 2022), and
Contriever (Izacard et al., 2021).

Our findings challenge the conventional assump-
tion that more passages lead to higher performance.
In fact, introducing additional relevant contexts can
actually worsen the performance of the model in
question answering. By excluding passages that
have a detrimental effect, we observe up to 10%
improvement in the exact match score under ideal
conditions without requiring any architectural mod-
ifications. Notably, these gains surpass the perfor-
mance improvements seen in recent works that pro-
pose FiD extensions like FiD-light(Hofstätter et al.,
2022) and FiE (Kedia et al., 2022). In addition,
we analyze why automatically identifying damag-
ing contexts is challenging, even with attention-
based and model-based proxies for filtering. De-
spite these inherent limitations, considering effec-
tiveness and operational efficiency, our empirical
findings could potentially direct the focus of open-
domain NLP models and yield performance im-
provements when using fewer context passages.

2 Background

2.1 Knowledge Intensive NLP

To integrate external knowledge for NLP tasks such
as question answering (Kwiatkowski et al., 2019;
Joshi et al., 2017; Yang et al., 2018), slot filling
(Levy et al., 2017), and fact verification (Thorne
et al., 2018), systems employ a retrieve-then-read
pipeline of two models (Chen et al., 2017). A re-
triever first selects the context passages over a large
corpus such as Wikipedia and then feeds informa-
tion to the reader to derive the answer. Conse-
quently, improving the recall of the retriever leads
to improvement of the downstream reader.

Large-scale information fusion architectures
such as Fusion in Decoder (FiD) (Izacard and
Grave, 2020) are able to combine information in
multiple passages when decoding the answer. In

contrast to the conventional T5-Model (Raffel et al.,
2019), each (query, passage) pair is independently
encoded, and the encoded vectors are concatenated
when input into the decoder model. This allows
more documents to be encoded overcoming the
high memory complexity of self-attention in the en-
coder. Experimental results indicate that this archi-
tecture also supports recall-oriented optimization
of the upstream information retrieval systems. For
question-answering tasks, the answer exact match
scores increased monotonically with the number of
context passages used (Izacard and Grave, 2020;
Liu et al., 2023).

Extensions of this architecture, such as FiD-
Light (Hofstätter et al., 2022), FiDO (de Jong et al.,
2022) are introduced to further increase the runtime
efficiency. FiD-Light, for example, compresses
passage encoder embedding into first-K vectors to
overcome a performance bottleneck in the decoder.
In the case of FiDO, it only keeps cross-attention on
every K-th decoder layer as well as applies multi-
query attention to mitigate the inference costs and
memory usage. Unlike these architectures, FiE
(Kedia et al., 2022), an encoder-only model, adds
global encoder layers to fuse the information across
multiple evidence passages. While these models
significantly reduce inference time, they only result
in minor increases in the answer exact match score.

Recent advances in LLMs demonstrate remark-
able capabilities in natural language generation
tasks (Liang et al., 2022). Within the context of
question answering, Lyu et al. 2023 utilize an LLM
as a reader in a retrieval-augmented generation
manner (Lewis et al., 2020). However, recent stud-
ies (Zheng et al., 2023) demonstrate that answers
generated from LLMs vary depending on the order
of given contexts/answer choices and are some-
times lost in the middle (Liu et al., 2023). While
Zheng et al. 2023 proposes a method for alleviat-
ing this order-variant issue by permutating given
choices, this approach is not practical for 100 can-
didate contexts. Although investigating this issue
falls outside the scope of our research, further re-
search is needed to address the issue of the answer
variability in LLMs, which arises from the order of
provided contexts/answer choices.

2.2 Improving Retrieval

Two different approaches have been studied for re-
trieving relevant contexts: one approach employs a
bi-encoder architecture, where the inner product of



query embeddings and context embeddings is used
as a proxy for the relevance score. ORQA(Lee
et al., 2019), DPR (Karpukhin et al., 2020) are
both based on BERT-based bi-encoder architec-
tures (Devlin et al., 2018). Contriever (Izacard
et al., 2021) trains a single encoder in an unsuper-
vised manner to represent both query and context
embeddings. These encodings capture the relation
between query and passages where most similar
results can be identified through ranking the top-N
articles through inner-product search between em-
bedded passages and the embedding of the query.

Alternatively, generatieve retrieval offers an al-
ternative mechanism where the relationship be-
tween the query and an entity is encoded in the
parametric space within a model. GENRE (Cao
et al., 2020) utilizes an autoregressive sequence-to-
sequence model to generate canonical entity titles
for a query with constrained decoding using a pre-
fix tree. Extending this, SEAL (Bevilacqua et al.,
2022) directly predicts substrings in the corpus us-
ing an FM-index. GenRead (Yu et al., 2023) does
not rely on any indexing system: LLMs are used
to generate synthetic contexts. These approaches
demonstrate favorable precision-recall trade-offs
while requiring smaller index storage footprints.

