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Abstract

Large Language Models (LLMs), despite their
remarkable capabilities, are hampered by hal-
lucinations. A particularly challenging vari-
ant, knowledge overshadowing, occurs when
one piece of activated knowledge inadvertently
masks another relevant piece, leading to erro-
neous outputs even with high-quality training
data. Current understanding of overshadow-
ing is largely confined to inference-time ob-
servations, lacking deep insights into its ori-
gins and internal mechanisms during model
training. Therefore, we introduce PHANTOM-
CIRCUIT, a novel framework designed to
comprehensively analyze and detect knowl-
edge overshadowing. By innovatively employ-
ing knowledge circuit analysis, PHANTOMCIR-
CUIT dissects the internal workings of atten-
tion heads, tracing how competing knowledge
pathways contribute to the overshadowing phe-
nomenon and its evolution throughout the train-
ing process. Extensive experiments demon-
strate PHANTOMCIRCUIT ’s effectiveness in
identifying such instances, offering novel in-
sights into this elusive hallucination and provid-
ing the research community with a new method-
ological lens for its potential mitigation.

1 Introduction

Large Language Models (LLMs) have witnessed
explosive growth in recent years, demonstrating
remarkable capabilities across a multitude of do-
mains, including natural language understanding,
generation, reasoning, and even cross-modal tasks
(Chang et al., 2024; Zhao et al., 2024; Yan et al.,
2025a, 2024a; Xun et al., 2025). Their proficiency
has catalyzed transformative advancements in vari-
ous applications. However, a persistent challenge
that tempers their widespread adoption and relia-
bility is the phenomenon of hallucination. Broadly,
hallucinations refer to instances where models gen-
erate content that is factually incorrect, nonsensical,
or unfaithful to the provided source context, despite
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Figure 1: Illustrative comparison of previous research
with inference-time analysis (b) and observation-based
explanation (c) vs our proposed PHANTOMCIRCUIT (d)
on knowledge overshadowing (a).

appearing coherent and fluent (Rawte et al., 2023;
Chakraborty et al., 2025; Wang et al., 2025).

While substantial research has been dedicated
to understanding the causes and detection of gen-
eral hallucinations, a specific variant known as
“knowledge overshadowing” warrants deeper in-
vestigation (Zhang et al., 2024b, 2025a). This
phenomenon is particularly perplexing because it
can manifest even when models are trained on
high-quality, meticulously curated pre-training cor-
pora. Current understanding, primarily derived
from inference-time observations, characterizes
overshadowing as a scenario where, for a given
query, one piece of activated knowledge inadver-
tently “overshadows” another relevant knowledge.
This interference ultimately biases the model’s rea-
soning process, leading to a hallucinatory output,
as illustrated in Figure 1 (a).

Nevertheless, existing explorations into knowl-
edge overshadowing suffer from notable limita-
tions. @ They predominantly focus on inference-
time analysis, as shown in Figure 1 (b). While
valuable for identifying the occurrence of over-
shadowing, such observations offer a surface-level



understanding and often fall short of elucidating
how these detrimental patterns are learned during
the training phase. ® The explanations for over-
shadowing are often speculatively inferred from
these observational outcomes rather than being
rigorously investigated through dedicated inter-
pretability tools that can probe the model’s internal
decision-making mechanisms, as shown in Figure
1 (c). Consequently, a more comprehensive ana-
Iytical framework is imperative to dissect this phe-
nomenon from its origins to its manifestation.

To bridge this gap, we introduce PHANTOM-
CIRCUIT, a novel framework designed to com-
prehensively analyze and detect the knowl-
edge overshadowing phenomenon. Specifically,
PHANTOMCIRCUIT facilitates an in-depth exami-
nation of the evolution of overshadowing halluci-
nations throughout the training process, correlat-
ing their emergence and prevalence with core fac-
tors such as knowledge popularity, model size, and
dataset size. Then, by leveraging knowledge cir-
cuit analysis as a key interpretability technique, we
aim to trace the flow of information and the forma-
tion of knowledge representations within attention
heads, thereby uncovering the internal mechanisms
giving rise to overshadowing. Furthermore, we pro-
pose to optimize the number of edges within these
circuits, thus alleviating the knowledge overshad-
owing. As illustrated in Figure 1 (d), our overall
work aims to provide a clearer, mechanistic under-
standing and potential strategies for this elusive
type of hallucination.

Our contributions can be summarized as follows:

¢ We introduce PHANTOMCIRCUIT, the first com-
prehensive framework designed to systematically
analyze and detect knowledge overshadowing,
delving into its mechanistic nature and evolution
throughout model training.

* We pioneer the use of knowledge circuit analy-
sis to dissect the internal workings of attention
heads, specifically elucidating how competing
knowledge pathways contribute to the overshad-
owing phenomenon.

* We conduct extensive experiments to demon-
strate PHANTOMCIRCUIT s efficacy in detect-
ing knowledge overshadowing, offering novel
insights and a new methodological lens for the
research community.

2 Related Work

2.1 Hallucination Detection

Factuality hallucination detection, which aims to
evaluate whether the output of LLMs aligns with
real-world facts, typically involves either exter-
nal fact-checking or internal uncertainty analysis
(Huang et al., 2025; Dang et al., 2024; Zheng et al.,
2024; Zou et al., 2024; Zhou et al., 2024; Zhu et al.,
2024). For instance, FACTSCORE (Min et al.,
2023) decomposes a generation into atomic facts
and calculates the proportion that are supported
by reliable knowledge sources. FACTOOL (Chern
et al., 2023), on the other hand, integrates multiple
tools such as Google Search and Google Scholar
to gather external evidence and assess the fac-
tuality of generated content. In contrast, meth-
ods like Chain-of-Verification (Dhuliawala et al.,
2023), probability-based assessments (Kadavath
et al., 2022; Zhang et al., 2024a), and uncertainty
estimation approaches (Varshney et al., 2023; Yao
et al., 2023; Luo et al., 2023) rely on LLMs’ in-
ternal parametric knowledge or uncertainty signals
to predict potential hallucinations. Among these
efforts, knowledge overshadowing (Zhang et al.,
2025a) offers a novel perspective by modeling hal-
lucination behavior from the perspective of knowl-
edge representation, providing an efficient strategy
for proactive prevention.

