
Under review as a conference paper at ICLR 2023

CONTINUAL LEARNING VIA ADAPTIVE NEURON SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) aims at learning a sequence of tasks without losing previ-
ously acquired knowledge. Early efforts have achieved promising results in over-
coming the catastrophic forgetting problem. As a consequence, contemporary
studies turn to investigate whether learning a sequence of tasks can be facilitated
from the perspective of knowledge consolidation. However, existing solutions ei-
ther still confront severe forgetting issues or share narrow knowledge between the
new and previous tasks. This paper presents a novel Continual Learning solution
with Adaptive Neuron Selection (CLANS), which treats the used neurons in ear-
lier tasks as a knowledge pool and makes it scalable via reinforcement learning
with a small margin. Subsequently, the adaptive neuron selection enables knowl-
edge consolidation for both old and new tasks in addition to overcoming the CF
problem. The experimental results conducted on four datasets widely used in CL
evaluations demonstrate that CLANS outperforms the state-of-the-art baselines.

1 INTRODUCTION

Continual learning (CL), as one of the human-like lifelong learning paradigms, has received enor-
mous attention in Artificial Intelligence (AI) community due to its capability to incrementally learn
a sequence of tasks in a (deep) neural network and to keep accumulating knowledge throughout
its lifetime Lange et al. (2022). In contrast to traditional online deep learning paradigms limited to
learning multiple tasks in a specific domain and/or using static samples, CL confronts the problem of
catastrophic forgetting (CF) due to the data distribution shifts McCloskey & Cohen (1989); French
(1999) like, for example, arrival of brand new datasets with different input and label space. Exist-
ing CL solutions can be broadly categorized in: (i) regularization-based Kirkpatrick et al. (2017);
Jung et al. (2020); Liu & Liu (2021); (ii) experience replay-based Shin et al. (2017); Korycki &
Krawczyk (2021); Yin et al. (2021); and (iii) network adaption-based Rusu et al. (2016); Niu et al.
(2021); Liu et al. (2021); Qin et al. (2021). In practice, these approaches resort to resolving the
stability-plasticity concern Mermillod et al. (2013) by either manipulating the data distribution or
altering the neural architecture, including weight regularization. As a result, studies that concentrate
on the CF have achieved remarkable results Parisi et al. (2019); Mirzadeh et al. (2022).

Inspired by human cognitive processes Hupbach et al. (2007), we argue that tackling a series of tasks
in CL is similar to the dichotomy in human experience learning, in that: (1) the learning of new tasks
heavily depends on the perspective of existing experiences; and (2) the skills learned earlier could
be cognitively altered or enhanced by the arrival of new knowledge. That is to say, incremental
knowledge acquisition could have a corrective effect on early cognition. Thus, concomitantly with
CF, knowledge consolidation is also critical for CL as it enables to comprehend the potential (back
and forward) knowledge transfer between old and new tasks.

Recent studies have investigated the phenomenon of knowledge acquisition behind task learning and
enforce knowledge consolidation in CL to boost the learning of old and new tasks Ke et al. (2020b;
2021); Kang et al. (2022); Wang et al. (2021). For instance, Benavides-Prado et al. (2020) and Ke
et al. (2021) show that forward knowledge transfer helps promote the learning of new coming tasks.
Meanwhile, Ke et al. (2020a) demonstrated that knowledge sharing can be enhanced by measuring
the data similarity between the new and old tasks. Network adaptations attempting to adjust the
neural network have also gained attention for knowledge consolidation Rusu et al. (2016); Li et al.
(2019). For instance, HAT Serra et al. (2018) and WSN Kang et al. (2022) selectively reuse the opti-
mized parameters via a binary masking mechanism, enabling significant forward knowledge transfer
as well as no CF issue. However the backward knowledge transfer is not considered. Reinforcement

1

Under review as a conference paper at ICLR 2023

learning (RL) based solutions such as RCL Xu & Zhu (2018) make the task networks expandable,
primarily learning new knowledge only on added new parameters, while retaining used parameters
as unchangeable. However, they confront severe network redundancy as the built models need to
reuse all of the old parameters for new task training. BNS as a complex system Qin et al. (2021) also
leverages RL to dynamically provide multiple actions for the expandable task networks, allowing
for backward transfer. However, the RL’s actions significantly disturb the current (even future) task
performance during backward transfer (and network redundancy is not considered).

In this study we investigate the possible knowledge transfer problem in CL based on the net-
work adaptation paradigm, in-concert with the CF concern. The rationale is that most existing
regularization-based or experience-replay-based methods typically confront a non-negligible and
severe forgetting problem as the number of tasks increases. As a basic unit in a neural network,
the neuron can be regarded as an information hub that is capable of sending messages via synapses
(weights) to another neuron. To make knowledge transferable and reduce the network redundancy,
we propose a novel Continual Learning solution via Adaptive Neuron Selection (CLANS). CLANS
regards the used neurons as a shareable knowledge pool that can be dynamically expanded by an RL,
and we call such RL a Network Expander. Specifically, RL first provides how many new neurons
are available for the arriving task, where the state of RL is determined by the similarities between
the current task and the previously learned tasks. We argue that using RL to provide a neuron-
level selection will result in a huge search space and cost more unnecessary resources. Thus, an
expandable gating mechanism, namely Network Selection, undertakes the role of determining which
neurons (both new and old) are useful for current task. In particular, motivated by HAT Serra et al.
(2018) and WSN Kang et al. (2022), we make each layer in the task network associated with a layer
embedding – noting that there is a significant difference: ours is an expandable embedding, which
enables neuron selection dynamically. When the architecture of the current task is determined and
trained well, our knowledge pool will be correspondingly enriched. To enable knowledge transfer
to old tasks, we present a neuron selection refresh method that seeks a better architecture for each
previous task from the augmented knowledge pool. As corresponding weights of each neuron in the
knowledge pool are unchangeable, this will not affect the performance of the current task. Thus,
in comparison with existing works such as HAT, RCL, and WSN, our method not only takes into
account the complexity of the task network but also makes both forward and backward knowledge
transferable. The experiments conducted on four datasets demonstrate promising gains over several
baselines, as well as task network complexity. Our main findings are:

• The collaboration between Network Expander and Network Selection in CLANS can make the
target network more compact, yielding efficient neuron usage with the profitable task performance;

• CLANS operates the Network Expander in REINFORCE, requiring only a few new neurons, but
offering a higher possibility of recruiting more unknown knowledge from the current task;

• Compared to existing solutions that make network architecture of each task fixed, the refreshable
neuron selection in CLANS enables knowledge transfer from new to old tasks;

• In our experiments, the task networks determined by CLANS, whether fully connected or convo-
lutional, achieve superior average accuracy performance as well as (back and forward) knowledge
transfers across multiple tasks, e.g., up to 1.05% and 33.33% improvements compared to the best
baseline on CIFAR-100 regarding Accuracy (ACC) and Forward Transfer (Trans).

2 RELATED WORK

We now review the related work from two basic categories and position CLANS in that context.
(1) Catastrophic Forgetting (CF): Most of the previous endeavors focus on overcoming the CF
and the existing studies can be divided into three main groups: (i) Regularization-based learning
aims at penalizing or limiting the weight optimization for tackling the new coming task, primar-
ily seeking to make the important weights for earlier tasks not altered too much, and researchers
have striven to develop efficient methods for important weight measurements during sequential task
learning Kirkpatrick et al. (2017); Zenke et al. (2017); Lee et al. (2017); Ahn et al. (2019); Zhang
et al. (2020); Jung et al. (2020). For instance, Elastic Weight Consolidation (EWC) Kirkpatrick
et al. (2017) uses an additional regularization term based on the diagonal of the Fisher information
matrix in the task-oriented objective to alleviate the forgetting problem of old knowledge and Zenke
et al. (2017) introduces the synaptic intelligence (SI) to measure weight importance. Other efforts

