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Abstract001

Large Language Models (LLMs), despite their002
remarkable capabilities, are hampered by hal-003
lucinations. A particularly challenging vari-004
ant, knowledge overshadowing, occurs when005
one piece of activated knowledge inadvertently006
masks another relevant piece, leading to erro-007
neous outputs even with high-quality training008
data. Current understanding of overshadow-009
ing is largely confined to inference-time ob-010
servations, lacking deep insights into its ori-011
gins and internal mechanisms during model012
training. Therefore, we introduce PHANTOM-013
CIRCUIT, a novel framework designed to014
comprehensively analyze and detect knowl-015
edge overshadowing. By innovatively employ-016
ing knowledge circuit analysis, PHANTOMCIR-017
CUIT dissects the internal workings of atten-018
tion heads, tracing how competing knowledge019
pathways contribute to the overshadowing phe-020
nomenon and its evolution throughout the train-021
ing process. Extensive experiments demon-022
strate PHANTOMCIRCUIT ’s effectiveness in023
identifying such instances, offering novel in-024
sights into this elusive hallucination and provid-025
ing the research community with a new method-026
ological lens for its potential mitigation.027

1 Introduction028

Large Language Models (LLMs) have witnessed029

explosive growth in recent years, demonstrating030

remarkable capabilities across a multitude of do-031

mains, including natural language understanding,032

generation, reasoning, and even cross-modal tasks033

(Chang et al., 2024; Zhao et al., 2024; Yan et al.,034

2025a, 2024a; Xun et al., 2025). Their proficiency035

has catalyzed transformative advancements in vari-036

ous applications. However, a persistent challenge037

that tempers their widespread adoption and relia-038

bility is the phenomenon of hallucination. Broadly,039

hallucinations refer to instances where models gen-040

erate content that is factually incorrect, nonsensical,041

or unfaithful to the provided source context, despite042

Figure 1: Illustrative comparison of previous research
with inference-time analysis (b) and observation-based
explanation (c) vs our proposed PHANTOMCIRCUIT (d)
on knowledge overshadowing (a).

appearing coherent and fluent (Rawte et al., 2023; 043

Chakraborty et al., 2025; Wang et al., 2025). 044

While substantial research has been dedicated 045

to understanding the causes and detection of gen- 046

eral hallucinations, a specific variant known as 047

“knowledge overshadowing” warrants deeper in- 048

vestigation (Zhang et al., 2024b, 2025a). This 049

phenomenon is particularly perplexing because it 050

can manifest even when models are trained on 051

high-quality, meticulously curated pre-training cor- 052

pora. Current understanding, primarily derived 053

from inference-time observations, characterizes 054

overshadowing as a scenario where, for a given 055

query, one piece of activated knowledge inadver- 056

tently “overshadows” another relevant knowledge. 057

This interference ultimately biases the model’s rea- 058

soning process, leading to a hallucinatory output, 059

as illustrated in Figure 1 (a). 060

Nevertheless, existing explorations into knowl- 061

edge overshadowing suffer from notable limita- 062

tions. ❶ They predominantly focus on inference- 063

time analysis, as shown in Figure 1 (b). While 064

valuable for identifying the occurrence of over- 065

shadowing, such observations offer a surface-level 066
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understanding and often fall short of elucidating067

