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How Do Nonlinear Transformers Acquire Generalization-Guaranteed
CoT Ability?
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Abstract
Chain-of-Thought (CoT) is an efficient prompting
method that enables the reasoning ability of large
language models by augmenting the query using
multiple examples with intermediate steps. De-
spite the empirical success, the theoretical under-
standing of how to train a Transformer to achieve
the CoT ability remains less explored. This is
primarily due to the technical challenges involved
in analyzing the nonconvex optimization on non-
linear attention models. To the best of our knowl-
edge, this work provides the first theoretical study
of training Transformers with nonlinear attention
to obtain the CoT generalization capability so that
the resulting model can reason on unseen tasks
when the input is augmented by examples of the
new task. We first quantify the required train-
ing samples and iterations to train a model with
CoT ability. We then prove the success of its CoT
generalization on unseen tasks with distribution-
shifted testing data. Moreover, we theoretically
characterize the conditions for an accurate reason-
ing output by CoT even when the provided reason-
ing examples contain noises and are not always
accurate. In contrast, in-context learning (ICL),
which can be viewed as one-step CoT without in-
termediate steps, may fail to provide an accurate
output when CoT does. These theoretical findings
are justified through experiments.

1. Introduction
Transformer-based large-scale foundation models, such as
GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023), LLaMa
(Touvron et al., 2023a;b), and Sora (Liu et al., 2024), have
demonstrated remarkable success across various tasks, in-
cluding natural language processing (Brown et al., 2020;
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Touvron et al., 2023b), multimodal learning (OpenAI, 2023;
Radford et al., 2021), and image/video generation (OpenAI,
2023; Liu et al., 2024). What is more surprising is that
large language models (LLMs) demonstrate reasoning abil-
ity through the so-called “Chain-of-Thought” (CoT) method
(Wei et al., 2022). The objective is to let a pre-trained LLM
generate K steps of reasoning given input query xquery
without any fine-tuning. To achieve that, the input xquery
is augumented with l examples {xi, {yi,j}Kj=1}li=1 of a cer-
tain K-step reasoning task, where each xi is the input with
yi,j as the j-th reasoning step, and yi,K is the final output.
A pre-trained model then takes the resulting augmented in-
put, referred to as a prompt, and outputs the corresponding
reasoning steps {zj}Kj=1 for xquery, or simply outputs zK .
CoT can be viewed as an extended and more intelligent
method than the previous in-context learning (ICL) method,
where only input-label pairs {xi,yi,K}li=1 are augmented
in the prompt to predict zK with the pre-trained model.

Inspired by the outstanding empirical performance of CoT
in arithmetic reasoning (Wang et al., 2023; Zhang et al.,
2023b), symbolic reasoning (Zhang et al., 2023b; Zhou
et al., 2023), and commonsense reasoning (Wang et al.,
2023), there have been some recent works (Li et al., 2023d;
Feng et al., 2023; Li et al., 2024c; Yang et al., 2024) on the
theoretical understanding of CoT. These works investigate
CoT from the perspective of expressive power, i.e., they con-
struct the Transformer architecture that is proven to have the
CoT ability. They also demonstrate empirically that super-
vised training on pairs of CoT prompts and corresponding
outputs can lead to models with CoT ability. However, none
of these results theoretically address the question of why
a Transformer can obtain generalization-guaranteed CoT
ability by training from data with gradient-based methods.
Meanwhile, another line of research (Zhang et al., 2023a;
Huang et al., 2023; Wu et al., 2023; Li et al., 2024a) aims to
unveil the reasons behind the ICL ability of Transformers
through characterizing the training dynamics of a Trans-
former in the supervised setting. These analyses are specif-
ically applicable to ICL. Therefore, a theoretical question
still remains less explored, i.e.,

Why can a Transformer be trained to generalize on
multi-step reasoning tasks via CoT?
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1.1. Major Contributions
Following (Li et al., 2023d; Feng et al., 2023; Li et al.,
2024c; Yang et al., 2024; Wen et al., 2024), we train the
model in a supervised setting using prompt and label pairs.
This paper provides the first theoretical analysis of the train-
ing dynamics of nonlinear Transformers to achieve CoT
ability. We prove that the learned model has guaranteed
CoT ability for new tasks with distribution shifts from the
training tasks, even when there exist noisy and erroneous
context examples in the prompt. We theoretically character-
ize the required number of training samples and iterations
needed to train a desirable model and the number of context
examples required for successful CoT reasoning with a gen-
eralization guarantee. Moreover, we provide a theoretical
explanation for why CoT outperforms ICL in some cases.
Our main technical contributions are as follows:

1. A quantitative analysis of how the training can en-
able the CoT ability: We theoretically analyze the training
dynamics on a one-layer single-head attention-only Trans-
former and quantify the required number of context exam-
ples in each training sample, the total number of training
samples, and the number of training iterations needed to
acquire CoT ability. We illustrate that the CoT ability results
from the property that the attention values of the learned
model are concentrated on testing context examples with
the same input patterns as the testing query during each
reasoning step.

2. A quantitative analysis of how context examples affect
CoT performance: We characterize the required number of
context examples in the testing prompt for successful CoT
with noise and error in contexts. Our bounds are consistent
with the intuition that more accurate context examples and
more similar examples to the query improve CoT accuracy.

3. A theoretical characterization of why CoT outper-
forms ICL: We provide a quantitative analysis of the re-
quirements for successful ICL reasoning with our studied
trained model. We show that successful ICL requires an
additional condition that the prompt has a dominant number
of correct input-label examples, while CoT does not depend
on this condition. This can be viewed as one of the possible
reasons why CoT outperforms ICL.

2. Problem Formulation
We study the problem of learning and generalization of
K-steps reasoning tasks. Each task f = fK ◦ · · · f2 ◦ f1
is a composition of functions {fi}Ki=1 and outputs labels
z1, z2, · · · , zK for the input xquery. During the k-th rea-
soning step, k ∈ [K], the label is zk = fk(zk−1), where
z0 := xquery.

2.1. Training to acquire the Chain-of-Thought ability
Following (Li et al., 2023d; Feng et al., 2023; Li et al.,
2024c; Yang et al., 2024; Wen et al., 2024), we first inves-

tigate the training on a Transformer model to obtain the
CoT ability in evaluating new data and tasks. It is a su-
pervised learning setting on pairs of prompts and labels.
Different from the testing prompt that includes examples
and only xquery, the training prompt includes multiple K-
steps reasoning examples and a (k − 1)-step reasoning of
xquery for any k in [K], and the label for this prompt is zk.
Specifically,

Training Prompt and Label for CoT. For every prompt
and output pair from a task f = fK ◦ · · · f2 ◦ f1, we con-
struct a prompt P that include the query input zk−1 by
prepending ltr reasoning examples and the first k − 1 steps
of the reasoning query. The prompt P of the query input
zk−1 is formulated as:

P =
(
E1,E2, · · · ,Eltr ,Qk

)
∈ R2dX×(ltrK+k),

Ei =

(
xi yi,1 · · · yi,K−1

yi,1 yi,2 · · · yi,K

)
,

Qk =

(
z0 z1 · · · zk−2 zk−1

z1 z2 · · · zk−1 0

)
, i ∈ [ltr],

(1)

where Ei is the i-th context example, and Qk is the first
k steps of the reasoning query for any k in [K]. We have
yi,k = fk(yi,k−1) and zk = fk(zk−1) for i ∈ [ltr], k ∈
[K] with a notation yi,0 := xi. Let ps and pquery be the
s-th column and the last column of P , respectively, for
s ∈ [ltrK + k − 1]. xi,yi,k, zj ∈ RdX for i ∈ [ltr] and
j, k ∈ [K]. We respectively call xi and yi,k context inputs
and outputs of the k-th step of the ith context example. For
simplicity of presentation, we denote z as the label of P ,
which is indeed zk for (1). All the notations are summarized
in Table 1 in Appendix.

The learning model is a single-head, one-layer attention-
only Transformer. We consider positional encoding
{ck}Kk=1 ∈ R2dX . Following theoretical works (Jelassi
et al., 2022; Huang et al., 2024), we add the positional en-
coding to each pi by p̃i = pi+c(i mod K), i ∈ [K(ltr+1)].
p̃query is also defined by adding the corresponding ck to
pquery. Mathematically, given a prompt P defined in (1)
with len(P ) (which is at most K(ltr + 1)) denoting the
number of columns, it can be written as

F (Ψ;P )

=

len(P )−1∑
i=1

W V p̃i · softmax((WKpi)
⊤WQp̃query),

(2)

where WQ,WK ∈ Rm×(2dX ), W V ∈ RdX×(2dX ) are
the embedding matrices for queries, keys, and values, re-
spectively. Ψ := {WQ, WK ,W V } denotes the set of all
model weights. Typically, m > 2dX .