2

Under review as a conference paper at ICLR 2023

attempted using masks to freeze some of the used weights Mallya & Lazebnik (2018); Mallya et al.
(2018). (ii) Experience Replay aims to build a sample buffer or knowledge base (KB) to preserve
useful/important samples from the old task and co-train them with the future task Shin et al. (2017);
Isele & Cosgun (2018); Rolnick et al. (2019); Wang et al. (2022). (iii) Network Adaption (or Pa-
rameter Isolation attempts to allocate new neurons/weights on an earlier neural network for training
on new tasks, whereby each task will have its individual and shared parameters Rusu et al. (2016);
Yoon et al. (2018); Xu & Zhu (2018); Serra et al. (2018); Banayeeanzade et al. (2021). For instance,
Xu & Zhu (2018) and Qin et al. (2021) leverage reinforcement learning to allocate the new neurons
for each new task. Serra et al. (2018) and Kang et al. (2022) develop the masking methods to select
useful neurons or connections for new coming task training while freezing the neurons or connec-
tions used in the earlier tasks. In contrast, CLANS not only selects useful neurons and perform small
network expansions, but also dynamically reconfigure the task network architecture of earlier tasks.
(2) Knowledge Acquisition: Recently, researchers and practitioners have argued that the essence of
CL is to achieve knowledge accumulation or consolidation that further enables helping the learning
of future unfamiliar tasks. Thus, several works concentrated on transferring the learned knowledge
to facilitate the learning in the new domains or new tasks, e.g., Bayes model Chen et al. (2015);
Wang et al. (2020) and regression method Ruvolo & Eaton (2013). Conversely, some studies con-
sider leveraging the future tasks to help enhance the performance of old tasks Wang et al. (2019).
While striving to select useful knowledge from the past (future) to boost the learning of future (past)
tasks, each task is assigned an independent learning model or knowledge base, which naturally leads
to the capacity problem. In deep learning scenarios, most existing neural networks have similar lim-
its (i.e., extremely forgiving the capacity issue) when tackling knowledge transfer concerns Rusu
et al. (2016); Silver et al. (2013); Ke et al. (2020b). Instead, CLANS is flexible for knowledge con-
solidation, enabling either back or forward knowledge transfer, and the adaptive neuron selection in
CLANS provides us with a more compact network for each task learning.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND BASIC WORKFLOW

Given a task Tt (t ∈ {1, 2, · · · , T}), it has a training set Dtrain
t = {(xit, yit)}

Ot
i=1, where t is the task

id,Ot is the scale of training set, any xit refers to the source instance (input), and yit denotes the target
(class label). Similarly, task t also has a validation set Dvalid

t and a test set Dtest
t . Formally, we set

our CL context as follows: assume there are t− 1 tasks that have been incrementally/progressively
learned by the task network, until now. When a new task Tt is coming, the goal of CLANS is to
dynamically allocate new neurons to the knowledge pool and adaptively select new and old neurons
from the knowledge pool for task Tt training, where the corresponding parameters of old neurons
cannot be optimized. After finishing the training of task Tt, CLANS will try to employ the updated
knowledge pool to adjust each previous task’s architecture for knowledge backward transfer.

GRU GRU GRU

layer l… …

rewardt-1 t

K
n
o
w

le
d
g
e

P
o
o
l

mask new old input/output

(b) Neuron Expander

0 1 1 0

1 0 1 1

t

1 1

1 1 1

t-1

…

(c) Neuron Selector

(a) Task Network

state

action

1 1

1 1 1

t-1

0 0

1

Figure 1: The main components in CLANS.

CLANS is a reinforcement learning-based method that mainly has three components, i.e., Task Net-
work, Neuron Expander, and Neuron Selector. Especially, we regard the hidden layers in Task
Network as the Knowledge Pool (KP) which aims to preserves the neurons (as well as their cor-
responding parameters) that have been used in all of the previous tasks. As shown in Fig. 1, each

3

Under review as a conference paper at ICLR 2023

green circle denotes the neuron that has been used in the previous tasks, and each red neuron denotes
the newly added neurons that can be used for task Tt. Note that each neuron is associated with a
selection score derived from the layer embedding (the blocks in Neuron Selector). During the train-
ing of current task Tt, Neuron Selector will use the gate operation to select part of neurons for task
training. That is to say, the circle with ’\’ will not be used.

When a new task Tt comes, we attempt to search for the best network architecture for task Tt in the
reinforcement learning context, we first compute the similarity score between the current task and
each of the previous tasks based on the replay buffer Bt−1, yielding a similarity set. Correspond-
ingly, we treat this similarity set as the initial state of the Neuron Expander, and use it to obtain
an action sequence that will determine how many new neurons in each layer are available for the
current task Tt. After that, we can allocate new neurons into KP and use Neuron Selector to pick
the useful neurons for current task training while each layer embedding in current task network will
also be updated. Next, we can calculate a reward that considers the model accuracy and complexity,
and use it to update the Neuron Expander. To make the state dynamically reflect the architecture of
built task network, we turn to use the a set of layer embedding similarities instead of data similarities
as the next state of Neuron Expander, where layer embedding is obtained from the Neuron Selector.
We note that such interactions repeat until a good architecture is found. Then, when the architecture
of the current task Tt is determined and well trained, the augmented KP containing some newly
added neurons is used to adjust/refresh each previous task’s architecture by optimizing their layer
embedding again. As shown in the lower right corner of Fig. 1, we first expand the layer embeddings
of task t−1 to make newly added neurons available for task Tt. Next, we employ the replay buffer to
search out a better architecture for task t− 1. For other earlier tasks, we do this in a sequence. Note
that CLANS can only use the training samples from the current task Tt while the training samples in
the previous tasks are no longer available. To measure the task similarity and evaluate the gains of
knowledge transfer, we will add each task’s validation set to an experience replay set, detailed next.

3.2 TASK NETWORK AND NEURON SELECTOR

Let Ft denote a task network that aims to model the given task Tt. Basically, we also denote Ft =
(Nt,Wt) where Nt are the neurons used for training task Tt, and Wt are the corresponding weights.
When a new task Tt (t > 1) is coming, we have learned t−1 tasks well, where the neurons of every
task network are determined, i.e., Ni (i < t), and their corresponding weights are also optimized,
i.e., Wi. In CLANS, the architecture of task network Ft is determined by our Neural Expander
and Neural Selector. We correspondingly need to optimize the network architecture Ft = (Nt,Wt)
for task Tt. Specifically, there exist two types of neurons in Nt: N old

t are selected from the used
neurons from earlier tasks while Nnew

t = Nt \ N old
t are newly added neurons. Similarly, the

corresponding weights can also be divided into two parts, i.e., optimized weights Wold

t−1 and the new
weights Wnew

t . Therefore, we can obtain the objective of the current task as:

Wt = argmin
W

E(x,y)∼Dtrain
t

[
L
(
Ft

(
x;Wt|Wold

t =Wold
t−1

)
, y
)]
, (1)

where L is the loss function such as cross-entropy. Wt are optimal parameters after convergence.

Inspired by HAT Serra et al. (2018), our Neuron Selector uses the layer-wise gate mechanism condi-
tioned on layer embedding to decide which neurons will be used for task training. The gate operation
can be defined as the follows:

glt = σ(γ · elt), (2)

where t is the task id, σ is a gate function (e.g., sigmoid), γ is the hyper-parameter, and elt is the
l-th layer embedding. Note that we define a cumulative gate vector ml

≤t to preserve the information
learned in previous tasks. Specifically, the cumulative gate vector can be recursively obtained by:

ml
≤t = max(ml

≤t−1, g
l
t), (3)

where glt is the optimal results after model convergence. Herein, we set ml
≤0 = 0.