how these detrimental patterns are learned during068

the training phase. ❷ The explanations for over-069

shadowing are often speculatively inferred from070

these observational outcomes rather than being071

rigorously investigated through dedicated inter-072

pretability tools that can probe the model’s internal073

decision-making mechanisms, as shown in Figure074

1 (c). Consequently, a more comprehensive ana-075

lytical framework is imperative to dissect this phe-076

nomenon from its origins to its manifestation.077

To bridge this gap, we introduce PHANTOM-078

CIRCUIT, a novel framework designed to com-079

prehensively analyze and detect the knowl-080

edge overshadowing phenomenon. Specifically,081

PHANTOMCIRCUIT facilitates an in-depth exami-082

nation of the evolution of overshadowing halluci-083

nations throughout the training process, correlat-084

ing their emergence and prevalence with core fac-085

tors such as knowledge popularity, model size, and086

dataset size. Then, by leveraging knowledge cir-087

cuit analysis as a key interpretability technique, we088

aim to trace the flow of information and the forma-089

tion of knowledge representations within attention090

heads, thereby uncovering the internal mechanisms091

giving rise to overshadowing. Furthermore, we pro-092

pose to optimize the number of edges within these093

circuits, thus alleviating the knowledge overshad-094

owing. As illustrated in Figure 1 (d), our overall095

work aims to provide a clearer, mechanistic under-096

standing and potential strategies for this elusive097

type of hallucination.098

Our contributions can be summarized as follows:099

• We introduce PHANTOMCIRCUIT, the first com-100

prehensive framework designed to systematically101

analyze and detect knowledge overshadowing,102

delving into its mechanistic nature and evolution103

throughout model training.104

• We pioneer the use of knowledge circuit analy-105

sis to dissect the internal workings of attention106

heads, specifically elucidating how competing107

knowledge pathways contribute to the overshad-108

owing phenomenon.109

• We conduct extensive experiments to demon-110

strate PHANTOMCIRCUIT ’s efficacy in detect-111

ing knowledge overshadowing, offering novel112

insights and a new methodological lens for the113

research community.114

2 Related Work 115

2.1 Hallucination Detection 116

Factuality hallucination detection, which aims to 117

evaluate whether the output of LLMs aligns with 118

real-world facts, typically involves either exter- 119

nal fact-checking or internal uncertainty analysis 120

(Huang et al., 2025; Dang et al., 2024; Zheng et al., 121

2024; Zou et al., 2024; Zhou et al., 2024; Zhu et al., 122

2024). For instance, FACTSCORE (Min et al., 123

2023) decomposes a generation into atomic facts 124

and calculates the proportion that are supported 125

by reliable knowledge sources. FACTOOL (Chern 126

et al., 2023), on the other hand, integrates multiple 127

tools such as Google Search and Google Scholar 128

to gather external evidence and assess the fac- 129

tuality of generated content. In contrast, meth- 130

ods like Chain-of-Verification (Dhuliawala et al., 131

2023), probability-based assessments (Kadavath 132

et al., 2022; Zhang et al., 2024a), and uncertainty 133

estimation approaches (Varshney et al., 2023; Yao 134

et al., 2023; Luo et al., 2023) rely on LLMs’ in- 135

ternal parametric knowledge or uncertainty signals 136

to predict potential hallucinations. Among these 137

efforts, knowledge overshadowing (Zhang et al., 138

2025a) offers a novel perspective by modeling hal- 139

lucination behavior from the perspective of knowl- 140

edge representation, providing an efficient strategy 141

for proactive prevention. 142

2.2 Knowledge Circuit Analysis 143

In the context of mechanistic interpretability (Rai 144

et al., 2024; Huo et al., 2024; Huang et al., 2024a), 145

computations in Transformer-based language mod- 146

els are viewed as a connected directed acyclic graph 147

encompassing components such as MLPs and atten- 148

tion layers (Syed et al., 2023; Conmy et al., 2023; 149

Huang et al., 2024b). A circuit refers to a sparse 150

computational subgraph that significantly influ- 151

ences the model’s behavior on a specific task (Olah 152

et al., 2020; Elhage et al., 2021; Wang et al., 2022). 153

Building on this, Yao et al. (2024) introduce the 154

concept of knowledge circuits, hypothesizing that 155

cooperation among components reveals implicit 156

knowledge in LLMs. Further, Ou et al. (2025) ex- 157

plore how such circuits evolve during continual 158

pre-training, providing insights into knowledge ac- 159

quisition. To enable effective knowledge editing, 160

CaKE (Yao et al., 2024) proposes a Circuit-aware 161

Knowledge Editing method that guides models to 162

activate modified knowledge and form new rea- 163

soning pathways. In this paper, we analyze the 164
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phenomenon of knowledge overshadowing through165