2.3 Damaging Retrieval

Conventionally, retrieval systems are optimized to
find maximally relevant documents to support a
given user query (Ferrante et al., 2018). However,
Terra and Warren (2005) demonstrates that the re-
triever can extract relevant but harmful documents
and Sauchuk et al. (2022) also show that irrelevant
or incorrect documents added to the input of the
model can negatively affect its performance.

Identifying these damaging passages in a two-
stage pipeline has not been extensively explored.
However, one can consider reranking (Iyer et al.,
2021; Kongyoung et al., 2022; Glass et al., 2022)
as a process for selecting an optimal subset of re-
trieved passages and removing detrimental ones.
However, FiD architectures scale well with many
passages, enabling higher exact match scores sim-
ply by increasing the number of passages provided
to the model. Given a large enough budget for
passages, re-ranking this set of passages may not
necessarily exclude them from the answer set. Fur-
thermore, as further discussed in Section 3.1, the
FiD model is order invariant and the ranking of pas-
sages is ignored during encoding. In architectures

such as FiD that treat retrieved evidence as a set,
filtering the damaging passages is more appropriate
than re-ranking the retrieval results.

3 Motivating Pilot Study

We demonstrate the effect of damaging passages
extending Sauchuk et al. (2022) for the FiD model
demonstrating that the model performance is sen-
sitive to irrelevant context information. To select
damaging context passages, we employ two meth-
ods: random sampling and negative sampling. For
random sampling, we select passages from the cor-
pus, C, uniformly at random, while for negative
sampling, we use BM25 to select passages that
do not contain the correct answer but have high
lexical overlaps. Results are reported in Figure 2
an Table 1. We use a context of up to 5 passages
on 2539 instances from the NQ dev dataset and
employ FiD-large2 trained on NQ train set. We
add between 0-4 sampled passages in addition to
the gold passage from the dataset. FiD is invari-
ant to passage ordering: we derive this analytically
from lack of positional encoding between the en-
coded passages and validate it empirically through
random permutation of the context set.

3.1 Effects of Simulated Damaging Passages

We compute Stability Error Ratio (Krishna et al.,
2021, SER): the ratio of instances with modified
outputs to additional samples, given the instance
has correct predictions using one gold passage.

Random Sampling Random passages should not
contain information related to the query.. Where
models are resilient to noise, we expect that ran-
domly sampled additional do not drastically affect
the reader model. Because of the large seman-
tic distance between the randomly sampled texts
and the gold passage, irrelevant information is not
damaging. Injecting these random passages had
negligable increase on answer EM (Figure 2(a))
and SER is under 3% across all the cases in Ta-
ble 1. This, in fact, indicates that FiD is robust to
additional random passages.

Negative Sampling Passages sampled by BM25
have high lexical overlap and are semantically simi-
lar meaning to the query. We expected this to result
in confusion in the model as the model uses related
but insufficient information to condition answer

2https://github.com/facebookresearch/fid
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# Negative Samples 1 2 3 4
SER w/ random 0.75% 1.4% 1.7% 2.0%
SER w/ BM25 8.3% 12.5% 14.8% 15.9%

Table 1: Stability Error Ratio on Random/BM25 nega-
tive passages. An increase in SER implies the model’s
instability on negative samples.

(a) Random passages (b) BM25 negative passages

Figure 2: Exact Match scores of FiD on Natural Ques-
tions with a different number of contexts (x-axis). As
the Exact Match score remains unchanged regardless
of the position of the gold context, we represent this
relationship using a single blue line in the plot.

generation. Adding additional negative samples re-
sults in a monotonic decrease in EM score, which
is represented as a blue line in Figure 2(b) and
an increase in SER, reported in Table 1. A rising
number of instances where the model changes the
answer from predicting the correct answer to an
incorrect highlights the damaging effects.

In general, negative passages tend to have a nega-
tive impact on the model’s inference. However, we
have discovered that certain negative passages can
actually enhance the model’s performance when
paired with gold evidence. To measure this, we
calculate an extension of EM score called Accu-
mulated Exact Match(AcEM). This checks the ex-
istence of Exact Match on up to top-K passages.
Surprisingly, AcEM monotonically improves with
additional negative passages, yielding higher re-
sults than when using only gold contexts. This
demonstrates that the model can also benefit from
negative samples to make correct predictions and
implies that damaging passages should be differen-
tiated from negative contexts. We report compar-
isons of AcEM and EM with respect to the number
of context sizes in Figure 2(b).

4 Damaging Passages from Retrievers

Section 3 simulates the impact of damaging pas-
sages. However, these negative passages are sam-
pled from a distribution different from what the
reader is trained on. Therefore, we experiment

with retrieval models to confirm the presence of
damaging effects in the retrieve-then-read pipeline.