3.3 NEURON EXPANDER AND TRAINING WITH KNOWLEDGE TRANSFER

We use Neuron Expander to decide how many neurons should be added to each layer after the
task t arrives. Suppose the Task Network has L hidden layers, Neuron Expander should specify

4

Under review as a conference paper at ICLR 2023

the number of neurons to add in the range between 0 and nl for each layer l. As mentioned in
the previous studies Xu & Zhu (2018); Qin et al. (2021), enumerating possible number of newly
added neurons for each layer is usually NP-hard, i.e., O(

∏L
1 nl). To this end, we only employ the

reinforcement learning and regard such a series of actions as a fixed-length string that specifies how
many neurons should be added in each layer. As there is a recursive correlation between adjacent
layers in the task network, Neuron Expander should intrinsically operate in a recurrent manner.
Hence, we utilize popular recurrent neural networks (e.g., LSTM Hochreiter & Schmidhuber (1997)
or GRU Cho et al. (2014)) as the kernel of Neuron Expander. In our implementation, we operate
the GRU in an autoregressive manner for efficiency. We follow the standard reinforcement learning
setup to illustrate the technical details:
– State. It is to perceive the work environment of reinforcement learning. When task Tt arrives, we
strive to measure the task similarity between the current task and the previous tasks. In contrast to
prior study Xu & Zhu (2018), we treat the scores of data distribution similarities as the initial states
in RL instead of random initialization. Let s0t = [s1t,0, s

2
t,0, · · · , st−1

t,0] refer to the initial states, we
use Jensen-Shannon Divergence (JSD) to measure the similarity between the current task Tt and an
earlier task Ti (i = 1, 2, · · · , t− 1). For instance, any state sit,0 can be computed by:

JSD(Pt(Dvalid
t)∥Pi(Dvalid

i)) =
1

2
KL(Pt(Dvalid

t)∥P̄ti) +
1

2
KL(Pi(Dvalid

i)∥P̄ti), (4)

where P̄ti =
Pt(Dvalid

t)+Pi((Dvalid
i))

2 . Note that we compute the task similarity between task Tt and
Ti by using the validation set of task Tt (i.e., Dvalid

t) and the task Ti’s replay set Dvalid
i preserved

in replay buffer Bt−1. We can clearly find that s0t do not change with the actions in RL, resulting
the training gap between state and action. Fortunately, our Neuron Selector provides us with an
opportunity that we can further use the selected neuron results to measure the task similarities.
Without loss of generality, we can measure the similarity between the current task Tt after j − 1-th
iteration of RL and a previous task Ti by:

kit,j = cosine([g1
t,j , g

2
t,j , · · · , gLt,j], [g1

i , g
2
i , · · · , gLi]), (5)

where kit,j denotes the similarity score between the task Tt and the task Ti after j − 1-th iteration,
cosine is the cosine distance. As such, we obtain the current state as: sjt = [k1t,j , k

2
t,j , · · · , k

t−1
t,j],

which will be used in the j-th iteration of RL.
– Action. When Neuron Expander receives the current state sjt , we use it as the first hidden state of
the GRU and recursively generate a series of actions ajt = {alt,j}Ll=1to determine how many neurons
will be added to each layer of the task network. The procedure is summarized as follows:

clt,j = GRUψ(cl−1
t,j , a

l−1
t,j), alt,j = argmaxΦ(clt,jWa + ba), (6)

where c0t,j = sjt and Φ denotes the Softmax function. Besides, ψ, Wa ∈ Rd×nl and ba ∈ Rnl are
trainable parameters. The above procedure is circulated until we have received the actions for all L
expandable layers. Formally, we denote the policy function by π(ajt |s

j
t ; θ) as:

π(at,j |sjt ; θ) = Pa(a
1
t,j |s

j
t ; θ)

L∏
l=2

Pa(a
l
t,j |al−1

t,j ; θ), (7)

where θ denotes a set of learnable parameters in the Neuron Expander.
– Reward. In our context, a reward function not only needs to reflect the task accuracy but also en-
ables architecture complexity evaluation. To this end, we evaluate RL performance in each iteration
using accuracy improvements and network increments, which can be denoted as:

Rjt =
accjt − accj−1

t

C(N j
t)− C(N j−1

t)
, (8)

where accjt is validation accuracy of j-th iteration on the validation set Dvalid
t of task Tt and C(N j

t)
is used to calculate the number of used neurons.

We now proceed to illustrate how CLANS transfers knowledge to current and previous tasks, with a
note that the algorithmic pipeline is detailed in Appendix 1.

5

Under review as a conference paper at ICLR 2023

REINFORCE for Current Task. When task Tt arrives, we use Neuron Expander in RL to de-
cide the number of new neurons that can be added to each layer l, e.g., alt,j (for simplicity, we
omit the iteration index of RL). We temporarily add these neurons to our knowledge pool KP
where each layer l will contain neurons N l

≤t = {N l
<t−1,Nalt

}. Before training task Tt, we should
extend the dimension of the cumulative gate vector ml

≤t−1 obtained from the earlier task Tt−1.
Specifically, we set ml

≤t = [ml
≤t−1,0(a

l
t)], indicating that the extend neurons can be used for

the current task. Next, we prepare task Tt’s layer embeddings where formulating each layer l by

elt = [e1t , e
2
t , · · · , e

C(N l
≤t)

t]. Then we use Eq.(2) to make neuron selection for task Tt. Assume that
hlt refers to the outputs of neurons in layer l of task Tt, the forward propagation in each task training
epoch can be summarized as follows:

forward: hlt = hlt ⊙ (glt ⊙ ¬ml
≤t), (9)

where ¬ is Negate operation. Meanwhile, the backward propagation can be obtained by:

backward: Wl,u,v = Wl,u,v −
[
max(gl,ut ⊙ ¬ml,u

≤t , g
l−1,v
t ⊙ ¬ml−1,v

≤t)
]
⊙ ∂L
∂Wl,u,v

, (10)

where neuron indices u and v correspond to layer l and layer l − 1, respectively. After task training
convergence, we can obtain the final selection decision g∗l

t for current task Tt by:

g∗l
t = σ(γ · e∗lt). (11)

Notably, each iteration of RL will obtain an immediate selection decision, and we always use ∗ to
refer to the decision result in each iteration for convenience. When the RL algorithm terminates, we
regard the decision result corresponding to the maximum reward as the optimal choice, e.g., glt. And
we obtain the final cumulative gate vector ml

≤t and the optimal neuron number ālt for each layer l.

Selection Refresh for Previous Tasks. As we mentioned above, our knowledge pool KP is en-
riched by learning from new tasks Tt. Hence, we conjecture whether we can use the updated pool
to promote the performance of old tasks. That is to say, we resort to using KP to promote previous
tasks. When we have determined the architecture of task Tt, we extend each previous task’s layer
embedding for the purpose of receiving new knowledge transferred from the updated knowledge
pool. For each layer l in an earlier task Ti (i = 1, 2, · · · , t− 1), its layer embedding can be set by:

eli = eli||[e1, e2, · · · , eālt]. (12)

To determine the selection gap between task Tt and task Ti, we use the following operation to make
knowledge transfer happen on new neurons that are finally selected by task Tt:

g′l
i = σ(γ · eli ⊙ oli),o

l
i = min(¬(gli|| [0, 0, · · · , 0]︸ ︷︷ ︸

ālt

), glt), (13)

where g′l
i denotes the new select decision for task Ti and each 0 indicates that its corresponding

neuron can be used now. To protect the model performance of the current task Tt, no paramter
updating process (i.e., forward propagation) is allowed in the knowledge pool, and we let each earlier
task’s classifier to be trainable again to fine-tune its performance. More importantly, we withdraw
knowledge transfer if an earlier task performs poorly on task-related samples in the replay buffer, as
we do not allow the knowledge transfer to significantly disturb its earlier determined structure.

4 EXPERIMENTS

Datasets and Baselines. We conduct the experiments on four datasets that are widely used
in CL evaluation. They are MNIST Permutation (PMNIST) Kirkpatrick et al. (2017), Rotated
MNIST (RMNIST) Xu & Zhu (2018), Incremental CIFAR-100 Rebuffi et al. (2017), and TinyIma-
geNet Kang et al. (2022). PMNIST contains 10 variants of the MNIST LeCun (1998), where each
task is transformed by a different and fixed permutation of pixels. RMNIST also has ten versions
of MNIST, where each task is rotated by a different angle between 0 to 360 degrees. For Incre-
mental CIFAR-100, we split orignal CIFAR-100 Krizhevsky et al. (2009) into 10 tasks and each

6

Under review as a conference paper at ICLR 2023

contains 10 different classes. TinyImageNet is a variant of the ImageNet Kirzhevsky et al. (2012).
For consistency in our experiments, we generate ten 20-way classification tasks. We meticulously
select powerful representative baselines for comparison: SGD Goodfellow et al. (2013) is a naive
method that uses a feature extractor without any parameter update and a learnable classifier to tackle
a series of tasks incrementally. EWC Kirkpatrick et al. (2017) is a simple and effective standard
baseline that uses Fisherman information to alleviate the CF. IMM Lee et al. (2017) is motivated
by transfer learning to penalize parameter modifications. More specifically, we report two IMM
variants in our experiments, i.e., mean-IMM and mode-IMM. PGN Rusu et al. (2016) attempts to
expand the task network by adding a fixed number of neurons. DEN Yoon et al. (2018) dynamically
decides the number of new neurons by performing selective retraining and network split. RCL Xu
& Zhu (2018) is a reinforcement learning method that aims to control the scale of newly added
neurons while making the weights w.r.t. used neurons unchangeable. HAT Serra et al. (2018) em-
ploys attention-based gate operation to prevent the optimization of old neurons. SupSup Wortsman
et al. (2020) enables sequentially learning tasks without the CF problem by finding supermasks (sub-
networks). WSN Kang et al. (2022) attempts to sequentially learn the model parameters and selects
an optimal sub-network for each task.

