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ABSTRACT

This work studies a crucial but often overlooked element of ensemble methods
in deep reinforcement learning: data sharing between ensemble members. We
show that data sharing enables peer learning, a powerful learning process in which
individual agents learn from each other’s experience to significantly improve their
performance. When given access to the experience of other ensemble members,
even the worst agent can match or outperform the previously best agent, triggering
a virtuous circle. However, we show that peer learning can be unstable when the
agents’ ability to learn is impaired due to overtraining on early data. We thus
employ the recently proposed solution of periodic resets and show that it ensures
effective peer learning. We perform extensive experiments on continuous control
tasks from both dense states and pixels to demonstrate the strong effect of peer
learning and its interaction with resets.

1 INTRODUCTION

Amid their popularity in supervised learning, ensemble methods have also proven to be effective in
deep reinforcement learning (RL) for a wide range of purposes (Osband et al., 2016; Chua et al.,
2018; Chen et al., 2021; Schmitt et al., 2020; Agarwal et al., 2020; Liu et al., 2020). Underlying
some of these methods is a simple principle: training a set of independent agents while sharing
the data among them. This simple strategy allows different agents to concurrently explore different
policies while sharing their knowledge. It has been shown to be particularly useful for promoting
deep exploration (Osband et al., 2016) and thus improving the learning efficiency.

Intuitively, data sharing allows different agents to learn from each other’s experience. This learning
process, which we refer to as peer learning, happens covertly during training and thus is often
overlooked, despite being essential for exploiting the diverse data brought by deep exploration.
Moreover, previous work often applies additional techniques (Osband et al., 2018; Lee et al., 2021;
Januszewski et al., 2021) on top of the basic ensemble strategy, which further obscures the role
of peer learning in the success of these methods. As a result, almost no effort has been put into
understanding how peer learning affects individual agents, under what conditions is it effective, and
how we can better benefit from it.

This work presents a dedicated study of the effect of data sharing in ensemble deep reinforcement
learning. Through carefully designed experiments, we present a clear view of the peer learning pro-
cess in which agents of different levels learn from each other to improve their own performance.
Specifically, we show that a transition from separate to shared replay buffers during training can
often cause all ensemble members to match or outperform the previously best agent in the ensem-
ble, and thus resulting in a significant improvement in the overall performance. Based on these
observations, we show that oftentimes data sharing alone can already produce a significant gain
over just training a single agent, without the use of any additional technique such as policy aggre-
gation (Januszewski et al., 2021), bootstrapping (Osband et al., 2016), or UCB exploration (Chen
et al., 2018; Lee et al., 2021).

A natural question is whether peer learning is always stable in practice. Recently, Nikishin et al.
(2022) has shown that deep RL agents can suffer from the primacy bias, i.e., a tendency to overfit
early data that impairs the agent’s ability to learn from its own future experience. We show that,
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in the context of ensemble methods, the primacy bias can also prevent an agent from learning from
other agents, even when the other agents have good performance and are producing high-quality
samples. Fortunately, we find that the simple resetting mechanism proposed in Nikishin et al. (2022)
provides a robust solution and ensures exploitation of the shared data. Our experiments on continu-
ous control tasks from both dense states and pixels show that ensemble and resets are a particularly
robust combination and always significantly improve the performance over the baseline methods
while only incurring a minor increase in computation time.

The contribution of this paper can be summarized as follows:

1. We expose peer learning as a prominent effect when using data sharing in ensemble meth-
ods and demonstrate its impact on individual agents’ performance;

2. We show that data sharing alone has the potential to provide a significant improvement in
performance, without the use of any additional technique;

3. We find that peer learning can be unreliable in the presence of the primacy bias, and show
that the recently proposed resetting mechanism provides a robust solution;

4. We empirically verify the effect of peer learning and its interaction with resets with exten-
sive experiments on continuous control tasks from both dense states and pixels.

2 RELATED WORK

Ensemble methods in RL Ensemble methods have been employed in deep reinforcement learning
for a wide range of purposes including promoting deep exploration (Osband et al., 2016; Peng et al.,
2020), improving value estimations (Chen et al., 2021; Lan et al., 2020; Peer et al., 2021; Liang
et al., 2022; Anschel et al., 2016) or model predictions (Chua et al., 2018; Kurutach et al., 2018), and
accelerating hyperparameter sweeps (Schmitt et al., 2020; Liu et al., 2020). While there are various
distinct ways to apply an ensemble, the simple ensemble strategy (i.e., training a set of independent
agents while sharing the data) considered in this work underlies many previous works. For example,
Osband et al. (2016) trains a multi-head DQN (Mnih et al., 2015) with all heads sharing a single
replay buffer, to improve exploration. Januszewski et al. (2021) trains multiple DDPG (Lillicrap
et al., 2016) policies with a shared replay buffer, and combine them into an average policy at test-
time. Schmitt et al. (2020) and Liu et al. (2020) accelerate hyperparameter sweeps by training
agents with different hyperparameters sharing a central replay buffer. However, most previous work
does not investigate the role of data sharing, or only marginally touches on its usefulness, without
uncovering its effect on individual agents in detail or analyzing its failure cases.