The training problem to enable the reasoning solves the
empirical risk minimization,

min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn), (3)
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using N prompt and label pairs {P n, zn}Nn=1. For the n-th
sample, xnquery and the context input xni are all sampled
from a distribution D. The training task fn is sampled
from T . k is randomly selected from [K], and P n is con-
structed following (1). The loss function is squared loss, i.e.,
ℓ(Ψ;P n, zn) = 1/2·∥zn−F (Ψ;P n)∥2, where F (Ψ;P n)
is defined in (2).

2.2. Chain-of-Thought Inference
We then consider another K-steps reasoning task f ∈ T ′,
whose target is to predict labels {zk}Kk=1 given the input
query xquery. T ′ is the set of testing tasks, and T ′ ̸= T .

Testing Prompt for CoT. The testing prompt P is com-
posed of lts (≤ ltr) context examples of K steps plus a
query, which is constructed as

P = (E1,E2, · · · ,Elts ,pquery) ∈ R(2dX )×(ltsK+1),

pquery = (x⊤
query,0

⊤)⊤,
(4)

where Ei follows the form in (1) for i ∈ [lts].

We follow the CoT-I/O scheme formulated in (Li et al.,
2023d; Feng et al., 2023; Li et al., 2024c; Yang et al., 2024;
Park et al., 2024) as the inference method. Specifically,
for a K-step CoT with lts examples on a certain f ∈ T ′,
given the testing prompt P defined in (4), let P 1 = P and
P 0 be the first K · lts columns of P . When we use CoT
prompting for prediction in the k-th step, we first generate
the output vk, k ∈ [K] via greedy decoding by feeding the
k-th step prompt P k to the trained model Ψ obtained from
(3). The greedy decoding scheme means outputting the
most probable token from the discrete set Y of all possible
outputs, as stated in (5).

vk = argmin
u∈Y

1

2
∥F (Ψ;P k)− u∥2, (greedy decoding)

(5)
Then, we use the output vk to update P k and use vk as the
query input to form the input prompt P k+1 for the next step,
which is computed as

P k =
(
P k−1 qk

)
∈ R(2dX )×(Klts+k),

P k+1 =
(
P k qk+1

)
∈ R(2dX )×(Klts+k+1),

where qk =
(
v⊤
k−1 v

⊤
k

)⊤
, qk+1 =

(
v⊤
k 0⊤)⊤ ,

(6)

where qk is the k-th step reasoning column for the query.
The model finally outputs v1, · · · ,vK as CoT result for
query xquery by (5). The CoT process is summarized in
Algorithm 2 of Appendix B.

When K ≥ 2, following (Li et al., 2023d; Feng et al., 2023;
Li et al., 2024c; Yang et al., 2024), the CoT generalization
error given the testing query xquery , the testing data distri-
bution D′, and the labels {zk}Kk=1 on a K-steps testing task
f ∈ T ′ is defined as

R̄fCoT,xquery∼D′,f∈T ′(Ψ)

=Exquery∼D′

[
1

K

K∑
k=1

1[zk ̸= vk]

]
,

(7)

which measures the average error between the output and
the label of each reasoning step. A zero CoT generalization
error indicates correct generations in all K steps.

2.3. In-Context Learning Inference
The ICL inference on a K-steps task f ∈ T ′ only predicts
the final-step label by prepending examples of input and
label pairs before the query. ICL can be viewed as a one-
step CoT without intermediate steps. We evaluate the ICL
performance with the trained model.

Testing Prompt for ICL. Mathematically, ICL is imple-
mented by constructing P as
P = (E1, · · · ,Elts ,pquery),

where pquery =

(
xquery

0

)
,Ei =

(
xi 0 · · · 0
yi,K 0 · · · 0

)
(8)

P ∈ R(2dX )×(ltsK+1), Ei ∈ R(2dX )×K for i ∈ [lts]. Note
that in the ICL setting, Ei only has input xi and the K-step
output yi,K but does not include any intermediate labels.
We pad zeros in Ei so that its dimension is the same as
Ei in (1) for the inference with the same model as for CoT.
The ICL output is v = argminu∈Y

1
2∥F (Ψ;P ) − u∥2,

following (5). The ICL generalization error is

R̄fICL,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′ [1[zK ̸= v]] ,
(9)

which measures the error between the one-step reasoning
output and the final step label.

3. Main Theoretical Insights
We consider the setup that the model is trained using sam-
ples generated from tasks in T that operate on M orthonor-
mal training-relevant (TRR) patterns, while both CoT and
ICL are evaluated on tasks in T ′ that operate on M ′ or-
thonormal testing-relevant (TSR) patterns that belong to the
span of TRR patterns. We consider the general setup that
the context examples in the prompt for CoT and ICL testing
are both noisy, i.e., TSR patterns with additive noise, and
partially inaccurate, i.e., the reasoning in some examples
contains incorrect steps. Our main insights are as follows.

P1. Training Dynamics of Nonlinear Transformer to-
wards CoT. We theoretically analyze the training dynamics
on a one-layer single-head attention-only Transformer to
acquire the CoT generalization ability and characterize the
required number of training samples and iterations. The-
orem 1 shows that to learn a model with guaranteed CoT
ability, the required number of context examples in each
training sample, the total number of training samples, and
the number of training iterations are all linear in α−1, where

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

α is the fraction of context examples with inputs that share
the same TRR patterns as the query. This is consistent
with the intuition that the CoT performance is enhanced if
more context examples are similar to the query. Moreover,
the attention values of the learned model are proved to be
concentrated on testing context examples that share simi-
lar input TSR patterns as the testing query during each of
the reasoning steps (Proposition 1), which is an important
property that leads to the success of the CoT generalization.

P2. Guaranteed CoT Generalization. To achieve zero
CoT error on tasks in T ′ with the learned model, Theorem 2
shows that the required number of context examples, where
noise and errors are present, for task f in the testing prompt
is proportional to (α′τfρf )

−2, where α′ is the fraction of
context examples with inputs that share the same TSR pat-
terns as the query, the constant τf in (0, 1) measures the
fraction of accurate context examples, and a larger constant
ρf in (0, 1) reflects a higher reasoning accuracy in each step
of the examples. This result formally characterizes the intu-
ition that more accurate context examples and more similar
examples to the query improve the CoT accuracy.

P3. CoT outperforms ICL. In Theorem 3, We theoretically
show that the required number of testing context examples
for ICL to be successful has a similar form to that for CoT in
Theorem 2, but with an additional requirement (Condition
1) that the fraction of correct input-label examples in the
testing prompt must be dominant. Because not all testing
cases satisfy this requirement, our result unveils the reason
why CoT provides one explanation for why CoT sometimes
outperforms ICL.

The formal characterizations of theoretical results are
in Section C in the Appendix. We also discuss the proof
sketch in Appendix D. We further introduce our numer-
ical experiments in Appendix E.

4. Transformers Implement CoT by Attending
to the Most Similar Examples in Every Step

Figure 1. Concentration of attention weights for CoT inference.

In this section, we characterize the key mechanism of a
properly trained one-layer Transformer to implement CoT
on a K-steps reasoning task via training dynamics analysis
of the attention layer, as demonstrated in Figure 1. This
is different from the mechanism study in (Li et al., 2023d;

Feng et al., 2023) by constructing a model that can conduct
CoT. We have the following proposition for the trained
model.
Proposition 1. Let S∗

k denote the index set of the context
columns of the testing prompt P in (4) that (a) correspond
to the k-th step in a context example and (b) share the same
TSR pattern in the k-th input as the k-th input vk−1 of
the query, k ∈ [K]. Given a trained model that satisfies
conditions (i) to (iii) of Theorem 1 and (22) and (23) after
T iterations, we have∑

i∈S∗
k

softmax(p̃⊤
i W

(T )q̃k) ≥ 1− ϵ,

where p̃i = pi + c(i mod K), q̃k = qk + ck,

(10)

with qk defined in (6). Moreover, for any f ∈ T ′, the k-th
step output vk given xquery = µ′

i satisfies,

vk = fk ◦ · · · ◦ f1(µ′
i). (11)

Proposition 1 first illustrates that, when conducting the k-th
step reasoning of the query for any k ∈ [K ′], the trained
model assigns dominant attention weights on the prompt
columns that are also the k-th step reasoning of examples
and share the same TSR pattern in the k-th step input as the
query. Then, given a sufficient number of testing context
examples by (23), it is ensured that the fraction of the correct
TSR pattern is the largest in the output of each step by
(15). Subsequently, the generation by greedy decoding
(5) is correct in each step, leading to a successful CoT
generalization.