2.2 Knowledge Circuit Analysis

In the context of mechanistic interpretability (Rai
et al., 2024; Huo et al., 2024; Huang et al., 2024a),
computations in Transformer-based language mod-
els are viewed as a connected directed acyclic graph
encompassing components such as MLPs and atten-
tion layers (Syed et al., 2023; Conmy et al., 2023;
Huang et al., 2024b). A circuit refers to a sparse
computational subgraph that significantly influ-
ences the model’s behavior on a specific task (Olah
et al., 2020; Elhage et al., 2021; Wang et al., 2022).
Building on this, Yao et al. (2024) introduce the
concept of knowledge circuits, hypothesizing that
cooperation among components reveals implicit
knowledge in LL.Ms. Further, Ou et al. (2025) ex-
plore how such circuits evolve during continual
pre-training, providing insights into knowledge ac-
quisition. To enable effective knowledge editing,
CaKE (Yao et al., 2024) proposes a Circuit-aware
Knowledge Editing method that guides models to
activate modified knowledge and form new rea-
soning pathways. In this paper, we analyze the



phenomenon of knowledge overshadowing through
the lens of knowledge circuits, contributing new
perspectives to LLM hallucination detection.

See more related work in Appendix A.1.

3 Methodology

This section first defines the knowledge overshad-
owing phenomenon and its quantitative evaluation.
Subsequently, we detail the PHANTOMCIRCUIT
framework, which encompasses methods for ana-
lyzing its training dynamics and for constructing
and analyzing knowledge circuits to understand its

internal mechanisms’.

3.1 Knowledge Overshadowing

Knowledge overshadowing refers to a specific type
of hallucination where less prevalent, subordinate
knowledge is suppressed by high-frequency, domi-
nant knowledge when both are associated with com-
mon background knowledge (Zhang et al., 2025a).

Let Xy, denote dominant knowledge enti-
ties and X,,; denote subordinate knowledge en-
tities, both potentially co-occurring with back-
ground knowledge X3,. The core idea is that a
strong learned pattern Xg,,, <> Xp, can "over-
generalize" where the model primarily associates
Xdom With ng.

Consequently, when the model encounters X,
with X34, denoted as X, <+ Xp), it may erro-
neously favor outputs related to Xg,,, due to the
stronger X jom <+ Xpg pattern.

3.1.1 Knowledge Overshadowing Occurrence

When the input prompt is a knowledge pair com-
posed of background knowledge and dominant
knowledge, denoted as Py, = (Xbg, Xdom), and
the model correctly generates the answer corre-
sponding to the dominant knowledge, denoted as
Yiom, we consider this outcome, represented by the
pair (Pgom, Ydom ), as a successful recall of domi-
nant knowledge.

When the input prompt is Pj,;, but the model
wrongly generates Yy,,,, knowledge overshadow-
ing occurs for this query-response instance, result-
ing in the (Psyp, Yaom)-

3.1.2 Quantitative Indicators

Let N4, and Ny, be the number of instances of
Piom and Py, in the training dataset, respectively.
The dataset Z comprises a subset Z,,,,, containing

'Our code will be available upon acceptance.

Ngom instances of P,,,,, and a subset Z,; con-
taining N, instances of Pyp.

During autoregressive generation tasks per-
formed by the model, let M,; be the number of
times when overshadowing instances (Psyp, Yiom )
occur , and My, be the number of times
(Pgoms Ydom ) occurs. Then, we can define the abso-
lute extent of the knowledge overshadowing effect,
the Absolute Overshadowing rate (AQ) and calcu-
late it using My, and Ny,

Msub
Nsub

AO = p(Ydom|PSub) = (D

To account for the model’s inherent performance
and potential noise affecting the overshadowing
rate, we also introduce Ry,,,, for dominant knowl-
edge inputs:

Rdom - p(Ydom‘Pdom) - (2)

which represents the recall rate for Py, query-
response instances.

The Relative Overshadowing rate (RQO) is then
defined as:

RO = AO _ p(Ydom‘Psub) .
Raom p(Yd0m|PdOﬂ1)

3

3.1.3 Overshadowing Influence Factors

Knowledge Popularity (P) is the fundamen-
tal cause of the knowledge overshadowing phe-
nomenon and serves as its primary influencing fac-
tor. P is defined as the ratio of the capacities of
Zdom 10 Zsyp, thus P = Ndom/Nsub~

Model Size (M), referring to the number of
model parameters, also impacts knowledge over-
shadowing. A larger M generally implies stronger
generalization capabilities, causing the model to
rapidly generalize the X 4., <> Xj4 to instances
involving X, <+ X}, and exacerbating overshad-
owing.

In addition to the factors mentioned in (Zhang
et al., 2025a, 2024b), aiming to analyze the dy-
namic evolution of knowledge overshadowing dur-
ing the training process, we extend our considera-
tion to total number of tokens, the Dataset Size (D)
in the training set. The average loss proportion
of subordinate knowledge £P within an epoch
is defined as LP = loss(Psyp)/total loss, which
also relates to the overshadowing.



3.2 Analysis Framework PHANTOMCIRCUIT

Our proposed knowledge circuit-based overshad-
owing analysis framework involves the overshad-
owing dynamics analysis during training and
circuit-based internal mechanism analysis.

3.2.1 Overshadowing Dynamic Analysis

Our framework provides a novel dynamic analysis
of knowledge overshadowing during model train-
ing. By manipulating P, M, and D, we monitor RO
across epochs. We focus on identifying the onset,
duration, and recovery stages of overshadowing to
understand their modulation by P, M, and D. Rec-
ognizing P as a key factor, we also explore how LP
co-evolves with RO under these variables, aiming
to uncover the role of £P in explaining overshad-
owing dynamics.

3.2.2 Knowledge Circuit Construction

We construct the knowledge circuit, a sparse com-
putational subgraph C' C G, where G = (V, E) is
the directed acyclic graph representation of LLMs,
V' encompasses input embeddings, attention heads,
MLP layers, and output logits, E represents the
information flow between these components. Our
goal is to identify a subgraph C' that is critical
for recognizing the key component of given input
prompt, particularly in knowledge overshadowing,
is { Xdom, Xsup }» the difference between Py, and
P,p. The adapted construction methods is similar
to edge attribution patching (Conmy et al., 2023),
which involves:

Paired inputs. For a given X, we create a pair
of input prompts, the clean input Pk, correspond-
ing to our expected output Yy, in the overshadow-
ing case, and the corrupt input Py, serving for the
contrasting mentioned below.

Activation difference calculation. After run-
ning this pair of inputs through the model,
we calculate the difference in activation values
AA(vp), AA(v.) for the parent node v, and child
node v. of each edge under these distinct in-
puts, AA(UP) = Adlean (Up) - Acorrupt(vp), where
Aclean(vp) and Acorrupt(vp) are the activation of
parent node when P, as clean input and Py, as
corrupt input.

