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Abstract

We study how embedding dimension affects the emergence of an internal “world
model” in a transformer trained with reinforcement learning to perform bubble-sort-
style adjacent swaps. While even very small embedding dimensions are sufficient
for models to achieve high accuracy, larger dimensions yield representations that
are more faithful, consistent, and robust. In particular, higher embedding dimen-
sions strengthen the formation of structured internal representation and leads to
better interpretability. After hundreds of experiments, we observe two consistent
mechanisms: (1) the last row of the attention weight matrix monotonically encodes
the global ordering of tokens; and (2) the selected transposition aligns with the
largest adjacent difference of these encoded values. Our results provide quantitative
evidence that transformers build structured internal world models and that model
size improves representation quality in addition to end performance. We release
metrics and analyses that can be reused to probe similar tasks.

1 Introduction

Sorting has long been a canonical problem in computer science, valued both for its theoretical
significance and its ubiquity in practice [5]. There are numerous trade-offs between different sorting
algorithms, and sorting as efficiently as possible is extremely important because of how often
the algorithm is needed [7]. Beyond efficiency concerns, sorting also serves as a natural testbed
for studying how algorithms—and, increasingly, learned models—structure computation. Recent
advances have shown that deep learning can yield new insights into traditional computer science
problems such as sorting, even leading to improvements that have been incorporated into LLVM
standard sort for C++ [15]. Our interest, however, does not fall into algorithmic acceleration, but
rather the mechanisms by which small neural architectures internally represent and execute discrete
procedures.

Transformers are now the dominant architecture for sequence modeling [22], achieving remarkable
capabilities in language, reasoning, and beyond [13]. Logical and mathematical benchmarks highlight
their strengths but also reveal persistent reasoning limitations [4]. While strategies such as chain-of-
thought prompting mitigate some failures [25, 23], these remain workarounds rather than evidence of
robust reasoning.
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In parallel, mechanistic interpretability has emerged as a program for understanding the inner
workings of neural networks [3]. Small transformer networks without multilayer perceptrons in
particular have been found to be fairly amenable to analysis [6]. Related work on grokking shows
that transformers can form generalizable latent representations of tasks [14]. This behavior connects
to the broader “world model” hypothesis: neural networks build structured internal representations
of their environment [9]. Encouraging the development of a world model has has been shown to
improve reasoning abilities in large language models (LLMs) [10].

In this paper, we investigate whether small transformer models trained via reinforcement learning
(RL) develop an interpretable world models of the bubble sort process, and how it differs with respect
to varying embedding dimensions. Instead of phrasing it as an autoregressive generation problem,
we recast it in a reinforcement learning framework and take advantage of the interpretability of the
transformer to gain insight into how the model solves the task. Our reinforcement learning setting
has states defined by permutations of tokens representing numbers from 1 to n. The allowed actions
were limited to swaps between adjacent elements in the input sequence, with a reward given once
the sequence became fully sorted. This was trained using the Proximal Policy Optimization (PPO)
algorithm [21]. Our contributions are as follows:

• We introduce sorting as a reinforcement-learning testbed for mechanistic interpretability.

• We provide an empirical study showing that increasing embedding dimension substantially
improves representation faithfulness, consistency, and robustness.

• We identify two consistent patterns—a global order encoding in attention weights and largest
difference selection rule—that explain agent behavior.

• We release metrics and methodology for evaluating alignment between hypothesized mechanisms
and model internals.

2 Related works

2.1 Transformer-based world models in reinforcement learning

Recent research has explored the use of transformer architectures to build world models that enhance
data efficiency in reinforcement learning. For example, IRIS combines a discrete autoencoder
with an autoregressive transformer to learn efficient world models capable of achieving human-
level performance on Atari within only two hours of gameplay [17]. Similarly, STORM integrates
stochastic transformers with variational components to enhance model-based RL [26].

