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Abstract

In multimodal sentiment analysis tasks, it is
very challenging to model the relationships
between different modalities and fusing them.
The problem in this area is the unbalance of sen-
timent representation and distribution across
the different modalities, resulting in a fusion
process that deviates from the multimodal sen-
timent semantic space. We propose a novel
fusion framework, MECG, which is based on
graph convolutional neural networks and pro-
vides an efficient approach for fusing unaligned
multimodal sequences. With the help of text
modalities, we first use the multimodal en-
hancement module to enhance visual and acous-
tic modalities for obtaining more discriminative
modalities, thus assisting the subsequent aggre-
gation process. In addition, we construct text-
driven multimodal feature graphs for modality
fusion, which can effectively deal with the un-
balance issue among modalities in the graph
convolution aggregation process. Finally, we
integrate the fused information extracted by
MECG into the verbal representation, thus dy-
namically transforming the original word rep-
resentations toward the most accurate multi-
modal sentiment-semantic space. Our model
proves its effectiveness and superiority on two
publicly available datasets, CMU-MOSI and
CMU-MOSEL

1 Introduction

With the rapid development of multimedia technol-
ogy, multimodal sentiment analysis (MSA) has be-
come a popular topic, and how to perform efficient
sentiment analysis on data with different modalities
is a great challenge for artificial intelligence(Ngiam
et al., 2011). Compared with individual modal
sentiment analysis, multimodal sentiment analysis
can help us understand the sentiment behind the
data more effectively and precisely, and is therefore
widely used in sentiment analysis tasks. In general,
the different modalities serve as a complement to
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Figure 1: Previous fusion schemes developed by graph
construction for the task of multimodal sentiment anal-
ysis. The displayed data were taken from the CMU-
MOSI dataset.

each other in order to better bridge the semantic
and sentiment divergence (Zhang et al., 2018).

A key part of MSA is multimodal fusion, where
a model aims to extract and integrate information
from all input modalities in order to discriminate
sentiment. For instance, Zadeh et al. proposed ten-
sor fusion networks to extract unimodal, bimodal,
and trimodal interactions (Zadeh et al., 2017), and
MISA firstly projected each modality into two dif-
ferent subspaces and investigated the commonali-
ties and specific features from the corresponding
subspace (Hazarika et al., 2020). Tsai et al. in-
troduced multimodal converters (MulT) to capture
intermodal messages using a cross-modal attention
mechanism (Tsai et al., 2019a). Tang et al pro-
posed a Coupled-Translation Fusion Network(Tang
et al., 2021) and Multi-Way Multi-Modal Trans-
former for multimodal learning(Tang et al.). Hu et
al. proposed a multimodal GCN fusion scheme to
capture the long distance information in emotion
recognition (Hu et al., 2021). However, as show in
Figure 1, previous fusion structure obtained in mul-
timodal learning task is a ternary symmetric struc-
ture, where the bidirectional cross-modalities are
modeled in a somewhat identical manner. Notably,
it was found in many previous studies (Chen et al.,
2017; Sun et al., 2020) that the critical information



distributed in the three modalities is unbalanced,
where the text modality containing more sentimen-
tal information compared to complementary modal-
ities(visual and acoustic)(Guo et al., 2022). There-
fore, the architecture that does not consider the
relative importance of these three modalities can-
not properly integrate them. In order to deal with
the above issue, this paper will complete the inter-
modal information fusion under the dominance of
text modality.

