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Abstract

In multimodal sentiment analysis tasks, it is001
very challenging to model the relationships002
between different modalities and fusing them.003
The problem in this area is the unbalance of sen-004
timent representation and distribution across005
the different modalities, resulting in a fusion006
process that deviates from the multimodal sen-007
timent semantic space. We propose a novel008
fusion framework, MECG, which is based on009
graph convolutional neural networks and pro-010
vides an efficient approach for fusing unaligned011
multimodal sequences. With the help of text012
modalities, we first use the multimodal en-013
hancement module to enhance visual and acous-014
tic modalities for obtaining more discriminative015
modalities, thus assisting the subsequent aggre-016
gation process. In addition, we construct text-017
driven multimodal feature graphs for modality018
fusion, which can effectively deal with the un-019
balance issue among modalities in the graph020
convolution aggregation process. Finally, we021
integrate the fused information extracted by022
MECG into the verbal representation, thus dy-023
namically transforming the original word rep-024
resentations toward the most accurate multi-025
modal sentiment-semantic space. Our model026
proves its effectiveness and superiority on two027
publicly available datasets, CMU-MOSI and028
CMU-MOSEI.029

1 Introduction030

With the rapid development of multimedia technol-031

ogy, multimodal sentiment analysis (MSA) has be-032

come a popular topic, and how to perform efficient033

sentiment analysis on data with different modalities034

is a great challenge for artificial intelligence(Ngiam035

et al., 2011). Compared with individual modal036

sentiment analysis, multimodal sentiment analysis037

can help us understand the sentiment behind the038

data more effectively and precisely, and is therefore039

widely used in sentiment analysis tasks. In general,040

the different modalities serve as a complement to041

Figure 1: Previous fusion schemes developed by graph
construction for the task of multimodal sentiment anal-
ysis. The displayed data were taken from the CMU-
MOSI dataset.

each other in order to better bridge the semantic 042

and sentiment divergence (Zhang et al., 2018). 043

A key part of MSA is multimodal fusion, where 044

a model aims to extract and integrate information 045

from all input modalities in order to discriminate 046

sentiment. For instance, Zadeh et al. proposed ten- 047

sor fusion networks to extract unimodal, bimodal, 048

and trimodal interactions (Zadeh et al., 2017), and 049

MISA firstly projected each modality into two dif- 050

ferent subspaces and investigated the commonali- 051

ties and specific features from the corresponding 052

subspace (Hazarika et al., 2020). Tsai et al. in- 053

troduced multimodal converters (MulT) to capture 054

intermodal messages using a cross-modal attention 055

mechanism (Tsai et al., 2019a). Tang et al pro- 056

posed a Coupled-Translation Fusion Network(Tang 057

et al., 2021) and Multi-Way Multi-Modal Trans- 058

former for multimodal learning(Tang et al.). Hu et 059

al. proposed a multimodal GCN fusion scheme to 060

capture the long distance information in emotion 061

recognition (Hu et al., 2021). However, as show in 062

Figure 1, previous fusion structure obtained in mul- 063

timodal learning task is a ternary symmetric struc- 064

ture, where the bidirectional cross-modalities are 065

modeled in a somewhat identical manner. Notably, 066

it was found in many previous studies (Chen et al., 067

2017; Sun et al., 2020) that the critical information 068
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distributed in the three modalities is unbalanced,069