5. Conclusion, Limitations, and Future Works
This paper theoretically analyzes the training dynamics of
Transformers with nonlinear attention, together with the
CoT generalization ability of the resulting model on new
tasks with noisy and partially inaccurate context examples.
We quantitatively characterize and compare the required con-
ditions for the success of CoT and ICL. Although based on a
simplified Transformer model and reasoning tasks operating
on patterns, this work deepens the theoretical understanding
of the CoT mechanism. Future directions include designing
efficient prompt-generating methods for CoT and analyzing
LLM reasoning on a more complicated data model.
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APPENDIX
A. Related Works
Expressive power of CoT (Li et al., 2023d) proves the existence of a Transformer that can learn a multi-layer perceptron
(MLP). They interpret CoT as first filtering important tokens and then making predictions by ICL. They also establish the
required number of context examples for a desired prediction with the constructed Transformer. (Feng et al., 2023; Li et al.,
2024c; Merrill & Sabharwal, 2024) show that Transformers with CoT are more expressive than Transformers without CoT.
(Yang et al., 2024; Wen et al., 2024) show the superiority of standard Transformers in some reasoning tasks compared with
recurrent neural networks and linear Transformers.

Theoretical analysis of ICL As a simplified one-step version of CoT, ICL has gained much attention from the theoretical
community. (Garg et al., 2022; Akyürek et al., 2023; Bai et al., 2023; Guo et al., 2023) demonstrate that Transformers are
expressive to conduct many machine learning algorithms in context. (Akyürek et al., 2023; Von Oswald et al., 2023; Ahn
et al., 2023; Cheng et al., 2023; Ding et al., 2024) especially show the existence of Transformers to implement gradient
descent and its variants with different input prompts. (Zhang et al., 2023a; Huang et al., 2023; Wu et al., 2023; Li et al.,
2024a) explore the training dynamics and generalization of ICL on single-attention Transformers. (Cui et al., 2024; Chen
et al., 2024) provably show the superiority of multi-head attention over single-head attention to achieve ICL ability.

Training and Generalization of Transformers There have been several recent works about the optimization and general-
ization analysis of Transformers. (Jelassi et al., 2022; Li et al., 2023c; Oymak et al., 2023; Li et al., 2023a;b; Huang et al.,
2024) study the generalization of one-layer Transformers by assuming spatial association, semantic/contextual structure,
or the majority voting of tokens in the data. (Oymak et al., 2023; Tarzanagh et al., 2023b;a; Tian et al., 2023a;b; Li et al.,
2024b; Ildiz et al., 2024; Nichani et al., 2024; Makkuva et al., 2024) investigate the training dynamics or loss landscape of
Transformers for the next token prediction by assuming infinitely long input sequences, causal structure/Markov Chain of
data, or a proper prediction head. (Deora et al., 2023; Chen & Li, 2024) analyze the optimization and generalization of
multi-head attention networks.

B. Training Algorithms
B.1. Training Algorithm
For simplicity of analysis, we let W = W⊤

KWQ and W V = (0dX×dX IdX 0dX×dE ) as (Jelassi et al., 2022; Huang et al.,
2023; Zhang et al., 2023a; Huang et al., 2024). Let {ck}Kk=1 be a set of orthonormal vectors. The model is trained using
stochastic gradient descent (SGD) with step size η with batch size B, summarized in Algorithm 1 in Appendix B. Each
entry of W (0) is generated from N (0, ξ2) for a tiny ξ > 0. Model parameters W V and a are fixed during the training. The
fraction of prompts with zk−1 as the query input is 1/K for any k ∈ [K] in each batch.

The training algorithm is summarized as in Algorithm 1.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: Let W = W⊤

KWQ and W V = (0dX×dX IdX 0dX×dE ). Each entry of W (0) is generated from
N (0, ξ2) for a small constant ξ > 0. W V and a are fixed during the training.

3: Training by SGD: For each iteration, we independently sample xquery ∼ D, f ∈ Ttr to form a batch of training
prompt and labels {P n, zn}n∈Bt as introduced in Section C.1. Each TRR pattern is sampled equally likely in each
batch. For each t = 0, 1, · · · , T − 1

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (12)

4: Output: W (T ).

We then summarize the algorithm of the CoT inference introduced in Section 2.2 as in Algorithm 2.
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Algorithm 2 Inference with Chain-of-Thought (CoT)
Input: z0 = v0 = xquery, P 0, and P 1.

2: for k = 1, · · · ,K − 1, do

Compute vk by greedy decoding in (5). Then update P k and P k+1 by (6). (13)

4: end for
Output: v1,v2, · · · ,vK−1, and vK by (5).

C. Theoretical Results
We first introduce the formulation of data and tasks in Section C.1. Sections C.2, C.3, and C.4, respectively characterize the
training analysis of the Transformer and generalization using CoT and ICL with the trained model.

C.1. The Formulation of Data and Tasks
Training data and tasks: Consider M training-relevant (TRR) patterns µ1,µ2, · · · ,µM , which form an orthonormal set
M = {µi}Mi=1. M = Θ(d),M ≤ d. µi ⊥ ck for i ∈ [M ′], k ∈ [K].

Every training prompt P in (1) contains the query and training examples from the same training task f in the set of training
tasks T . Specifically, each training task f is a composition of K functions f = fK ◦ · · · ◦ f2 ◦ f1 where each function fk
belongs to a function set F . The k-th step label of the query is zk = fk(zk−1) given the k-th step input zk−1 with zk ∈ M,
k ∈ [K]. Moreover, the k-th step label of the i-th (i ∈ [ltr]) context example is yi,k = fk(yi,k−1) given the k − 1th step
input yi,k−1, k ∈ [K] with xi,yi,k ∈ M, where yi,0 := xi. We assume that fk(x) ̸= fk′(x

′) if and only if either x ̸= x′

or fk ̸= fk′ .

Training prompt: Consider a training prompt P on task f ∈ T defined in (1) with the query input zk−1, k ∈ [K]. Let
α ∈ (0, 1− c] for some constant c > 01 denote the fraction of context examples with input sharing the same TRR pattern as
the query input.

Testing task and query: Consider M ′ testing-relevant (TSR) patterns µ′
1,µ

′
2, · · · ,µ′

M , which form an orthonormal set
M′ = {µ′

i}M
′

i=1. M ′ ≤ M . We also have µ′
i ⊥ ck for i ∈ [M ′], k ∈ [K]. Let T ′ denote the set of testing tasks, which

all operate on patterns in M′ rather than M in training tasks in T . Every testing task f = fK ◦ · · · f2 ◦ f1 ∈ T ′ is a
composition of K functions. The reasoning for the testing query is considered to be noiseless and accurate. That means,

zk ∈ M′ for all k ∈ {0} ∪ [K], and zk = fk(zk−1), z0 = xquery.

Testing prompt: We consider the general setup that testing examples are noisy and erroneous. By noisy examples, we mean
all inputs and outputs of each step are noisy versions of TSR patterns, i.e.,

xi,yi,k ∈ {b ∈ Rd|b = µ′
j + δ, j ∈ [M ′], δ ⊥ M′, ∥δ∥ ≤

√
2/2}, (14)

with noise δ ̸= 0 for i ∈ [Klfts], k ∈ [K]. Denote TSR : Rd 7→ Z+ as a function that outputs the index of the TSR pattern
of the noisy input. We consider the case that at least an α′ fraction of context examples where the TSR pattern of the input
ys,1, s ∈ [lfts] is the same as xquery.

By erroneous examples, we mean that the reasoning steps in test examples may contain errors. To formally model this, we
define the step-wise transition matrices {Af

k}Kk=1 ∈ RM ′×M ′
such that Af

k represents the reasoning probabilities of step
k in test examples. Specifically, there exists some constant ρf in (0, 1) such that for all s ∈ [lfts], k ∈ [K], the i, j-th entry
of Af

k satisfies

Afk(i,j) = Pr(TSR(ys,k) = j|TSR(ys,k−1) = i),

and Afk(i,j∗) ≥ 1/(1− ρf ) ·Afk(i,j),∀j ∈ [M ′], where µ′
j∗ = fk(µ

′
i),

(15)

Note that (15) indicates that for any given k, in the k-th reasoning step of the test example, the k-th step output is a noisy
version of the true label with the highest probability, which guarantees that the examples are overall informative in the

1This is to prevent the trivial case that the model only learns the positional encoding but not the TRR patterns when α becomes
arbitrarily close to 1.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

k-th step. This requirement is intuitive because otherwise, these examples would overall provide inaccurate information
on the k-th step reasoning. Moreover, (15) models the general case that, with some probability, the k-step reasoning is
inaccurate in the examples. ρf is referred to as the primacy of the step-wise transition matrices. ρf reflects the difference in
the probability of correct reasoning and incorrect reasoning in each step, and a larger ρf indicates a larger probability of
accurate reasoning.