Edge score calculation. The importance S(e)
of an edge e = (vp,v.) is scored based on how
patching v,,’s activation (using AA(v,)) influences
a metric M, which assesses the model’s ability
to correctly output Yy, rather than Yy, for Py
inputs. Using the Integrated Gradients, S(e) is

approximated as:
aM ()/sub‘Psub)

S(e) =~ Exp |AA(vp) - 9A(v,)

“)

Circuit construction. Edges with scores |S(e)|
below a threshold 7 are pruned. The remaining
subgraph forms the knowledge circuit C'. See more
details about construction in Appendix B.1

3.2.3 Circuit-based Analysis

PHANTOMCIRCUIT mainly focuses on the atten-
tion heads in C' and follows these steps:

Node Attention Analysis. We identify high
attention heads within C' by examining their atten-
tion scores and patterns, specifically their focus on
{dem Xsub}-

Circuit Structure Analysis. We then trace the
information flow of these high attention heads by
identifying their parent and child nodes to under-
stand their structural role. Nodes consistently re-
tained in circuits built with different thresholds 7
are also analyzed as key components.

Layer-wise Logit Evolution. Finally, using
logit lens (nostalgebraist, 2020), we inspect the
evolving output logits at layers associated with key
nodes. This validates if their captured information
contributes to the model’s prediction as expected.

3.2.4 Circuit-based Overshadowing Recovery

Inspired by the goal of knowledge circuits to max-
imize sensitivity to the distinguishing features be-
tween X 4,,, and X,,;, we propose a circuit-based
method to alleviate overshadowing. This involves
optimizing the circuit structure by tuning the edge
pruning threshold 7 to obtain an optimal circuit,
Copt- The optimization is formulated as:

Topt = argmax M (Copt (T), Py, Ytsub)v )

where M measures the circuit’s ability to distin-
guish {Xgom, Xsup}, This results in a Copi(Topt)
which is expected to mitigate or eliminate the over-
shadowing effect for specific input prompts.

To automate the overshadowing recovery pro-
cess and extend its applicability, we simplify the
relative pointwise mutual information (R-PMI)
method from (Zhang et al., 2025a, 2024b) to iden-
tify X, within Pg,;. First, we obtain the top-
k next-token candidates, Vi, (Psyp), by feeding
P,,p to the model. Then, we iteratively generate
contrastive prompts P, , by masking (in our im-
plementation, by deleting) each token X’ , from
Py,». For each Ps’ub, we acquire its top-k candi-
dates Viop(P.,,;, ). The R-PMI for each token y; in



the intersection Viop(Psup) N Viop(PL,,) is calcu-
lated as:

p(yi‘Psub)

R-PMI; = log .
Pl Pyyp)

(6)

Then, we sum the negative R-PMI values to get
SR_pM] = Z miH(R—PMIZ', 0) The Xéub yield—
ing the minimum Sr_pys; is identified as X,p.
Furthermore, the Y,,; is determined as the token
y; from Vo, (Psyp) Whose average rank improves
most significantly when non-subordinate compo-
nents X ;ub, often the Xy, is masked. Yy, is
identified as y; that has the highest average rank
across all Ps’ub. For circuit construction, X ..,
within P, is replaced by a generic placeholder
like "something", as shown in Figure 5. Combining
this streamlined approach enables broader applica-
tion of our knowledge circuit-based overshadowing
recovery. See more details in Appendix B.2

4 Experiment

4.1 Experiment Setup
4.1.1 Dataset

Synthetic dataset. To investigate the dynamic char-
acteristics and influencing factors of the RO during
training under controlled conditions,and to mini-
mize the complexities and semantic relationships
inherent in natural language, we construct a syn-
thetic dataset and train models from scratch.

Follow (Zhang et al., 2025a), we first fix the
length of X3, at 4 tokens and the lengths of
Xaom, Xsub, Ydoms Ysup at 1. For the dataset size
(D), we experiment with 0.26 (D = 0.26M), 2.6
(D =2.6M) and 26 million tokens (D = 26M). For
popularity (P), we set P values as 5, 25, and 100.

Then, for a specific combination of P and D,
there are several distinct groups to achieve the tar-
get D. Each group comprises P distinct X 4,,,, and
a single Yy, for dominant knowledge, one X
and Y, for subordinate knowledge. The X, is
shared. Thus, there are P unique {Pyom, Yiom }
and one { Pgyp, Ysyup } in a group. All the tokens are
randomly sampled. See more details of our dataset
in Appendix C.

Finetuning Dataset. We construct a finetun-
ing dataset to evaluate circuit-base overshadow-
ing recovery method. Utilizing virtual knowledge,
we preserve the natural language semantics while
avoiding prior knowledge editing that could inter-
fere with the natural occurrence of overshadowing.
For this dataset, we set P =5 and D = 1M. The

Appendix D shows the dynamics analysis based on
finetuning dataset.

4.1.2 Models Evaluated

We employ models from the Pythia suite (Bider-
man et al., 2023), specifically: Pythia-70M, Pythia-
410M, Pythia-1.4B, and Pythia-2.8B, correspond-
ing to model sizes (M) of M = 70M, 410M, 1.4B
and 2.8B, respectively. Tokens randomly sampled
to build synthetic dataset is from Pythia tokenizer.

4.1.3 Training

A uniform learning rate of 10~ and batch size of
16 are used for both dataset. Training is conducted
on NVIDIA A800 GPUs.

4.1.4 Evaluation

To measure RO, we randomly sample 500 Py,
and 500 Ps,, prompts for evaluation after each
training epoch. The LP is recorded within each
epoch. The results are shown in Figures 2 and 3.

4.2 Main Result

Based on the experiments described above, using
the circuit to analyze and optimize overshadowing,
our investigation yields the following findings.

A higher value of P and M can lead to an ear-
lier onset, shorter duration, and quicker recov-
ery of the knowledge overshadowing. Distinctly,
a larger D contributes to the earlier onset but
also a slower recovery from overshadowing.

As shown in Figures 2a and 2d (M=70M,
D=2.6M), increasing P (from 5 to 100) signifi-
cantly shortens or even eliminates the onset phase.
This is attributed to more prominent dominant pat-
terns Xgom <+ Xpg being learned and generalized
rapidly, even within the first epoch. The duration
phase also decreases with higher P, because a larger
P and a fixed D implies fewer groups of knowledge
pairs, leading to less diversity of Py, allowing the
model to learn all overshadowed Ps,; and recover
from overshadowing more quickly.

Figures 2b and 2e (P=5, D=2.6M) demonstrate
that larger models (M) exhibit shorter or absent
onset phases, indicating an earlier occurrence of
knowledge overshadowing. This is due to the
stronger generalization capabilities of larger mod-
els, leading them to quickly learn and overgeneral-
ize dominant patterns. However, larger models also
show a shortened duration phase and a rapid de-
cline in RO during recovery, suggesting enhanced
capacity to differentiate { X go1,, Xsup }» thus recov-
ering faster despite earlier overshadowing.