where the text modality containing more sentimen-070

tal information compared to complementary modal-071

ities(visual and acoustic)(Guo et al., 2022). There-072

fore, the architecture that does not consider the073

relative importance of these three modalities can-074

not properly integrate them. In order to deal with075

the above issue, this paper will complete the inter-076

modal information fusion under the dominance of077

text modality.078

We propose an enhancement module for the079

acoustic and visual modalities in the preprocess-080

ing stage, with the aim of being able to compute081

the most relevant cross-modality sentiment con-082

text between the visual and acoustic modalities083

with respect to the text modality. Actually, the text084

modality plays the most critical role among the085

three modalities and contains the richest informa-086

tion (Sun et al., 2020; Chen et al., 2017). Hence,087

the above enhancement module can be used to al-088

low the acoustic and visual modalities to remove089

the redundant contextual information within the090

modality that is less relevant to the sentiment anal-091

ysis task with the help of the text. Additionally, the092

above procedure is able to improve the sentiment093

analysis capabilities of visual and acoustic. Thus094

helping to further fuse and extract the data among095

the three modalities in the next step. The proposed096

graph convolution module MECG is able to extract097

the complementary information from the other two098

modalities and the text modality. We believe that099

the graph structure can well represent the corre-100

spondence between the modalities, and the weights101

between the nodes can not only reflect the impor-102

tant information within the modalities but also the103

correlation between the modalities. We enter the104

three modalities into the graph convolution module,105

and get the neighboring edge values by calculat-106

ing the node similarity. Therefore, the effective107

information of visual and acoustic modalities to108

text modality can be extracted by aggregation cal-109

culation respectively. The extracted information110

is fed into BERT (Devlin et al., 2018a) Encoder111

as an auxiliary, combined with the text informa-112

tion, to extract the final sentiment contexts via the113

self-attention mechanism. Our contribution can be114

summarized as follows:115

• We propose a multimodal enhancement mod-116

ule that allows acoustic and visual modalities117

to eliminate their own redundant information118

with the help of text modalities to improve119

emotion discrimination. 120

• The designed graph fusion framework MECG 121

can learn complementary information of vi- 122

sual and acoustic to text modalities through 123

inter-modal association, thus helping the trans- 124

formation of text representaions in multi- 125

modal semantic space. 126

• We validate the effectiveness and superiority 127

of the proposed multimodal fusion framework 128

in two publicly available multimodal senti- 129

ment analysis databases. 130

2 Related Work 131

In this section, we give a brief overview of some 132

related work on multimodal sentiment analysis and 133

fusion. 134

Due to the ambiguity of single language modal- 135

ity, sentiments are limited in their expressiveness 136

(Williams et al., 2018). This ambiguity typically 137

occurs in scenarios such as slang and sarcasm. To 138

overcome the limitations of single language modal- 139

ity, additional information about nonverbal behav- 140

ior can be an important complement. 141

Multimodal sentiment analysis (MSA) is a 142

branch of multimodal language analysis (Zadeh 143

et al., 2018), which predicts the final human emo- 144

tional expression through the joint analysis of text, 145

acoustic and visual information (Morency et al., 146

2011). In this field, people focus on the construc- 147

tion of new multimodal neural network and the 148

fusion method between modalities so as to obtain 149

superior effect in sentiment analysis (Liang et al., 150

2018; Tsai et al., 2019b). In the past few years, 151

deep neural networks have been used to learn mul- 152

timodal representations in sentiment analysis, such 153

as Long Short-Term Memory (LSTM), which is 154

used to model long-term dependencies from low- 155

level multimodal features. Most previous work in 156

this area has focused on early or late fusion. For 157

example, Zadeh et al. (Zadeh et al., 2017) pro- 158

posed a tensor fusion network (TFN) that fuses 159

different modal representations at a deeper level. 160

As the attentional mechanism became more pop- 161

ular, Zadeh et al. (Zadeh et al., 2019) modified 162

the LSTM with a new multi-attentional block to 163

capture the interaction between different modali- 164

ties over time. Recursive Memory Fusion Network 165

(RMFN) (Liang et al., 2018) captures the subtle 166

interactions between modalities in a multi-stage 167

manner, enabling each stage to focus on a subset of 168

2



signals. The novel training scheme proposed by Yu169

et al. generates additional unimodal labels for each170

modality simultaneously with its main task and171

trains simultaneously with it. Developing modal-172

specific representations is facilitated by unimodal173

subtasks (Yu et al., 2021).174

Most of the aforementioned research in this area175