We propose an enhancement module for the
acoustic and visual modalities in the preprocess-
ing stage, with the aim of being able to compute
the most relevant cross-modality sentiment con-
text between the visual and acoustic modalities
with respect to the text modality. Actually, the text
modality plays the most critical role among the
three modalities and contains the richest informa-
tion (Sun et al., 2020; Chen et al., 2017). Hence,
the above enhancement module can be used to al-
low the acoustic and visual modalities to remove
the redundant contextual information within the
modality that is less relevant to the sentiment anal-
ysis task with the help of the text. Additionally, the
above procedure is able to improve the sentiment
analysis capabilities of visual and acoustic. Thus
helping to further fuse and extract the data among
the three modalities in the next step. The proposed
graph convolution module MECG is able to extract
the complementary information from the other two
modalities and the text modality. We believe that
the graph structure can well represent the corre-
spondence between the modalities, and the weights
between the nodes can not only reflect the impor-
tant information within the modalities but also the
correlation between the modalities. We enter the
three modalities into the graph convolution module,
and get the neighboring edge values by calculat-
ing the node similarity. Therefore, the effective
information of visual and acoustic modalities to
text modality can be extracted by aggregation cal-
culation respectively. The extracted information
is fed into BERT (Devlin et al., 2018a) Encoder
as an auxiliary, combined with the text informa-
tion, to extract the final sentiment contexts via the
self-attention mechanism. Our contribution can be
summarized as follows:

* We propose a multimodal enhancement mod-
ule that allows acoustic and visual modalities
to eliminate their own redundant information
with the help of text modalities to improve

emotion discrimination.

* The designed graph fusion framework MECG
can learn complementary information of vi-
sual and acoustic to text modalities through
inter-modal association, thus helping the trans-
formation of text representaions in multi-
modal semantic space.

* We validate the effectiveness and superiority
of the proposed multimodal fusion framework
in two publicly available multimodal senti-
ment analysis databases.

2 Related Work

In this section, we give a brief overview of some
related work on multimodal sentiment analysis and
fusion.

Due to the ambiguity of single language modal-
ity, sentiments are limited in their expressiveness
(Williams et al., 2018). This ambiguity typically
occurs in scenarios such as slang and sarcasm. To
overcome the limitations of single language modal-
ity, additional information about nonverbal behav-
ior can be an important complement.

Multimodal sentiment analysis (MSA) is a
branch of multimodal language analysis (Zadeh
et al., 2018), which predicts the final human emo-
tional expression through the joint analysis of text,
acoustic and visual information (Morency et al.,
2011). In this field, people focus on the construc-
tion of new multimodal neural network and the
fusion method between modalities so as to obtain
superior effect in sentiment analysis (Liang et al.,
2018; Tsai et al., 2019b). In the past few years,
deep neural networks have been used to learn mul-
timodal representations in sentiment analysis, such
as Long Short-Term Memory (LSTM), which is
used to model long-term dependencies from low-
level multimodal features. Most previous work in
this area has focused on early or late fusion. For
example, Zadeh et al. (Zadeh et al., 2017) pro-
posed a tensor fusion network (TFN) that fuses
different modal representations at a deeper level.
As the attentional mechanism became more pop-
ular, Zadeh et al. (Zadeh et al., 2019) modified
the LSTM with a new multi-attentional block to
capture the interaction between different modali-
ties over time. Recursive Memory Fusion Network
(RMFN) (Liang et al., 2018) captures the subtle
interactions between modalities in a multi-stage
manner, enabling each stage to focus on a subset of



signals. The novel training scheme proposed by Yu
et al. generates additional unimodal labels for each
modality simultaneously with its main task and
trains simultaneously with it. Developing modal-
specific representations is facilitated by unimodal
subtasks (Yu et al., 2021).

Most of the aforementioned research in this area
is based on the assumption that multimodal data
sources are already aligned. However, more gen-
eral approaches for sentiment analysis or emo-
tion recognition tasks should be investigated on
unaligned multimodal data sources. Multimodal
Transformer (MulT) (Tsai et al., 2019a) deploy
three transformers for one modality to capture in-
teractions with the other two modalities in a self-
attention manner. Yang et al. first converted the
unaligned multimodal sequence data into a graph.
Then, they designed a method called MTAG to cap-
ture the various interactions between modalities
(Yang et al., 2021). Hu et al. designed a mul-
timodal fusion convolutional network, MMGCN,
which provides a more efficient way to utilize mul-
timodal and remote context information(Hu et al.,
2021).