While retrievers predict a set of passages that
are relevant to the model, it does not have perfect
precision, and we do not have knowledge of which
passages from the retriever are beneficial or detri-
mental. In order to identify wheter a passage is
damaging or not, we utilize the reader model as
a black box oracle to distinguish damaging con-
texts from positive contexts. Starting with the top-1
passage, we incrementally add passages from the
retrieved list and evaluate how the answer changes.
If the inference is correct with the top-1, it is clas-
sified as a positive context. We then proceed to
evaluate the top-1 and top-2 passages together. If
those passages generate an incorrect answer, the
second evidence passage will be considered damag-
ing. This is possible because of the order invariance
property of FiD. Therefore, the process can be re-
peated iteratively for up to the top-N passages. We
then use this sequence of predictions to yield the
exact match pattern. The exact match pattern is
a binary sequence where a 1 represents that the k-
th prediction matches the answer, and 0 otherwise
(Figure 1). This string represents an exact match
at k (EM@k) when using up to top-k passages as
input. From this, we also compute accumulated ex-
act match (AcEM). AcEM@k is the maximum of
all EM@k values up to k. For instance, AcEM@k
equals 1 if at least one of the values in (EM@1,
EM@2, ..., EM@k) equals 1. Thereby, the discrep-
ancy between AcEM@k and EM@k can be used
to measure the damaging effects on retrievers.

We utilize three different retrievers for two ques-
tion answering validation datasets, Natural Ques-
tions (Kwiatkowski et al., 2019, NQ) and TriviaQA
(Joshi et al., 2017, TQA), which were evaluated
on FiD (Izacard and Grave, 2020). Following pre-
vious work, we use a corpus of non-overlapping
100 word chunks for retrieval. We use the top-100
candidate passages retrieved by DPR3 (Karpukhin
et al., 2020), SEAL4 (Bevilacqua et al., 2022), and
Contriever (Izacard et al., 2021)5. For DPR, we
utilize the published retrieval result, while for the
other retrievers, we run the code using the default
parameters. We use two published models of FiD-
large that were trained on DPR retrieved contexts
from NQ/TriviaQA for inference.

3https://github.com/facebookresearch/DPR
4https://github.com/facebookresearch/SEAL
5https://github.com/facebookresearch/

contriever
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Figure 3: Incremental inference for 3 retrievers on NQ and TriviaQA dev set. This implies the existence of damaging
passages in retrieved contexts and higher performance can be attained using a subset of context

Results are illustrated in Figure 3. All models
show higher AcEM@k on all k values. For NQ,
the EM@100 scores from DPR, SEAL, and Con-
triever are 52.5%, 50.0%, and 50.7% while attain-
ing 62.3%, 59.4% and 60.8% in AcEM@100. This
indicates the existence of damaging effects in re-
trieved contexts, and the model performance could
be at least 9% points higher if the retrieved pas-
sages can be refined to remove damaging passages.

5 Analysis Methodology

5.1 Identifying Passage Types

In order to identify which passages are responsible
for damaging effects in the retrieved list, we cat-
egorize passages based on the Exact Match(EM)
pattern as an indicator to determine if a passage is
positive or not. If the EM@k is equal to 1, it can be
inferred that the kth passage is positive. However,
this does not necessarily imply that the passage
contains relevant information for the outcome. It
could be a false positive due to the presence of pre-
ceding positive passages in the input. Similarly, a
0 in the EM pattern may suggest that the passage
is negative. However, this could also be a false
negative resulting from FiD’s failure to predict the
answer despite the presence of a correct passage.

What can be inferred from the EM pattern is
when there is a change in value. If there is a tran-
sition from 0 to 1 in the EM pattern, we can infer
that the passage corresponding to 1 contains at least
some positive information for the outcome. Con-

versely, a transition from 1 to 0 suggests that the
additional passage negatively impacts the predic-
tion. Thus, we classify passages into five types
based on transitions in the EM patterns: IZ(initial
zeros), DP(definite positives), DN(definite nega-
tives), SP(semi-positive), and SN(semi-negative).
Let EM(pk) denote EM@k. Then, for each pi given
P = {p1, p2, ..., pN}, we define Type(pi):

• IZ where EM(pi) = 0 and EM(pj) = 0 for all j
= 1, 2, .., i− 1. Consecutive zeros appearing
at the start of the EM pattern correspond to
possibly relevant or uninformative passages.

• DP where EM(pi) = 1 and EM(pi−1) = 0 or
EM(pi) = 1 when i = 1. Definite positive
passages cause EM to transition from 0 to 1 or
the first passage enabling the correct answer.

• DN where EM(pi) = 0 and EM(pi−1) = 1. Def-
inite negative passages cause a transition from
a correct prediction to an incorrect one.

• SP and SN are semi-positive/negative pas-
sages do not cause transition(EM(pi) =
EM(pi−1)). Incremental inference with these
passages does not reveal their utility.

5.2 Passage Type Selection
To assess the impacts of DN contexts along with
different context types, we generate six probe pat-
terns to feed into the model. These patterns consist
of different combinations of the DP, SP, and SN.
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Figure 4: Context types and Probe Methods. Definite
positive/negative occur on transitions of the EM pattern.