2.2 Mechanistic interpretability in neural systems and toy environments

Mechanistic interpretability refers to identifying internal, algorithmically meaningful structures
within models. Landmark studies in transformer interpretability, such as those by the Anthropic Clarity
team, have revealed algorithmic behaviors, such as induction heads, in small-scale transformers
[20]. More recent work, including analysis of Othello-GPT, demonstrates that linear latent world
representations can form even without explicit supervision [19]. In parallel, studies such as SortBench
evaluate how well large language models can capture and execute simple algorithmic behaviors like
sorting [11].

2.3 Representation capacity and embedding dimension

The question of how model capacity—especially embedding size—affects representation quality
has been widely studied. For example, Word2vec models exhibit improved embedding quality with
increased dimensionality, up to a point of diminishing returns [18]. Empirical studies show that
higher-dimensional embeddings often enhance intrinsic task performance, though extrinsic tasks may
require careful tuning [16]. Theoretical work further reveals a bias–variance trade-off that shapes
optimal embedding dimensionality [24].

2



3 Preliminaries and discussions

3.1 Transformers

Transformers [22] have become the dominant architecture for sequence modeling, excelling in
language, vision, and reinforcement learning. Their core mechanism, self-attention, computes
interactions between all pairs of tokens in a sequence, enabling flexible representation of order
and relational structure. While modern applications often rely on deep, multi-head architectures,
even single-head, shallow transformers are capable of learning structured, interpretable behaviors.
This makes them ideal candidates for mechanistic interpretability studies in constrained settings. In
this work, we deliberately use minimal transformer architectures to isolate the role of embedding
dimension in shaping internal representations (details of the model architecture are provided in
Appendix 8.1). By reducing architectural complexity, we can more directly attribute observed
world-model–like behavior to the interaction of self-attention and reinforcement learning dynamics.

3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [21] is a reinforcement learning algorithm widely adopted for its
balance between stability and performance. PPO constrains policy updates using a clipped surrogate
objective, which prevents destructive shifts in behavior while still encouraging steady improvement.
Its simplicity and robustness have made it a standard choice across domains ranging from Atari
to robotics, and more recently as the backbone of reinforcement learning with human feedback in
large language models. In our setting, PPO provides a practical way to train agents to discover
sorting strategies without prescribing explicit rules. Because PPO naturally encourages agents to
form structured latent representations of their environment, while maintaining training stability, it is
particularly well-suited for probing whether interpretable world models emerge in a toy sorting task.

3.3 Notation and model setup

The input to the model consists of tokens corresponding to numerical values from 1 to ℓ, ordered by
some permutation π. The transformer uses single-headed self-attention, with queries Q, keys K of
dimension dk, and values V . With this model, the attention weights are given by

W =
QK⊤
√
dk

.

3.4 Why sorting as a testbed

Our work builds upon a growing body of research that uses toy problems as controlled settings for
mechanistic interpretability studies. By constraining the complexity of the task and environment,
researchers can systematically probe model internals without the confounding variability present
in real-world data [6, 3]. Sorting, despite its apparent simplicity, is a particularly appealing choice
because its state space is finite, its optimal solutions are well-defined, and its intermediate states have
a clear, human-interpretable structure. This makes it possible to directly compare the agent’s learned
representations to ground truth abstractions such as “global order” or “adjacent differences.” Unlike
real-world RL tasks, there is no ambiguity in goal definition or reward signals, which allows us to
attribute observed behaviors more confidently to architectural properties rather than to environmental
noise.

Unlike prior work that uses deep RL to search for efficient new algorithms, our aim is not to improve
performance but to understand the mechanisms a network employs to solve a task it could already
solve [15]. We deliberately choose to use a reinforcement learning setup because RL-trained models
tend to develop internal state representations better aligned with an environment’s causal structure,
resonating with the “world model” hypothesis in deep learning [9]. In our case, the emergent ordering
circuit in the attention weights can be seen as a minimalist form of such a model.