Data sharing in offline and multi-task RL Besides its wide adoption in ensemble RL methods,
data sharing has also been explored in offline RL (Yu et al., 2022; 2021; Dorfman & Tamar, 2020;
Mitchell et al., 2021) and multi-task RL (Andrychowicz et al., 2017; Eysenbach et al., 2020; Li
et al., 2020; Liu et al., 2019; Kalashnikov et al., 2021; Chebotar et al., 2021). Both paradigms
provide natural motivations for data sharing: offline RL involves reusing previously collected data,
while multi-task RL involves sharing experience across different tasks. These scenarios pose various
challenges that are very different from the online, single-task setting that we study in this work.

The primacy bias in deep RL The recently studied primacy bias (Nikishin et al., 2022) is a ten-
dency of deep RL agents to overfit early data that impairs the agents’ ability to learn from their own
future experience. Such overfitting can have multiple different causes and various negative effects.
For example, Nikishin et al. (2022) shows that a high replay ratio can often cause significant overfit-
ting due to the large number of gradient updates relative to the number of environment interactions
collected. Interestingly, Nikishin et al. (2022) proposes a surprisingly simple but effective solution:
periodically reinitializing part of the agents, while preserving the replay buffer. This simple mech-
anism, which they refer to as “resetting”, can reliably eliminate the negative effect of the primacy
bias and result in significant improvements. In this work, we show that the primacy bias can damage
the peer learning process as well, and that resetting also robustly fixes this issue.

2



Accepted at the deep RL workshop of NeurIPS 2022

3 PRELIMINARIES

The RL formulation We consider the standard RL framework (Sutton & Barto, 2018) that mod-
els the environment as a Markov decision process (MDP). At each timestep, the agent observes the
current environment state St and executes an action At sampled from its current policy π. It then re-
ceives a reward signal Rt and the next state St+1 from the environment. The goal of a reinforcement
learning algorithm is then to find a policy π that maximizes the expected discounted sum of rewards
Eπ[

∑∞
t=0 γ

tRt] based on its past interactions with the environment. This work focuses on deep RL
algorithms that come with a replay buffer and support off-policy training, as they provide natural
infrastructures and mechanisms for data sharing. Specifically, we use the popular Soft Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018) (for dense states) and the DrQ algorithm (Kostrikov et al.,
2021) (for image observations) as the base algorithms in all our experiments.

Ensemble strategy In this work, we consider a simple form of ensemble that underlies many
previous works (Osband et al., 2016; Schmitt et al., 2020; Januszewski et al., 2021; Peng et al.,
2020; Liu et al., 2020). Given a base RL algorithm and the ensemble size N , we train N independent
agents interacting with N environment instances concurrently. Each agent has their own copy of the
parameters (e.g., policy, value, and target networks) and optimizers, and any learning updates of
the base algorithm are performed independently for each agent, but in parallel. However, we allow
different agents to share the same image encoder when using images as input. Unless otherwise
stated, the agents share a central replay buffer as well as the training batch. Note that for fair
comparison, whenever we use an ensemble with data sharing, we keep the total interaction steps
the same as when we train a single agent. For example, if the total interaction budget is 1 × 106

steps and the ensemble size is 10, each ensemble member can only interact with the environment
for 1× 105 steps. For evaluation, we do not perform any policy aggregation such as voting (Osband
et al., 2016) or averaging (Januszewski et al., 2021). Instead, we always use the policies of individual
ensemble members and report either the best or average performance within ensemble in most cases.
A detailed description of this ensemble strategy can be found in Algorithm 1 in our Appendix.

Resetting The resetting mechanism is originally proposed in Nikishin et al. (2022) to counter
the negative effect of the primacy bias. Similar to Nikishin et al. (2022), whenever we refer to
“resetting an agent”, we mean to reinitialize all or part of the parameters and optimizer states of
all components of the agent, while preserving the replay buffer. Specifically, for SAC, this means
reinitializing everything while preserving the buffer. This is also the case for DrQ except that we
retain the parameters and optimizer states of the image encoder.

Replay ratio (RR) An important hyperparameter that deserves special attention is the replay ra-
tio1. It refers to the ratio of the number of gradient updates to the number of environment steps at any
point in training. Crucially, Nikishin et al. (2022) shows that a high replay ratio can often worsen
the negative effect of primacy bias due to overtraining on early data. Though in the single-agent
case replay ratio is well-defined, in the context of ensemble methods there exists some ambiguity
because it involves multiple agents. We therefore give an exact definition of replay ratio that we use
throughout this paper in Appendix D.