We also compare the effect of the IZ in our probe
patterns too. In total, there are six probe patterns,
illustrated in Figure 4. The most relevant approach
to ours (Asai et al., 2021) only performs leave-
one-out generation: a passage is considered to be
positive if the model fails to generate the correct
inference without the passage. This approach aids
identification of positive passages but does not con-
sider which information can be detrimental to a
model. Further elaboration on the distinctions with
our methodology is provided in Appendix A.2.

5.3 Model Analysis

In Section 5.2, we classify context types to assess
their influence on the outcomes. In this section, we
analyze DP and DN using two existing methods to
check for distinct signals or patterns.

Attention Score Analysis Attention scores have
been extensively studied to enhance the perfor-
mance of both readers and retrievers. For instance,
Xu et al. 2021 employ cross-attention mechanisms
to improve the performance of extractive readers.
While Izacard and Grave 2022 use attention scores
from the reader as a measure of passage contri-
bution. Building on this insight, we compare the
attention scores of DP and DN passages from the
reader model.

Binary Classification Re-ranking is commonly
used for enhancing the performance of the reader
in the retrieve-then-read pipeline (Iyer et al., 2021;
Kongyoung et al., 2022). Additionally, Glass et al.
2022 demonstrates that a query-passage re-ranking
(classification) can improve the final outcome. In-

spired by this idea, we train three different encoders
to train binary classification on DP and DN con-
texts. This enables us to check whether the models
are capable of distinguishing between DP and DN.

6 Experiments

6.1 Probe-based Selection Inference

We evaluate all 6 probing strategies from Sec-
tion 5.2. Initially we add padding passages and
fix the context size to 100 during the inference.
For probe 3, showing the highest EM score, we
further experiment with varying context sizes of 5,
10, 20 and 40 on each DPR-retrieved test set. The
remaining experimental setup follows Section 4.

6.2 Attention Analysis

Following the approach by Izacard and Grave 2022,
we calculate the cross-attention score by averaging
across heads and layers of input tokens on the first
output token. We conduct the experiment on top-
20 DPR-retrieved contexts on NQ dev set. Next,
we visualize the distribution of DP, DN, and other
passage types using a density plot. We perform
inference on the same dataset using passages with
attention scores at various threshold values: 0.025,
0.05, 0.075, 0.1, and 0.2. We only consider con-
texts with an attention score higher than the thresh-
old. If no context meets this criterion, we use the
entire candidate passages instead.

6.3 Binary Classification

We train a binary classifier on the DP and DN
contexts. To prepare the data, we split the DPR-
retrieved NQ dev set into a 4:1 ratio, resulting in
7005 instances for training and 1752 instances for
evaluation. From these instances, we extract 5205
DPs and 1516 DNs for training, while 1308 DPs
and 396 DNs are used for evaluation. We make pre-
diction using the question, title and context compar-
ing a RoBERTa-large and T5-large encoder initial-
ized with the huggingface repository checkpoints.
We additionally compare using FiD-large encoder,
which was pre-trained on DPR-retrieved NQ train
datasets. For hyperparameters and settings, we use
a batch size of 64, a learning rate of 5e-5, 3 epochs,
and implement the fine-tuning process using the
Huggingface transformer library6.

6https://huggingface.co/docs/transformers

https://huggingface.co/docs/transformers


Dataset Retriever EM@100 AcEM@100 Probe 3
DPR 52.5 62.3 61.8
SEAL 50.0 59.4 52.9NQ
Contriever 50.7 60.8 53.0
DPR 72.3 77.7 77.6
SEAL 67.1 72.3 72.5TQA
Contriever 69.7 75.5 72.5

Table 2: Exact Match scores using different retrievers
on Natural Questions and TriviaQA development sets.

7 Results and Analysis

7.1 Probe-based Selection Inference

Using the probing patterns established in Sec-
tion 5.2, we achieve significantly higher EM scores
with fewer passages by only using the positive-
leaning passages (Table 2). Removing DN and
SN clearly demonstrates redudancy of these pas-
sages where EM@100 for probe 3 approaches
AcEM@100. Scores for all other probing patterns
are reported in Appendix A.1. Comparison be-
tween the other probe types indicates that the model
is typically not confident with IZ, and it is helpful
to retain this information rather than discard it.

Few-sentence prediction We apply Probe 3 vary-
ing the number of passages from 5, 10, 20, 40 and
100 to evaluate whether we can attain higher accu-
racy while using a much smaller budget of passages
for the reader model. With 5 passages, the model
attains more than a 12% increase in EM@5 for NQ
and 8% over EM@5 for TriviaQA on the test set.
Results are reported in Figure 5 and Figure 6.

While models can attain higher performance by
adding more passages to their input, this comes
at considerable computational costs, leading to in-
creased memory usage and latency in prediction.
Our results indicate that with just using 5 passages,
state of the art EM scores can be exceeded with judi-
cious filtering of the retrieved passages. It is crucial
that retrieval models not only consider relevance
for the end-user but also consider how irrelevant
passages can cause a catastrophic interaction with
the downstream reader model.