Let Bf =
∏K
k=1 A

f
k be the K-step transition matrix. Then Bf

(i,j) is the probability that the K-th step output is a noisy
version of µ′

j , when the input is a noisy version of µ′
i in the testing example. We similarly define ρfo in (0, 1) as the primacy

of Bf , where
Bf

(i,j∗) ≥ 1/(1− ρfo ) ·B
f
(i,j), ∀j ∈ [M ′], j∗ = arg max

j∈[M ′]
Bf

(i,j). (16)

C.2. The Sample Complexity Analysis of the Training Stage
We first characterize the convergence and the testing performance of the model during the training stage with sample
complexity analysis in Theorem 1.
Theorem 1. For any ϵ > 0, when (i) the number of context examples in every training sample is

ltr ≥ Ω(α−1), (17)

(ii) the number of iterations satisfies

T ≥ Ω(η−1α−1K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)), (18)

and (iii) the training tasks and samples are selected such that every TRR pattern is equally likely in each training batch2

with batch size B ≥ Ω(max{ϵ−2,M} · logM), the step size η < 1 and N = BT samples, then with a high probability, the
returned model guarantees

Exquery∈M,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (19)

Theorem 1 indicates that with long enough training prompts and a sufficient number of iterations and samples for training, a
one-layer Transformer can achieve a diminishing loss of O(ϵ) on data following the same distribution as training examples.
The results indicate that (i) the required number of context examples is proportional to α−1; (ii) the required number of
iterations and samples increases as M and α−1 increases. As a sanity check, these bounds are consistent with the intuition
that it will make the training stage more time- and sample-consuming if the number of TRR patterns increases or the fraction
of prompt examples that share the same TRR pattern as the query decreases.

C.3. CoT generalization guarantee
In this section, we first define two quantities, τf , and τfo for each testing task f ∈ T ′ based on the formulation of testing
data and tasks in Section C.1. These two quantities are used to characterize the CoT and ICL generalization in Theorems 2
and 3, respectively.
Definition C.1. For f = fK ◦ · · · f1 ∈ T ′, we define the min-max trajectory transition probability as:

τf = min
i∈[M ′]

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (20)

which measures the minimum probability of the most probable K-step reasoning trajectory over the initial TSR pattern. We
also define the min-max input-label transition probability as

τfo = min
i∈[M ′]

max
j∈[M ′]

Bf
i,j , (21)

which measures the minimum probability of the most probable output over the initial TSR pattern.
Theorem 2 (CoT generalization). Given a trained model that satisfies conditions (i) to (iii) in Theorem 1, as long as (iv)

µ′
j ∈ span(µ1,µ2, · · · ,µM ), (22)

for j ∈ [M ′], and (v) the number of testing examples for every task f ∈ T ′ is

lfts ≥ Ω((α′τfρf )−2 logM), (23)

we have R̄fCoT,xquery∈M′,f∈T ′(Ψ) = 0.
2This condition is to ensure a balanced gradient update among all TRR patterns, as used in (Li et al., 2024a) for ICL.
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Remark 1. Theorem 2 characterizes the sufficient conditions for a trained one-layer Transformer to generate all K-steps
reasoning correctly by CoT for a task f in T ′. First, the TSR patterns of a new task in T ′ should be linear combinations of
TRR patterns in the training tasks in T . Second, the number of context examples should be in the order of α′−2, ρfs

−2, and
τf

−2. One can equivalently interpret the decrease in the number of required context examples to achieve zero CoT error
as an improvement of the CoT accuracy with fixed context length. Then, when the fraction α′ of contexts where the TSR
pattern of the first step input is the same as the query increases, the contexts become more informative for the query. Thus,
the CoT accuracy increases. When ρf and τf increase, the reasoning labels in the context examples are more likely to be
accurate based on their definitions in (15) and (20), then the CoT accuracy is improved.

C.4. ICL Generalization and Comparison with CoT
Because only input-label pairs are used as context examples without intermediate reasoning steps for ICL, then the input-label
pairs in context examples should be accurate on average. Otherwise, the context examples are not informative about the task
and will lead to the failure of ICL. We formulate this requirement as Condition 1.
Condition 1. For the testing task f = fK ◦ · · · ◦ f1 ∈ T ′, we have that for any i ∈ [M ′],

TSR(f(µ′
i)) = arg max

j∈[M ′]
Bf

(i,j). (24)

Condition 1 requires that in a context example, if the input TSR is µ′
i, then the output TSR needs to be f(µ′

i) with the
largest probability over all other TSR patterns. It is intuitive that the success of ICL requires this condition. Note that
although (15) indicates that, Afk(i, j

∗) achieves the largest value for all j when µ′
j∗ = fk(µ

′
i) for every k and i, (15) does

not always lead to (24). One example that Condition 1 may not hold is shown in Figure 4 in Section E .

Our result of the ICL generalization is stated as follows.
Theorem 3 (ICL generalization). Given a trained model that satisfies conditions (i) to (iii) of Theorem 1 and (22), for the
testing task f ∈ T ′,

a. if Condition 1 does not hold, then R̄fICL,xquery∈M′,f∈T ′(Ψ) ≥ Ω(1);

b. if Condition 1 holds, we have R̄fICL,xquery∈M′,f∈T ′(Ψ) = 0, as long as the number of testing examples is

lfts ≥ Ω((α′τfo ρ
f
o )

−2 logM). (25)

Remark 2 (Comparison between CoT and ICL). Theorem 3(a) formally states that, Condition 1 is necessary for a successful
ICL generalization. Because Condition 1 is not required for CoT generalization, CoT performs better than ICL if Condition
1 fails3. Theorem 3(b) characterizes that when Condition 1 holds, a desired ICL generalization needs a testing prompt length
linear in α′−2, ρfo

−2, and τfo
−2 for the testing task f ∈ T ′. This result is the counterpart of the requirement (23) for the CoT

generalization, indicating that more context examples with the same TSR pattern as the query and more accurate context
examples improve ICL generalization.

Ref. (Li et al., 2023d) also shows the advantage of CoT over ICL to learn MLP functions, but in a different setting from
ours, where our studied tasks operate on patterns. More importantly, this paper characterizes the CoT and ICL performance
theoretically when the testing task has a distribution shift from training tasks (TRR patterns to TSR patterns), and the
testing examples contain errors, while (Li et al., 2023d) only empirically evaluates the CoT and ICL performance with noisy
examples.

D. An Overview of the Proof
The technical challenges of the proof are concentrated on Theorem 1, where the property of the trained model is derived. The
proof of Theorem 1 is built upon three Lemmas, which characterize the two stages of the training dynamics. Specifically,
Lemmas F.5 and F.6 show that if a training prompt P includes the first k steps of the reasoning query, then the attention
weights on columns of P with a different step from the query decrease to be close to zero in the first stage. Lemma F.7

3Our insight of the comparison between CoT and ICL still holds when we evaluate CoT generalization only by the final step output.
This is because a successful CoT generalization in Theorem 2 on all reasoning steps already ensures a satisfactory CoT generalization on
the final step.
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computes the gradient updates in the second stage, where the attention weights on columns in P that correspond to step
k and have the same TRR pattern as the query gradually become dominant. Theorem 1 unveils this training process by
showing the required number of training iterations and sample complexity.

To prove Theorem 2, we first compute the required number of context examples for the new task f ∈ T ′ so that by
concentration inequalities, the number of context examples with accurate TSR is larger than examples with inaccurate TSR
patterns in all K reasoning steps with high probability. Then, due to the linear correlation between TSR and TRR patterns
(22), we also show that the trained Transformer can attend to context columns with the same TSR pattern as the query.
Therefore, the model can make the correct generation in each step. Theorem 3 follows a similar proof idea to Theorem 2,
with the difference that the trained model predicts output directly from the input query following Bf instead of using K
reasoning steps following Af

k , k ∈ [K] in CoT. Therefore, Condition 1 is required for the success of ICL generalization.