4 THE PEER LEARNING PROCESS

When training an ensemble of independent data sharing agents, one can expect the following two
processes to happen:

1. A diversification process in which random initialization and stochastic training introduce
diversity to the ensemble;

2. A peer learning process in which different ensemble members learn from each other’s
experience to improve themselves.

Intuitively, the first process creates a diverse set of agents and thus diverse data, which peer learning
might exploit to improve the performance of individual ensemble members. These two processes

1Also referred to as update-to-data (UTD) ratio.
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cooperate closely and jointly contribute to the high performance of ensemble methods. However,
most focus and credit have been given to the diversification aspect and its exploration benefits (Os-
band et al., 2016; Chen et al., 2018; Lee et al., 2021), while the more subtle peer learning process
has often been overlooked despite being essential for the exploitation of the diverse data brought by
deep exploration. A better understanding of peer learning can reveal the inner workings behind the
success of ensemble methods and guide the design of better ensemble algorithms.

The rest of this section is divided into two parts. In the first part, we demonstrate the strong ef-
fect of peer learning on the performance of individual ensemble members. In the second part, we
demonstrate a failure case of peer learning in which the agents’ ability to learn is impaired due to
overtraining on early data, and that the recently proposed solution of periodic resets robustly fixes
this issue.

4.1 THE EFFECT OF PEER LEARNING

We now demonstrate the effect of peer learning on the individual ensemble members. Normally,
peer learning happens covertly during training and its effect is only indirectly reflected in the overall
performance. In order to make the impact of peer learning visible, we design a simple setup that
disentangles the diversification process and the peer learning process. Specifically, we start training
with the N ensemble members with separate replay buffers. After a certain timestep, we either
continue training with separate replay buffers, or merge the separate replay buffers into one shared
replay buffer. We train an ensemble of N = 10 SAC agents with a replay ratio of 1, and select four
environments from the DeepMind Control Suite (Tassa et al., 2018) that are representative of the
effects of ensemble and resets. We carefully control the interaction and gradient update schedule as
well as the buffer sizes before and after merging to ensure the results are fair and meaningful. More
details and results can be found in Appendix C and Appendix F respectively.
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Figure 1: Top: the effect of buffers merging. Vertical lines indicate the step for merging. For each
experiment we use 5 seeds and N = 10 agents in the ensemble. Performance is averaged across
all ensemble member and all seeds. To quantify the effect of buffer merging on the variance within
ensembles, we first calculate the standard deviation of the performance within each ensemble and
then average over all seeds. Shaded area thus represents this average standard deviation. Bottom:
individual learning curves from one run with or without buffer merging. The individual learning
curves are Gaussian smoothed to reduce visual clutter.

4



Accepted at the deep RL workshop of NeurIPS 2022

Figures 1 shows the effect of buffer merging on the overall performance of the ensemble as well
as the individual learning curves of all ensemble members from a single run with or without buffer
merging. Before merging, different agents develop distinct policies and have different performance;
upon merging, the overall performance improves significantly, usually with a drastic reduction in the
variance within the ensemble. In all cases, the improvement happens robustly and rapidly, demon-
strating the strong effect of peer learning. Inspecting the individual learning curves reveals the
diverse effects of peer learning: on cartpole-swingup_sparse and quadruped-walk,
the under-performing agents learn from the data of the optimal agents in the ensemble and quickly
converge to the optimal policy. On fish-swim and hopper-hop, the entire ensemble even
outperforms the previously best agents before merging.

Note the this experiment is for demonstration purposes only. In practice, one would always directly
start with a shared replay buffer for best sample efficiency. Given the above results, we can imag-
ine how peer learning improves performance in that case: starting with random initialization, the
stochastic training process continues to diversify the ensemble; concurrently, peer learning selects
and integrates the solutions discovered and improves the performance of all agents in the ensemble.
The result of this simultaneous diversification and peer learning is significantly improved sample
efficiency relative to just training a single agent throughout the entire training process, as observed
in previous work (Osband et al., 2016) and confirmed in Section 5 of this work.

The above results have an important implication. As long as peer learning is stable, we can expect
almost all ensemble members to be more high-performing than if we only train a single agent.
Therefore, one can simply train an ensemble of agents without any additional technique and still
benefit from it. This however does not mean that other techniques are not useful or not worth
investigating, as previous work has shown that techniques such as policy aggregation and diversity
regularization can further improve performance (Januszewski et al., 2021; Peng et al., 2020).