7.2 Attention Inference

Figure 7 visualizes the distribution of DP, DN, and
other passage types, showing a more dispersed and
higher attention score distribution of DP, which
aligns with the previous finding (Izacard and Grave,
2022). Interestingly, however, focusing on high at-
tention scores results in a monotonic decline in
performance, as shown in Table 3. This implies
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0 20 40 60 80 100
Number of Context

0.55

0.60

0.65

0.70

0.75

TrivaQA

EM
AcEM
Probe 3

Figure 6: Probe 3 with varying size of input passages
compared to incremental inference on DPR retrieved
passages on TriviaQA test set.

0.0 0.2 0.4 0.6 0.8
Attention score of passages 

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

Density plot of attention scores
DP
DN
Other

Figure 7: Attention density plot of top-20 passages in
NQ development set. DP contexts present relatively
high attention scores but cannot easily be disentangled.

that passages with high attention scores do not al-
ways guarantee the correct answer. In addition, we
investigate the highest attention score in the pres-
ence of DN. Table 4 illustrates DP accounts for 40
% of the highest attention while DN only represents
26%. However, 67 % of transitioned answers are lo-
cated within DN, while only 13 % are attributed to



Attention score threshold Exact Match
0.025 49.5
0.05 49.11
0.075 48.30
0.1 47.55
0.2 46.59

AcEM@20 58.11
EM@20 50.21

Table 3: EM score of various threshold values on top-20
passages. In cases where none of the contexts met the
threshold values, all top-20 passages were used.

Feature Context Types Percentage
DP 40.6Highest Attention Score DN 26.3
DP 13.6Transformed Prediction DN 67.7

Table 4: Out of DN 1091 cases, 40.6 % DP still exhibits
the highest attentions score, but 67.7 % of transitioned
predictions comes from DN.

DP, further highlighting an ambiguous relationship
between attention and answers.

7.3 Binary Inference

We observe that it is challenging for models to
differentiate between damaging contexts and pos-
itive ones. Table 5 presents the results of binary
classifications. No model trained well: all models
exhibit a high recall rate at the expense of preci-
sion, suggesting a strong tendency to erroneously
classify most passages as DPs. We conjecture that
the retrieved passagess already demonstrate a high
relevance score over the query, so model cannot
differentiate them properly.

8 Ablations

8.1 Passage Type Classification

Binary classification of passage type as DP or DN
(Section 7.3) was not infomrative. We further con-
sider passage classification as a multi-class classi-
fication on all context types and evaluate its end-
to-end performance. We use the same models and
datasets as in Section 6.3, resulting in 700,500 and
175,200 instances for training and evaluation, re-
spectively. For the end-to-end evaluation, we em-
ploy the NQ test set. All training is performed
with a batch size of 64, a learning rate of 5e-5,
11,000 steps (approximately 1 epoch). Multi-class
classification results indicate that all models strug-
gle with distinguishing between DP and DN, fa-
voring predictions of SP, which constitutes 50%
of the instances. Detailed results are reported in
Appendix A.4.1 which show that all probe meth-

Model Acc Pre Re F-1
RoBERTAa (Large) 0.76 0.76 1.0 0.76
FiD Encoder (Large) 0.74 0.77 0.94 0.85
T5 Encoder(Large) 0.75 0.76 0.987 0.86

Table 5: Binary classification results of different models
on the development set. All three models are highly
likey to predict DPs.

ods exhibited either lower or equal performance
compared to EM@100, falling significantly below
Probe 3. Both ablations underscore the challenge
in models for predicting EM patterns and passage
types, reflecting the difficulty in distinguishing DP
and DN within the retrieved contexts.

8.2 Qualitative Analysis on Definite Negative

Results from Section 7.1 indicate that removing
DN and SN passage types can significantly enhance
the EM score. However, this approach relies on
the availability of known answers to identify the
damaging passage types. To discern patterns in
the transition of EM patterns, we manually exam-
ine instances containing DN passages. We sample
100 examples for NQ development set and discover
that out of these instances, 51 cases identified as
correct answers, misled by dataset issues such as
Equivalent answers, where answers that are se-
mantically equivalent but have variations on sur-
face form (e.g. alternative spellings), Alternative
answer where only one answer out of a set is la-
belled in the dataset (e.g. multiple actors play a
character), and Temporality where the correct an-
swer depends on the current context (e.g. questions
asking about latest events).

This finding supports Bulian et al. 2022 that the
EM may not fully capture the impact of issues like
Equivalent answer. The remaining 49 cases are
indeed affected by DN. This analysis highlights the
limitations of inferring damaging contexts without
answers. For more details and examples of qualita-
tive analysis on DN, please refer to Appendix A.3.