is based on the assumption that multimodal data176

sources are already aligned. However, more gen-177

eral approaches for sentiment analysis or emo-178

tion recognition tasks should be investigated on179

unaligned multimodal data sources. Multimodal180

Transformer (MulT) (Tsai et al., 2019a) deploy181

three transformers for one modality to capture in-182

teractions with the other two modalities in a self-183

attention manner. Yang et al. first converted the184

unaligned multimodal sequence data into a graph.185

Then, they designed a method called MTAG to cap-186

ture the various interactions between modalities187

(Yang et al., 2021). Hu et al. designed a mul-188

timodal fusion convolutional network, MMGCN,189

which provides a more efficient way to utilize mul-190

timodal and remote context information(Hu et al.,191

2021).192

Graph Convolutional Networks have been193

widely used in the field of multimodal sentiment in194

the last few years, especially for Emotion Recog-195

nition in Conversation (ERC), and have achieved196

competitive performance due to their ability to han-197

dle non-Euclidean numbers and intuitive structure.198

DialogueGCN(Ghosal et al., 2019) uses a graph-199

based structure to capture conversational dependen-200

cies between corpora. MMGCN(Hu et al., 2021)201

further proposes a GCN-based multimodal fusion202

approach for multimodal ERC tasks to improve203

recognition performance.204

However, previous work focused on the corre-205

spondence between different modalities, and we206

emphasized the role of text modality in MECG in-207

stead of directly aggregating the information of the208

three modalities as in previous studies. Addition-209

ally, each GCN layer filters node features based on210

the original neighbor matrix, which limits the effec-211

tiveness of the filtering operation. Thus, our multi-212

modal enhancement module processes the raw data213

first. As stated above, our proposed model is an214

end-to-end multimodal sentiment analysis method215

using unaligned multimodal data sources and deal216

with the issue of unbalance of different modalities.217

This fusion approach simultaneously establishes218

the dominance of text modality in multimodal sen-219

timent analysis. To the best of our knowledge, there 220

is little research on modeling unaligned multimodal 221

data sources with text modality as the dominant 222

modality. 223

3 Methodology 224

In this section, we first briefly define the problem 225

and then describe our model. 226

The task of the MSA is to predict the emo- 227

tional intensity, polarity,or emotional labeling of 228

a given multimodal input (video clip). The video 229

includes three modalities: t(text), a(acoustic) and 230

v(visual). The above modalities are represented as: 231

Mt ∈ RTt×dt , Ma ∈ RTa×da , Mv ∈ RTv×dv . Tm 232

and dm represent sequence length (e.g., number of 233

frames) and feature vector size of modality m. 234

3.1 Modality Encoding 235

We use BERT (Preo Tiuc Pietro and Devlin 236

Marier. 2019) to encode input sentences. The raw 237

sentence Mt = (w1, . . . , wn), n here means the 238

length of every utterance. We first add [CLS] and 239

[SEP] at the beginning and end of the sentence 240

respectively, and then embed the sentence, the re- 241

sulting text mode is Xt = (m0,m1, . . . ,mn+1), 242

For visual and acoustic, we first convolve them to 243

the same time dimension to obtain the processed vi- 244

sual M ′
v and acoustic M ′

a modalities for subsequent 245

processing. Compared to previous work (Hazarika 246

et al., 2020; Yu et al., 2021), we use two bidirec- 247

tional LSTM (Hochreiter and Schmidhuber, 1997) 248

to capture the time characteristics of these modes 249

instead of one-way LSTM. Specifically, we use 250

bidirectional Long Short-Term Memory (LSTM) 251

networks to encode sentiment context within acous- 252

tic and visual modalities. The above procedure is 253

formulated as follows: 254

Xs =
−−−−→
LSTM

(
M ′

s

)←−−−−
LSTM s ∈ {a, v} (1) 255

3.2 Modality Enhance Module 256

As shown in the Figure 3, the proposed multimodal 257

enhancement module can compute the complex 258

sentiment contexts within the acoustic and visual 259

modalities that are most relevant to the text modal- 260

ity. First, in the multimodal enhancement module, 261

the input text modality and acoustic modality (or 262

visual modality) are mapped together into a cross- 263

modal sentiment interaction space using a dot prod- 264

uct operation. That is, a joint cross-modal senti- 265

ment representation space is constructed.The infor- 266

mation of the acoustic modality (or visual modality) 267
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Figure 2: Overall architecture of the model.The model has four components: (1) modality encoding, (2)modality
enhance module (3) multimodal GCN interaction module, and (4) sentiment classify. The raw multimodal signals
are processed by the modality encoding to obtain numerical sequential vectors. Then, in the modality enhance
module, it helps the acoustic and visual modalities to obtain richer sentiment analysis capabilities. And the GCN
module extracts complementary information between the three modalities. Finally, theshifted word representations
is fed into the BERT Encoder layers to predict the sentiment.