4.2 A FAILURE CASE AND THE SOLUTION

Intuitively, successful peer learning requires an agent to maintain the ability to quickly adapt their
policy. One can imagine that this is less likely to happen when the agent is stuck in some suboptimal
policy, loses their representation capacity (Lyle et al., 2022), or experiences significant value over-
estimation (Kumar et al., 2019). This work investigates one particular effect that might impair an
agent’s ability to learn: the primacy bias (Nikishin et al., 2022). Specifically, Nikishin et al. (2022)
shows that overtraining on early data, e.g. when using a high replay ratio, can significantly impair
the agent’s ability to learn from its own future experience. This creates a vicious circle, as the data
generated by a poor agent will also be poor, which further eliminates the possibility of improvement.
We hypothesize that the primacy bias can also damage the agent’s ability to learn from other agents’
data, even if it has access to the high quality samples generated by other high-performing agents.
Notably, Nikishin et al. (2022) proposes a simple solution to counter the primacy bias: periodically
resetting part of the agent, while preserving the replay buffer. This strategy is shown to be highly
effective. We therefore expect it to also provide a solution that ensures stable peer learning.

To verify these hypotheses, we use the same setup as in the previous experiment, except for a re-
play ratio of 16 instead of 1 to make the effect of the primacy bias clearly detectable. To quantify
the effect of resets, we include two additional variants: in the first one, we continue training with
separate buffers, and reset the agents; in the second one, we merge the buffers and reset the agents.
Results are shown in Figure 2. Naively merging the buffer is much less effective at a replay ratio of
16 than it is when using a replay ratio of 1, except for cartpole-swingup_sparse, which has
the simplest environment dynamics among the four. On hopper-hop and quadruped-walk,
merging the buffer provides almost no benefit. The individual learning curves show that there exists
a significant variance in the ensemble members’ performance even if the data is shared within the
ensemble, indicating that peer learning is less effective in this case. Specifically, for hopper-hop
and quadruped-walk, our inspection shows that the under-performing agents are incapable to
learn from the better agents due to significant value overestimation either before or after merg-
ing, while for fish-swim the cause is less clear. Nevertheless, resetting restores the agents’
ability to effectively learn from each other and achieves high performance with a low variance.
Note that even though resetting without merging the buffer also provides a reasonable gain (e.g., on
quadruped-walk), it is not sufficient for reaching optimal performance in all cases.
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Figure 2: Top: the effect of buffer merging and resets with replay ratio 16. Vertical lines indicate
the step for merging. For each experiment we use 5 seeds and N = 10 agents in the ensemble.
Performance is averaged across all ensemble member and all seeds. To quantify the effect of buffer
merging on the variance within ensembles, we first calculate the standard deviation of the perfor-
mance within each ensemble and then average over all seeds. Shaded area thus represents this
average standard deviation. Bottom: individual learning curves from one run. The individual learn-
ing curves are Gaussian smoothed to reduce visual clutter.
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Besides ensuring effective peer learning, another reason why resetting can be particularly important
when using an ensemble is the increased off-policyness and hence more severe primacy bias. Note
that when using an ensemble, we keep the total interaction steps the same as when training a single
agent (e.g., 1×105 interactions for each of the 10 members when using a 1×106 step total interaction
budget). Due to the natural design choice of keeping the number of gradient updates for each agent
unchanged, each agent receives much fewer on-policy samples compared to the number of gradient
updates it experiences. This increased off-policyness may exacerbate issues such as significant
overestimation (Ostrovski et al., 2021; Kumar et al., 2019), which has been shown to be one of
the causes of the primacy bias (Nikishin et al., 2022). We support this statement with the counter-
intuitive fact that sometimes using an ensemble can be much worse than just training a single agent.
For example, in Figure 12 in our Appendix, we show that combining SAC with ensemble is much
worse than SAC on the three humanoid tasks when using a high replay ratio.

Through these experiments and analysis, we learned more about the mechanics of peer learning
and how to overcome its limitations. In the next section, we perform experiments with a standard
ensemble strategy (i.e., start training with a shared buffer) to demonstrate the effect of peer learning
in practice and its interaction with resets.

5 EXPERIMENTS

Our experimental results can be summarized as follows. First, we verify the strong effect of peer
learning by showing that data sharing alone has the potential to provide a significant gain over
just training a single agent, without the use of any additional technique. Second, we show that the
primacy bias can damage peer learning and weaken the advantages of ensembles, while resetting en-
sures the exploitation of their benefits. Then, we present an analysis of the performance distribution
within ensemble and show the dominance of ensemble methods in terms of sample efficiency.

5.1 SETUP

General setup We focus on continuous control tasks from the DeepMind Control Suite (Tassa
et al., 2018). We select 16 tasks for state-based control and 13 tasks for pixel-based control. Please
refer to Appendix A for the full environment lists. For state-based tasks, each algorithm is allowed
a budget of 1 × 106 environment steps; for pixel-based tasks, we use 2 × 106 environments steps.
We use SAC (Haarnoja et al., 2018) and DrQ (Kostrikov et al., 2021) as our base algorithms for the
state-based and pixel-based tasks respectively. For each base algorithm X, where X can either be
SAC or DrQ, we also consider 3 variants: X + ensemble, X + resets, and X + ensemble + resets. For
all experiments we use 10 random seeds.