Furthermore, there is precedent for embedding dimension playing a critical role in representation
quality across modalities. In natural language processing, larger hidden sizes often permit more
nuanced syntactic and semantic encoding [12]. By exploring this axis in a highly constrained
RL setting, we aim to isolate how embedding dimension affects the fidelity of an interpretable,
algorithmically relevant latent structure.
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3.5 Empirical observations

Exploratory experiments revealed two consistent behaviors in trained agents:

1. A global order encoding in attention weights: the final row of the attention matrix appears to
monotonically track the input tokens’ global order (Observation 1).

2. A difference-based rule for swap selection: the chosen transposition tends to correspond to the
largest adjacent difference between these encoded values (Observation 2).

4 Methods

4.1 Model evaluation

To quantify how consistently the above two observed mechanisms appear across embedding dimen-
sions, we define three metrics:

1. Sorting accuracy: For each possible initial permutation, we verify that the choice of transposition
is a correct swap. Accuracy is defined as the fraction of correct swaps, which allows us to
calculate an accuracy between 0 and 1. If an agent has an accuracy = 1, it will be able to sort any
permutation optimally.

2. Global order encoding: Consider the attention weights W = QK⊤/
√
dk, with final row Wℓ.

We compute the proportion of non-inversions between (π(1), . . . , π(n)) and (Wℓ,1, . . . ,Wℓ,n),
where an inversion is defined as a pair of elements which are out of order between the two
sequences. We then normalize by

(
n
2

)
, the maximum number of inversions between two sequences.

This yields a metric in [0, 1], with 0 meaning the attention weights are completely out of order,
and with 1 indicating perfect alignment.

3. Difference-based swap rule: The agent’s choice of transposition corresponds to the largest (or
smallest) difference in values. For every initial permutation, we sort the differences between
consecutive attention output values. We then find the ranking of the transposition which was
actually chosen according to this sorted list. We measure the frequency with which the chosen
swap lies among the top-k predicted differences, so a top 2 proportion of 1 would mean all swaps
chosen by the agent were in the top 2 (of n) predictions.

4.2 Implementation details

Agents were trained using PPO using a learning rate of 2.5e-4 and discount factor 0.99 (full hyper-
parameters are in Appendix 8.2) [21]. Training was performed for 1M, 2M, or 10M timesteps. All
models were stripped down transformers with an embedding layer, a single-head self-attention block,
and a linear layer. Training was performed on Nvidia H100 GPUs.

4.3 Experimental design

We trained agents with embedding dimensions varying from 2 to 128 and sequence lengths of 6
and 8. In total, 475 agents were trained, with multiple random seeds, enabling a robust estimate of
both mean performance and variability, which we later connect to embedding dimension. Length
6 sequences have a relatively small permutation space (720 possible states), making convergence
feasible for nearly all runs, while length 8 (40,320 possible states) introduces enough combinatorial
growth without becoming computationally prohibitive.

Importantly, the environment only incentivizes agents to eventually sort a sequence, not to discover
the optimal sorting path. The optimal solution is not unique, and suboptimal but valid sorting
strategies may still achieve perfect reward. Our analysis therefore focuses on the internal mechanisms
agents converge to, rather than on efficiency.

Embedding dimension was chosen as our primary independent variable because it directly controls the
representational capacity of the attention mechanism. This choice also allowed us to probe the trade-
off between minimal capacity sufficient for high performance and excess capacity that may encourage
structured representations. In principle, embedding dimension directly modulates representational
capacity. A larger query/key dimension enhances the expressive power of attention, allowing the
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network to approximate complex functions [1]. Additionally, increasing embedding dimensionality
enriches the granularity of token embeddings, which empirically improves generalization.

We chose PPO for policy optimization because of its balance between stability and sample efficiency;
it avoids catastrophic policy updates via clipping while remaining easy to parallelize [8].

Notably, while we tested a large range of embedding dimensions, the results generally only changed
below an embedding dimension of approximately 30 and leveled out after that. There were also some
differences in results for the different sequence lengths which should be investigated further, but this
was not the main focus of the experiment and would require much more computation because of the
combinatorially increasing state space.