Graph Convolutional Networks have been
widely used in the field of multimodal sentiment in
the last few years, especially for Emotion Recog-
nition in Conversation (ERC), and have achieved
competitive performance due to their ability to han-
dle non-Euclidean numbers and intuitive structure.
DialogueGCN(Ghosal et al., 2019) uses a graph-
based structure to capture conversational dependen-
cies between corpora. MMGCN(Hu et al., 2021)
further proposes a GCN-based multimodal fusion
approach for multimodal ERC tasks to improve
recognition performance.

However, previous work focused on the corre-
spondence between different modalities, and we
emphasized the role of text modality in MECG in-
stead of directly aggregating the information of the
three modalities as in previous studies. Addition-
ally, each GCN layer filters node features based on
the original neighbor matrix, which limits the effec-
tiveness of the filtering operation. Thus, our multi-
modal enhancement module processes the raw data
first. As stated above, our proposed model is an
end-to-end multimodal sentiment analysis method
using unaligned multimodal data sources and deal
with the issue of unbalance of different modalities.
This fusion approach simultaneously establishes
the dominance of text modality in multimodal sen-

timent analysis. To the best of our knowledge, there
is little research on modeling unaligned multimodal
data sources with text modality as the dominant
modality.

3 Methodology

In this section, we first briefly define the problem
and then describe our model.

The task of the MSA is to predict the emo-
tional intensity, polarity,or emotional labeling of
a given multimodal input (video clip). The video
includes three modalities: t(text), a(acoustic) and
v(visual). The above modalities are represented as:
M, € RT*xde M, € RTaxda N, € RTvXde T,
and d,,, represent sequence length (e.g., number of
frames) and feature vector size of modality m.

3.1 Modality Encoding

We use BERT (Preo Tiuc Pietro and Devlin
Marier. 2019) to encode input sentences. The raw
sentence M; = (wi,...,wy), n here means the
length of every utterance. We first add [CLS] and
[SEP] at the beginning and end of the sentence
respectively, and then embed the sentence, the re-
sulting text mode is X; = (mo,my, ..., Mpt1),
For visual and acoustic, we first convolve them to
the same time dimension to obtain the processed vi-
sual M and acoustic M/ modalities for subsequent
processing. Compared to previous work (Hazarika
et al., 2020; Yu et al., 2021), we use two bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
to capture the time characteristics of these modes
instead of one-way LSTM. Specifically, we use
bidirectional Long Short-Term Memory (LSTM)
networks to encode sentiment context within acous-
tic and visual modalities. The above procedure is
formulated as follows:

Xy = LSTM (M) LSTM se {a,v} (1)

3.2 Modality Enhance Module

As shown in the Figure 3, the proposed multimodal
enhancement module can compute the complex
sentiment contexts within the acoustic and visual
modalities that are most relevant to the text modal-
ity. First, in the multimodal enhancement module,
the input text modality and acoustic modality (or
visual modality) are mapped together into a cross-
modal sentiment interaction space using a dot prod-
uct operation. That is, a joint cross-modal senti-
ment representation space is constructed.The infor-
mation of the acoustic modality (or visual modality)
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Figure 2: Overall architecture of the model. The model has four components: (1) modality encoding, (2)modality
enhance module (3) multimodal GCN interaction module, and (4) sentiment classify. The raw multimodal signals
are processed by the modality encoding to obtain numerical sequential vectors. Then, in the modality enhance
module, it helps the acoustic and visual modalities to obtain richer sentiment analysis capabilities. And the GCN
module extracts complementary information between the three modalities. Finally, theshifted word representations
is fed into the BERT Encoder layers to predict the sentiment.
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Figure 3: Multimodal enhancement module, where
acoustic and visual modalities can obtain richer sen-
timent analysis capabilities with the help of text modali-
ties

is further enriched in the cross-modal joint repre-
sentation space with the guidance of text modality.
Then, L2 normalization is used to normalize the
joint representation data, with the aim of comput-
ing the guidance of the text modality on the other
two modalities. The above procedure is formulated
as follows:

Xm = ||Xt- Xsll2 s €{a,v} 2)

After normalizing the joint representation, we

use it to change the position of the acoustic modal-
ity (or visual modality) in its original semantic
space, and finally obtain the acoustic modality
X! (or visual modality X)), which follows:

X =Xn+Xs s€{a,v} 3)

The above operation can enrich the sentiment
context inside the acoustic modality and visual
modality to some extent, i.e., the more expressive
and discriminative modalities.