Implementation Setup and Evaluation Metrics. To follow the manner of task-incremental
CL Xu & Zhu (2018); Serra et al. (2018); Kang et al. (2022), all methods use multi-head configura-
tion in all experiments. For two MNIST variants, we follow the setup in Serra et al. (2018) and use
a two-layer MLP and a multi-head classifier, starting with 2000-2000-10 neurons for the first task.
For the remaining datasets, we follow previous works Serra et al. (2018); Kang et al. (2022) and
use the modified AlexNet Kirzhevsky et al. (2012) which contains three convolutional layers and
three fully-connected layers. Notably, more implementation details are shown in Appendix B.2.3,
including datasets, metric protocols, architectures, and experimental settings. And the source code
can be found in Supplementary Materials. We follow recent continual learning baselines Qin et al.
(2021); Kang et al. (2022) and report three metrics including Average Accuracy (ACC), Backward
Transfer (BWT), and Forward Transfer (Trans). ACC is a common CL metric that reports the aver-
age accuracy of all tasks validated on their respective test sets after all tasks have been trained. BWT
is a forgetting measurement of how the model performance of the old task changes after training for
the new task. Trans is a measurement of the forward transfer ability compared to the independent
training, indicating how useful knowledge learned from the old tasks to new task learning.

4.1 EXPERIMENTAL RESULTS

Task Performance. Table 1 reports the averaged results over 5 runs. To consider the influence of
task mixture, we shuffle the tasks with 5 different seeds, resulting in 5 lists with different task orders.
Specifically, we have the following observations. Among the baselines, we are surprised to find that
not all CL methods significantly outperformed SGD. Even mean-IMM performs slightly worse on
PMNIST than SGD. We consider the plausible reason is that the weight penalty via multiple transfer
learning techniques may heavily impede the knowledge transfer between old and new tasks. CL
methods with neuron expandability, e.g., PGN and RCL, also do not perform as well as EWC, which
indicates that only iterative expanding the network without network pruning or neuron selection
could bring the over-parameterized risk Han et al. (2015); Frankle & Carbin (2019). HAT, SupSup,
and WSN follow the merit of network pruning and primarily seek to produce a sub-network by
partially selecting some neurons (weights), resulting in higher accuracy performance. However,
they can only make forward knowledge transfer, yielding a narrow knowledge consolidation. In
contrast, CLANS makes adaptive neuron selection from an expandable knowledge pool, enabling
knowledge consolidation from both old and new tasks and achieving 0.11%, 0.04%, 1.04%, and
0.40% improvements over the best baselines on four datasets, respectively. In addition, the deviation
results are reported in Appendix C.3.

Knowledge Transfer. The experimental results on BWT demonstrate that SGD confronts severe
knowledge forgetting issue as it does not consider the CF problem in sequential task training. Other
traditional CL approaches such as EWC and IMM also have obvious forgetting issue. The reason is
that recursive parameter modification for new task learning can significantly affect the model fitting
ability to old task. Compared to the forget-free (BWT=0) methods, CLANS can even positively pro-
mote the previous task performance on PMNIST, CIFAR-100, and TinyImageNet (BWT>0). the

7

Under review as a conference paper at ICLR 2023

Table 1: Performance comparison of the proposed method and baselines on four datasets.
Model PMNIST RMNIST CIFAR-100 TinyImageNet

ACC(%) BWT(%) Trans(%) ACC(%) BWT(%) Trans(%) ACC(%) BWT(%) Trans(%) ACC(%) BWT(%) Trans(%)
SGD 81.37 -24.52 -17.06 72.83 -25.32 -25.08 57.86 -20.32 -15.77 13.60 -25.32 -25.14
EWC 94.20 -0.32 -4.23 94.86 -0.73 -3.05 68.12 -1.74 -5.51 35.24 -1.34 -2.50
mean-IMM 80.10 -1.13 -18.33 88.81 -0.96 -9.10 60.08 -0.72 -13.55 26.57 -2.89 -11.17
mode-IMM 93.13 -4.17 -5.30 89.48 -7.40 -8.43 61.50 -15.58 -12.13 27.05 -14.40 -10.69
PGN 91.89 0.00 -6.54 90.01 0.00 -7.90 58.28 0.00 -15.35 33.56 0.00 -4.18
DEN 91.96 -0.41 -6.47 91.53 -0.52 -6.38 59.32 -1.24 -12.79 33.86 -1.30 -3.88
RCL 92.28 0.00 -6.15 93.97 0.00 -3.94 61.07 0.00 -12.56 34.12 0.00 -3.62
HAT 98.10 0.00 -0.33 97.89 0.00 -0.02 70.67 0.00 -2.96 37.92 0.00 0.18
SupSup 96.32 0.00 -2.11 97.15 0.00 -0.73 68.98 0.00 -4.65 37.28 0.00 -0.46
WSN 96.46 0.00 -1.97 97.32 0.00 -0.59 69.34 0.00 -4.29 37.41 0.00 -0.33
CLANS 98.21 0.01 -0.22 97.93 0.00 0.02 71.41 0.02 -2.22 39.60 0.01 1.86

reason is that CLANS keeps the weights regarding the selected neurons from the knowledge pool
unchangeable while the refreshable neuron selection on old tasks could refine the similar knowl-
edge to enhance the old task performance. In addition, Trans is a measure that quantitatively shows
whether the prior tasks can help the learning of a new task. We can observe that CLANS performs
the best, which indicates that CLANS has a more substantial ability to transfer knowledge from
old tasks. Moreover, the Trans>0 on either RMNIST or TinyImageNet indicates that the new task
performance obtained from CLANS can even surpass its accuracy in a single-task training scenario.
The reason is neuron selection with an expandable knowledge pool can distill more unknown knowl-
edge from the new task. As a result, Fig. 2 reports each old tasks’ performance after finishing the
continual learning. Compared to the representative methods, we can find that CLANS significantly
promotes the accuracy performance of old tasks via knowledge transfer.

0 1 2 3 4 5 6 7 8
Task

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

SGD EWC RCL WSN CLANS

(a) PMNIST

0 1 2 3 4 5 6 7 8
Task

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

SGD EWC RCL WSN CLANS

(b) RMNIST

0 1 2 3 4 5 6 7 8
Task

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

(%
)

SGD EWC RCL WSN CLANS

(c) CIFAR-100
Figure 2: Accuracy performance for each task.

Network Capacity. Both CLANS and RCL use RL algorithms to dynamically maintain expand-
ability for new neurons. RL in RCL is only conditioned on the current task performance and does
not consider any prior knowledge. We heuristically employ the task similarity and selection simi-
larity (i.e., layer-wise embedding) to dynamically adjust the RL environment, conditioning RL not
only on the current task but also on learned tasks. Thus, we attempt to investigate the expansion
preference or difference between them. Fig. 3 shows the number of reused neurons and the number
of expanded neurons (the bar in dark blue). Specifically, we observe: (1) CLANS drops a significant
number of old neurons, demonstrating that removing redundant neurons (as well as weights) can
achieve better task performance. (2) CLANS expands fewer new neurons than RCL in each task,
which indicates that our RL environment conditioned on similarity measurement is capable of gov-
erning the network expandability better while providing us with superior task accuracy. In addition,
calculating the total allocated parameters after training all tasks, we find that the number of total
parameters is greatly reduced, but it is slightly higher than HAT due to the network expandability.

0 1 2 3 4 5 6 7 8 9

Task
0

100

200

300

400

500

600

700

N
um

be
rs

 o
f N

eu
ro

ns RCL:1st layer
CLANS:1st layer

2nd layer
2nd layer

(a) PMNIST

0 2 4 6 8 10

Task
0

100

200

300

400

N
um

be
rs

 o
f N

eu
ro

ns RCL:1st layer
CLANS:1st layer

2nd layer
2nd layer

3rd layer
3rd layer

(b) CIFAR-100

Figure 3: Neuron capacity (CLANS v.s. RCL).