100 '7 """ == M =70M, D =2.6M 10070 NG P=5D=26M 100 groste, P=5M=70M
¢ N —e— P=100 '%. \ —e— M=23B /.7 Y —e— D =26M Tokens
%0 —e— P=25 0] 4 \ \ —e— M=14B sl ¢ T —e— D =2.6M Tokens
N\
% P=5 \ \ —o— M=410M X "\ D = 0.26M Tokens
\ \ M=70M 1)
= 60 o 60 o 60 % \.
S IS IS 1l \
g \ g g KN
& 4 S & 4 AN
\ . 1 "\
\.
20 \ \ 20 ! 20 \ Yo
\ o\ ! \ . \ e, .
o \ 0.
0 Necemei> O = 0 \.3._,_,_3 ----------------- 0 H &
0 3 6 9 2 5 18 2 0 3 6 9 12 5 8 21 0 4 8 12 16 2 24 28
Epoch Epoch Epoch
(a) Popularity (P) (b) Model Size (M) (c) Dataset Size (D)
M=70M, D =2.6M P=5D=26M P=5M=70M
— P=100 P=5 — M=28B — M=410M — D=26M D=0.26M
— P=25 — M=14B M =70M ~ D=26M

Onset Duration (Epoch)

Onset Duration (Epoch)

Onset Duration (Epoch)

Onset Rate
(% per epoch)

Recovery Rate
(% per epoch) /30

Recovery Rate
(% per epoch) /30

Recovery
Duration (Epoch)

High RO
Duration (Epoch)

Recovery
Duration (Epoch)

(d) Popularity (P)

(e) Model Size (M)

Onset Rate
(% per epoch)

Onset Rate
(% per epoch)

Recovery Rate
(% per epoch) /30

High RO
Duration (Epoch)

Recovery
Duration (Epoch)

High RO
Duration (Epoch)

(f) Dataset Size (D)

Figure 2: (a) ~ (c) show the dynamic variation of RO relating to P, M and D in model training phase. Higher
Knowledge Popularity (P) and Model Size (M) tend to result in an earlier onset, shorter duration, and quicker
recovery from knowledge overshadowing. In contrast, a larger Dataset Size (D) also leads to an earlier onset but is
associated with a slower recovery phase. (d) ~ (f) show the duration of onset stage, high RO (> 90%) stage as well
as recovery stage, and RO’s rate of change during the onset and recovery stages.

1000 eememamame P=5, M=T0M, D-2.6M | o0 100] oo P=5, M=410M, D-2.6M | 00 100 P=5,M=14B,D-2.6M | |00
/ \ —e— R Ne —e— R N —e— R
H P \ crP 1 P
30 \ 80 801 ¢ 80 80 \ 80
S 60 . 60 g S 6 60 g S 60 1 0
40 / 40 40 40 40 40
0 \ 20 0 s 20 20 20
, .
\ \ \
ol ®~eg.e-0-e-0-0-s-s-s-s 0 0l e=-6-0-0-0-0-0-0-0-0-0-0-0-0-0-0--0-s-s 0 0 o-e-, 0
0 3 6 9 12 15 18 21 24 27 0 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 2 27
Epoch Epoch Epoch
(a) M = 70M (b) M = 410M (©)M = 1.4B

Figure 3: The co-evolution between RO & LP in different M. Early high overall loss and low L£P leads to intensive
optimization of Py, and RO rises up to near 100%. As training progresses, subordinate knowledge loss proportion
(LP) rises, shifting optimization focus to Pk, errors, initiating RO’s recovery phase, validated across models.

In Figures 2c and 2f (P=5, M=70M) larger D
leads to an earlier onset of overshadowing, with
RO peaking sooner. This is because more data per
epoch provides more iterations and exposure to the
dominant pattern, accelerating its generalization.
Conversely, the recovery phase is prolonged with
larger datasets. The increased diversity of P, in
larger datasets requires more epochs for the model
to learn all instances and recover.

Notably, across various parameter combinations,
RO often approaches 100% in the early training
stages and finally recovers to 0%. We hypothesize
this phenomenon stems from initial high-loss state,
where optimization efforts disproportionately fo-
cus on reducing the larger loss contribution from
Pjom. Our subsequent observations regarding LP

corroborate this.

The dynamic nature of knowledge overshad-
owing arises from the co-evolution relationship
between the £LP and RO. As depicted in Figure
3, in the early training stages, when the overall loss
is high and the contribution from Pj,; is small, the
optimization process tends to concentrate on the

Pjiom and RO rapidly approaches 100%. How-
ever, as training progresses and £P begins to rise,

eventually nearing its peak, P, takes a substantial
portion of the remaining loss. At this juncture, the
model’s optimization efforts shift to focus on these
errors from Pg,;. This shift initiates the recovery
phase, leading to a decline in RO. Therefore, the
insufficient optimization results in the overshadow-
ing, which is consistent across varying M.
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Solid lines denote direct information flow, while dashed lines indicate indirect flow in circuit structure map.

The occurrence of overshadowing in pre-
trained LLMs can be understood with dynamics
analysis results above. Initially, large M and D
promote the rapid generalization of Xy, <> Xpg
and overshadowing onset. The subsequent inad-
equate optimization of the Pj,; is exacerbated
by the sheer scale and diversity of training data,
which brings prolonged overshadowing effect and
exceeded sharp recovery effect from large M (e.g.,
trillion tokens for training LlaMa-2-7B ).

The knowledge circuit’s attentional allocation
to differences between dominant and overshad-
owed knowledge inputs dictates the extent of
knowledge overshadowing. Figure 4 (a) shows
the variation of circuit’s average attention scores on
{Xdom, Xsup} throughout the training phase. The
higher average attention alleviates overshadowing,

while lower attention exacerbates it.
Figure 4 (b) shows the circuit dynamics across

the onset and recovery phases of knowledge over-
shadowing. These bar plots show the attention

scores of individual attention heads in a specific
epoch, indicating that when the RO declines, some
attention heads, defined as high attention heads,
exhibiting high focus on {X o, Xsup} emerge
within the circuit. The threshold for high atten-
tion is set at 0.2 for the length of X, is one fifth
of the length of input prompt in synthetic dataset.
Conversely, when knowledge overshadowing in-
tensifies, a subset of these critical attention heads

tends to disappear from the circuit.
Furthermore, by focusing on the circuit’s inter-

nal mechanisms and structure within a specific
epoch, as shown in Figure 4 (c), we leverage the
circuit-based analysis of our proposed PHANTOM-
CIRCUIT. First, according to the logits and ranks
of Yyom and Yy, across layers, the 5th layer is
a juncture where the rank of Yj,; exceeds Yy .
Subsequently, by focusing on the circuit structure,
we identify the internal mechanisms driving this
juncture. A high attention head, a5.h1 (layer 5),
crucially channels information to the subsequent
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Figure 5: Overshadowing recovery via optimized circuit. In the finetuned model, Xq,,, <+ X34 causes the original
full model to incorrectly predict Yy,,,. First, we detect the X1, Ysup, Yaom automatically by calculating the
minimum Sg_pjsr . Then, optimizing the knowledge circuit by pruning edges to keep only key nodes enhances the
attention on { X gorm, Xsub }» enabling the recovery from overshadowing and facilitating correct Yy, prediction.