We use N = 10 for all our main results with ensemble. We maintain completely independent
ensemble members for SAC, while for DrQ we share the image encoder among ensemble members.
As stated earlier, when using an ensemble we keep the total number of environment interactions
the same as when we train a single agent to ensure fair comparison. For SAC, in order to probe
the effect of primacy bias, we experiment with five different replay ratios {1, 2, 4, 8, 16}. Recently,
Anonymous (2022) shows that SAC + resets exhibits scalability with respect to the replay ratio,
and thus it would also be interesting to see whether this still applies with the addition of ensemble.
Following a similar strategy in Anonymous (2022), when using resets, we set the reset period of
SAC according to the replay ratio such that we reset every 1.92 × 106 gradient updates; for DrQ,
we reset the whole agent except for the image encoder per 2 × 105 environment steps as done in
Nikishin et al. (2022). We always skip the last reset to avoid reporting on undertrained agents.

Evaluation protocol For the main results, we show the performance when using the best agent in
each ensemble for evaluation (best), as well when using the average performance of each ensemble
as the corresponding run’s performance (avg). To avoid bias in the reported results, when reporting
with the best ensemble members, we perform two independent rounds of evaluation for all ensemble
members. We select the best agent based on the first round of evaluation, and report its performance
in the second round. For our main results, we report the point estimates and 95% confidence intervals
of the interquartile mean (IQM) (Agarwal et al., 2021) of the evaluation results of the last timestep
across all environments. All evaluation uses 10 episodes. Other experimental details can be found
in Appendix A
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5.2 MAIN RESULTS
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Figure 3: Point estimates and 95% confidence intervals for IQM of the performance of SAC, DrQ,
and their variants. The performance of SAC and DrQ is aggregated across 16 and 13 environments
respectively. We show the performance when using the best agent in each ensemble for evaluation
(best), as well as when using the average performance of each ensemble as the corresponding run’s
performance (avg). Note that for the reset period defined previously, for SAC we do not perform
resets for replay ratios 1 and 2, and therefore some data points overlap under these two replay ratios.
All results are aggregated over 10 random seeds.

Our main results for SAC and DrQ are presented in Figure 3. More results, including an ablation of
the ensemble size and comparison with state-of-the-art results, can be found in Appendix E.

Effect of ensemble We first focus on the overall effect of ensemble. As shown in Figure 3, using
an ensemble while sharing data always provides a significant gain over just training a single agent,
regardless of the base algorithm, replay ratio, or whether we do resets (e.g., SAC + ensemble +
resets is better than SAC + resets for all replay ratios). This provides strong evidence that data
sharing alone has the potential to provide a significant improvement in performance without the
need of any additional trick, which also validates the strong effect of peer learning and its important
role in ensemble methods.

Effect of the primacy bias and resets From Figure 3 (left) we can see the impact of the replay
ratio when using an ensemble. For low replay ratios such as 1, 2 and 4, SAC + ensemble is able to
robustly outperform SAC and SAC + resets. However, as we step into the high replay ratio regime in
which the primacy bias becomes severe, the performance of SAC + ensemble starts to degrade and
is outperformed by SAC + resets. Note SAC + ensemble still dominates SAC even with replay ratio
16, indicating that the benefits of using an ensemble still exist but are weakened by the primacy bias,
likely due to a combination of its damage to the peer learning process as shown in Section 4 and
its other the direct negative effects. As expected, SAC + ensemble + resets does not suffer from the
damaged peer learning process even under a high replay ratio (e.g. 16) and remains high performing.

Scalability w.r.t. computation Similar to SAC + resets, we see that SAC + ensemble + resets
exhibits the same scalability with respect to the replay ratio (Anonymous, 2022). However, it is
much more high-performing: SAC + ensemble + resets at replay ratio 4 already outperforms SAC
+ resets at replay ratio 16, despite the fact that the latter is much more expensive. Besides, it is also
more robust, as can be seen from the much narrower confidence intervals.

5.3 ANALYSIS

Performance distribution within ensemble In Figure 4, we show the results when using the n-th
best agent in the ensemble for evaluation, where n ranges from 1 to N . For SAC, most ensemble
members are high-performing and stay close to the best agent in the ensemble. This is especially true
when resets are applied, in which case the performance distribution of agents of different ranks are
highly concentrated. Without resets, the worst and the second worst ensemble members gradually
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deviate from other members as replay ratio increases. For DrQ, with resets there is almost no
variance within the ensembles, while without resets the performance of different ensemble members
is clearly spread out. The low variance in performance across ensemble members when using resets
validates our claim that resets can ensure effective peer learning.
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Figure 4: Left: Performance of SAC + ensemble with or without resets when using the n-th best
agent in each ensemble for evaluation, where n ranges from 1 to N . Darker color indicates smaller
n. Right: Performance of DrQ + ensemble with or without resets when using the n-th best agent for
evaluation. Agent rank n indicates the n-th best agent. All results are aggregated over 10 random
seeds. Similar to the process for selecting the best agent, we use two rounds of evaluation for
selecting the n-th best agent.