Table 2: Total parameters.
Dataset EWC RCL
P-MNIST 693.1K 1.0M
R-MNIST 693.1K 972.8K
CIFAR-100 6.7M 7.1M
TinyImageNet 6.9M 7.2M
Dataset HAT CLANS
P-MNIST 607.5K 652.7K
R-MNIST 335.9K 339.6K
CIFAR-100 6.6M 6.9M
TinyImageNet 6.8M 7.1M

8

Under review as a conference paper at ICLR 2023

Module Effectiveness. We provide three variants of CLANS to investigate the contribution of
each proposed component. The first one is CLANS-R, which removes the RL part and makes the
task network unscalable. Although this variant has a similar gate operation for neuron selection
compared to HAT, we note that this variant is significantly different from HAT as the previous tasks
in ours can be trained again after finishing the new task learning. The second is CLANS-F, which
uses a similar neuron expansion manner in PGN that enables adding a fixed number of new neurons.
In our implementation, we fix the number of neuron (or filters in CNN) expansions to 30. The last
variant is CLANS-K, which does not make selection refresh for the previous task. CLANS-K does
not bring the CF problem but has no knowledge transfer for the old tasks. As Fig. 4 shows, we can
observe that CLANS performs the best except for BWT on CIFAR-100. Moreover, removing any
module results obvious performance drop, which verifies the effectiveness of our proposed modules.

95

100

65

70

PMNIST RMNIST CIFAR100 TinyImageNet35

40

A
cc

ur
ac

y(
%

)

CLANS-R
CLANS-F
CLANS-K
CLANS

(a) ACC

PMNIST RMNIST CIFAR100 TinyImageNet0.000

0.005

0.010

0.015

0.020

0.025
CLANS-R
CLANS-F
CLANS-K
CLANS

(b) BWT

PMNIST RMNIST CIFAR100 TinyImageNet

3

2

1

0

1

2
CLANS-R
CLANS-F
CLANS-K
CLANS

(c) Trans
Figure 4: Module Effectiveness.

REINFORCE v.s. Random Search. In addition, we replace our RL algorithm with a random
search strategy to verify the effectiveness of RL-based neuron expansion. In each interaction of RL,
we randomly specify a number of added neurons in each layer. As shown in Fig. 5, we find that
CLANS achieves a better performance on task accuracy.

0 1 2 3 4 5 6 7 8 9
Task

97.0

97.5

98.0

98.5

Ac
cu

ra
cy

(%
)

Random Search CLANS

(a) PMNIST

0 1 2 3 4 5 6 7 8 9
Task

97.0

97.5

98.0

98.5

Ac
cu

ra
cy

(%
)

Random Search CLANS

(b) RMNIST

0 1 2 3 4 5 6 7 8 9
Task

34

35

36

37

38

39

40

41

42

Ac
cu

ra
cy

(%
)

Random Search CLANS

(c) TinyImageNet

Figure 5: CLANS vs Random Search.

Efficiency. Table 3 reports the full runtime of CLANS on the four datasets. CLANS takes more
time due to RL and selection refresh operations, but less than DEN.

Table 3: Statistics for full training and inference time, where ‘h’ represents hours.
Dataset SGD EWC mean-IMM mode-IMM PGN DEN RCL HAT SUP WSN CLANS
P-MNIST 0.43h 1.06h 1.02h 1.12h 2.32h 38.24h 30.51h 0.53h 1.55h 1.92h 32.38h
R-MNIST 0.37h 0.94h 0.98h 1.04h 2.12h 20.17h 14.01h 1.49h 1.32h 1.67h 17.83h
CIFAR-100 0.07h 0.11h 0.14h 0.12h 0.52h 10.08h 7.13h 0.13h 0.12h 0.15h 8.95h
TinyImageNet 0.61h 1.04h 1.13h 1.07h 2.17h 29.43h 21.43h 0.45h 2.14h 2.31h 25.72h

5 CONCLUSIONS

We presented CLANS, a novel solution for CL via adaptive neuron selection. CLANS treats the
allocated neurons from earlier tasks as a knowledge pool and makes it slightly extensible via rein-
forcement learning. The adaptive neuron selection enables the knowledge consolidation for both old
and new coming tasks. The experiments conducted on four benchmark datasets demonstrated the
significant superiority of CLANS compared to ten representative baselines, including task accuracy
and knowledge transfer. In the future, we will consider designing a compact hyper-network to se-
quentially determine the task similarity and old task re-optimization, and reduce computational and
memory costs.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learn-
ing with adaptive regularization. Advances in Neural Information Processing Systems, 32, 2019.

Mohammadamin Banayeeanzade, Rasoul Mirzaiezadeh, Hosein Hasani, and Mahdieh Soleymani.
Generative vs. discriminative: Rethinking the meta-continual learning. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Diana Benavides-Prado, Yun Sing Koh, and Patricia Riddle. Towards knowledgeable supervised
lifelong learning systems. Journal of Artificial Intelligence Research, 68:159–224, 2020.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. Lifelong learning for sentiment classification. In ACL,
pp. 750–756, 2015.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Almut Hupbach, Rebecca Gomez, Oliver Hardt, and Lynn Nadel. Reconsolidation of episodic mem-
ories: A subtle reminder triggers integration of new information. Learning & memory, 14(1-2):
47–53, 2007.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
importance based adaptive group sparse regularization. Advances in Neural Information Process-
ing Systems, 33:3647–3658, 2020.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with win-
ning subnetworks. In International Conference on Machine Learning, pp. 10734–10750. PMLR,
2022.

Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and
dissimilar tasks. Advances in Neural Information Processing Systems, 33:18493–18504, 2020a.

Zixuan Ke, Bing Liu, Hao Wang, and Lei Shu. Continual learning with knowledge transfer for
sentiment classification. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 683–698. Springer, 2020b.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neural Information Processing Systems, 34,
2021.

10

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Under review as a conference paper at ICLR 2023

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

A Kirzhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Lukasz Korycki and Bartosz Krawczyk. Class-incremental experience replay for continual learning
under concept drift. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3649–3658, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009.

M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuyte-
laars. A continual learning survey: Defying forgetting in classification tasks. IEEE transactions
on pattern analysis and machine intelligence, 44(07):3366–3385, 2022. ISSN 1939-3539.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. Advances in neural information pro-
cessing systems, 30, 2017.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, pp. 3925–3934. PMLR, 2019.

Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. In International
Conference on Learning Representations, 2021.

Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Reinforced memory management for class-
incremental learning. Advances in Neural Information Processing Systems, 34, 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
psychology, 4:504, 2013.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan
Gorur, and Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint
arXiv:2202.00275, 2022.

Shuaicheng Niu, Jiaxiang Wu, Guanghui Xu, Yifan Zhang, Yong Guo, Peilin Zhao, Peng Wang,
and Mingkui Tan. Adaxpert: Adapting neural architecture for growing data. In International
Conference on Machine Learning, pp. 8184–8194. PMLR, 2021.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

11

Under review as a conference paper at ICLR 2023

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. Bns: Building network structures
dynamically for continual learning. Advances in Neural Information Processing Systems, 34,
2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In International confer-
ence on machine learning, pp. 507–515. PMLR, 2013.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond learning
algorithms. In 2013 AAAI spring symposium series, 2013.

Hao Wang, Bing Liu, Shuai Wang, Nianzu Ma, and Yan Yang. Forward and backward knowledge
transfer for sentiment classification. In Asian Conference on Machine Learning, pp. 457–472.
PMLR, 2019.

Hao Wang, Shuai Wang, Sahisnu Mazumder, Bing Liu, Yan Yang, and Tianrui Li. Bayes-enhanced
lifelong attention networks for sentiment classification. In Proceedings of the 28th International
Conference on Computational Linguistics, pp. 580–591, 2020.

Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng Ma, Jun Zhu, and
Yi Zhong. Afec: Active forgetting of negative transfer in continual learning. Advances in Neural
Information Processing Systems, 34, 2021.

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing HONG, Shifeng
Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=a7H7OucbWaU.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information Process-
ing Systems, 31, 2018.

Haiyan Yin, Ping Li, et al. Mitigating forgetting in online continual learning with neuron calibration.
Advances in Neural Information Processing Systems, 34, 2021.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sk7KsfW0-.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Jie Zhang, Junting Zhang, Shalini Ghosh, Dawei Li, Jingwen Zhu, Heming Zhang, and Yalin
Wang. Regularize, expand and compress: Nonexpansive continual learning. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 854–862, 2020.