3.3 GCN Module

To capture cross-modal sentiment contexts, we con-
struct a spectral domain graph convolution net-
work to encode multimodal contextual informa-
tion inspired by (Chen et al., 2020; Li et al., 2019;
Hu et al., 2021). In the graph convolution mod-
ule, we will perform text-driven cross-modal fu-
sion, and it is not necessary to stack many layers
of graph convolution to obtain great results. In



the GCN module, we construct 2N graphs(N is
the number of text/viusal/acoustic modalities in
the training set), which incudes N text-acoustic
graphs Gy, = (V, E), and N text-visual graphs
G = (V, E). V denotes the utterance nodes of
two modalities, and the number of nodes in a graph
can be freely divided according to the temporal
dimension of the modalities. £ C V x V, is a
set containing different modal relationships, which
denote the sentiment contexts in the temporal and
feature domain. We construct each multimodal
graph as follows.

3.3.1 Nodes

The nodes of the three modalities are represented
as a:ﬁ, x¢,xy, initialized by the input modal infor-
mation X;, X! , X|. That is, the modalities infor-
mation corresponding to each sentence is used as
nodes. We can divide the number of nodes accord-
ing to the time dimension and the number of nodes
in each graph can be, initialized with the number

of modalities.

3.3.2 Edges

Calculating the weights of the edges in each graph
is crucial. The traditional graph convolutional neu-
ral networks (GCN) attempts to use 1 and O to
represent weights, which fails to reflect the connec-
tion importance between each node. We consider
that if two nodes are similar, which means that
the correlation between these two nodes is higher.
To capture the correlation between different nodes,
we use cosine distance to calculate the weights be-
tween each graph node (Skianis et al., 2018). The
specific representation is formulated as follows:

tops
Weights — 1 — arccos ((x;,x5))

s€f{a,v} @)

Based on the above basic information of node
and edge weights, we construct multiple shallow
bimodal undirected graphs to compute the correla-
tion between the text modality and the other two
modalities. Specifically, the reformulated graph
Laplacian matrix (Kipf and Welling, 2016) of the
undirected graph G = (V, E) is P:

P D V2 ip-1/2 _ (’D+I)71/2(A+I)(’D+I)71/2 ©)

where A denotes the adjacency matrix, D denotes
the diagonal matrix of the graph G, and Z denotes
the unit matrix. The GCN iterations of different
layers can be expressed as:

HIHD = & (((1 —a)PHD + a’H(U>) ((1 — BT+ 5W”>)) )

where « and 3 are two hyperparameters, o de-
notes the activation function. W is the learnable
weight matrix. 5 = log (? + 1), where 7 is also
a hyperparameter. The remaining connections to
the first layer HO) are added to the representation
PH®D and the constant mapping Z is added to the
weight matrix w,

We will concatenate together the features ob-
tained from each graph for the subsequent classifi-
cation:

hs = [htaa htv] @)

3.4 Sentiment Classification

We then utilize the the linear transformation layer
to shift i to the semantic space of text modality
X¢. And, the output of linear transformation layer
is further transmitted to the BertEncoder that is
initialized in huggingface (Devlin et al., 2018b)
and associated with 12 layers. Note that, the first
token of the output vector of the last layer refers to
[CLS] that comprised the information needed for
classification task. Then, we use a linear layer to
analyze the obtained hg , leading to the y utilized
to reach the final sentiment prediction.

h:sl = Dropout (Layer Norm (hs + Xt))
hs = BERT(h}) 8)
y =Wh, +b
We use mean square error (MSE) as the loss
function in this sentiment analysis task because it
is a regression task.