E. Numerical Experiments
Data Generation and Model setup. We use synthetic data generated following Sections 2 and C.1. Let dX = 30, M = 20,
M ′ = 10, α = 0.4. We consider 3-steps tasks for training and testing, i.e., K = 3. A reasoning task f is generated
by first sampling a set of numbers of permutations {pi}Mi=1 with pi ∈ [M ] and then let fk(µpi) = µp((i+k) mod M)

for
i ∈ [M ], k, j ∈ [K]. The testing noise level is set to be 0.2 for any examples and f ∈ T ′. The learning model is a one-layer
single-head Transformer defined in (2). We set τf = 0.5, ρf = 0.8, α′ = 0.8 for CoT testing if not otherwise specified. All
the experiments are conducted on a single NVIDIA RTX A5000 GPU.

Experiments on the generalization of CoT. We first verify the required number of context examples for a desired CoT
generalization. We investigate the impact of α′, τf , and ρf by varying one and fixing the other two. Figure 2 illustrates that
more testing examples are needed when α′, τf , or ρf is small, which verifies the trend of the lower bound of lfts in (23).

(A) (B) (C)
Figure 2. CoT testing error with different (A) α′ (B) τf (C) ρf .

Experiments on the generalization of ICL and a comparison with CoT. We then verify the ICL generalization with the
trained model. We vary τfo and ρfo by changing τf and ρf . Figure 2 indicates that more testing examples are required when
α′, τfo , or ρfo is small, which is consistent with our bound in (25). We then consider the case where τfo = 0.4 and ρfo = 0.1

so that the generated testing prompt may not satisfy Condition 1 depending on the specific choices of Afk’s. Figure 4 shows
that when Condition 1 holds, the ICL testing error decreases if the number of contexts increases. However, when Condition
1 fails, the ICL testing error remains large, irrespective of the number of contexts.

(A) (B) (C)
Figure 3. ICL testing error with different (A) α′ (B) τf

o (C) ρfo .
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Figure 4. Comparison between CoT
and ICL w./w.o. Condition 1

Figure 5. Training dynamics of
Transformers for CoT

Experiments on the training dynamics of CoT. In Figure 5, we compute the total attention weights on four types of
testing context columns along the training, which are contexts with the same (or different) TSR pattern and in the same (or
different) step as the query. The result shows that the attention weights on contexts that share the same TSR pattern and in
the same step as the query increase along the training and converge to around 1. This verifies the mechanism formulated
in (10). Meanwhile, Figure 5 also justifies the two-stage training dynamics proposed in Section ??, where we add a black
vertical dashed line to demonstrate the stage transition boundary. We observe that the attention weights on context columns
with a different step, i.e., the red and yellow curves, decrease to zero in the first stage. Then, the attention weights on
contexts with the same TSR pattern and the same step as the query, i.e., the blue curve, increase to 1 in the second stage.

F. Preliminaries
We first summarize the notations we use in this paper in Table 1.

Lemma F.1 (Multiplicative Chernoff bounds, Theorem D.4 of (Mohri et al., 2018)). Let X1, · · · , Xm be independent
random variables drawn according to some distribution D with mean p and support included in [0, 1]. Then, for any
γ ∈ [0, 1

p − 1], the following inequality holds for p̂ = 1
m

∑m
i=1 Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (26)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (27)

Definition F.2 ((Vershynin, 2010)). We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if
(E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ∥X∥ψ2 , is defined as ∥X∥ψ2 =

supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma F.3 ((Vershynin, 2010) Proposition 5.1, Hoeffding’s inequality). Let X1, X2, · · · , XN be independent centered
sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we
have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (28)

where c > 0 is an absolute constant.

Definition F.4. Define that for p̃i that shares the same TRR/TSR pattern and in the same step as the query,

pn(t) =
∑
i

softmax(p̃ni
⊤
W (t)p̃nquery). (29)

Lemma F.5. Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and ltr ≥ Ω(α−1), we have the

12
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Table 1. Summary of Notations

Notations Annotation
xi, yi,k, xquery , zk xi is the input to the first step of a reasoning example. yi,k is the k-th step output label of

xi. xquery is the query input. zk the k-th step output label of xquery. k ∈ [K].
P , pquery , Ei, Qk, vk P is a training or testing prompt that consists of multiple training or testing examples and a

query. The last column of P is denoted by pnquery, which is the query of P . Ei is the i-th
context example of P . Qk is the first k steps of the reasoning query. k ∈ [K]. vk is the k-th
step generation by CoT. k ∈ [K].

ci, p̃i, p̃query ci is the positional encoding for the i-th column of the input sequence. p̃i = pi + ci, where
pi is the i-th column of P . p̃query is the pi of the query column.

F (Ψ;P ), ℓ(Ψ;P n,zn) F (Ψ;P n) is the Transformer output for P with Ψ as the parameter. ℓ(Ψ;P n, zn) is the
loss function value given P n and the corresponding label zn.

µi ∈ M, µ′
i ∈ M′, TSR(·) µi is the i-th training-relevant (TRR) pattern for i ∈ [M ]. µ′

i is the i-th testing-relevant
(TSR) pattern for i ∈ [M ′]. M and M′ are the set of TRR and TSR patterns, respectively.
TSR(·) is a function that outputs the index of the TSR pattern of the noisy input.

fk, f f is the task function with f = fK ◦ · · · f2 ◦ f1 for a K-steps reasoning. fk is the k-th step
task function.

T , T ′, D, D′ T is the distribution of training tasks, while T ′ is the distribution of testing tasks. D is the
training data distribution. D′ is the testing data distribution.

α, α′ α (or α′) is the fraction of context examples with input sharing the same TRR (or TSR)
pattern as the query.

Af
k , Bf

k Af
k is the step-wise transition matrix at the k-th step for the task f , k ∈ [K]. Bf

k is the
K-steps transition matrix of the task f .

τf , τf
o , ρf , ρfo τf is the min-max trajectory transition probability for task f . τfo is the min-max input-label

transition probability for task f . ρf and ρfo are primacy of the step-wise transition matrices
and the K-steps transition matrix, respectively.

S∗
k , Bb The index set of context columns of the prompt that correspond to the k-th step of the

example and share the same TSR pattern in the (k − 1)-th output as the (k − 1)-th output
vk−1 of the query. Bb is the SGD batch at the b-th iteration.

ltr ltr is the universal number of training context examples.
lfts lts is the number of testing context examples of the task f .
O(), Ω(), Θ(), ≳, ≲ We follow the convention that f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x)))) means that f(x)

increases at most, at least, or in the order of g(x), respectively. f(x) ≳ g(x) (or f(x) ≲ g(x)
) means that f(x) ≥ Ω(g(x)) (or f(x) ≲ O(g(x))).

following results. When O(η−1α−2K3 log K
ϵ ) ≥ t ≥ 1, for any p as a column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K2
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(30)
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For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have

η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

1

K
pn(t)(1− pn(t))

2

· (1 + α2

K2
)).

(31)

For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(32)

For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K
).

(33)

Lemma F.6. Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and ltr ≥ Ω(α−1), and

t ≳ T1 := η−1α−2K3 log
K

ϵ
, (34)

we have that if pquery is in the k-th step, ∑
i∈S[K]\k

softmax(p̃⊤
i W

(t)p̃query) ≤ ϵ (35)

where S[K]\k means the index set of context columns that are not in the k-th step.

Lemma F.7. Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and ltr ≥ Ω(α−1), we have the
following results. When t ≥ T1 = η−1α−2K3 log K

ϵ , for any p as a column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃ ≤ − η

2MB

∑
n∈Bb

4pn(t)(1− pn(t))
2. (36)

For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (37)
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For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ η

2BM

∑
n∈Bb

pn(b)(1− pn(b))
2. (38)

For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (39)

G. Proof of Main Theorems
G.1. Proof of Theorem 1

Proof. By the condition in Lemma F.5, we have that

B ≥ Ω(M logM). (40)

We know that there exists gradient noise caused by imbalanced TRR patterns in each batch. Then, by Hoeffding’s inequality
(28),

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

)
≤e−Bϵ

2

≤ M−C ,

(41)

if B ≳ ϵ−2 logM . Therefore, we require
B ≳ max{ϵ−2,M} logM. (42)

By Lemma F.7 and Definition F.4, for p̃ni that share the same TRR pattern and the same positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(p̃ni

⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K + (1− 1

K ) · ϵ+ ( 1
K − α

K )e−u
, (43)

where by (159),

u ≳
η

KM

t∑
b=0

(1− pn(b))
2pn(b). (44)

For p̃ni that only share the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K eu + (1− 1

K ) · ϵ+ ( 1
K − α

K )
. (45)