12

https://openreview.net/forum?id=a7H7OucbWaU
https://openreview.net/forum?id=a7H7OucbWaU
https://openreview.net/forum?id=Sk7KsfW0-

Under review as a conference paper at ICLR 2023

APPENDIX

A.1 ALGORITHMIC ASPECTS

We summarize the main pipeline of CLANS in Algorithm 1. In a nutshell, there exist T tasks that
need to be sequentially learned, and each task contains a training set and a validation set. We first
train an initial network (or base architecture) F1 on Dtrain

1 , aiming to obtain the optimal parameters
W1. Meanwhile, we also initialize the gate operation and cumulative vector for the first task.

Subsequently, we perform the two procedures of current task learning and previous task refresh.
Specifically, when a new task is coming, we first load Algorithm 2 to pick an optimal network ar-
chitecture for the current task in an RL manner. After that, we load Algorithm 3 to make knowledge
transfer from the new task to the previous one. We will refresh a previous task’s architecture once
we gain a better validation accuracy.

Algorithm 1: CLANS for Continual Learning.
Input: A sequence of tasks with training sets {Dtrain

1 ,Dtrain
2 , ...,Dtrain

T }, validation sets
{Vvalid

1 ,Vvalid
2 , ...,Vvalid

T }.
Output: Optimized network for each task: Ft = (Nt,Wt) for t = 1, 2, . . . , T .
Set KP = ∅;
for t = 1, 2, . . . , T do

if t = 1 then
// Train the first task
Let KP1 = KP ∪N1;
Initialize gate operation and cumulative vector as {gl

1 = 1}Ll=1 and {m≤1
l = 0}Ll=1;

Train the initial network F1 on D1 with the weights optimized as W1;
Add Vvalid

1 into B1;
else

// REINFORCE for Current Task

Expand the network and obtain the trained W t by Algorithm 2;
Update KPt and Bt;
// Selection Refresh for Previous Tasks
Refresh each previous task architecture by Algorithm 3;

Algorithm 2: REINFORCE for Current Task.
Input: The training/validation set of current task Dtrain

t /Dvalid
t ; previous gate vectors {gi}t−1

i=1 ; reply
buffer Bt−1; cumulative gate vector m≤t−1.

Output: Optimized network Ft = (Nt,Wt) and m≤t.
for j = 0, 1, . . . , J do

if j = 0 then
Use Dvalid

t and Bt−1 to compute initial states (i.e., sj
t) via Eq.(4); ▷ task similarity

else
Use gt,j and {gi}t−1

i=1 to compute the states sj
t based on Eq.(5); ▷ selection similarity

Generate actions aj
t = {al

t,j}Li=1 from sj
t according to Eq.(6) and Eq.(7);

Configure the task network as Fj
t = {N j

t ,W
j
t |Wold

t =Wold
t−1

} based on aj
t = {al

t,j}Li=1;

Set ml
≤t,j = [ml

≤t−1,0(a
l
t,j)] for each layer l;

Initialize the layer embeddings et,j = {el
t,j}Li=1 and obtain gate vectors gt,j = {gl

t,j}Ll=1;
Train the configured Fj

t = {N j
t ,W

j
t |Wold

t =Wold
t−1

} with objective Eq.(1) based on Eq.(9) and
Eq.(10);

Compute the reward Rj
t via Eq.(8) and obtain g∗t,j according to Eq.(11);

Set gt,j = g∗
t,j ; ▷ For similarity measurement

Update the parameters θ in Neuron Expander;

Store the best network parameter configuration Ft = (Nt,Wt) that has the greatest reward;
Update the final cumulative gate vector m≤t based on Eq.(3);

13

Under review as a conference paper at ICLR 2023

Algorithm 3: Selection Refresh for Previous Tasks.

Input: previous knowledge pool KPt−1; previous gate vectors {gi}t−1
i=1; reply buffer Bt−1;

cumulative gate vector m≤t−1.
Output: Refreshed network for each task: Ft = (Nt,Wt) for t = 1, 2, . . . , t− 1.
i=t-1;
while i > 0 do

Expand each layer embedding of task Ti through Eq.(12);
Set new neuron selection via Eq.(13);
Train the refreshed F ′

i with objective Eq.(1) based on Eq.(9) and Eq.(10);
Obtain new validation accuracy accnewi on Bit−1;
if accnewi > accoldi then

Let Fi = F ′
i ;

else
Withdraw the update;

i = i− 1;
Return a refreshed network for each task Ti where i = 0, 1, · · · , t− 1;

B.2 DETAILS OF EXPERIMENTAL SETUP

In this part, we describe our experimental setup in detail, including the datasets, evaluation protocols,
and implementations.

B.2.1 DATASETS

The original datasets used in our study are summarized in Table 4. In detail, we conducted the
results on four variants, including PMNIST, RMNIST, CIFAR-100, and TinyImageNet. PMNIST
and RMNIST are two variants of the original MNIST dataset 1 containing a large number of 28×28
monochrome images of handwritten digits. In addition, PMNIST and RMNIST are widely used in
CL, where each task of the former is transformed by a fixed and different permutation of pixels,
while each task of the latter is rotated by a different angle between 0 to 360 degrees. CIFAR-
100 is a CIFAR object recognition datasets with 100 classes. We follow Rebuffi et al. (2017) and
randomly divide CIFAR-100 into 10 tasks, where each task contains 10 different classes and their
examples. TinyImageNet 2 contains 100,000 64×64 colored images in 200 classes. We split ten
20-way classification tasks from the original TinyImageNet for continual learning. For fairness, we
randomly sample a subset of the original dataset and also make the validation set the same as the
training set following Serra et al. (2018). For CIFAR-100 and TinyImageNet, we split 20% of the
training set from each task for validation purposes.

Table 4: The statistics of four benchmark datasets.

Dataset Train Test Classes
MNIST LeCun (1998) 60,000 10,000 10
CIFAR-100 Krizhevsky et al. (2009) 60,000 10,000 100
TinyImageNet Kang et al. (2022) 100,000 10,000 200

B.2.2 DETAILS OF EVALUATION METRICS

To fairly show the model performance and the ability of knowledge consolidation (including back
and forward knowledge transfer), we use three metrics, i.e., ACC, BWT, and Trans. ACC is a
common metric to evaluate the CL performance. After all tasks are continually well learned, we
calculate the average accuracy of all tasks, where the accuracy of each task, denoted by accT,t, is
obtained by testing its corresponding test data. To measure backward knowledge transfer, BWT
can show the impact of new learning tasks on the accuracy performance of old tasks. Furthermore,

1http://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/c/tiny-imagenet

14

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/c/tiny-imagenet

Under review as a conference paper at ICLR 2023

BWT> 0 indicates the learning of new tasks has a positive impact on old task performance, BWT<
0 indicates that the learning of the new task has a negative knowledge transfer on the old task.
When BWT is a large negative value, we say that the CL model confronts a Catastrophic Forgetting
problem. If BWT= 0, we say the CL model has no forgetting issue. To measure whether learned
knowledge in old tasks facilitates the learning of new tasks, we use Trans to uncover the ability of
forward knowledge transfer. Specifically, we treat each task training as a single task learning and
compare its accuracy performance with the task performance in the CL context. More formally,
these three metrics are defined as follows:

Average Accuracy: ACC =
1

T

T∑
t=1

accT,t; (14)

Backward Transfer: BWT =
1

T − 1

T−1∑
t=1

accT,t− acct,t; (15)

Forward Transfer: Trans =
1

T

T∑
t=1

accT,t−acct. (16)

Herein, acct is the task t’s accuracy performance in a single task learning manner and acct,t is the
accuracy of task t on the corresponding test data after it is well trained in the CL context.

B.2.3 DETAILS OF EXPERIMENTAL SETUP

Base Architecture. We explain the architecture details of task networks including MLPs and
CNNs. Note that our baselines also use the same architectures for a fair comparison.

• MLP for PMNIST and RMNIST: We follow Serra et al. (2018) and start with 784-2000-
2000-10 neurons with RELU activation for the first task. For the remaining tasks, we only
allow each task to scale up to 30 neurons per layer, which is similar to Xu & Zhu (2018).