the lens of knowledge circuits, contributing new166

perspectives to LLM hallucination detection.167

See more related work in Appendix A.1.168

3 Methodology169

This section first defines the knowledge overshad-170

owing phenomenon and its quantitative evaluation.171

Subsequently, we detail the PHANTOMCIRCUIT172

framework, which encompasses methods for ana-173

lyzing its training dynamics and for constructing174

and analyzing knowledge circuits to understand its175

internal mechanisms1.176

3.1 Knowledge Overshadowing177

Knowledge overshadowing refers to a specific type178

of hallucination where less prevalent, subordinate179

knowledge is suppressed by high-frequency, domi-180

nant knowledge when both are associated with com-181

mon background knowledge (Zhang et al., 2025a).182

Let Xdom denote dominant knowledge enti-183

ties and Xsub denote subordinate knowledge en-184

tities, both potentially co-occurring with back-185

ground knowledge Xbg. The core idea is that a186

strong learned pattern Xdom ↔ Xbg can "over-187

generalize" where the model primarily associates188

Xdom with Xbg.189

Consequently, when the model encounters Xsub190

with Xbg, denoted as Xsub ↔ Xbg), it may erro-191

neously favor outputs related to Xdom due to the192

stronger Xdom ↔ Xbg pattern.193

3.1.1 Knowledge Overshadowing Occurrence194

When the input prompt is a knowledge pair com-195

posed of background knowledge and dominant196

knowledge, denoted as Pdom = (Xbg, Xdom), and197

the model correctly generates the answer corre-198

sponding to the dominant knowledge, denoted as199

Ydom, we consider this outcome, represented by the200

pair (Pdom, Ydom), as a successful recall of domi-201

nant knowledge.202

When the input prompt is Psub, but the model203

wrongly generates Ydom, knowledge overshadow-204

ing occurs for this query-response instance, result-205

ing in the (Psub, Ydom).206

3.1.2 Quantitative Indicators207

Let Ndom and Nsub be the number of instances of208

Pdom and Psub in the training dataset, respectively.209

The dataset Z comprises a subset Zdom containing210

1Our code will be available upon acceptance.

Ndom instances of Pdom, and a subset Zsub con- 211

taining Nsub instances of Psub. 212

During autoregressive generation tasks per- 213

formed by the model, let Msub be the number of 214

times when overshadowing instances (Psub, Ydom) 215

occur , and Mdom be the number of times 216

(Pdom, Ydom) occurs. Then, we can define the abso- 217

lute extent of the knowledge overshadowing effect, 218

the Absolute Overshadowing rate (AO) and calcu- 219

late it using Msub and Nsub, 220

AO = p(Ydom|Psub) =
Msub

Nsub
. (1) 221

222
To account for the model’s inherent performance 223

and potential noise affecting the overshadowing 224

rate, we also introduce Rdom for dominant knowl- 225

edge inputs: 226

Rdom = p(Ydom|Pdom) =
Mdom

Ndom
, (2) 227

228
which represents the recall rate for Pdom query- 229

response instances. 230

The Relative Overshadowing rate (RO) is then 231

defined as: 232

RO =
AO
Rdom

=
p(Ydom|Psub)

p(Ydom|Pdom)
. (3) 233

234

3.1.3 Overshadowing Influence Factors 235

Knowledge Popularity (P) is the fundamen- 236

tal cause of the knowledge overshadowing phe- 237

nomenon and serves as its primary influencing fac- 238

tor. P is defined as the ratio of the capacities of 239

Zdom to Zsub, thus P = Ndom/Nsub. 240

Model Size (M), referring to the number of 241

model parameters, also impacts knowledge over- 242

shadowing. A larger M generally implies stronger 243

generalization capabilities, causing the model to 244

rapidly generalize the Xdom ↔ Xbg to instances 245

involving Xsub ↔ Xbg and exacerbating overshad- 246

owing. 247

In addition to the factors mentioned in (Zhang 248

et al., 2025a, 2024b), aiming to analyze the dy- 249

namic evolution of knowledge overshadowing dur- 250

ing the training process, we extend our considera- 251

tion to total number of tokens, the Dataset Size (D) 252

in the training set. The average loss proportion 253

of subordinate knowledge LP within an epoch 254

is defined as LP = loss(Psub)/total loss, which 255

also relates to the overshadowing. 256
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3.2 Analysis Framework PHANTOMCIRCUIT257