Therefore, to make the attention weights between p̃nquery and p̃ni that share the same TRR pattern and the same positional
encoding dominant, we need a large enough u. When 1− pn(b) ≥ Ω(1), we have

t ≤ T2 := η−1KMα−1. (46)

When 1− pn(b) ≤ O(1),

pn(t+ 1) =
eu

eu + 1−α
α

≳ 1− 1− α

α
e−u, (47)

and

1− pn(t+ 1) ≥ 1− α

αeu + (1− α)
≳

1− α

α
e−u. (48)
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Then, we prove that when t is large enough, u(t) ≥ 1
2 log

η(1−α)2t
α2M . We show it by induction. Suppose that the conclusion

holds when t = t0, then

u(t) ≥ η

KM

t0∑
b=0

(1− pn(b))
2pn(b) +

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

(1− α)2t

2α2KM
+

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

η(1− α)2(t+ 1)

α2KM
,

(49)

where the last step is by
1

2
log(1 +

1

t
) ≤ 1

2t
≤ η

KM
· (1− α

α
)2e− log

η(1−α)2t

α2KM . (50)

To make (1− pn(t))
2 < ϵ, we need

(
1− α

α
)2e−2u ≤ ϵ. (51)

Then, we get

u ≥ 1

2
log

1

ϵ
+ log

1− α

α
. (52)

Therefore, by
1

2
log

ηt

KM
+ log

1− α

α
≥ 1

2
log

1

ϵ
+ log

1− α

α
, (53)

we finally obtain
t ≥ T3 := η−1ϵ−1KM. (54)

For p̃ni that shares the same TSR pattern as the query, we have that when t = T1,

p̃ni
⊤
W (t)p̃nquery ≥ log

K

ϵ
. (55)

When t = T1 + T2 + T3,

p̃ni
⊤
W (t)p̃nquery ≥ Θ(1) · log K

ϵ
= Θ(log

K

ϵ
). (56)

Then,
T :=T1 + T2 + T3

=Θ(η−1α−1K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)).

(57)

Therefore,
Exquery∼D,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (58)

G.2. Proof of Theorem 2

Proof. We know that α′ is the fraction of examples that share the same TSR pattern as the query. We need that in each
step, the number of examples that share the same TSR pattern as the current step of the query is at least 1. Note that the
probability of examples where each reasoning step produces the most probable output is

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (59)

where the input to the first step has the TSR pattern µ′
i. Define mk(i) as the TSR pattern in the k-th step output of the i-th

context example by the transition matrix defined in 15. Consider that the TSR pattern of the k-th step label of the testing query
is µ′

qk
, which is also the most probable k-th step output of the k-th step of a certain xi with TSR(xi) = TSR(xquery) = q0.

Let the TSR pattern of another reasoning process, where for a certain first-step input xi with TSR(x) = TSR(xquery) = q0,
the k-th step output is the most probable for k ∈ [K ′]\{h}, while the h-th step output is the second probable. Denote the
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TSR pattern of the k-th step output of xi following this process as µ′
uk

with u0 = q0. By the Chernoff bound of Bernoulli
distribution in Lemma F.1, we can obtain

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
qk
,∀k ∈ [K ′]] ≤ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤e

−lts(ρfs )
2α′ ∏K′

k=1 A
f
k(qk−1,qk = M−C ,

(60)

and by Lemma F.3,

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ α′

K′∏
k=1

Afk(uk−1,uk)
+ t0


≤e−ltst

2
0 = M−C ,

(61)

for some c ∈ (0, 1) and C > 0, where the first step is by the definition of ρfs in (15), and

t0 ≲ ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
. (62)

Hence, with a high probability,

lts ≳max{(ρfs
2
α′

K′∏
k=1

Afk(qk−1,qk)
)−1 logM, (ρfsα

′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM}

≳(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM,

(63)

such that the number of examples with the same TSR pattern as the query in each of the total K steps is at least 1. To make
the above condition hold for any TSR pattern of the intermediate step of the query, we need

lts ≳ max
qk∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM

= max
i∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
)−2 logM

=(ρfsα
′τfs )

−2 logM.

(64)

Then, we show the CoT testing error is zero by induction. In the first step, consider xi = µj + δi such that

p̃i =

(
µ′
j

yi

)
+

(
δi
0

)
+ ci. (65)

Since that
(δ⊤i , 0

⊤)W (0)p̃i ≲ ξ, (66)

by that each entry of W (0) follows N (0, ξ2), and

(δ⊤i , 0
⊤)

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0, (67)

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

we have that for p̃i that shares the same TSR pattern as the query,

p̃i
⊤W (T )p̃query

=p̃i
⊤(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query

=((µ′
j
⊤
,y⊤

i ) + c⊤i ))(W
(0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query.

(68)

Let µ′
j =

∑M ′

i=1 λj,iµi. Then, we have

p̃i
⊤W (T )p̃query

=((

M ′∑
i=1

λj,iµ
⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((

M ′∑
i=1

λj,iµ
⊤
i ,0

⊤) + c1)
⊤

=

M ′∑
i=1

λ2
j,i((µ

⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

+
∑
i ̸=i′

λj,iλj,i′(µ
⊤
i ,y

⊤
i , c

⊤
i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≥Θ(log
K

ϵ
)− ϵ

=Θ(log
K

ϵ
),

(69)

where the second to last step is by Theorem 1. Since the gradient updates for different TRR patterns are very close to each
other, we have that if

∑M ′

i=1 λj,iλk,i = 0,

M ′∑
i=1

λj,iλj,i′((µ
⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

≲ϵ log
K

ϵ
.

(70)

Hence, for p̃i that shares a different TSR pattern with p̃i,

p̃i
⊤W (T )p̃query ≲ ϵ log

K

ϵ
. (71)

Therefore, we can derive that ∑
i∈S∗

1

softmax(p̃i
⊤W (T )p̃query) ≥ 1− ϵ, (72)

where S∗
1 is the set of the first step of examples that share the same TSR pattern as the query. Then, the first step leads to

a correct prediction with zero testing error, since that maxj∈[M ′] Ak(q0,j) is the largest to make the correct prediction for
xquery if xquery = µ′

q0 , i.e.,
v1 = f1(µ

′
q0). (73)

Suppose that the k-th step generates a zero testing error. Then, for the k+ 1-th step, we know that there exists pj that shares
the same TSR pattern as vk. Then, we can also derive that

p̃⊤
j W

(T )((v⊤
k ,0

⊤)⊤ + c⊤k )
⊤ = Θ(log

K

ϵ
), (74)

and ∑
j∈S∗

k

softmax(p̃⊤
j W

(T )((v⊤
k−1 v

⊤
k )

⊤ + c⊤k )
⊤) ≥ 1− ϵ. (75)
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Hence, the k + 1-th also makes the correct prediction, i.e.,

vk+1 = fk+1 ◦ · · · f1(µ′
q0), (76)

where µ′
qk+1

is the TSR pattern of the k + 1-th step input. Therefore, we show that CoT makes the correct prediction in
each step as well as in the final prediction, such that

R̄fCoT,x∈M′,f∈T ′(Ψ) = 0. (77)

G.3. Proof of Theorem 3

Proof. We know that the positional encodings are the same for the ICL inference in all examples. Hence, similar to (72), we
can derive that ∑

i∈S∗
K

softmax(p̃i
⊤W (T )p̃query) ≥ 1− ϵ, (78)

where S∗
K is the set of the last step output of examples that share the same TSR pattern as the last step output of the query.