5 Results

We observed that agents consistently converged to a simple and interpretable algorithm when solving
the sorting task. Specifically, two mechanisms emerge consistently across runs:

1. A global order encoding in attention weights: the final row of the attention weight matrix maps
each number token to a value between 0 and 1, and lower attention weight values correspond to
lower numerical tokens. This means that the model discovers the global ordering of the input
tokens (Observation 1)

2. A difference-based rule for swap selection: The value matrix and final linear layer of the
network calculate the difference between consecutive attention weight values, and the chosen
transposition corresponds to the largest difference (Observation 2)

We hypothesize that together, these two observations define a simple circuit underlying sorting
behavior. Importantly, while small embedding dimensions are sufficient for near-perfect accuracy,
larger embedding dimensions make these mechanisms more consistent, more faithful, and more
robust across agents. In the following subsections, we show evidence that agents reliably learn this
circuit, and that convergence to it becomes more consistent as embedding dimension increases.

5.1 Accuracy of agents

Agents reliably learned to sort sequences under a wide range of embedding dimensions. For sequence
length 6, 99.2% of the agents reliably achieved 100% accuracy once the embedding dimension was
greater than 16. For the sequence length of 8, many agents still achieved 100% accuracy, but at a
lower rate of 37.4% when the embedding dimension was above 16. Our observations relate to models
which achieve a perfect or near-perfect accuracy, and the PPO training algorithm was able to achieve
this for many agents at each length. The average accuracy at each embedding dimension is shown in
Figure 1, which reflects these results. The average accuracy levels out for both sequence lengths at a
low embedding dimension but is higher for length 6 sequences.

Notably, accuracy saturates at relatively low embedding dimensions, which suggests that task success
requires only limited representational capacity. To understand what additional capacity provides, we
next examine internal representations.

Table 1: Average accuracy of the agents by length and number of iterations.

Length 6 Length 8

1M iters 96.7% N/A
2M iters N/A 74.3%
10M iters 95.5% 90.7%

5.2 Representation of global ordering

Even though agents only needed to predict single swaps, most developed a coherent representation
of the entire sequence ordering in the last row of the attention matrix. We quantified this with the
proportion of non-inversions (see metric 2).
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Figure 1: Accuracy vs. embedding dimension for length 6 and length 8 agents. Almost all agents
achieve 100% accuracy for length 6, but this is not the case for length 8, where agents either achieve
very high accuracy or get stuck at much lower accuracy. The mean and 95% confidence intervals are
shown.

For agents trained on sequences of length 6, the average proportion of non-inversions increases as
the embedding dimension increases but levels out at 87% around embedding dimension of 30. This
means there are on average only around 2 inversions between the input ordering and the attention
output ordering.

For agents trained on sequences of length 8, the trend still exists, but it is not as strong because
some agents never converge on a solution with 100% accuracy. If these agents are ignored, we
see a similar result to the agents trained on length 6 sequences, where the average proportion of
non-inversions increases until an embedding dimension of around 30 at which point it levels out at
78%. The agents with a lower accuracy only reach an average of 57%, close the 50% which would be
expected for a random sequence. Figure 2 shows this trend, where the proportion of non-inversions is
close to 50% at a low embedding dimension and increases as embedding dimension increases until
it levels out, providing evidence for Observation 1 (see Appendix 8.3 for additional visualizations
of attention weights). Crucially, this metric increases well after the accuracy has already saturated.
Larger embeddings therefore make its internal ordering representation stronger and more reliable.

5.3 Decision mechanism

We also found strong evidence for Observation 2: agents typically selected swaps by identifying the
most positive or most negative difference between consecutive values in the last attention row. We
analyzed how often the move an agent choose to make was in the top i predictions according to the
largest gaps in the attention matrix (metric 3). Examples of attention weight visualizations for high-
and low-performing agents are shown in Appendix 8.3. Across high-accuracy agents, 76–77% of
moves matched the top-1 prediction, and more than 90% matched the top-2 (Table 2, Figure 3).