Etask: = MSE(y7 Q) (9)

4 Experiment

4.1 Datasets

We evaluated our model on two public datasets.

* CMU-MOSI dataset (Zadeh et al., 2016) is
a universal benchmark for evaluating the per-
formance of fusion networks in emotional in-
tensity prediction tasks. This data set con-
tains many YouTube videos. It contains 2,199
speech videos, edited from 93 videos played
by 89 different narrators. Each segment was
manually labeled with a real score, ranging
from -3 to 43, indicating the relative strength
of negative (score below zero) or positive
(score above zero) emotions



¢ CMU-MOSEI dataset (Zadeh et al., 2018)
is an upgraded version of CMU-MOSI on
sample number. It also enriches the versa-
tility of the speaker, covering a wider range
of topics. This dataset contains 23,453 video
clips, which are annotated in the same way
as CMU-MOSI. The clips were pulled from
5,000 videos, involving 1,000 different speak-
ers and 250 different topics.

4.2 Preprocessing

The multimodal signals in our experiments were
unaligned (Yu et al., 2021).

Text Modality The current work is in favor of
advanced pre-trained language models. Therefore,
the raw text input is encoded by BERT in all exper-
iments.

Acoustic Modality P2FA(Yuan et al., 2008) is
used to extract visual features. It is a common
toolkit and have been used frequently.

Visual Modality We used COVAREP(Degottex
et al., 2014), which is a professional acoustic anal-
ysis framework for feature extraction.

4.3 Baselines and Metrics

We compare our results with several advanced mul-
timodal fusion frameworks. We consider pure
learning-based models such as TFN (Zadeh et al.,
2017), LMF (Liu et al., 2018), MFM (Tsai et al.,
2019b) and MulT (Tsai et al., 2019a). And meth-
ods involving feature space manipulation, such as
ICCN(Sun et al., 2020) and MISA(Hazarika et al.,
2020). We also compared recent competitive base-
lines for our models, such as MAG-Bert (Rahman
et al., 2020), Self-MM (Yu et al., 2021), MMIM
(Han et al., 2021),and MMGCN (Hu et al., 2021).

e TEN (Zadeh et al., 2017): Tensor Fusion net-
work extracts the local features of the three
modes and uses the 3-fold Cartesian product
to decompose each mode into tensors for in-
ternal and external fusion of the modalities

e LMF (Liu et al., 2018): The approach is to
decompose the high-order tensors of modal
into many low-order factors, and then fuse
them based on these factors.

* MFM (Tsai et al., 2019b): It is a generative
discriminant model, which connects inference
network and generative network with specific
modal factors for fusion.

MULT (Tsai et al., 2019a): It leverages the
cross-modal attention mechanism, allowing
stacked Transformer networks to mitigate the
time alignment problems of multimodal sig-
nals.

ICCN (Sun et al., 2020): Interactive canoni-
cal correlation networks rely on mathematical
metrics to minimize canonical losses between
modal pairs to achieve fusion.

MISA (Hazarika et al., 2020): In this paper,
different modes are mapped to two indepen-
dent feature spaces to complete the fusion.

MAG-BERT (Rahman et al., 2020): Mul-
timodal Adaptation Gate designed a multi-
modal adaptive gate, which was added to dif-
ferent pre-training models, such as BERT and
XLnet.

* SELF-MM (Yu et al., 2021): Self-supervised
Multi-Task Learning assigns each modal uni-
modal training task to find the optimal, so
that the back propagation of gradient can be
adjusted in the multi-modal task

* MMIM (Han et al., 2021): MultiModal Info-
Max preserves mission-critical information,
it layered to maximize mutual information in
the multimodal fusion pipeline.

MMGCN (Hu et al., 2021): The framework
uses deep graph convolutional aggregation of
data from three modal inputs in parallel in the
ERC task to obtain long distance multimodal
information.