8.3 Semantically Equivalent Answers

Contemporaneous work from Kamalloo et al. 2023
asserts the limitation of a lexical matching sys-
tem (EM score) that leads to the underestima-
tion of Reader’s performance. They demonstrate
that prompting LLM to assess the final outcome
yields similar results to manual evaluation. Inspired
by this, we re-evaluate our results via zero-shot
prompting, following the methodology outlined
in Kamalloo et al. 2023. We calculate adjusted
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Figure 8: Comparison of different metrics on NQ dev
subsets, comprising 1752 instances. SeEM and AcEM
are adjusted versions of EM, correcting semantically
equivalent answers via LLM prompting.

EM and AcEM, which refer to as SeEM(Semantic
Equivalent EM) and SeAcEM(Semantic Equivalent
AcEM), to assess the damaging effects. Our exper-
iments are conducted on a subset of NQ dev set
(1752 instances) using Claude2 and gpt-3.5-turbo
(detailed in Appendix A.5).

Figure 8 reports the results of SeEM and
SeAcEM in comparison to EM and AcEM. In-
crease in performance were observed for both
Claude2 and gpt-3.5-turbo to evaluate semantic
equivalence. There was a 25.6% increase in the gpt-
3.5-turbo setting (EM@100: 0.520 to SeEM@100:
0.776) and an 8.9% increase in the Claude2 setting
(EM@100: 0.520 to SeEM@100: 0.609). How-
ever, discrepancies of 8.8% and 9.1% persist be-
tween SeAcEM@100 and SeEM@100 in both set-
tings, indicating that damaging effects still remain
despite the semantic equivalent adjustments. To
evaluate the effectiveness of our Probe3, we apply
the same procedure outlined in Section 7.1. The
results reported in Figure 9 demonstrate a 5.8% and
5.7% increase Probe3@5 (0.834, 0.666) compared
to the conventional approach SeEM@100 (0.776,
0.609). Notably, this improvement is achieved us-
ing 1/20th of the context. This result illustrates
the persistent presence of damaging passages even
after adjusting for semantic equivalence, emphasiz-
ing the need for filtering out damaging passages.

9 Conclusions

The reader models in retrieve-then-read pipelines
are sensitive to the retrieved contexts when gen-
erating answers. Damaging passages in this set
can lead to incorrect responses. Filtering damaging
passages results in increases in EM scores without
the need for architectural modifications. Despite
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Figure 9: Probe3 evaluations with varying sizes(5, 10,
20, 40, 100) on NQ dev subsets. Probe3 can achieve a
performance close to the SeAcEM@100 with 20 times
fewer contexts.

shortcomings in evaluating QA with exact match,
we demonstrate that by filtering passages, models
can achieve 10% higher EM scores using subsets
of context that are 20X times smaller.

10 Limitations

Identifying the behavior of black-box models is
challenging. While we identify different subsets of
evidence that the model reacts well to when gen-
erating a correct answer, there is no guarantee that
these subsets of information correspond to what
humans users would consider useful. Furthermore,
some of the reasons the model changed its predic-
tion, such as generating a more specific answer,
would be correct if multiple references were avail-
able for evaluating the models. However, these
alternative answers are not available in the datasets,
which means we are optimizing the models for a
limited subset of truly valid answers. Lastly, our
approach may not be practical for decoder-only
LLMs where the order of context/answer choices
varies the outcome. To assess the answerability of
the given n candidate contexts, O(n!) inferences
are required for LLMs, while FiD only needs one
inference due to its order-invariance property.

We report a limitation, evaluation and position
of established modelling techniques that can help
guide the community for future research. If models
can effectively leverage external information, they
should be capable of using text as an interpretable
source of information rather than relying solely on
knowledge that is stored within inaccessible model
parameters. This approach may contribute to a
future with NLP models that are more interpretable
and controllable.
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A Appendix

A.1 Probe pattern performance
We report the performance of all probe patterns from Section 5.1. Probe pattern 3 gives EM scores that
are closest to the established AcEM@100 upper bound.

Dataset Retriever EM@100 AcEM@100 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6
DPR 52.5 62.3 58.1 56.3 61.8 61.7 55.2 56.0
SEAL 50.0 59.4 43.9 30.0 52.9 44.9 52.5 44.6NQ
Contriever 50.7 60.8 44.3 29.0 53.0 45.1 52.6 44.4
DPR 72.3 77.7 76.2 75.1 77.6 77.4 73.8 74.0
SEAL 67.1 72.3 67.9 51.5 72.5 63.7 72.3 63.9TQA
Contriever 69.7 75.5 68.4 51.7 72.5 62.9 72.3 62.9

Table 6: Exact Match scores using different retrievers on Natural Questions and TriviaQA development sets. The
datasets retrieved by DPR exhibit a consistently high EM score across various Probes. This observation can be
explained by the fact that the FiD models used for evaluation are trained on DPR retrieved datasets.

A.2 Difference between leave-one-out masking and EM pattern
There are two key distinctions between Asai et al. 2021 and our apporach. Firstly, while leave-one-
out masking focuses on finding positive contexts, ours method(Passage Type Selection) aims to detect
detrimental passages that can negatively impact the inference and it can also distinguish positive contexts
effectively. Secondly, the time taken for inference to determine whether a passage is positive or negative
is faster in our approach compared to leave-one-out masking. For instance, let N − 1 be the number of
contexts, G denote the reader model, and P = {p1, p2, ..., pN−1} denote the set of retrieved passages for
a given query. When new context, pN , is added to the passages lists, it requires N inferences over N-1
passages in the case of leave-one-out masking, whereas ours requires a single inference over N passages.