MLP layer, m5. The a5.h1 also appears to inherit
its high attention state from earlier layers, medi-
ated by the layer 4 MLP (m4), leading it to not
only continue elevating the logits for Y, but also
to attenuate the previously rapid growth of Yj,,,’s
logits, thereby facilitating the observed rank rever-
sal. The attention map on the right confirms its
high focus on { X gom, Xsup }-

Knowledge circuit-guided optimization repre-
sents a promising strategy to mitigate the knowl-
edge overshadowing effect. Figure 5 illustrates
our findings. We first finetune the model on fine-
tuning dataset. During the recovery phase, we ran-
domly choose some Pk,;. Feeding P, to the orig-
inal full model (M = 410M), the prediction is still
Yiom instead of expected Yy, and shows a signifi-
cant gap in probability as well.

We then detect the Y0, Yiom and X, for cho-
sen Py, automatically, replace the X,,;, of place-
holder token "something". With these components,
we obtain the P, as corrupt input and Pj,; as
clean input to construct a knowledge circuit. A
golden section search algorithm is employed to de-
termine the optimal number of edges for building
Copt- The optimized circuit structure map shows
that some attention heads are pruned, which are
often low attention heads, or exhibit no significant
attentional pattern towards the core task-relevant
information. Retained high attention heads are
key to differentiating Py, from Pj,; which give
significant attention to { X g1, Xsup}- Some low
attention heads also remain, implying that even in
the circuit, processing background knowledge Xy,
and linking it to the distinctive elements X, is

crucial for correct inference. The performance of
the optimized circuit C,,; is then evaluated by feed-
ing it the clean input Pk,;, while Py, serves as the
baseline for contrast. Finally, the circuit success-
fully produces Y3, demonstrating the elimination
of the overshadowing effect.

Future work will enhance the circuit optimiza-
tion metric M by incorporating Yi,;’s absolute
logit alongside the logit difference with Yy,,,, for
more effective guidance. Developing a compre-
hensive evaluation framework for circuit-based re-
covery is also crucial. These steps will evolve
PHANTOMCIRCUIT into an integrated platform for
efficient analysis and robust optimization of knowl-
edge overshadowing.

5 Conclusion

This paper investigates hallucinations in LLMs
caused by knowledge overshadowing, and intro-
duces PHANTOMCIRCUIT, a novel knowledge
circuit-based analysis framework. PHANTOMCIR-
CUIT first analyzes the training dynamics of over-
shadowing, finding that dominant knowledge popu-
larity, model size, and dataset size critically shape
the onset, duration, and recovery of overshadowing.
Apart from that, the persistent overshadowing in
pretrained models stems from inadequately opti-
mized subordinate knowledge loss. By analyzing
knowledge circuits, we find that changes in critical
attention heads’ focus on subordinate knowledge
directly correlate with the recovery or onset of over-
shadowing. Finally, optimizing these knowledge
circuits presents a promising strategy for mitigating
knowledge overshadowing.



Limitations

Despite the insights provided by PHANTOMCIR-
CUIT, this study has several limitations that open
avenues for future research:

1. The dynamic analysis of knowledge circuits
throughout training is computationally inten-
sive, potentially hindering scalability to very
large models or extensive training. We aim
to develop more computationally efficient
techniques for approximating circuit evolu-
tion, such as checkpoint-based analysis or
lightweight probing.

2. This study concentrates on a specific type
of knowledge overshadowing, leaving more
complex or subtle interference patterns un-
addressed. Future work will broaden PHAN-
TOMCIRCUIT’s scope to investigate a wider
range of overshadowing phenomena, includ-
ing those in multi-hop reasoning.

3. Future efforts will focus on evolving our
instance-specific circuit optimizations into a
generalized mitigation toolkit, supported by
a comprehensive evaluation framework. Key
improvements will target the precision of au-
tomated overshadowed knowledge identifica-
tion and the broader efficacy of circuit-based
interventions. Ultimately, we aim to develop
PHANTOMCIRCUIT as a robust platform for
both in-depth analysis and effective, general-
izable overshadowing mitigation.
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A  More Related Work

A.1 Large Language Models

First proposed by Brown et al. (2020), Transformer-
based auto-regressive LLMs have demonstrated
strong performance across a variety of NLP tasks,
including question answering (Yue, 2025), in-
context learning (Dong et al., 2022), and ana-
logical reasoning (Webb et al., 2023). Pre-
trained on large-scale text corpora, LLMs have
acquired extensive real-world knowledge from
web sources. As a result, models such as In-
ternLM2.5 (Cai et al., 2024), Qwen2.5 (Team,
2024), and LLaMA3.3 (Grattafiori et al., 2024)
have shown excellent performance on world knowl-
edge benchmarks (Suzgun et al., 2022). There-
fore, over the past year, LLMs have demonstrated
remarkable capabilities in understanding-related
tasks across various fields (Kim et al., 2024; Nam
et al., 2024; Yan et al., 2024c; Yan and Lee, 2024;
Yan et al., 2024b; Dong et al., 2025; Su et al., 2025).

Recently, there has been a growing trend toward
enhancing LL.Ms’ reasoning capabilities on com-
plex tasks (Guo et al., 2025; Jaech et al., 2024) by
generating long Chain-of-Thoughts (CoTs), with
reinforcement learning (RL) emerging as an ef-
fective tool to encourage this behavior (Li et al.,
2025; Trung et al., 2024). Recently, there have
also been efforts to explore collaboration between
LLM:s to enhance their reasoning abilities (Zhang
et al., 2025b; Putta et al., 2024; Masterman et al.,
2024; Yan et al., 2025b; Chu et al., 2025).

Despite these advancements, existing LLMs still
suffer from factual hallucinations in practice (Pan
et al., 2025; Asgari et al., 2025), with knowledge
overshadowing identified as a primary contribut-
ing factor (Zhang et al., 2024b). While existing
interoperability works make great efforts on the
mechanism of LLM training and generating (Zhao
et al., 2024), most of them solely focus on isolated
model versions like GPT2 (Wang et al., 2023) and
LLaMA2 (Wendler et al., 2024; Tang et al., 2024).