Figure 3: Multimodal enhancement module, where
acoustic and visual modalities can obtain richer sen-
timent analysis capabilities with the help of text modali-
ties

is further enriched in the cross-modal joint repre-268

sentation space with the guidance of text modality.269

Then, L2 normalization is used to normalize the270

joint representation data, with the aim of comput-271

ing the guidance of the text modality on the other272

two modalities. The above procedure is formulated273

as follows:274

Xm = ||Xt ·Xs||2 s ∈ {a, v} (2)275

After normalizing the joint representation, we276

use it to change the position of the acoustic modal- 277

ity (or visual modality) in its original semantic 278

space, and finally obtain the acoustic modality 279

X ′
a(or visual modality X ′

v), which follows: 280

X ′
s = Xm +Xs s ∈ {a, v} (3) 281

The above operation can enrich the sentiment 282

context inside the acoustic modality and visual 283

modality to some extent, i.e., the more expressive 284

and discriminative modalities. 285

3.3 GCN Module 286

To capture cross-modal sentiment contexts, we con- 287

struct a spectral domain graph convolution net- 288

work to encode multimodal contextual informa- 289

tion inspired by (Chen et al., 2020; Li et al., 2019; 290

Hu et al., 2021). In the graph convolution mod- 291

ule, we will perform text-driven cross-modal fu- 292

sion, and it is not necessary to stack many layers 293

of graph convolution to obtain great results. In 294
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the GCN module, we construct 2N graphs(N is295

the number of text/viusal/acoustic modalities in296

the training set), which incudes N text-acoustic297

graphs Gta = (V,E), and N text-visual graphs298

Gtv = (V,E). V denotes the utterance nodes of299

two modalities, and the number of nodes in a graph300

can be freely divided according to the temporal301

dimension of the modalities. E ⊂ V × V , is a302

set containing different modal relationships, which303

denote the sentiment contexts in the temporal and304

feature domain. We construct each multimodal305

graph as follows.306

3.3.1 Nodes307

The nodes of the three modalities are represented308

as xti, x
a
i ,xvi , initialized by the input modal infor-309

mation Xt, X ′
a , X ′

v. That is, the modalities infor-310

mation corresponding to each sentence is used as311

nodes. We can divide the number of nodes accord-312

ing to the time dimension and the number of nodes313

in each graph can be, initialized with the number314

of modalities.315

3.3.2 Edges316

Calculating the weights of the edges in each graph317

is crucial. The traditional graph convolutional neu-318

ral networks (GCN) attempts to use 1 and 0 to319

represent weights, which fails to reflect the connec-320

tion importance between each node. We consider321

that if two nodes are similar, which means that322

the correlation between these two nodes is higher.323

To capture the correlation between different nodes,324

we use cosine distance to calculate the weights be-325

tween each graph node (Skianis et al., 2018). The326

specific representation is formulated as follows:327

Weighti = 1− arccos ((xt
i, x

s
i ))

π
s ∈ {a, v} (4)328

Based on the above basic information of node329

and edge weights, we construct multiple shallow330

bimodal undirected graphs to compute the correla-331

tion between the text modality and the other two332

modalities. Specifically, the reformulated graph333

Laplacian matrix (Kipf and Welling, 2016) of the334

undirected graph G = (V,E) is P̃:335

P̃ = D−1/2ÃD−1/2
= (D + I)−1/2

(A + I)(D + I)−1/2 (5)336

where A denotes the adjacency matrix, D denotes337

the diagonal matrix of the graph G, and I denotes338

the unit matrix. The GCN iterations of different339

layers can be expressed as:340

H(l+1)
= σ

((
(1 − α)P̃H(l)

+ αH(0)
) (

(1 − β) I + βW(l)
))

(6) 341

where α and β are two hyperparameters, σ de- 342

notes the activation function. W(l) is the learnable 343

weight matrix. β = log
(η
l + 1

)
, where η is also 344

a hyperparameter. The remaining connections to 345

the first layerH(0) are added to the representation 346

P̃H(l) and the constant mapping I is added to the 347

weight matrixW(l). 348

We will concatenate together the features ob- 349

tained from each graph for the subsequent classifi- 350

cation: 351

hs = [hta, htv] (7) 352

3.4 Sentiment Classification 353

We then utilize the the linear transformation layer 354

to shift hs to the semantic space of text modality 355

Xt. And, the output of linear transformation layer 356

is further transmitted to the BertEncoder that is 357

initialized in huggingface (Devlin et al., 2018b) 358

and associated with 12 layers. Note that, the first 359

token of the output vector of the last layer refers to 360

[CLS] that comprised the information needed for 361

classification task. Then, we use a linear layer to 362

analyze the obtained h
′′
s , leading to the y utilized 363

to reach the final sentiment prediction. 364

h′
s = Dropout (LayerNorm (hs +Xt))