4.3.1

A set of measures we used are: mean absolute error
(MAE), the average absolute difference between
the predicted value and true value. Pearson correla-
tion (Corr), which measures the degree of predic-
tion bias, represents the proportion of predictions
that correctly fall into the same range of the seven
ranges between -3 and +3, And binary classifica-
tion accuracy (Acc-2) and F1 scores calculated for
positive/negative and non-negative/negative classi-
fication results.

Metrics

4.3.2 Basic Settings

The hyperparameter settings are as follows: The
number of GCN layers of MOSI and MOSEI is 1
layer. Dropout is 0.5. The learning rate is 0.00001.



item MOSI MOSEI
learning rate le-5 le-5
o 0.2 0.5
n 0.9 0.4
LSTM hidden dim 15 15
dropout 0.5 0.5

Table 1: Hyperparameters for best performance

a and ) were set to [0.2, 0.9] and [0.5,0.4] in MOSI
and MOSEI. The batch sizes for MOSI and MOSEI
are [48,128,128] and [64,128,128] for train, valid
as well as test.

5 Results and Discussions

Table 3 shows the results of MECG on the CMU-
MOSI and CMU-MOSEI datasets compared with
the baseline models. Based on the data align-
ment requirements, we classify the baseline models
into two categories: Unaligned and Word Aligned.
Compared with the adopted baseline, the proposed
models yielded competitive results, and MECG
still outperformed the models using aligned multi-
moal data without aligning the mltimodal data in
advance. We compared our proposed model with
all baseline models of the CMU-MOSI and CMU-
MOSEI datasets in multimodal settings described
above. In more detail, MECG is superior to SOTA
in some metrics (Acc-2, F1) of CMU-MOSI and
CMU-MOSEI. For the other metrics, we achieved
close performance to SOTA.

87
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Figure 4: We study the effect of different GCN aggrega-
tion layers on CMU-MOSI and CMU-MOSETI dataset.

5.1 Ablation Study

We conducted an ablation study on the CMU-
MOSEI dataset to test the functionality of the over-
all architecture and components presented in this

paper.

First, as shown in Figure 4. The results showed
that it is not necessary to stack too many layers of
the GCN, but only to perform one aggregation and
residual concatenation for each multimodal graph
to obtain the best results. In addition, as shown
in Table 2. In seven experiments, we validate the
effectiveness of the bimodal fusion architecture in
GCN module. Specifically, we (1) used only one
pair as input; (2) freely combined three multimodal
bimodal pairs, (TV/TA/VA); and (3) added a visual-
acoustic(VA) complementary module to build a
ternary symmetric model.

In terms of results, type (2) outperforms type (1),
indicating the importance of all three modalities.
Moreover, the performance of the acoustic-focused
input (TA+VA) is close to that of the text-focused
input (our TV+TA), i.e., our architecture can oper-
ate on these modalities pairs as well. In contrast,
when visual-acoustic (VA) input pairs are added,
the performance of type (3) decreases. This means
that, even if all modalities are included in the input,
the redundant structure can introduce malicious
noise, corrupt useful information and clutter the
model. The largest improvement over the baseline
shown in Table 2 comes from TV+TA pairs.

To investigate the effect of the fine-grained gran-
ularity of time on the graph convolution module,
as shown in Table 4, we cut the nodes in each mul-
timodal graph according to the time dimension,
yielding a different number of nodes for aggrega-
tion. The results show that in the MOSI dataset, we
obtained optimal results by dividing each modality
of each graph into two nodes by time dimension
for aggregation. In contrast, in the MOSEI dataset,
the optimal results are obtained without division.

5.2 Further Analysis

We use the visualization method t-SNE to visual-
ize and analyze the experimental results, which

Node Num(each modality) ‘ MOSI MOSEI
1 86.28 86.24
2 86.43 86.21
3 85.67 86.13
4 85.67 86.10
5 85.97 86.18
10 85.82 85.99

Table 2: We divide each modality to different numbers
of nodes in each graph and compute the Acc-2 on the
CMU-MOSI and CMU-MOSEI.