Our proposed knowledge circuit-based overshad-258

owing analysis framework involves the overshad-259

owing dynamics analysis during training and260

circuit-based internal mechanism analysis.261

3.2.1 Overshadowing Dynamic Analysis262

Our framework provides a novel dynamic analysis263

of knowledge overshadowing during model train-264

ing. By manipulating P, M, and D, we monitor RO265

across epochs. We focus on identifying the onset,266

duration, and recovery stages of overshadowing to267

understand their modulation by P, M, and D. Rec-268

ognizing P as a key factor, we also explore how LP269

co-evolves with RO under these variables, aiming270

to uncover the role of LP in explaining overshad-271

owing dynamics.272

3.2.2 Knowledge Circuit Construction273

We construct the knowledge circuit, a sparse com-274

putational subgraph C ⊆ G, where G = (V,E) is275

the directed acyclic graph representation of LLMs,276

V encompasses input embeddings, attention heads,277

MLP layers, and output logits, E represents the278

information flow between these components. Our279

goal is to identify a subgraph C that is critical280

for recognizing the key component of given input281

prompt, particularly in knowledge overshadowing,282

is {Xdom, Xsub}, the difference between Pdom and283

Psub. The adapted construction methods is similar284

to edge attribution patching (Conmy et al., 2023),285

which involves:286

Paired inputs. For a given Xbg, we create a pair287

of input prompts, the clean input Psub correspond-288

ing to our expected output Ysub in the overshadow-289

ing case, and the corrupt input Pdom serving for the290

contrasting mentioned below.291

Activation difference calculation. After run-292

ning this pair of inputs through the model,293

we calculate the difference in activation values294

∆A(vp),∆A(vc) for the parent node vp and child295

node vc of each edge under these distinct in-296

puts, ∆A(vp) = Aclean(vp)−Acorrupt(vp), where297

Aclean(vp) and Acorrupt(vp) are the activation of298

parent node when Psub as clean input and Pdom as299

corrupt input.300

Edge score calculation. The importance S(e)301

of an edge e = (vp, vc) is scored based on how302

patching vp’s activation (using ∆A(vp)) influences303

a metric M, which assesses the model’s ability304

to correctly output Ysub rather than Ydom for Psub305

inputs. Using the Integrated Gradients, S(e) is306

approximated as: 307

S(e) ≈ Exp

[
∆A(vp) ·

∂M(Ysub|Psub)

∂A(vp)

]
. (4) 308

Circuit construction. Edges with scores |S(e)| 309
below a threshold τ are pruned. The remaining 310

subgraph forms the knowledge circuit C. See more 311

details about construction in Appendix B.1 312

3.2.3 Circuit-based Analysis 313

PHANTOMCIRCUIT mainly focuses on the atten- 314

tion heads in C and follows these steps: 315

Node Attention Analysis. We identify high 316

attention heads within C by examining their atten- 317

tion scores and patterns, specifically their focus on 318

{Xdom, Xsub}. 319

Circuit Structure Analysis. We then trace the 320

information flow of these high attention heads by 321

identifying their parent and child nodes to under- 322

stand their structural role. Nodes consistently re- 323

tained in circuits built with different thresholds τ 324

are also analyzed as key components. 325

Layer-wise Logit Evolution. Finally, using 326

logit lens (nostalgebraist, 2020), we inspect the 327

evolving output logits at layers associated with key 328

nodes. This validates if their captured information 329

contributes to the model’s prediction as expected. 330

3.2.4 Circuit-based Overshadowing Recovery 331

Inspired by the goal of knowledge circuits to max- 332

imize sensitivity to the distinguishing features be- 333

tween Xdom and Xsub, we propose a circuit-based 334

method to alleviate overshadowing. This involves 335

optimizing the circuit structure by tuning the edge 336

pruning threshold τ to obtain an optimal circuit, 337

Copt. The optimization is formulated as: 338

τopt = argmax
τ

M(Copt(τ), Psub, Ysub), (5) 339

where M measures the circuit’s ability to distin- 340

guish {Xdom, Xsub}, This results in a Copt(τopt) 341

which is expected to mitigate or eliminate the over- 342

shadowing effect for specific input prompts. 343

To automate the overshadowing recovery pro- 344

cess and extend its applicability, we simplify the 345

relative pointwise mutual information (R-PMI) 346

method from (Zhang et al., 2025a, 2024b) to iden- 347

tify Xsub within Psub. First, we obtain the top- 348

k next-token candidates, Vtop(Psub), by feeding 349

Psub to the model. Then, we iteratively generate 350

contrastive prompts P ′
sub by masking (in our im- 351

plementation, by deleting) each token X ′
sub from 352

Psub. For each P ′
sub, we acquire its top-k candi- 353

dates Vtop(P
′
sub). The R-PMI for each token yi in 354
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the intersection Vtop(Psub) ∩ Vtop(P
′
sub) is calcu-355

lated as:356

R-PMIi = log
p(yi|Psub)

p(yi|P ′
sub)