h
′′
s = BERT (h′

s)

y = Wh
′′
s + b

(8) 365

We use mean square error (MSE) as the loss 366

function in this sentiment analysis task because it 367

is a regression task. 368

Ltask = MSE(y, ŷ) (9) 369

4 Experiment 370

4.1 Datasets 371

We evaluated our model on two public datasets. 372

• CMU-MOSI dataset (Zadeh et al., 2016) is 373

a universal benchmark for evaluating the per- 374

formance of fusion networks in emotional in- 375

tensity prediction tasks. This data set con- 376

tains many YouTube videos. It contains 2,199 377

speech videos, edited from 93 videos played 378

by 89 different narrators. Each segment was 379

manually labeled with a real score, ranging 380

from -3 to +3, indicating the relative strength 381

of negative (score below zero) or positive 382

(score above zero) emotions 383
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• CMU-MOSEI dataset (Zadeh et al., 2018)384

is an upgraded version of CMU-MOSI on385

sample number. It also enriches the versa-386

tility of the speaker, covering a wider range387

of topics. This dataset contains 23,453 video388

clips, which are annotated in the same way389

as CMU-MOSI. The clips were pulled from390

5,000 videos, involving 1,000 different speak-391

ers and 250 different topics.392

4.2 Preprocessing393

The multimodal signals in our experiments were394

unaligned (Yu et al., 2021).395

Text Modality The current work is in favor of396

advanced pre-trained language models. Therefore,397

the raw text input is encoded by BERT in all exper-398

iments.399

Acoustic Modality P2FA(Yuan et al., 2008) is400

used to extract visual features. It is a common401

toolkit and have been used frequently.402

Visual Modality We used COVAREP(Degottex403

et al., 2014), which is a professional acoustic anal-404

ysis framework for feature extraction.405

4.3 Baselines and Metrics406

We compare our results with several advanced mul-407

timodal fusion frameworks. We consider pure408

learning-based models such as TFN (Zadeh et al.,409

2017), LMF (Liu et al., 2018), MFM (Tsai et al.,410

2019b) and MulT (Tsai et al., 2019a). And meth-411

ods involving feature space manipulation, such as412

ICCN(Sun et al., 2020) and MISA(Hazarika et al.,413

2020). We also compared recent competitive base-414

lines for our models, such as MAG-Bert (Rahman415

et al., 2020), Self-MM (Yu et al., 2021), MMIM416

(Han et al., 2021),and MMGCN (Hu et al., 2021).417

• TFN (Zadeh et al., 2017): Tensor Fusion net-418

work extracts the local features of the three419

modes and uses the 3-fold Cartesian product420

to decompose each mode into tensors for in-421

ternal and external fusion of the modalities422

• LMF (Liu et al., 2018): The approach is to423

decompose the high-order tensors of modal424

into many low-order factors, and then fuse425

them based on these factors.426

• MFM (Tsai et al., 2019b): It is a generative427

discriminant model, which connects inference428

network and generative network with specific429

modal factors for fusion.430

• MULT (Tsai et al., 2019a): It leverages the 431

cross-modal attention mechanism, allowing 432

stacked Transformer networks to mitigate the 433

time alignment problems of multimodal sig- 434

nals. 435

• ICCN (Sun et al., 2020): Interactive canoni- 436

cal correlation networks rely on mathematical 437

metrics to minimize canonical losses between 438

modal pairs to achieve fusion. 439

• MISA (Hazarika et al., 2020): In this paper, 440

different modes are mapped to two indepen- 441

dent feature spaces to complete the fusion. 442

• MAG-BERT (Rahman et al., 2020): Mul- 443

timodal Adaptation Gate designed a multi- 444

modal adaptive gate, which was added to dif- 445

ferent pre-training models, such as BERT and 446

XLnet. 447

• SELF-MM (Yu et al., 2021): Self-supervised 448

Multi-Task Learning assigns each modal uni- 449

modal training task to find the optimal, so 450

that the back propagation of gradient can be 451

adjusted in the multi-modal task 452

• MMIM (Han et al., 2021): MultiModal Info- 453

Max preserves mission-critical information, 454

it layered to maximize mutual information in 455

the multimodal fusion pipeline. 456

• MMGCN (Hu et al., 2021): The framework 457

uses deep graph convolutional aggregation of 458

data from three modal inputs in parallel in the 459

ERC task to obtain long distance multimodal 460

information. 461

4.3.1 Metrics 462

A set of measures we used are: mean absolute error 463

(MAE), the average absolute difference between 464