As with ordering fidelity, swap prediction alignment seemed to increase with embedding dimension
until leveling off at around dimension 30. This shows that higher embedding dimensions not only
strengthen global representations but also sharpen the decision rule based on them.

5.4 Failure modes

Beyond aggregate accuracy metrics, we examined qualitative failure modes of low-dimension agents
(Appendix 8.3 includes representative training loss curves). A common pattern was what we term the
“local greedy trap”: swapping the most obviously incorrect local pair due to a failure to recognize
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Figure 2: Proportion of non-inversions vs. embedding dimension for length 6 and length 8 sequences
where the model has near-perfect accuracy. This reaches over 80% on average for both sequences
when the embedding dimension is large enough. The mean and 95% confidence intervals are shown.

that fixing a larger global inversion sometimes required temporarily increasing the number of local
inversions. This trap is especially telling because it indicates that the model had not formed a coherent
global ordering representation; instead, it relied on a heuristic driven purely by local differences in
value embeddings. The appearance of this failure mode decreases with higher embedding dimensions,
suggesting that greater representational capacity allows simultaneous encoding of both global and
local order features.

Table 2: The proportion of moves an agent with high accuracy chooses which are the first/second
largest gap in the last row of the attention matrix.

Top 1 Top 2

Length 6 76.2% 94.0%
Length 8 76.8% 92.5%

This table includes almost all agents trained on length 6 sequences because they are almost all
fully accurate. However, many length 8 agents never reach full accuracy so they are left out. The
low-accuracy length 8 agents only have a top-2 proportion of 54.1%, which is much lower than the
accurate agents. Figure 3 shows the proportion of correct top 1 and top 2 predictions as embedding
dimension changes for the high accuracy agents. Similar to the proportion of non-inversions, these
proportions increase with the embedding dimension until they level out at an embedding dimension
of around 30.

5.5 Cross-metric consistency

Our two observations for how the model should act are very related. If the global ordering observation
is true, then choosing the move with the most negative difference will always lead to a correct swap.
Because of this, it makes sense that the performance of these two mechanisms against the embedding
dimension are strongly related. This relationship can be seen in Figure 4, where there is a fairly strong
association between the metrics used to evaluate Observation 1 and Observation 2. This suggests that
either metric could serve as a proxy for the other in similar studies.
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Figure 3: Proportion of moves which are the top 1/2 prediction according to our observation vs.
embedding dimension for length 6 and length 8 sequences where the model has near-perfect accuracy.
Almost all moves are chosen according to this observation, with the top 2 proportion reaching above
90% for a large enough embedding dimension. The mean and 95% confidence intervals are shown.

Figure 4: The proportion of top 1 predictions vs. proportion of non-inversions for all agents. These
two metrics have an r2 value of 0.56, so there is a fairly strong correlation between the two values.
The line of best fit and 95% confidence interval for the parameters of this line are shown.

6 Discussion

The observation that representation quality continues to improve well after accuracy saturates has
several implications. First, it highlights the importance of probing internal representations directly
rather than relying solely on performance metrics, especially when evaluating model capacity. In
safety-critical or interpretability-focused contexts, a more structured internal representation may
be preferable even if accuracy is unchanged, as it can make the model’s decision process more
predictable and transparent.

From a scaling perspective, our findings parallel the idea of “capability plateaus” in large-scale
models: increases in size yield diminishing returns on benchmark scores but continue to shape the
internal geometry of the learned representation space. This reshaping may have downstream benefits,
such as improved transfer to longer sequences, greater robustness to noise, or better alignment with
human-interpretable concepts. In the RL setting, it could also reduce policy brittleness, as more
structured latent states may generalize more smoothly to out-of-distribution configurations.
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Finally, the fact that higher capacity leads to more consistent circuit formation across seeds hints at a
practical trade-off: overprovisioning model width might be a cheap way to make learned policies
more interpretable without any loss in performance, even if such overprovisioning would be avoided
in a strict efficiency optimization.