Sample efficiency In Figure 5 we show the learning curves of the different methods. For SAC we
show the results of an intermediate replay ratio 4, and more results can be found in Appendix E.
From Figure 5 we can see that the dominance of ensemble methods over the single-agent methods
often starts from the beginning of the training and continues until the end, consistent with previous
work’s observation (Osband et al., 2016). This confirms that the interaction between diversification
and peer learning is a continual process that happens throughout the entire training process.
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Figure 5: Learning curves for SAC (left) and DrQ (right), and their variants. Shaded area indicates
95% bootstrapped confidence interval. We report average performance within the ensemble for SAC
and the performance of first indexed agent for DrQ. All results are aggregated over 10 random seeds.

6 CONCLUSION

The work studies a crucial element behind the success of many ensemble methods: data sharing be-
tween ensemble members. We highlight the powerful peer learning process enabled by data sharing
and demonstrate how it improves individual agents’ performance. We also identify a failure case of
peer learning caused by overtraining on early data, and show that the recently proposed solution of
periodic resets robustly alleviates the problem and boosts performance. Our experiments on continu-
ous control tasks from both dense states and pixels demonstrate the strong effect of peer learning and
its interaction with resets. We hope our work will encourage the RL community to better recognize
the effectiveness of data sharing and fully exploit its potential.
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A GENERAL EXPERIMENTAL DETAILS

Table 1: Environment list for SAC and DrQ
SAC DrQ

acrobot-swingup acrobot-swingup
cartpole-swingup_sparse cartpole-swingup_sparse
cheetah-run cheetah-run
finger-turn_hard finger-turn_easy
fish-swim finger-turn_hard
hopper-hop hopper-hop
hopper-stand hopper-stand
humanoid-run pendulum-swingup
humanoid-stand quadruped-run
humanoid-walk quadruped-walk
pendulum-swingup reacher-easy
quadruped-run reacher-hard
quadruped-walk walker-run
reacher-hard
swimmer-swimmer6
walker-run

Our selection of the environments for state-based and pixel-based control are listed in Table 1. We
try to include as many commonly used environments as possible while excluding the overly simple
environments (e.g., cartpole-balance).

The implementation of all our SAC and DrQ variants are based on an open source JAX implementa-
tion (Kostrikov, 2021). We adopt all their default hyperparameters except for the replay buffer size
of DrQ, for which we use 1×106 instead of 1×105 as we find it to work much better. For the imple-
mentation of resets, we follow the the official implementation from the authors2. We implement the
parallel computation of the ensembles using the nn.vmap function of the Flax (Heek et al., 2020)
library.

B DETAILS OF THE BASIC ENSEMBLE STRATEGY

Please see Algorithm 1 for a detailed description of the basic ensemble strategy considered in this
work.

C DETAILS FOR THE BUFFER MERGING EXPERIMENT

For all experiments we train for a total of 1×106 steps. For the first 5×105 steps where we perform
training with separate buffers, each agent will interact with the environment for 5×105 steps. For the
last 5 × 105 steps, if we continue training with separate buffers, then again each agent will interact
with the environment for 5× 105 steps. However, if we merge buffer, the 5× 105 interaction steps
will be shared across the N agents, i.e., each agent only gets to interact with the environment for
5 × 105/N steps, but in a round-robin way. We control the gradient update schedule according to
the definition of replay ratio we give in Appendix D, so that all agents receive the equal amount of
gradient updates at the same x-axis position in Figure 1 and Figure 2.

Also, upon merging we subsample the shared replay buffer by N to avoid the unfair advantage of a
much larger replay buffer. For example, with N = 10 the shared buffer will contain 10× 5× 105 =
5×106 samples (merged from the 10 separate replay buffers), which we will downsample to 5×105

samples. We uniformly sample the transitions at constant intervals from each replay buffer, and
therefore each separate replay buffer will have an equal portion in the merged replay buffer.

2https://github.com/evgenii-nikishin/rl_with_resets
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Algorithm 1: The Basic Ensemble Strategy
Input: Total interaction steps M , the ensemble size N , replay ratio R, N environment

instances {envi}Ni=1, N agents with parameters {θi}Ni=1, a base RL algorithm f , a
shared replay buffer

Output: The updated agents with parameters {θi}Ni=1
1 si ← init(envi) for i = 1, . . . , N // Reset environments
2 for m← 1 to M do
3 i← m mod N // Select an ensemble member for acting
4 ai ∼ πθi(·|si)

/* For simplicity, we assume the environment has no terminal
states */

5 s′i, ri = step(envi, ai)
6 Add (si, ai, ri, s

′
i) to the shared replay buffer

7 si ← s′i
8 for k ← 1 to R do
9 Sample a batch of transition B from the shared replay buffer

10 for i← 1 to N do
11 θi ← f(θi, B) // Update the agents

12 return {θi}Ni=1

For each environment and setting we use 5 seeds and N = 10 agents in the ensemble. Reported
results is thus average over 50 agents.