A.3 Qualitative Analysis
In this section, we delve further into the qualitative analysis of DN. We focus on the top-20 passages as
examining the top-100 passages would require a more extensive investigation. Out of the 8,757 cases in
the NQ development set, 1,091 instances exhibit the presence of DN, accounting for approximately 12%
of the dataset. We selected a sample of the first 100 cases and discovered that out of these instances, 51
DN cases were attributed to limitations within the dataset, which can be regarded as false negative cases.
Other 49 cases are true-negative cases and occurred due to the presence of DN. Regarding the limitations
within the dataset, we classify them into three distinct types: Equivalent Answer Example, Alternative
Answer, and Temporality.

A.3.1 Dataset Issue
Dataset issues exemplify situations where the predicted answers are accurate, yet the evaluation is
insufficient. Prediction within the context is highlighted in red, while the supporting information is marked
in blue.

• Equivalent Answer Example
There are 34 cases where predictions have different formats or are supersets/subsets of gold answers.

Query: when did the king kong ride burn down
EM pattern: 01000000000000000000
Gold Answers: [’2008’]

DN index: 2
Prediction : June 1, 2008
Predicted answer in DN context: Yes
DN context



{’id’: ’4215890’, ’title’: ’King Kong’, ’text’: ’and Universal Orlando Resort in Orlando,
Florida. The first King Kong attraction was called King Kong Encounter and was a part
of the Studio Tour at Universal Studios Hollywood. Based upon the 1976 film "King
Kong", the tour took the guests in the world of 1976 New York City, where Kong was seen
wreaking havoc on the city. It was opened on June 14, 1986 and was destroyed on June 1,
2008 in a major fire. Universal opened a replacement 3D King Kong ride called "" that
opened on July 1, 2010, based upon Peter Jacksonś 2005 film "King Kong".’}

• Alternative Answer Example
There are 13 cases in which the predictions can serve as alternative answers for the given query

Query: who introduced the system of civil services in india
EM pattern: 00011111111100000000
Gold Answers: [’Charles Cornwallis’]

DN index: 12
Prediction : Warren Hastings
Predicted answer in DN context: No

Context index including prediction: 3
Context
{’id’: ’14394957’, ’title’: ’Civil Services of India’, ’text’: "administer them. The civil
service system in India is rank-based and does not follow the tenets of the position-based
civil services. In 2015, the Government of India approved the formation of Indian Skill
Development Service. Further, in 2016, the Government of India approved the formation
of Indian Enterprise Development Service. Warren Hastings laid the foundation of civil
service and Charles Cornwallis reformed, modernised and rationalised it. Hence, Charles
Cornwallis is known as the ’Father of Civil Service in India’. He introduced Covenanted
Civil Services (Higher Civil Services) and Uncovenanted Civil Services (Lower Civil
Services). The present civil services of India"}

• Temporality Example
There are 4 cases where queries ask for the up-to-date context but generate the answer on the outdated
context

Query: who plays cat in beauty and the beast
EM pattern: 01111111111111111110
Gold Answers: [’Kristin Kreuk’]

DN index: 19
Prediction : Linda Carroll Hamilton
Predicted answer in DN context: No

Context index including prediction: 6
Context
{’id’: ’728625’, ’title’: ’Linda Hamilton’, ’text’: ’Linda Hamilton Linda Carroll Hamilton
(born September 26, 1956) is an American actress best known for her portrayal of Sarah
Connor in "The Terminator" film series and Catherine Chandler in the television series
"Beauty and the Beast" (1987-1990), for which she was nominated for two Golden Globe



Awards and an Emmy Award. She also starred as Vicky in the horror film "Children of
the Corn". Hamilton had a recurring role as Mary Elizabeth Bartowski on NBCś "Chuck".
Hamilton was born in Salisbury, Maryland. Hamiltonś father, Carroll Stanford Hamilton, a
physician, died when she was five, and her mother later married’}

A.3.2 Definite Negative Cases
The presence of DN contexts destabilize the reader, leading to the conversion of correct gold answer. The
prediction present within the context is highlighted in red.

• Predictions in DN context
In 43 cases, the predictions (transitioned from gold answers) are found within the DF passage.