(Word Aligned) MOSI (Word Aligned) MOSEI
Models MAE Corr Acc-2 F1 MAE Corr Acc-2 F1
LMF 0917 0.695 -/82.5 -/82.4 0.623 0.677 -/82.0 -/82.1
MFM 0.877 0.706 -/81.7 -/81.6 0.568 0.717 -/84.4 -/84.3
ICCN 0.862 0.714 -/83.0 -/83.0 0.565 0.713 -/84.2 -/84.2
MISA 0.804 0.764 80.79/82.10 80.77/82.03 | 0.568 0.724 82.59/84.23 82.67/83.97
MAG-BERT 0.731 0.789 82.5/84.3 82.54/84.4310.543 0.755 82.51/84.82 82.77/84.71

(Unaligned) MOSI (Unaligned) MOSEI
Models MAE Corr Acc-2 F1 MAE Corr Acc-2 F1
TFN 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1
MULT 0.861 0.711 81.5/84.0 80.6/83.9 |0.580 0.703 -/82.5 -/82.3
MMGCN 0.757 0.775 83.40/85.23 83.38/85.220.580 0.770 82.84/85.10 82.91/84.99
Self-MM 0.712 0.795 82.54/84.77 82.68/84.91|0.529 0.767 82.68/84.96 82.95/84.93
MMIM 0.700 0.800 84.14/86.06 84.00/85.98 |0.526 0.772 82.24/85.97 82.66/85.94
Ours(No enhance) | 0.750 0.783 83.53/85.67 83.47/85.55|0.575 0.798 83.00/85.77 83.24/85.69
Ours 0.737 0.795 84.44/86.43 84.37/86.31 | 0.565 0.799 83.32/86.24 83.42/86.18

Table 3: Results on CMU-MOSI and CMU-MOSEI. All models use BERT as the text encoder. For Acc-2 and F1,
we have two sets of non-negative/negative (left) and positive/negative (right) evaluation results. NOTE: - means the

results are not given in the paper.

Description(in GCN module) ‘ MAE Corr Acc-2 Fl = M
TV only 0.577 0.797 85.80 85.66
TA only 0576 0.797 85.88 85.82
VA only 0.577 0.796 85.69 85.63
TA+VA (Acoustic-driven GCN) | 0.569 0.798 8591 85.85
TV+VA (Visual-driven GCN) 0.575 0.798 8555 85.49
TV+TA (Text-driven GCN) 0.565 0.799 86.24 86.18
TV+TA+VA 0.566 0.798 8596 85.91 - =

Table 4: The effect of modalities on the CMU-MOSEI
dataset

can present the data distribution of the multimodal
sentiment fusion information obtained from model
learning more intuitively. Figure 5 shows what
data information characterizes both positive and
negative emotions for the sentiment classification
task. Blue dots correspond to positive emotion
data, red dots refers to negative emotion data. After
learning our model, we obtain more discriminative
multimodal sentiment fusion information.Figure 5
shows a further visual analysis of the multimodal
enhancement module, and the subplot on the left

is the result without the modality enhance module.

The classification effect is obviously not as good as
the result of the right side subplot which includes
the multimodal enhance module.

Model without enhance Model with enhance

Figure 5: The t-SNE visualization of the effect of multi-
modal enhance module

6 Conclusion

In this paper, we propose a text-driven multimodal
fusion framework, MECG, for multimodal sen-
timent analysis tasks. We propose multimodal
enahnce module, which helps to enrich the modal-
ities reperesentations and remove redundant in-
formation before constructing multimodal graphs
and aggregating multimodal information, thus im-
proving multimodal information imbalance during
graph convolution. MECG constructs multimodal
transformed word representations that dynamically
capture changes in different nonverbal contexts.
We conducted comprehensive experiments on two
datasets (CMU-MOSI, CMU-MOSEI) followed by
an ablation study, and the results validated the ef-
fectiveness and necessity of our fusion process.
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