D DEFINITION OF REPLAY RATIO

Here we give an exact definition of replay ratio that we use throughout this paper: 1) when training a
single agent or an ensemble of agents with separate replay buffers, replay ratio refers to the ratio of
the number of gradient updates that each agent will experience to the number of their own interaction
steps; 2) when training an ensemble with a shared replay buffer, replay ratio refers to the number
of gradient updates that each agent will experience to the total number of interaction steps of the
entire ensemble. We find this definition to make most sense because it considers the actual number
of environment transitions that the agent has access to. It also reflects how previous work typically
sets this hyperparameter in practice (Osband et al., 2016; Peng et al., 2020).

E ADDITIONAL RESULTS FOR THE MAIN EXPERIMENT

E.1 NUMERICAL RESULTS

Please see Table 2 for results for SAC and Table 3 for results for DrQ. We highlight the row with the
highest IQM.

E.2 ENSEMBLE SIZE ABLATION

In Figure 6 we presents an ablation of the ensemble size N . For SAC, we use replay ratio 1 and thus
we do not perform resets. For DrQ, we perform resets as it reaches better performance. As shown in
the figure, most benefits of using an ensemble can be gained from a small ensemble size of 5, while
going to 10 also provides additional, albeit marginal, improvements.

E.3 COMPARISON WITH OTHER ALGORITHMS

In Table 4 we show a comparison with SR-SAC (Anonymous, 2022), REDQ (Chen et al., 2021), and
DDPG (Lillicrap et al., 2016). Note that this comparison is on the DMC15-1M benchmark used in
Anonymous (2022), which contains one less environment (cartpole-swingup_sparse) than
the set of 16 environments used in this work. Therefore all our results in this table are re-calculated
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Table 2: Numerical results for SAC. The results are aggregated over the 16 environments for SAC
in Table 1 at 1M environment steps (DMC16-1M).

DMC16-1M
Method IQM Mean Median

SAC (RR=1) 570 (520, 616) 586 (494, 678) 528 (498, 556)
SAC + ens. (best, RR=1) 692 (657, 724) 667 (654, 752) 609 (586, 632)
SAC + ens. (avg, RR=1) 663 (633, 690) 648 (619, 729) 594 (572, 615)
SAC (RR=2) 641 (595, 681) 618 (557, 719) 576 (549, 602)
SAC + ens. (best, RR=2) 689 (658, 718) 718 (651, 799) 612 (591, 632)
SAC + ens. (avg, RR=2) 672 (643, 698) 709 (644, 789) 605 (585, 625)
SAC (RR=4) 612 (567, 652) 583 (517, 677) 562 (534, 590)
SAC + resets (RR=4) 706 (676, 732) 715 (660, 769) 628 (608, 647)
SAC + ens. (best, RR=4) 745 (728, 761) 781 (755, 811) 659 (645, 670)
SAC + ens. (avg, RR=4) 711 (693, 728) 741 (709, 780) 646 (633, 658)
SAC + ens. + resets (best, RR=4) 776 (756, 794) 803 (794, 820) 682 (667, 696)
SAC + ens. + resets (avg, RR=4) 759 (742, 775) 790 (777, 820) 674 (659, 686)
SAC (RR=8) 640 (606, 670) 636 (542, 755) 584 (562, 606)
SAC + resets (RR=8) 746 (717, 771) 715 (697, 790) 652 (630, 671)
SAC + ens. (best, RR=8) 745 (726, 761) 797 (760, 812) 663 (648, 676)
SAC + ens. (avg, RR=8) 716 (696, 732) 769 (704, 795) 648 (634, 660)
SAC + ens. + resets (best, RR=8) 792 (776, 805) 802 (792, 824) 695 (679, 710)
SAC + ens. + resets (avg, RR=8) 771 (757, 784) 780 (766, 824) 686 (673, 699)
SAC (RR=16) 532 (479, 582) 497 (384, 609) 515 (484, 546)
SAC + resets (RR=16) 759 (734, 779) 734 (710, 797) 664 (643, 682)
SAC + ens. (best, RR=16) 690 (670, 710) 766 (690, 808) 631 (617, 645)
SAC + ens. (avg, RR=16) 640 (621, 657) 728 (635, 775) 588 (574, 600)
SAC + ens. + resets (best, RR=16) 804 (788, 817) 812 (804, 830) 711 (695, 724)
SAC + ens. + resets (avg, RR=16) 779 (764, 793) 779 (766, 833) 697 (682, 710)

Table 3: Numerical results for DrQ. The results are aggregated over the 13 environments for DrQ in
Table 1 at 2M environment steps (DMC13-Pixel-2M).