the predicted value and true value. Pearson correla- 465

tion (Corr), which measures the degree of predic- 466

tion bias, represents the proportion of predictions 467

that correctly fall into the same range of the seven 468

ranges between -3 and +3, And binary classifica- 469

tion accuracy (Acc-2) and F1 scores calculated for 470

positive/negative and non-negative/negative classi- 471

fication results. 472

4.3.2 Basic Settings 473

The hyperparameter settings are as follows: The 474

number of GCN layers of MOSI and MOSEI is 1 475

layer. Dropout is 0.5. The learning rate is 0.00001. 476
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item MOSI MOSEI

learning rate 1e-5 1e-5
α 0.2 0.5
η 0.9 0.4

LSTM hidden dim 15 15
dropout 0.5 0.5

Table 1: Hyperparameters for best performance

α and η were set to [0.2, 0.9] and [0.5,0.4] in MOSI477

and MOSEI. The batch sizes for MOSI and MOSEI478

are [48,128,128] and [64,128,128] for train, valid479

as well as test.480

5 Results and Discussions481

Table 3 shows the results of MECG on the CMU-482

MOSI and CMU-MOSEI datasets compared with483

the baseline models. Based on the data align-484

ment requirements, we classify the baseline models485

into two categories: Unaligned and Word Aligned.486

Compared with the adopted baseline, the proposed487

models yielded competitive results, and MECG488

still outperformed the models using aligned multi-489

moal data without aligning the mltimodal data in490

advance. We compared our proposed model with491

all baseline models of the CMU-MOSI and CMU-492

MOSEI datasets in multimodal settings described493

above. In more detail, MECG is superior to SOTA494

in some metrics (Acc-2, F1) of CMU-MOSI and495

CMU-MOSEI. For the other metrics, we achieved496

close performance to SOTA.497

Figure 4: We study the effect of different GCN aggrega-
tion layers on CMU-MOSI and CMU-MOSEI dataset.

5.1 Ablation Study498

We conducted an ablation study on the CMU-499

MOSEI dataset to test the functionality of the over-500

all architecture and components presented in this501

paper.502

First, as shown in Figure 4. The results showed 503

that it is not necessary to stack too many layers of 504

the GCN, but only to perform one aggregation and 505

residual concatenation for each multimodal graph 506

to obtain the best results. In addition, as shown 507

in Table 2. In seven experiments, we validate the 508

effectiveness of the bimodal fusion architecture in 509

GCN module. Specifically, we (1) used only one 510

pair as input; (2) freely combined three multimodal 511

bimodal pairs, (TV/TA/VA); and (3) added a visual- 512

acoustic(VA) complementary module to build a 513

ternary symmetric model. 514

In terms of results, type (2) outperforms type (1), 515

indicating the importance of all three modalities. 516

Moreover, the performance of the acoustic-focused 517

input (TA+VA) is close to that of the text-focused 518

input (our TV+TA), i.e., our architecture can oper- 519

ate on these modalities pairs as well. In contrast, 520

when visual-acoustic (VA) input pairs are added, 521

the performance of type (3) decreases. This means 522

that, even if all modalities are included in the input, 523

the redundant structure can introduce malicious 524

noise, corrupt useful information and clutter the 525

model. The largest improvement over the baseline 526

shown in Table 2 comes from TV+TA pairs. 527

To investigate the effect of the fine-grained gran- 528

ularity of time on the graph convolution module, 529

as shown in Table 4, we cut the nodes in each mul- 530

timodal graph according to the time dimension, 531

yielding a different number of nodes for aggrega- 532

tion. The results show that in the MOSI dataset, we 533

obtained optimal results by dividing each modality 534

of each graph into two nodes by time dimension 535

for aggregation. In contrast, in the MOSEI dataset, 536

the optimal results are obtained without division. 537

5.2 Further Analysis 538

We use the visualization method t-SNE to visual- 539

ize and analyze the experimental results, which 540

Node Num(each modality) MOSI MOSEI

1 86.28 86.24
2 86.43 86.21
3 85.67 86.13
4 85.67 86.10
5 85.97 86.18

10 85.82 85.99

Table 2: We divide each modality to different numbers
of nodes in each graph and compute the Acc-2 on the
CMU-MOSI and CMU-MOSEI.
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(Word Aligned) MOSI (Word Aligned) MOSEI
Models MAE Corr Acc-2 F1 MAE Corr Acc-2 F1