In this paper, we utilize the Pythia suite (Bider-
man et al., 2023) to investigate the evolution and
underlying mechanisms of knowledge overshadow-
ing across models of varying sizes: 70M, 410M,
1.4B, and 2.8B parameters. Sharing a unified ar-
chitecture, this model suite eliminates design vari-
ability, thereby providing clearer and more reliable
insights into the scaling behavior of the knowledge
overshadowing phenomenon in LLMs.
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B PHANTOMCIRCUIT Details

B.1 Circuit Construction

Knowledge circuit is as a sparse computational
subgraph within the LLMs. The construction of
such a circuit involves identifying and retaining
the most influential components (nodes, including
MLPs and attention heads) and connections (edges)
while pruning less critical ones.

We adapted the optimized circuit construction
method provided by (Yao et al., 2024). The pro-
cess begins by representing the LLM as a directed
acyclic graph (DAG), G (V,E), where V
encompasses input embeddings, attention heads,
MLP layers, and output logits, and E represents
the information flow between these components.
The goal is to identify a subgraph C' C G that is
critical for recognize the key component of a given
input prompt, particularly in knowledge overshad-
owing, is X, and X3, the difference between
Pdom and Psub-

The adapted construction method is similar to
edge attribution patching(EAP) (Conmy et al.,
2023), which involves:

1. Paired Inputs: For a given background Xp,,
we create two primary input prompts: Py, =
(ngdeom) and Py, = (ngaXsub)' We
also consider a "corrupted" version of Py,
which could be P, itself or another prompt
designed to elicit Yy,,,. Let’s denote the
"clean" input as P, (typically Pg,;) and
the "corrupted” input as P, (designed to
lead to Yy ,,)-

2. Activation Difference Calculation: We run
both Ppjeqn and P, through the model. For
each node v € V that is a potential parent in
an edge, we record its output activation. The
difference in activations between the clean
and corrupted runs for a node v, (parent) is de-
noted as AA(vp) = Aciean(Vp) — Acorr (Vp).

. Edge Scoring via Gradient-based Attribu-
tion: To score an edge e = (v, v.) (from par-
ent vj, to child v..), we focus on how patching
the activation from v, (i.e., using Aeqn (vp)
instead of Acop(vp) When P,y is the main
input) affects a chosen metric M. This metric
M is designed to measure the model’s ten-
dency towards generating Yy, versus Yy,
when the input is Pg,p. A common choice for
M could be the logit difference between Y,



and Yy, at the final layer, or a metric related
to our Relative Overshadowing rate (RO).

The score S(e) for an edge e can be approxi-
mated by the product of the activation differ-
ence from its parent node and the gradient of
the metric M with respect to the input of its
child node, when the child node receives the
"clean" activation from the parent while other
inputs are "corrupted":

oM (}/target |Psub)
aAinput (Uc)

S(e) ~ Epsub AA(UP) :

where Yiqrger 1 ideally Yy,,. The expecta-
tion IE is taken over instances of Pj,;, in our
evaluation set Zg,;. In practice, methods like
Integrated Gradients (IG) are often used to
refine this attribution by integrating gradients
along a path from a baseline (corrupted) input
to the actual (clean) input.

Circuit Pruning: Based on the calculated
scores S(e), edges with scores below a certain
threshold 7, or alternatively, edges outside
the top-N highest scores, are pruned from the
graph . The remaining nodes and edges
form the knowledge circuit Clp.

Csub = (V;uby Esub)

where Eqp, = {e € E | |S(e)] > 7} (or
top-N criterion) and Vi,; consists of nodes
connected by edges in Ey,p.

This constructed circuit Cy, is then ana-
lyzed to understand how dominant knowledge
K 4o might overshadow K, by examining
the attentional features and information flow
within it, especially when processing Pgyp.

B.2 Automated Component Identification for
Recovery

*

Identifying the Overshadowed Component X ,.
A critical precursor to effective circuit-based re-
covery is the precise identification of the specific
component X , within the subordinate prompt
P, that is being overshadowed. This is achieved
by adapting the Relative Pointwise Mutual Infor-
mation (R-PMI) based methodology from (Zhang
et al., 2025a, 2024b). The process involves:
Iteratively generating contrastive prompts P, ,
by deleting each candidate token X’ , (a potential
overshadowed component) from the original Pj,y,.
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For each pair (Psy, P.,;), calculating the R-
PMI for tokens y; in the intersection of their top-k
next-token candidate sets, Viop(Psup) N Viop(PL,p)s

using

R-PMI(yl, Py, Péub) = logP(yz|Psub)

- logP(yZ|Ps/ub)
Summing only the negative R-PMI values to obtain

Sk-parr-(Poub, Plyy) = Y min(R-PMI(y;),0).

The X, that yields the minimum (most nega-
tive) Sp.ppsr— is identified as the primary over-
shadowed component, X ,. This selection is
based on the rationale that removing the true X ,
most strongly exposes the model’s bias towards out-
puts favored by the dominant knowledge pattern.

Identifying Target Subordinate Qutput Y.
The intended subordinate output Yy, is identified
by assessing which token from Vj,(Psy) (the
top-k candidates for the original prompt Pg,, =
(Xbg» Xsup)) exhibits the most significant improve-
ment when the overshadowing influence of back-
ground knowledge (X,) or other non-subordinate
components is mitigated. Specifically, we gener-
ate contrastive prompts P’ , by masking or alter-
ing components of X;, (or other identified non-
subordinate elements that contribute to the X3, <>
Yiom association) within Py,;. Y, is then the
token y; € Viop(Psup) that shows the most substan-
tial rank improvement (or largest increase in log
probability) in these modified prompts P’ , com-
pared to its rank in the original P;,;. This rank
elevation signifies the “unmasking” of the true sub-
ordinate answer as the dominant, overshadowing
associations are weakened.

Identifying Dominant Output Y;,,,,. The dom-
inant output Yy, is identified as the token that
maintains the highest average rank across all con-
trastive prompts P’ . generated by deleting differ-
ent candidate tokens X/ , from Pj,;,. This token
represents the model’s most consistent, default out-
put tendency when specific subordinate cues are
variably weakened, likely reflecting the pervasive
influence of dominant knowledge associated with
the background Xj,.

With X, (background knowledge), X, (iden-
tified subordinate component), the expected Yz,
and the interfering Yy, established, we prepare
the paired inputs required for knowledge circuit
construction. The clean input is the original sub-
ordinate prompt Py, = (Xpg, Xsup), for which



the desired output is Yy,,. To create the cor-
rupt input P,,,,, which is designed to elicit the
overshadowing effect and output Yy,,,,, we main-
tain the background knowledge X, but replace
the subordinate component X,; with a generic
placeholder token, such as ’something’. Thus,
Piom = (Xig, “something”). This specific formu-
lation of Py, ensures that while the input structure
is similar to Ps,;, the absence of X, allows the
strong Xpg <> Yyom association to dominate, lead-
ing to the incorrect prediction Yy,,,,. These paired
inputs, Py, and Py, then serve as the founda-
tion for the activation difference calculations in our
circuit analysis.