The main observation from our results is that the accuracy of the models levels out at very close to
100% at a very low embedding dimension (around 6 for length 6 sequences trained for 10M timesteps),
but the metrics discussed above increase well beyond that (around 30 for the same agents). This
means that agents are learning how to solve the given problem perfectly with even a low embedding
dimension, but are more likely to learn our simple interpretable solution as the embedding dimension
keeps increasing.

Another result which gives insight into how the agents learn is that for the agents trained on length
8 sequences, not every agent learned our observations but the best agents almost all did. Some
agents never achieved an accuracy over 90% even after 10M iterations of training. None of these
agents performed very well on our metrics for evaluating how close an agent was to satisfying our
observations, but there was a noticeable improvement among the agents which achieved near perfect
accuracy. This means that in our experiments for the length 8 sequences, being closer to matching our
observations meant that the agent generally performed better. Our observations for how the agents
would solve the problem are, in some sense, the easiest solution they could learn.

7 Conclusion

We studied how embedding dimension affects the emergence of interpretable internal mechanisms in
small transformers trained with PPO to perform bubble-sort–style adjacent swaps. Across hundreds
of agents, we found two consistent patterns: the final row of the attention weights encodes a global
ordering of tokens, and the chosen swap corresponds to the largest adjacent difference in that ordering.
While accuracy saturates at relatively low embedding dimensions, the faithfulness and robustness
of these mechanisms continue to improve up to dimension around 30. Thus, capacity improves
representation quality, providing quantitative evidence that transformers build simple, structured
world models even in constrained RL settings.

7.1 Applicability

Our analysis demonstrates that even very small transformers, when trained in RL settings, naturally
converge to simple, interpretable circuits for solving sorting tasks. This supports the idea that
transformers, under constrained conditions, expose internal mechanisms that are easy to study.
Similar approaches could be applied to other algorithmic tasks (e.g., graph problems, dynamic
programming), where the attention matrix may again reveal hidden internal structure.

7.2 Limitations

This study is limited both in scope and scale. We focused only on adjacent transposition sorting with
1–2 layer, single-head transformers. More complex architectures—such as deeper models, multi-head
attention, or richer environments—were not explored. Computational budget also restricted our
ability to test broader ranges of sequence lengths or larger training runs. As such, our findings should
be viewed as evidence of a general trend, not as an exhaustive characterization.

7.3 Further work

Several extensions follow naturally. This paper examined how a transformer learned to execute
an algorithm similar to bubble sort, where transpositions can only be made between two adjacent
elements. This setup will be maximally efficient as long as correct swaps are always chosen, but there
is room for efficiency improvements in the more general case. One direction is to relax the adjacency
constraint and allow arbitrary in-place swaps; this could reveal whether transformers discover known
efficient algorithms (e.g., merge sort) or converge to novel heuristics.

In addition to generalizing to non-adjacent swaps, several directions stand out. One is to introduce
stochasticity into the environment, such as noisy token values or partial observability, to test whether
the same ordering circuit emerges under uncertainty. Another is to explore hybrid training setups,
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where a model is pre-trained in a supervised manner on optimal swaps before being fine-tuned with
RL; this could reveal whether the ordering representation is more robust when acquired via imitation
or exploration.

Further, introducing multi-head attention would allow us to examine whether different heads naturally
specialize in complementary subproblems (e.g., local comparison vs. global structure). It would
also be valuable to test the robustness of these circuits under pruning or quantization, which could
preserve interpretability while reducing model size. Lastly, applying similar analyses to structurally
richer algorithmic tasks, such as graph algorithms, constraint solvers, or an algebra problem, could
test the generality of the capacity–representation link and might uncover new, reusable circuit motifs.
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8 Appendix

8.1 Model

The transformer architecture was first introduced in the paper Attention Is All You Need and was
able to achieve state of the art results for translation tasks [22]. Since then, transformers have been
applied to a wide range of machine learning tasks across language, vision, and other domains. The
core mechanism in the architecture is the attention function, which calculates output vectors from
input queries, keys, and values. In self-attention, the queries, keys, and values are all calculated from
the same input sequence.