LMF 0.917 0.695 -/82.5 -/82.4 0.623 0.677 -/82.0 -/82.1
MFM 0.877 0.706 -/81.7 -/81.6 0.568 0.717 -/84.4 -/84.3
ICCN 0.862 0.714 -/83.0 -/83.0 0.565 0.713 -/84.2 -/84.2
MISA 0.804 0.764 80.79/82.10 80.77/82.03 0.568 0.724 82.59/84.23 82.67/83.97
MAG-BERT 0.731 0.789 82.5/84.3 82.54/84.43 0.543 0.755 82.51/84.82 82.77/84.71

(Unaligned) MOSI (Unaligned) MOSEI
Models MAE Corr Acc-2 F1 MAE Corr Acc-2 F1

TFN 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1
MULT 0.861 0.711 81.5/84.0 80.6/83.9 0.580 0.703 -/82.5 -/82.3
MMGCN 0.757 0.775 83.40/85.23 83.38/85.22 0.580 0.770 82.84/85.10 82.91/84.99
Self-MM 0.712 0.795 82.54/84.77 82.68/84.91 0.529 0.767 82.68/84.96 82.95/84.93
MMIM 0.700 0.800 84.14/86.06 84.00/85.98 0.526 0.772 82.24/85.97 82.66/85.94

Ours(No enhance) 0.750 0.783 83.53/85.67 83.47/85.55 0.575 0.798 83.00/85.77 83.24/85.69
Ours 0.737 0.795 84.44/86.43 84.37/86.31 0.565 0.799 83.32/86.24 83.42/86.18

Table 3: Results on CMU-MOSI and CMU-MOSEI. All models use BERT as the text encoder. For Acc-2 and F1,
we have two sets of non-negative/negative (left) and positive/negative (right) evaluation results. NOTE: - means the
results are not given in the paper.

Description(in GCN module) MAE Corr Acc-2 F1

TV only 0.577 0.797 85.80 85.66
TA only 0.576 0.797 85.88 85.82
VA only 0.577 0.796 85.69 85.63
TA+VA (Acoustic-driven GCN) 0.569 0.798 85.91 85.85
TV+VA (Visual-driven GCN) 0.575 0.798 85.55 85.49
TV+TA (Text-driven GCN) 0.565 0.799 86.24 86.18
TV+TA+VA 0.566 0.798 85.96 85.91

Table 4: The effect of modalities on the CMU-MOSEI
dataset

can present the data distribution of the multimodal541

sentiment fusion information obtained from model542

learning more intuitively. Figure 5 shows what543

data information characterizes both positive and544

negative emotions for the sentiment classification545

task. Blue dots correspond to positive emotion546

data, red dots refers to negative emotion data. After547

learning our model, we obtain more discriminative548

multimodal sentiment fusion information.Figure 5549

shows a further visual analysis of the multimodal550

enhancement module, and the subplot on the left551

is the result without the modality enhance module.552

The classification effect is obviously not as good as553

the result of the right side subplot which includes554

the multimodal enhance module.555

Figure 5: The t-SNE visualization of the effect of multi-
modal enhance module

6 Conclusion 556

In this paper, we propose a text-driven multimodal 557

fusion framework, MECG, for multimodal sen- 558

timent analysis tasks. We propose multimodal 559

enahnce module, which helps to enrich the modal- 560

ities reperesentations and remove redundant in- 561

formation before constructing multimodal graphs 562

and aggregating multimodal information, thus im- 563

proving multimodal information imbalance during 564

graph convolution. MECG constructs multimodal 565

transformed word representations that dynamically 566

capture changes in different nonverbal contexts. 567

We conducted comprehensive experiments on two 568

datasets (CMU-MOSI, CMU-MOSEI) followed by 569

an ablation study, and the results validated the ef- 570

fectiveness and necessity of our fusion process. 571
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