For xquery = µ′
q, q ∈ [K ′], we know that the distribution of the corresponding label y of x with TSR(x) = q follows the

q-th row the K-steps transition matrix Bf . Let F (Ψ;P ) =
∑M ′

i=1 λ
P
i µ

′
i. Hence, based on the output scheme of ICL as

stated in Section 2.2, we have that

v = arg min
y∈M′

1

2
∥F (Ψ;P )− y∥2 = µargmaxi∈[M′] λ

P
i
. (79)

Note that the probability of examples with the most probable final output with µ′
q as the TSR pattern of the input is

B(q,TSR(f(µ′
q)))

. (80)

To ensure that the number of examples with the same TSR pattern as the query that generates the most probable output is at
least 1, we compute the following,

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q1 ] ≤ (1− ρfo/2)α

′B(q,TSR(f(µ′
q)))

)

≤e
−ltsρfo

2
α′B(q,TSR(f(µ′

q))) = M−C ,

(81)

for some c ∈ (0, 1) and C > 0 by the Chernoff bound of Bernoulli distribution in Lemma F.1. Here, mi is defined as the
TSR pattern in the final output of the i-th context example by the K-steps transition matrix defined in 16. The TSR pattern
of the most probable output of the testing query is µ′

q1 . Similarly, let the TSR pattern of the second most probable output of
the testing query be µ′

q2 . We also have

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ (1− ρfo/2)α

′Bf
(q,q1)

)

≤Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ α′B(q,q2) + c · ρfoα′Bf

(q,q1)

)
≤e−ltsρ

f
o
2
c2α′B(q,q1) = M−C ,

(82)

by Lemma F.3 and (16) for some constant c > 0. Therefore, to make the number of examples with the same TSR pattern in
the output as the label of the query be at least 1 for any TSR pattern of the query and the output be the most probable one,
we need

lfts ≳max{(ρfo
2
α′ min

i∈[M ′]
B(i,TSR(f(µ′

i))
)−1 logM, (ρfoα

′ min
i∈[M ′]

B(i,TSR(f(µ′
i))
)−2 logM}

=(ρfoα
′τfo )

−2 logM}.
(83)
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In addition, if Condition 1 holds such that the most probable output is the actual label, we can derive

R̄fICL,x∈M′,f∈T ′(Ψ) = 0. (84)

When (83) holds but Condition 1 does not, we know that ICL still always produces the most probable output by the K-steps
transition matrix, but such an output is not the label since Condition 1 fails. Hence,

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (85)

When both Condition 1 and (83) do not hold, ICL can produce multiple possible outputs with a non-trivial probability, which
is decided by the distribution of the prompt instead of the K-steps transition matrix. This can be seen from that (81) and
(82) both do not hold since (83) fails. Then, ICL can produce both the most probable and the second most probable output
with a constant probability. Let the TSR pattern of the r-th most probable output of the testing query be µ′

r. Recall that
F (Ψ;P ) =

∑M ′

i=1 λ
P
i µ

′
i, we then have that for some small ϵ > 0,

λP
r(q) =

|{i ∈ [lfts] : yi = µ′
r in P }|

lfts
± ϵ. (86)

Then, by (79), the output of the query is µargmaxr∈[M′] λr
. Since that (83) does not hold, there exists at least a constant

probability of the prompt P ′ with the same query as P such that

λP ′

r =
|{i ∈ [lfts] : yi = µ′

r in P ′}|
lfts

± ϵ ̸= λP
r , (87)

for some r ∈ [M ′]. Therefore, with a constant probability, the output for the same testing query and the same testing task f
varies. This leads to

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (88)

G.4. Proof of Proposition 1

Proof. This proposition is derived from the proof of Theorem 2. (10) comes from (75), while (11) comes from (76), both by
induction.

H. Proof of Lemmas
H.1. Proof of Lemma F.5

Proof.

η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂F (Ψ;P )

∂F (Ψ;P )

∂W

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)

· (p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃i)p̃r)p̃

⊤
query.

(89)

When t = 0, we know that each entry of W (0) is generated from the Gaussian distribution N (0, ξ2). Then,

|p̃i⊤W
(0)p̃query| = |

∑
k,j

pi,kpquery,jW
(0)
k,j | ≲ ξ. (90)
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Hence,

softmax(p̃i
⊤W (0)p̃query) ≥

e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ), (91)

softmax(p̃i
⊤W (0)p̃query) ≤

e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ). (92)

We can obtain

F (Ψ;P ) =

l∑
i=1

e−Θ(ξ)

l
W V pi. (93)

Since that PE(·), and TRR(·) denote the positional encoding, and the TSR pattern of the input, respectively, we have that for
p,

p̃⊤p̃query = 1[TRR(p̃) = TRR(p̃query)] + 1[PE(p̃) = PE( ˜̃pi)]. (94)

Given lab(·) is the label embedding of the context as the input, we have that for p,

p̃⊤p̃i = 1[TRR(p̃) = TRR(p̃i)] + 1[lab(p̃) = lab(p̃i)] + 1[PE(p̃) = PE(p̃i)], (95)

(W V p̃)
⊤W V p̃i = 1[lab(p̃) = lab(p̃i)]. (96)

When t ≥ 1, we first consider the case where p̃ shares the same TRR pattern and the positional encoding as p̃query . If p̃ and
p̃query share the same TRR pattern, label pattern, and the positional encoding,

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥2 · (3− 3pn(t)− (1− pn(t)))

=4(1− pn(t)),

(97)

and

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≤ 2 · (3− 3pn(t)) = 6(1− pn(t)). (98)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

2− 6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −4pn(t). (99)

When p̃ and p̃query share both different positional encodings and TRR patterns,

−6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r) ˜pqeury

⊤p̃ ≥ −2− 4pn(t). (100)

Then, we consider the case where p̃ only shares the same TRR pattern or the same positional encoding as p̃i. If p̃ and
p̃query share the same TRR pattern, label pattern, and the positional encoding,

3− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥1 · (3− pn(t)− (1− pn(t)))

=2.

(101)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 0. (102)
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When p̃ and p̃query only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1. (103)

Note that −(1− pn(t))pn(t) + (1− pn(t))
2α2/K2 < 0 for pn(t) ∈ [α/K,α]. Then, when l ≥ Ω(α−1) and p̃ shares the

same TRR pattern and the positional encoding as p̃i,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 − 4pn(t)(1− pn(t))

2 · α2

K2

+
1

l
(
1

K
− α

K
)(−4pn(t)) +

1

l
(
1

K
− α

K
)(1− pn(t))(−2− 4pn(t))(K − 1)

=− 4pn(t)(1− pn(t))
2(1 +

α2

K2
) +

2

lK
(1− α)(−(K − 1)− (K + 1)pn(t) + 2pn(t)

2(K − 1)).

(104)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query . Note that

2

Kl
· (1− α) ·K(1− pn(t)) ≲ |(−(1− pn(t))pn(t) + (1− pn(t))

2 α
2

K2
)(1− pn(t))|, (105)

if l ≥ Ω(α−1). Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− 0 · pn(t)(1− pn(t)) + (1− pn(t))
2 α

2

K2
· (+2) +

1

l
(
1

K
− α

K
)(−(K − 1))

=2(1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(106)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃i

⊤p̃

≤0− (1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−(K − 1))

=− (1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(107)

Therefore, as long as
l ≥ Ω(α−1), (108)
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we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃i

⊤p̃

≤η
1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

2(K − 1)α2

K2
)

·+(
1

K
− 1

M
)(−(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(109)

We then consider the case where p̃′ shares a different positional encoding and the same TRR pattern as p̃. Let p̃ share the
same TRR pattern and the positional encoding as p̃query. If p̃′ and p̃i share the same TRR pattern, label pattern, and the
positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.

(110)

When p̃′ and p̃query only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 0. (111)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −2. (112)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query . If p̃′ and p̃i share the same TRR pattern,
label pattern, and the positional encoding,

3− pn(t)) ≥p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≥1 · (3− 3pn(t)− (1− pn(t))) = 2(1− pn(t)).

(113)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −2pn(t). (114)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1− 2pn(t). (115)
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Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′ and p̃i share the same TRR
pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2 + pn(t). (116)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ pn(t). (117)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1 + pn(t). (118)

Then, when l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− 4pn(t)(1− pn(t)) +
1

l
(
1

K
− α

K
)(−2K).

(119)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then, by
(105),

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− 2pn(t)(1− pn(t))
2 − 2pn(t)(1− pn(t))

2 · α2

K2
+

1

l
(
1

K
− α

K
)((−1− 2pn(t))K)

=− 2pn(t)(1− pn(t))
2(1 +

α2

K2
) +

1

l
(1− α)(−1− 2pn(t)).

(120)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤pn(t)(1− pn(t))
2 + pn(t)(1− pn(t))

2 α
2

K2
+

1

l
(1− α)(−1− 2pn(t))

=pn(t)(1− pn(t))
2(1 +

α2

K2
)− 1

l
(1− α)(1 + 2pn(t)).

(121)

Therefore, as long as
l ≥ Ω(α−1), (122)
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we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)p̃

⊤(p̃i

−
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−4− 2(K − 1)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+ (
1

K
− 1

M
)pn(t)(1− pn(t))

2(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
)),

(123)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

≥η
1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
) +

1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2).

(124)

We next consider the case where p̃′ shares a different TRR pattern and the same positional encoding as p̃. Let p̃ share
the same TRR pattern and the positional encoding as p̃query. If p̃′ and p̃i share the same TRR pattern, label pattern, and
positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.