The model used in this experiment is a stripped down transformer with an embedding layer, a
single-head self-attention block, and a linear layer. The toy problem we considered was extremely
simple and could conceivably be solved with 100% accuracy by almost any sufficiently complex
model. Our goal was to isolate attention weights to gain insight about how the problem was solved,
so we took away as much of the rest of the model as possible. The main parameter of the model
which was controlled to see how the results changed was the embedding dimension, which was also
equal to the dimension of the keys/queries.

8.2 Training algorithm

PPO is a reinforcement learning algorithm which is simpler and more performant than many other
leading algorithms. It does this by optimizing a lower bound of the policy performance created from
clipped probability ratios. This can be implemented with an Actor-Critic framework, where the actor
chooses actions and the critic estimates the value function. The algorithm alternates between running
the policy and optimizing for multiple epochs based on the results [21].

Our model is given a fixed-length permutation as a series of tokens (with no predefined numerical
value) and output a single index representing a transposition which should make the input permutation
closer to being sorted. This is trained using the PPO reinforcement learning algorithm [21] and a
Gym environment [2]. The agent receives a reward of 1 if the permutation is sorted after making a
transposition and a reward of −0.001 otherwise. The initial permutation is randomized and each run
terminates when either the permutation is fully sorted or 1000 transpositions have been made. The
clipped value loss of the PPO algorithm [21] during an example training run can be seen in Figure 8.

Table 3: PPO parameters used while training the agents.

Parameter Value
Max steps for Gym environment 1000
Total timesteps 1M/2M/10M
Learning rate 2.5e-4
Number of environments 8
Number of steps per policy rollout 128
Discount factor 0.99
General advantage estimation lambda 0.95
Number of minibatches 4
Surrogate clipping coefficient 0.1
Entropy coefficient 0.01
Value function coefficient 0.5
Maximum norm for gradient clipping 0.5

8.3 Additional figures

One of our main observations from this paper is that the final row of the attention weight matrix
represents the global ordering of the input sequence. Figure 5 shows an agent’s attention weight
matrix when the input is fully ordered. If Observation 1 held, the last row of this matrix would contain
fully ordered elements, which is exactly what happens.
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Figure 5: Visualization of the attention weights for a fully ordered permutation (using the same
agent as in Figure 6). The weights in the last row are ordered just like the permutation, showing that
for this agent and permutation there are no inversions.

This same phenomenon can also be visualized by looking at the spread of attention weight values
corresponding to each token in the input sequence. Figures 6 and 7 show this for two example agents.
Each figure shows a violin plot of the attention weight values of every token. For example, the violin
above 2 shows the spread of last-row attention weights of the agent corresponding to the column
where the input token was 2. A wider violin corresponds to a higher density of values. Both Figure
6 and Figure 7 show monotonic averages of the attention values, which is exactly what we would
expect to see if the agent learned the global ordering of the tokens. It is important to note again that
the model is never given the numerical values of the tokens, but is able to figure out their relative
ordering just from the training process (with a large enough embedding dimension). Figure 7 has
a much wider spread of values for each token, and this increased variation explains why it gets the
ordering wrong more often.

The clipped value loss of an example training of an agent is shown in Figure 8. This is the loss for an
agent which was able to achieve 100% accuracy, so the loss converges to 0. For agents which never
converge to a fully accurate solution, the loss would likely not stabilize. This happens more when the
sequence length is 8 because the search space to find correct solutions is so much larger.
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Figure 6: Attention weights by token for the agent with fewest average inversions.

Figure 7: Attention weights by token for a random agent with high accuracy.

15



Figure 8: Clipped value loss vs. global step in an example training of an agent on a length 6 sequence.
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