Some more circuit-based overshadowing recov-
ery cases are shown in Table 1.

C Dataset Details

C.1 Detailed Synthetic Dataset Construction

The synthetic dataset was constructed through the
following steps to ensure controlled conditions for
analyzing knowledge overshadowing dynamics:

Fixing text lengths. For all generated data in-
stances, consistent token lengths are maintained.
The background knowledge (X;,) was set to a
length of 4 tokens. All other core components,
namely the dominant knowledge entity (Xgopm),
subordinate knowledge entity (X,,p), dominant
output (Yyom), and subordinate output (Yy,p), are
each set to a length of 1 token.

Dataset generation for specific D and P Com-
binations. For each defined combination of to-
tal dataset size (D) and knowledge popularity
(P), the dataset was built as follows: The dataset
comprises multiple distinct groups of knowledge
instances. Each group consists of P+1 knowl-
edge prompts: a set of P dominant knowledge
prompts {P) . P2 , PP} and one subor-

dom? " **

dinate knowledge prompt Pj,;. Within each group:

* For the P dominant prompts, the ac-
tual  dominant  knowledge  entities
{x} X2 ....,XF } are all unique.

However, they all share the same background
knowledge component (X,) and are associ-
ated with the same dominant output (Yo, _g).
Thus, each Péom = (Xpg, le is paired
with Y7

dom*

om)

* The single subordinate prompt Pgyp
(Xbg, Xoup) uses the same background knowl-
edge X, as the dominant prompts in that
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group. However, its subordinate knowledge
entity X, is distinct from all X entities
in that group, and its corresponding output
Ysup 1s distinct from any Yy, in group.

This structure creates a group:
{(Pl Ydlom)7 s ((Péznw Ydlzm)a (Psuba Y:sub)}

dom’

Multiple such groups are generated. All to-
kens for X, Xéom, Xsubs Ydom, Ysup Within each
group, and across different groups, are randomly
sampled from the Pythia tokenizer vocabulary, en-
suring no overlap between the core entities of dif-
ferent groups. This process was repeated until the
total number of tokens in the dataset reached the
target size D.

Cases illustration. We illustrate some groups
for P=5 dataset in Table 2. We directly show token
id.

C.2 Finetuning dataset

For the finetuning dataset, we utilized the Qwen-
Long API to generate instances of virtual knowl-
edge. This generated data subsequently underwent
manual review to identify and remove any instances
that are overly repetitive or semantically too simi-
lar, ensuring a degree of diversity, resulted in D =
IM.

A key distinction from the synthetic dataset con-
struction is that we did not strictly control token
lengths for each component in this dataset. In-
stead of randomly sampled token IDs, the finetun-
ing dataset consists of actual linguistic statements
that, while syntactically and semantically coher-
ent, represent virtual (i.e., fabricated but plausible)
knowledge. The underlying pattern of dominant
and subordinate knowledge construction, however,
mirrors that of the synthetic dataset.

As an example of this dataset, we set the knowl-
edge popularity P=5. Some illustrative cases from
the dataset are shown in Table 3.

D More Dynamics Analysis on Finetuning
Dataset

In addition to validating the efficacy of our circuit-
based overshadowing recovery method, the finetun-
ing dataset serves a dual purpose. We also leverage
it to empirically verify our conclusions regarding
the training dynamics of knowledge overshadow-
ing, specifically concerning the impact of Dataset
Size (D). Consistent with our dynamic analysis
findings, we investigate whether a larger D indeed
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Figure 6: The dynamics analysis of knowledge overshadowing in finetuning dataset.

correlates with a slower recovery rate from knowl-
edge overshadowing and a prolonged duration of
the hallucination effect. To this end, we conduct
experiments on the finetuning dataset by fixing
Knowledge Popularity at P=5 and Model Size at
M=70M, while varying D across values of 0.1M,
0.5M, and 1M tokens. The results, as depicted
in Figure 6a, corroborate this relationship. Fur-
thermore, under the specific configuration of P=5,
M=70M, and D=0.5M on the finetuning dataset, we
re-examine the interplay between the loss propor-
tion of subordinate knowledge (LP) and the rela-
tive overshadowing rate (RQO). As shown in Figure
6b, the observations again support the hypothesis
that insufficient optimization of subordinate knowl-
edge contributes to the persistence of knowledge
overshadowing.

It is noteworthy that distinct behaviors are ob-
served when comparing the finetuning dataset to
the synthetic dataset. Firstly, the recovery from
overshadowing on the finetuning dataset is gener-
ally slower than on the synthetic dataset for same
D. This can be attributed to the richer semantic
relationships and greater complexity inherent in
the natural language of the finetuning data, which
presents a more challenging learning task.

Secondly, we observe that the finetuning dataset
exhibits a minimal or absent onset phase for knowl-
edge overshadowing, where RO typically rise.
This is because finetuning commences from a pre-
trained model, which has already moved beyond
the initial epochs of chaotic, random predictions.
Consequently, the model can very rapidly general-
ize strong association patterns present in the fine-
tuning data. Moreover, the diverse and varied forms
of data within the finetuning set may act akin to
a beneficial noise signal, prompting the model to
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pay closer attention to distinguishing features and
differences. This inherent data diversity can help
preemptively mitigate or even eliminate the early
onset stage of knowledge overshadowing that might
otherwise be observed.