DMC13-Pixel-2M
Method IQM Mean Median

DrQ 456 (409, 503) 402 (283, 569) 466 (439, 494)
DrQ + resets 745 (726, 763) 711 (658, 803) 680 (663, 694)
DrQ + ens. (best) 548 (508, 585) 408 (343, 576) 536 (510, 563)
DrQ + ens. (avg) 509 (469, 548) 399 (308, 564) 508 (482, 534)
DrQ + ens. + resets (best) 801 (787, 814) 837 (807, 847) 720 (711, 729)
DrQ + ens. + resets (avg) 803 (795, 809) 830 (818, 839) 716 (710, 722)

540 600 660 720
N= 1

N= 5

N= 10

N= 20

SAC + ensemble

IQM
725 750 775 800

N= 1

N= 5

N= 10

DrQ + ensemble + resets

IQM

Figure 6: Ensemble size ablation for SAC and DrQ. We report point estimate of the IQM as well as
the 95% confidence interval. We report the performance of the best agent based on two rounds of
evaluation as previously mentioned. All results are aggregated over 10 random seeds.
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without cartpole-swingup_sparse. Note that SAC + ens. + resets with replay ratio 16
almost approaches the performance of SR-SAC with replay ratio 128, which is the state of art algo-
rithm on the DeepMind Control Suite. SR-SAC is essentially just SAC + resets but with a different
reset frequency and a much higher high replay ratio and therefore much more computationally ex-
pensive.

Table 4: Comparison with other algorithms on the DMC15-1M (Anonymous, 2022) benchmark.
The results of SR-SAC, REDQ, and DDPG are taken from Anonymous (2022), which uses the same
codebase (Kostrikov et al., 2021) as ours. All other results come from this work. For each algorithm
used in this work, we report the results under the replay ratio with which it reaches the highest
IQM. For each algorithm we also give the replay ratio used. For completeness we also report the
performance of SAC under replay ratio 1.

DMC15-1M
Method IQM Median Mean

SR-SAC (RR=128) 805 (726, 867) 729 (628, 790) 710 (643, 775)
REDQ (RR=20) 586 (514, 649) 546 (490, 596) 539 (498, 576)
DDPG (RR=1) 514 (450, 572) 492 (440, 540) 489 (450, 526)
SAC + ens. + resets (best, RR=16) 799 (781, 814) 826 (815, 839) 705 (688, 720)
SAC + ens. + resets (avg, RR=16) 780 (763, 794) 822 (811, 842) 694 (678, 707)
SAC + resets (RR=16) 762 (738, 782) 793 (783, 816) 667 (648, 684)
SAC + ens. (best, RR=4) 732 (711, 748) 771 (722, 816) 650 (634, 663)
SAC + ens. (avg, RR=4) 700 (682, 717) 738 (684, 794) 639 (626, 650)
SAC (RR=2) 644 (604, 679) 648 (570, 755) 582 (558, 605)
SAC (RR=1) 569 (524, 613) 696 (515, 739) 531 (505, 557)

E.4 LEARNING CURVES

For all sample efficiency curves, 1) for SAC, we use the average of all ensemble members within
the ensemble as the ensemble’s reported performance 2) for DrQ, we use the first indexed agent for
evaluation

SAC In Figure 7 we show the aggregate sample efficiency curves for each replay ratio. In Figure 8,
9, 10, 11, 12 we show the per-environment results for different replay ratios.

DrQ In Figure 13 we show the per-environment results for DrQ.

F ADDITIONAL RESULTS FOR THE BUFFER MERGING EXPERIMENT

We show results for all 16 environments for the buffer merging environment in Figure 14 and Fig-
ure 15 for replay ratio 1 and replay ratio 16, respectively. Note that the sudden merging can have
negative impacts on some environments, with the most obvious being the humanoid tasks. We hy-
pothesize that this is due to negative effect of the sudden exposure to off-policy data. Note however
these experiments are for demonstration purposes only. In practice people will use a shared replay
buffer throughout training so this issue will not exist.
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Figure 7: Per replay ratio sample efficiency curves for SAC
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Figure 8: Per-environment results for SAC with replay ratio 1
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Figure 9: Per-environment results for SAC with replay ratio 2
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Figure 10: Per-environment results for SAC with replay ratio 4
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Figure 11: Per-environment results for SAC with replay ratio 8
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Figure 12: Per-environment results for SAC with replay ratio 16
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Figure 13: Per-environment results for DrQ
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Figure 14: Per-environment results for the buffer merging experiment with replay ratio 1
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Figure 15: Per-environment results for the buffer merging experiment with replay ratio 16
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