(125)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 0. (126)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −2. (127)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query . If p̃′ and p̃i share the same TRR pattern,
label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2 + pn(t). (128)
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When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ pn(t). (129)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1 + pn(t). (130)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′ and p̃i share the same TRR
pattern, label pattern, and the positional encoding,

3− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2. (131)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 0. (132)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1. (133)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as p̃query, by (105),

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤0− 2(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−2(K − 1)).

(134)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− pn(t)(1− pn(t))(−1 + pn(t)) + pn(t)(1− pn(t))
2 · α2

K2
+

1

l
(
1

K
− α

K
)K(−1 + pn(t))

=pn(t)(1− pn(t))
2(

α2

K2
+ 1) +

1

l
(1− α)(−1 + pn(t)).

(135)
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We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− (1− pn(t))
2 α

2

K2
− 0 +

1

l
(
1

K
− α

K
)(−K + 1)

=− (1− pn(t))
2 α

2

K2
− K − 1

Kl
(1− α).

(136)

Therefore, as long as
l ≥ Ω(α−1), (137)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1)(1 +

α2

K2
)pn(t))(1− pn(t))

2 − (
1

K

− 1

M
)(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(138)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
)).

(139)

We next consider the case where p̃′ shares a different TRR pattern and a different positional encoding as p̃. Let p̃ share the
same TRR pattern and the positional encoding as p̃query. If p̃′ and p̃i share the same TRR pattern, label pattern, and the
positional encoding,

6 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 2 · (3− (1− pn(t))) = 4 + 2pn(t). (140)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 2pn(t). (141)
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When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −2 + 2pn(t). (142)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query . If p̃′ and p̃i share the same TRR pattern,
label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2. (143)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 0. (144)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1. (145)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′ and p̃i share the same TRR
pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2 + pn(t). (146)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ pn(t). (147)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃ ≥ −1 + pn(t). (148)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− pn(t)(1− pn(t))(−2 + 2pn(t)) + (1− pn(t))
2 α

2

K2
· 2pn(t) +

1

l
(1− α)(−2 + 2pn(t)).

(149)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤0 + pn(t)(1− pn(t))
2 · α2

K2
· (−1) +

1

l
(
1

K
− α

K
)(−K)

=− pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(1− α)(−1).

(150)
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We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− (1− pn(t))pn(t)(−1 + pn(t)) + pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−1 + pn(t))K

=(1− pn(t))
2pn(t)(1 +

α2

K2
) +

1

l
(1− α)(−1 + pn(t)).

(151)

Therefore, as long as
l ≥ Ω(α−1), (152)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−pn(t)(1− pn(t))(−2 + 2pn(t)) + (3−K)(1− pn(t))

2 α
2

K2
· pn(t))

+ (
1

K
− 1

M
)(1− pn(t))

2pn(t)(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
)

+ (1− pn(t))
2pn(t)(1 +

α2

K2
) · 1

K
),

(153)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
).

(154)

H.2. Proof of Lemma F.6

Proof. We can derive that when 1− pn(t) ≥ Ω(1), p̃′⊤W (t)p̃ increases if p̃ and p̃′ share the same positional encoding.
Otherwise, p̃′⊤W (t)p̃ decreases. We know that pn(t) ≥ α

2 . Combining the results in Lemma F.5, we can derive that when
t ≥ 1,

W (t+1) = W (t) − η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
. (155)
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Then, for p̃i
n that share the same TRR pattern and the same positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(pni

⊤W (t+1)p̃nquery)

≥1

l
· 1
α
K + (K−1)α

K · e−s1 + ( 1
K − α

K )((K − 1)e−s2 + e−s3)
,

(156)

where

s1 ≥η

t∑
b=0

((1− pn(b))
2 α

2

K3
+

α2

K3
(1− pn(b))

2) = η

t∑
b=0

(1− pn(b))
2 2α

2

K3
, (157)

s2 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
, (158)

s3 ≥− η

KM

t∑
b=0

(1− pn(b)
2(−4pn(b)(1 +

α2

K2
) +

α2

K
(1 +

2(K − 1)

K
) +

α2

K2

− (K − 1 +
2K − 1

K2
α2)pn(b)))

≥ η

KM

t∑
b=0

(1− pn(b))
2(pn(b)(3 +

α2

K2
)(4 +

2K − 1

K2
)),

(159)

where the last step is by Kpn(b) ≥ 4α2/K2 when pn(b) ≥ α/K. For p̃i
n that share the same TRR pattern and a different

positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es1 + (K−1)α

K + ( 1
K − α

K )((K − 1)e−s4 + es5)
, (160)

where

s4 ≥−
t∑

b=0

η

M
((−4− (3K − 2)(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b))

− (2−K)(1 +
α2

K2
)pn(b)(1− pn(b))

2)

=

t∑
b=0

η

M
(4 + 2K(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b)),

(161)

s5 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
. (162)

When M ≥ Ω(K4α−1) and t ≥ Ω(η−1K3 logKα−2),

(K − 1)e−s4 + es5 > K. (163)

If M ≥ Ω(K4α−1) and t ≤ O(η−1K3 logKα−2), we cannot ensure

(K − 1)e−s4 + es5 > K. (164)

For p̃ni that share a different TRR pattern and the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es3 + α

K · e−s4 + ( 1
K − α

K )(1 + (K − 1)e−s6)
, (165)

where

s6 ≥ η

t∑
b=0

2α2

K3
(1− pn(b))

2. (166)
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For p̃ni that share a different TRR pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es2 + ( 1

K − α
K )(K − 1 + es6) + α

K es4
. (167)

Note that when t ≲ η−1α−2K3, for pnquery in the k-th step, we have∑
i∈S[K]\{k}

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥ Ω(1), (168)

for p̃ni that share a different positional encoding from p̃nquery. To make the total softmax values on contexts that share a
different positional encoding and a different TRR pattern from the query smaller than ϵ, we need

s1, s2, s6 ≳ log
K

ϵ
. (169)

When t further increases to be larger than Ω(η−1α−2K3 log K
ϵ ), we also have that the total softmax values on contexts that

share a different positional encoding and the same TRR pattern from the query smaller than ϵ. Therefore,

t ≳ T1 := η−1α−2K3 log
K

ϵ
. (170)

H.3. Proof of Lemma F.7

Proof. We consider the case when t ≥ T1 given Lemma F.6. When l ≥ Ω(α−1), and when p̃ shares the same TRR pattern
and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 + ϵ

≲− 4pn(t)(1− pn(t))
2.

(171)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲− 0 · pn(t)(1− pn(t)) + ϵ

≲ϵ.

(172)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲ϵ.

(173)
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Therefore,

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲η
1

B

∑
n∈Bb

(
1

2M
(−4pn(t)(1− pn(t))

2) + (
1

2
− 1

M
) · ϵ

=− η · 1

2M
· 1

B

∑
n∈Bb

4pn(t)(1− pn(t))
2.

(174)

We then discuss if p̃ and p̃′ only share the same TRR pattern. When l ≥ Ω(α−1), and when p̃ shares the same TRR pattern
and the positional encoding as p̃query, we can obtain

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≳− 2(1− pn(t))
2pn(t).

(175)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≳− (1− pn(t))(1− pn(t))pn(t).

(176)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

∣∣∣( l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

∣∣∣
≲ϵ.

(177)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)p̃

⊤

· (p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

∣∣∣
≤ηϵ.

(178)
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We next discuss when p̃ only shares the same positional encoding as p̃′. When l ≥ Ω(α−1), and when p̃ shares the same
TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲ϵ.

(179)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲− pn(t)(1− pn(t))(−1 + pn(t)) +
1

M

≲pn(t)(1− pn(t))
2.

(180)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲ϵ.

(181)

Therefore,

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)p̃

⊤

· (p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≲η
1

B

∑
n∈Bb

1

2M
· pn(b)(1− pn(b))

2.

(182)

We then consider if p̃ shares a different TRR pattern and a different positional encoding as p̃′. When l ≥ Ω(α−1), and when
p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≳ϵ.

(183)
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We next consider the case where p̃ shares the same TRR pattern and the different positional encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

≳− (1− pn(t))pn(t).

(184)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern as p̃query. Then,

∣∣∣( l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i − zn)⊤

l∑
i=1

softmax(p̃i
⊤Wp̃query)W V p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)p̃r)p̃

⊤
queryp̃

∣∣∣
≲ϵ.

(185)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

W V p̃isoftmax(p̃i
⊤Wp̃query)p̃

⊤

(p̃i −
l∑

r=1

softmax(p̃r
⊤Wp̃query)pr)p̃

⊤
queryp̃

∣∣∣
≲ηϵ.

(186)
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