Query: real name of gwen stacy in amazing spiderman
EM pattern: 11110011111111111111
Gold Answers: [’Emma Stone’]

DN index: 4
Prediction : Mary Jane Watson
Predicted answer in DN context: Yes
DN context
{’id’: ’1283490’, ’title’: ’Gwen Stacy’, ’text’: ’relationship with chemical weapon devel-
oper Norman Osborn. Mary Jane Watson, a popular actress in this reality, played Gwen
Stacy in the film adaptation of Spider-Man’s life story. Gwen and her father read textual
accounts of their deaths in the main universe, though they believe this simply to be the
morbid imaginings of Peter Parker, who is suffering from mental health issues. Gwen
Stacy first appeared in "Marvel Adventures Spider-Man" #53 as a new student of Midtown
High. She had transferred from her previous school after the Torino Gang, a powerful New
York mob, began harassing her in an attempt to ’ }

• Predictions in previous context
There are 4 cases where the prediction appears in the previous contexts.

Query: who will get relegated from the premier league 2016/17
EM pattern: 00000100011111101111
Gold Answers: [’Middlesbrough’, ’Sunderland’, ’Hull City’]

DN index: 15
Prediction : Norwich City
Predicted answer in DN context: No

Context index including prediction: 7
Context
{’id’: ’19245453’, ’title’: ’2016–17 Premier League’, ’text’: "the league – the top sev-
enteen teams from the previous season, as well as the three teams promoted from the
Championship. The promoted teams were Burnley, Middlesbrough and play-off winners
Hull City, who replaced Aston Villa, Norwich City and Newcastle United. West Ham
United played for the first time at the London Stadium, formerly known as the Olympic
Stadium. Although having a capacity of 60,010, for the first Premier League game this was
limited to 57,000 due to safety fears following persistent standing by fans at West Ham’s



Europa League game played in early August. Stoke City announced that from"}

• Predictions not in contexts
There are 2 cases where the prediction does not exist in the candidate passages.

Query: how many episodes does riverdale season one have
EM pattern: 11110000111111111111
Gold Answers: [’13’]

DN index: 4
Prediction : 21
Predicted answer in DN context: No

Context index including prediction: None

A.4 Passage Type Classification
A.4.1 Mutli-classification

Model Metric DP DN SP SN IZ
precision 0 0 0.54 0.09 0.5FiD-Encoder recall 0 0 0.72 0.04 0.37
precision 0 0 0.55 0.1 0.5T5-Encoder recall 0 0 0.72 0.05 0.37
precision 0 0 0.5 0 0RoBERTa recall 0 0 1 0 0

Total Instances 1308 396 86936 15438 71122

Table 7: The table shows the results on 175,200 evaluations instances, which are 20% of original DPR-retrieved NQ
devset. All models struggle with identifying DN and DP, favoring predictions of SP, which constitutes 50% of
instances. Notably, all three models can’t differentiate context types properly. Among 175,200 total instances, T5
predicts 114,606 (65.4%) to SP, FiD labels 115,522 (65.9%) as SP, and RoBERTa classifies all as SP. This highlights
multi-classification’s challenge in capturing passage types and inability to identify DN and DP.

A.4.2 End-to-End Results

Model Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 Probe 6
FiD-Encoder 48.59 37.51 53.77 42.74 54.71 43.66
T5-Encoder 48.73 37.45 53.46 42.3 54.24 43.19
RoBERTa 54.43 35.84 54.43 35.84 54.43 35.84

Table 8: End-to-End result of multi-classifcation on NQ test set. Among all classification models, RoBERTa
achieves the highest EM scores across Probe1, Probe3, and Probe5. This is due to the fact that RoBERTa
inferences are all SPs, resulting in all contexts being used as inputs for the reader. Consequently, these scores
should match EM@100(54.43), which uses all contexts for inference. All Probe results exhibit either lower or
equal performance compared to EM@100, notably falling significantly below Probe 3’s EM score(65.12). This
underscores the classification models’ struggle in identifying EM patterns and passage types, reflecting the challenge
in distinguishing DN and DP within the provided retrieved context.



A.5 Semantically Equivalent Answers
To calculate the SeEM and SeAcE, candidate answers are collected from the incremental answers. Then,
we prompt gpt-3.5-turbo-0613 and Claude2 by iterating the candidate answer list over the gold answer
list. Suppose we have an instance like this:

query = "who sings does he love me with reba"
gold_ans_lst = ['Linda Davis']
cand_lst = ['Linda Kaye Davis', 'Linda Davis']

In this case, EM fails to capture "Linda Kaye Davis" as the correct answer because of "Kaye" in
the middle. We perform zero-shot-prompting by iterating over gold_ans_lst and cand_lst. Here is an
example:

Question: who sings does he love me with reba
Answer: Linda Davis
Candidate: Linda Kaye Davis
Is candidate correct?

Although each API generates different response formats to the given prompt, we only consider cases
where the response starts with explicit tokens (Yes/No); otherwise, we discard the candidate.

response: Yes, the candidate is correct.
Linda Kaye Davis is the singer who performed the duet "Does He Love You" with Reba McEntire.

Finally, we construct an adjusted gold answer list based on the response and calculate the SeAm and
SeAcEm.

A.6 Attention Score of top-20 passges

Figure 10: The attention scores of the top 20 retrieved passages are depicted in this example. It can be observed that
the 7th and 16th passages are DN. Interestingly, the passage with the highest attention score(8th) is identified as SN