Table 1: Circuit-based overshadowing recovery cases

M indicator

Case Pgyp with { X sup } et dtemres) Yoaean &% YVauh Full Model Top 5 Prediction Circuit Top 5 Prediction
Rank 0: Logit: 16.18 Prob: Rank 0: Logit: 21.03 Prob:
32.18% Token: |Tem| 73.70% Token: | Time |
Rank 1: Logit: 15.42 Prob: Rank 1: Logit: 19.75 Prob:
14.98% Token: |Time| 20.42% Token: |Tem|
Analysis of the Chrono-Filter device Original . . X . . .
Case 1 efficiency for temporal sorting shows ~ model:-1.283 & ITimel & [Teml 521;1;2;&1)‘]; gnlt IIS4.|21 LFelE F;zl(;zﬁriﬁ:i{t'lgfjeﬁ()b'
outcome {filtration overload} Circuit: 0.764 e - 1P O .
Rank 3: Logit: 14.05 Prob: Rank 3: Logit: 16.40 Prob:
3.83% Token: |T| 0.72% Token: |E|
Rank 4: Logit: 13.84 Prob: Rank 4: Logit: 16.29 Prob:
3.10% Token: |Custom| 0.64% Token: |Sp|
Rank 0: Logit: 17.64 Prob: Rank 0: Logit: 17.96 Prob:
37.18% Token: |Wave| 46.34% Token: |E|
Rank 1: Logit: 16.89 Prob: Rank 1: Logit: 16.47 Prob:
17.65% Token: |E| 10.39% Token: |Ps|
Constructing psionic wave emitters Original model:
. necessitates precise tuning involving Lo Rank 2: Logit: 15.35 Prob: Rank 2: Logit: 15.47 Prob:
Case 2 specialized harmonic {feedback SZ;(?& Circuit: IWavel & E| 3.76% Token: |Ps| 3.84% Token: |Wave |
loop} :
Rank 3: Logit: 15.29 Prob: Rank 3: Logit: 15.31 Prob:
3.57% Token: |St| 3.28% Token: |Energy|
Rank 4: Logit: 15.15 Prob: Rank 4: Logit: 14.89 Prob:
3.09% Token: |emitter| 2.15% Token: |emitter|
Rank 0: Logit: 49.08 Prob: Rank 0: Logit: 44.54 Prob:
49.26% Token: |Transfer| 47.18% Token: |Emit|
Rank 1: Logit: 48.68 Prob: Rank 1: Logit: 44.01 Prob:
33.09% Token: |St| 27.96% Token: |Transfer|
Analyzing Ectoplasmic Conduit Original model:
Case 3 energy transfer efficiency through 3 Ogl & Circui‘t' [Transferl & Rank 2: Logit: 46.66 Prob: Rank 2: Logit: 42.38 Prob:
degrading {structure reinforcement 0 '523 ) |Emit| 4.38% Token: |Ada| 5.48% Token: |St|
reveals } )
Rank 3: Logit: 46.37 Prob: Rank 3: Logit: 42.24 Prob:
3.28% Token: |Flow| 4.75% Token: |Energy|
Rank 4: Logit: 46.06 Prob: Rank 4: Logit: 41.64 Prob:
2.41% Token: |Emit| 2.61% Token: |Mi |
Rank 0: Logit: 40.96 Prob: Rank 0: Logit: 34.61 Prob:
91.94% Token: |Output| 51.02% Token: |St|
Rank 1: Logit: 38.34 Prob: Rank 1: Logit: 34.24 Prob:
6.67% Token: |St| 35.19% Token: |Field|
Shard Relic residual energy output Original model: . . . . . .
Case 4 response to sudden energy {conduit -2.623 & Circuit: |Outputl & IStl Rank 2: Logit: 35.87 Prob: Rank 2: Logit: 31.41 Prob:

field spikes} shows 3.202

0.56% Token: |F1|

Rank 3: Logit: 35.82 Prob:
0.54% Token: |Trans|

Rank 4: Logit: 33.51 Prob:
0.05% Token: |Un|

2.08% Token: |Output|

Rank 3: Logit: 30.97 Prob:
1.34% Token: |Har|

Rank 4: Logit: 30.84 Prob:
1.18% Token: |F1|
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Table 2: Illustrative examples from the synthetic dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group. Token IDs are shown.

Gl'OUP ng Xdom Ydaom Xsub Ysub
[10030, 16936, 1050, 10565] 10279 20730
[10030, 16936, 1050, 10565] 24327 20730
[10030, 16936, 1050, 10565] 4619 20730
Group 1
[10030, 16936, 1050, 10565] 5137 20730
[10030, 16936, 1050, 10565] 785 20730
[10030, 16936, 1050, 10565] 18941 3519
[17026, 8837, 3802, 28741] 2496 1077
[17026, 8837, 3802, 28741] 3530 1077
[17026, 8837, 3802, 28741] 11948 1077
Group 2
[17026, 8837, 3802, 28741] 2028 1077
[17026, 8837, 3802, 28741 9389 1077
[17026, 8837, 3802, 28741] 25814 5374
[18131, 14501, 21161, 311] 4706 7790
[18131, 14501, 21161, 311] 778 7790
[18131, 14501, 21161, 311] 18762 7790
Group 3
[18131,14501,21161, 311] 28591 7790
[18131, 14501, 21161, 311] 28981 7790
[18131, 14501, 21161, 311] 8447 6129

Table 3: Illustrative examples from the Finetuning Dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group.

Group Xbg Xdom Yo Xsub Yol
Ana!ysm sl St;irﬁre Clryesil output peak resonance Pure Nova
Engine reveals primary energy
Ana!yms wifilie St'arﬁre Chyeial output idle cycle Pure Nova
Engine reveals primary energy
Ana!ysm of the SFarﬁre Crystal output ph‘as‘e Pure Nova
© | Engine reveals primary energy synchronicity
roup =
Ana!yms el St'arﬁre Clyeiitl output null gravity Pure Nova
Engine reveals primary energy
gnﬂy31s el Stgrﬁre Gl output core temperature Pure Nova
ngine reveals primary energy
Ana'ly51s wifilie St_arﬁre Cliyeiil output cold ignition Quantum Flux
Engine reveals primary energy
Observation of the Chronos Orb’s - . Stable Chrono-
. . . indicates full moonlight .
temporal distortion signature displacement
Observation of the Chronos Orb’s s . Stable Chrono-
. . . indicates near Leyline .
temporal distortion signature displacement
Observation of the Chronos Orb’s - . Stable Chrono-
. . . indicates while attuned .
G ) temporal distortion signature displacement
roup
Observation of the Chronos Orb’s L . . Stable Chrono-
. . . indicates during solstice .
temporal distortion signature displacement
Observation of the Chronos Orb’s indicates etherium Stable Chrono-
temporal distortion signature interaction displacement
Observanop of Fhe Chronos Orbrs indicates sudden impact Temporal Anomaly
temporal distortion signature
Study of the Xylosian biology B Molecular
reveals primary nutrient absorption GHTe R A7 Assimilation
ol Fhe Xylos@n biology q method after sonic bath MOl.ec}lla.r
reveals primary nutrient absorption Assimilation
Study of t_he Xylosm'n biology ; Eethodlduneldisesion Mol‘eC}lla.r
@ 5 reveals primary nutrient absorption Assimilation
roup
Study of the Xylosian biology . Molecular
reveals primary nutrient absorption i L h Rese Assimilation
Study of the Xylosm'n biology ; method thermal vent Mol.eC}lla.r
reveals primary nutrient absorption Assimilation
Study of the Xylosian biology method xenoflora Crystalline
reveals primary nutrient absorption consumption Excretion
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