• CNN for CIFAR-100 and TinyImageNet: We also follow Serra et al. (2018) and extend
a modified version of AlexNet for the first task. In more detail, it has three convolutional
layers with 64, 128 and 256 filters, with 4×4, 3×3, and 2×2 kernel sizes, respectively, and
plus two fully-connected layers of 2048 neurons each. Also, we use rectified linear units
as activation and utilize a 2×2 max-pooling operation after three convolutional layers. For
the remaining tasks, we allow each task to add up to 30 filters per convolutional layer.

Baselines: We have used 10 CL methods for comparison with CLANS. SGD is the simplest
method and we implemented it by ourselves. For the remaining baselines, we extend their pub-
licly available source codes to conduct the experiments. The url’s for the source codes are listed in
Table 5.

Table 5: The public source codes of baselines.

Method Source
EWC Kirkpatrick et al. (2017) https://github.com/joansj/hat/tree/

master/src/approaches
two variants of IMM Lee et al.
(2017)

https://github.com/joansj/hat/tree/
master/src/approaches

PGN Rusu et al. (2016) https://github.com/joansj/hat/tree/
master/src/approaches

DEN Yoon et al. (2018) https://github.com/jaehong31/DEN
RCL Xu & Zhu (2018) https://github.com/xujinfan/

Reinforced-Continual-Learning
HAT Serra et al. (2018) https://github.com/joansj/hat
SupSup Wortsman et al. (2020) https://github.com/RAIVNLab/supsup
WSN Kang et al. (2022) https://github.com/ihaeyong/WSN

15

https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/joansj/hat/tree/master/src/approaches
https://github.com/jaehong31/DEN
https://github.com/xujinfan/Reinforced-Continual-Learning
https://github.com/xujinfan/Reinforced-Continual-Learning
https://github.com/joansj/hat
https://github.com/RAIVNLab/supsup
https://github.com/ihaeyong/WSN

Under review as a conference paper at ICLR 2023

Hyperparameter configurations. We implemented our CLANS in Python using Pytorch library
and all the experiments ran on a single NIVDIA GTX1080 GPU. We trained all methods, including
our CLANS, with SGD optimizer. We set the maximum number of iterations for reinforcement
learning to 50; the hidden size of GRU to 100; λ is 0.75; the initial learning rate on four datasets
was set to 0.05; and the number of training epochs for the task network on PMNIST, RMNIST,
CIFAR-100, and TinyImageNet are 30, 30, 50, and 80, respectively. We note that the source code of
CLANS is uploaded as Supplementary Materials.

C.3 ADDITIONAL RESULTS

C.3.1 PERFORMANCE DEVIATIONS

To alleviate the influence of task mixture in our study, we shuffle the tasks with 5 different seeds,
resulting in 5 lists with different task orders. Table 6 reports the model performance as a supplement,
where the averages and standard deviations are provided.

Table 6: CL Performance on four datasets.

Model P-MNIST R-MNIST
ACC BWT Trans ACC BWT Trans

SGD 81.37(±1.178) -24.52 (±1.825) -17.06(±1.178) 72.83(±0.123) -25.32(±0.533) -25.08(±0.123)
EWC 94.20(±0.705) -0.32(±0.048) -4.23(±0.705) 94.86(±0.048) -0.73(±0.027) -3.05(±0.048)
IMM-mean 80.10(±1.860) -1.13(±0.117) -18.33(±1.860) 88.81(±1.120) -0.96(±0.215) -9.10(±1.120)
IMM-mode 93.13(±0.546) -4.17(±0.510) -5.30(±0.546) 89.48(±0.342) -7.40(±0.235) -8.43(±0.342)
PGN 91.89(±0.264) 0.00(±0.000) -6.54(±0.264) 90.01(±0.126) 0.00(±0.000) -7.90(±0.126)
DEN 91.96(±1.258) -0.41(±1.258) -6.47(±1.258) 91.53(±0.241) -0.52(±0.176) -6.38(±0.241)
RCL 92.28(±0.410) 0.00(±0.000) -6.15(±0.410) 93.97(±0.035) 0.00(±0.000) -3.94(±0.035)
HAT 98.10(±1.184) 0.00(±0.000) -0.33(±1.184) 97.89(±0.091) 0.00(±0.000) -0.02(±0.091)
SupSup 96.32(±0.254) 0.00(±0.000) -2.11(±0.254) 97.15(±0.782) 0.00(±0.000) -0.73 (±0.782)
WSN 96.46(±0.374) 0.00(±0.000) -1.97(±0.374) 97.32(±0.873) 0.00 (±0.000) -0.59(±0.873)
CLANS 98.21(±0.388) 0.01(±0.021) -0.22(±0.388) 97.93(±0.262) 0.00(±0.000) 0.02(±0.262)

Model CIFAR-100 TinyImageNet
ACC BWT Trans ACC BWT

SGD 57.86(±2.093) -20.32(±1.006) -15.77(±2.093) 13.60(±1.261) -25.32(±1.137) -25.14(±1.261)
EWC 68.12(±0.347) -1.74(±1.154) -5.51(±0.347) 35.24(±0.471) -1.34(±0.245) -2.50(±0.471)
IMM-mean 60.08(±0.028) -0.72(±0.864) -13.55(±0.028) 26.57(±0.818) -2.89(±0.735) -11.17(±0.818)
IMM-mode 61.50(±0.594) -15.58(±1.805) -12.13(±0.594) 27.05(±0.625) -14.40(±0.511) -10.69(±0.625)
PGN 58.28(±1.474) 0.00(±0.000) -15.35(±1.474) 33.56(±0.654) 0.00(±0.000) -4.18(±0.654)
DEN 59.32(±1.508) -1.24(±1.391) -12.79(±1.508) 33.86(±0.981) -1.30(±0.513) -3.88(±0.981)
RCL 61.07(±1.841) 0.00(±1.147) -12.56(±1.841) 34.12(±0.696) 0.00(±0.000) -3.62(±0.696)
HAT 70.67(±0.554) 0.00(±0.000) -2.96(±0.554) 37.92(±0.462) 0.00(±0.000) 0.18(±0.462)
SupSup 68.98(±0.373) 0.00(±0.000) -4.65(±0.373) 37.28(±0.271) 0.00(±0.000) -0.46(±0.271)
WSN 69.34(±0.434) 0.00(±0.000) -4.29(±0.434) 37.41(±0.312) 0.00(±0.000) -0.33(±0.312)
CLANS 71.41(±0.785) 0.02(±0.017) -2.22(±0.785) 39.60(±0.210) 0.10(±0.034) 1.86(±0.210)

0 1 2 3 4 5 6 7 8
Task

5

10

15

20

25

30

35

40

45

Ac
cu

ra
cy

(%
)

SGD EWC RCL WSN CLANS

Figure 6: Accuracy performance for each task on TinyImageNet.

16

Under review as a conference paper at ICLR 2023

C.3.2 ACCURACY PERFORMANCE ON TINYIMAGENET

Due to the space limit, Fig. 2 does not report the results on TinyImageNet. After completing con-
tinual learning, we test the accuracy performance of each task on TinyImageNet. Fig. 6 shows that
CLANS has competitive results against the baselines.

C.3.3 FORGETTING CURVE

Solving catastrophic forgetting (CF) is a key topic for continual learning. Regularization methods
such as EWC and IMM usually confront a severe CF problem. Due to the freezing operation on used
parameters, other network adaptation methods such as DEN, HAT, and WSN have no CF problem.
Fig. 7 presents the changes of the test accuracy on the first task as more new tasks are sequentially
learned. We clearly find that the baselines such as HAT and WSN fail to improve but maintain
the test accuracy of the first task as more tasks are learned. We say they have no CF problem. In
contrast, CLANS can even improve the accuracy gain on the first task as more tasks are learned.

0 1 2 3 4 5 6 7 8 9
Task

98.4

98.5

98.6

A
cc

ur
ac

y

RCL HAT SUP WSN CLANS

(a) PMNIST

0 1 2 3 4 5 6 7 8 9
Task

73.1

73.2

73.3

73.4

A
cc

ur
ac

y

RCL HAT SUP WSN CLANS

(b) CIFAR-100

Figure 7: Accuracy performance on the first task as more tasks are sequentially learned.

0 1 2 3 4 5 6 7 8 9
Task

96

97

98

99

Ac
cu

ra
cy

(%
)

nhid=500
nhid=2000

(a) PMNIST

0 1 2 3 4 5 6 7 8 9
Task

96

97

98

99

Ac
cu

ra
cy

(%
)

nhid=500
nhid=2000

(b) RMNIST

Figure 8: The impact of the base architecture.

D.4 SENSITIVITY ANALYSIS

We also investigate the potential impacts of hyperparameter settings in CLANS, including the hidden
size of GRU, iteration number of RL, the scale of replay buffer, etc. The details are:

The Sensitivity of Base Architecture. Herein, we use a much smaller base architecture as the
initial task network for the first task. Specifically, we design 784-500-500-10 neurons with RELU

17

Under review as a conference paper at ICLR 2023

activation for the first task of PMNIST and RMNIST, respectively. As Fig. 8 shows, we can observe
the smaller base architecture brings worse performance, where ‘nhid’ refers to the number of neurons
(filters) for the first task. We consider the plausible reason is that a smaller base architecture will
give us a dense network that has limited search space in the expandable gating mechanism, which
would hinder us to find the best network for new task learning. In addition, this phenomenon has
also been observed in recent studies such as HAT Serra et al. (2018), Supsup Wortsman et al. (2020),
and WSN Kang et al. (2022). More importantly, this trial stimulates us to provide a slightly large
dense network as the base architecture of the first task in CLANS.

0.01 0.05 0.10 0.20
Learning Rate

96.5

97.0

97.5

98.0

98.5

A
cc

ur
ac

y

CLANS

(a) PMNIST

0.01 0.05 0.10 0.20
Learning Rate

96.5

97.0

97.5

98.0

98.5

A
cc

ur
ac

y

CLANS

(b) CIFAR-100

Figure 9: The impact of the initial learning rate.

0.25 0.50 0.75 1.00
98.0

98.1

98.2

98.3

A
cc

ur
ac

y

CLANS

(a) PMNIST

0.25 0.50 0.75 1.00
70.6

70.8

71.0

71.2

71.4

71.6

A
cc

ur
ac

y

CLANS

(b) CIFAR-100

Figure 10: The sensitivity of λ.

The Sensitivity of Initial Learning Rate. We also investigate the sensitivity of initial learning
rate. As Fig. 9 shows, the task network in CLANS is sensitive to the initial learning rate.

The Sensitivity of λ. We investigate the sensitivity of hyper-parameter λ on gating operation.
Fig. 10 shows that λ in CLANS is more sensitive to CIFAR-100 than PMNIST. And we should
carefully choose a appropriate λ for each dataset.

The Sensitivity of hidden size of GRU. In addition, we also study the sensitivity of hidden size
of GRU. Fig 11 shows, We can find that CIFAR-100 is more sensitive when the hidden size of GRU
becomes gradually smaller.

E.5 APPLICATIONS AND LIMITATIONS

In practice, our CLANS can be applied to various applications, we here outline three potential
applications of our CLANS.

18

Under review as a conference paper at ICLR 2023

50 100 150 200
Hidden Size of GRU

98.2

98.4

98.6

A
cc

ur
ac

y

CLANS

(a) PMNIST

50 100 150 200
Hidden Size of GRU

70.5

71.0

71.5

A
cc

ur
ac

y

CLANS

(b) CIFAR-100

Figure 11: The sensitivity of hidden size of GRU.

• Mobile Computing: The advances in mobile devices and the Internet of Things (IOTs)
enable increased use of mobile computing resources to solve multiple complex tasks. How-
ever, due to the limited memory and computing resources, it is unrealistic for mobile de-
vices to download an extremely large network for task training. Hence, our CLANS with
adaptive neuron selection can provide mobile devices with a more compact but effective
network for task learning. Also, the communication cost between the mobile sides and the
cloud will be reduced accordingly.

• Federated Learning: This emerging paradigm has a significant impact in information
security, especially for the financial industry. Federated learning works between cloud cen-
ters and massive remote computing nodes. Each node can download the training model
shared by other nodes from the cloud center, which usually leads to privacy leakage prob-
lems. Since CLANS tries to discover an optimal sub-network for each task learning, we
believe that assigning such a sub-network to each computing node can mitigate the risk of
privacy issues to some extent while such a sub-network enables maintaining the accuracy
performance.

• Network Compression (Pruning): Over-parameterized network is a urgent concern in
AI. In recent years, numerous deeper and wider neural networks have been designed to
handle various domain sources such as documents and videos. Although there are massive
studies that can make network compression to tackle the over-parameterized issue, they
only concentrate on pruning the network to solve a single task, and they fail to make the
compression more flexible when faced with multiple tasks in sequence. We are convinced
that our work can provide a more open perspective for network compression to handle more
flexible task scenarios.

As mentioned, CLANS adopts the merits of the network-adaption paradigm and makes each task
network expandable and in order to control the expandability of the task network, we operate rein-
forcement learning to determine how many new neurons or filters can be added to each layer of the
task network. In contrast to existing RL settings, our RL environment is conditioned on task sim-
ilarity and selection similarity. Moreover, the neuron selection results are changed over iterations,
which provides a dynamic signal to boost the Network Expander in CLANS to make a more accu-
rate selection for the current task learning (cf. Fig. 3). To select useful old neurons from the earlier
tasks, we can also use RL, however, it will consume a lot of time. Instead, we devise an expandable
gating mechanism that can select useful neurons during task training. Due to these two profitable
designs, CLANS enables the knowledge consolidation between old and new tasks, including back
and forward knowledge transfer. However, we have following two limitations about CLANS.

• Computational cost in RL. Reinforcement learning is a more intelligent manner to mimic
human cognitive processes. Although we only use RL to determine the network expansion,
it still brings us much computational cost as well as additional memory cost. In the future,
we consider whether we can first bridge the relation between the expansion needs and data

19

Under review as a conference paper at ICLR 2023

distribution, and devise a heuristic mechanism to decide how many new neurons should be
added according to such a relation.

• Similarity measurement & Replay Buffer. As we use task similarity to investigate the
correlations between the new task and earlier tasks, which will bring additional memory
and computing costs. Besides, we refresh the task network of each previous task using the
replay buffer, which also brings huge computing resources and replay bias. In our future
work, we consider whether we can use generative models to decrease resource costs.

50
2550

5050
7550

10050
12550

15050
17550

20050
22550

Epochs

45

50

55

60

65

70

Us
ed

 C
ap

ac
ity

(%
)

Figure 12: Network capacity on CIFAR-100 throughout continual learning.

F.6 CASE STUDY

In our case study, we first provide a macro perspective to show the capacity usage of the knowledge
pool on CIFAR-100 throughout continual learning. As shown in Fig 12, we can find a significant
increase in capacity usage of the knowledge pool when CLANS starts to receive new tasks. It is
natural as the knowledge pool has no useful information for the coming tasks. As the number of
training tasks increases, we find that capacity usage actually decreases. The plausible reason is that
the knowledge pool has more useful knowledge extracted from old tasks, which can help the learning
of future task learning.

Additionally, we visualize the filters selected from the base architecture in knowledge pool for each
task in CIFAR-100. As shown in Fig. 13, each square represents a filter of CNN. A white square
means it has never been used by any task; a square in red represents that it was trained by some
previous tasks and is now reused by the current task; a grey square indicates it has been used by a
previous task but not reused by the current task; and the yellow squares depict newly added filters for
the current task learning. As the task increases, CLANS drops many old filters and only reuses part
of the used filters. Furthermore, we were surprised to find that the number of newly added filters
decreases as the task increases, which implicitly indicates that CLANS prefers to learn a better
architecture for the current task on earlier reused neurons than to expand the task network.

20

Under review as a conference paper at ICLR 2023

(a) Task 0

(b) Task 1

(c) Task 2

(d) Task 3

(e) Task 4

(f) Task 5

(g) Task 6

(h) Task 7

(i) Task 8

(j) Task 9

Figure 13: Examples of CNN architectures for CIFAR-100.

21

	Introduction
	Related Work
	Methodology
	Problem Formulation and Basic Workflow
	Task Network and Neuron Selector
	Neuron Expander and Training with Knowledge Transfer

	Experiments
	Experimental Results

	Conclusions
	Algorithmic aspects
	Details of Experimental Setup
	Datasets
	Details of Evaluation Metrics
	Details of Experimental Setup

	Additional Results
	Performance Deviations
	Accuracy performance on TinyImageNet
	Forgetting Curve

	Sensitivity Analysis
	Applications and Limitations
	Case study