. (6)357

Then, we sum the negative R-PMI values to get358

SR-PMI =
∑

min(R-PMIi, 0). The X ′
sub yield-359

ing the minimum SR-PMI is identified as Xsub.360

Furthermore, the Ysub is determined as the token361

yi from Vtop(Psub) whose average rank improves362

most significantly when non-subordinate compo-363

nents X ′
sub, often the Xbg, is masked. Ydom is364

identified as yi that has the highest average rank365

across all P ′
sub. For circuit construction, Xdom366

within Pdom is replaced by a generic placeholder367

like "something", as shown in Figure 5. Combining368

this streamlined approach enables broader applica-369

tion of our knowledge circuit-based overshadowing370

recovery. See more details in Appendix B.2371

4 Experiment372

4.1 Experiment Setup373

4.1.1 Dataset374

Synthetic dataset. To investigate the dynamic char-375

acteristics and influencing factors of the RO during376

training under controlled conditions,and to mini-377

mize the complexities and semantic relationships378

inherent in natural language, we construct a syn-379

thetic dataset and train models from scratch.380

Follow (Zhang et al., 2025a), we first fix the381

length of Xbg at 4 tokens and the lengths of382

Xdom, Xsub, Ydom, Ysub at 1. For the dataset size383

(D), we experiment with 0.26 (D = 0.26M), 2.6384

(D = 2.6M) and 26 million tokens (D = 26M). For385

popularity (P), we set P values as 5, 25, and 100.386

Then, for a specific combination of P and D,387

there are several distinct groups to achieve the tar-388

get D. Each group comprises P distinct Xdom and389

a single Ydom for dominant knowledge, one Xsub390

and Ysub for subordinate knowledge. The Xbg is391

shared. Thus, there are P unique {Pdom, Ydom}392

and one {Psub, Ysub} in a group. All the tokens are393

randomly sampled. See more details of our dataset394

in Appendix C.395

Finetuning Dataset. We construct a finetun-396

ing dataset to evaluate circuit-base overshadow-397

ing recovery method. Utilizing virtual knowledge,398

we preserve the natural language semantics while399

avoiding prior knowledge editing that could inter-400

fere with the natural occurrence of overshadowing.401

For this dataset, we set P = 5 and D = 1M. The402

Appendix D shows the dynamics analysis based on 403

finetuning dataset. 404

4.1.2 Models Evaluated 405

We employ models from the Pythia suite (Bider- 406

man et al., 2023), specifically: Pythia-70M, Pythia- 407

410M, Pythia-1.4B, and Pythia-2.8B, correspond- 408

ing to model sizes (M) of M = 70M, 410M, 1.4B 409

and 2.8B, respectively. Tokens randomly sampled 410

to build synthetic dataset is from Pythia tokenizer. 411

4.1.3 Training 412

A uniform learning rate of 10−5 and batch size of 413

16 are used for both dataset. Training is conducted 414

on NVIDIA A800 GPUs. 415

4.1.4 Evaluation 416

To measure RO, we randomly sample 500 Pdom 417

and 500 Psub prompts for evaluation after each 418

training epoch. The LP is recorded within each 419

epoch. The results are shown in Figures 2 and 3. 420

4.2 Main Result 421

Based on the experiments described above, using 422

the circuit to analyze and optimize overshadowing, 423

our investigation yields the following findings. 424

A higher value of P and M can lead to an ear- 425

lier onset, shorter duration, and quicker recov- 426

ery of the knowledge overshadowing. Distinctly, 427

a larger D contributes to the earlier onset but 428

also a slower recovery from overshadowing. 429

As shown in Figures 2a and 2d (M=70M, 430

D=2.6M), increasing P (from 5 to 100) signifi- 431

cantly shortens or even eliminates the onset phase. 432

This is attributed to more prominent dominant pat- 433

terns Xdom ↔ Xbg being learned and generalized 434

rapidly, even within the first epoch. The duration 435

phase also decreases with higher P, because a larger 436

P and a fixed D implies fewer groups of knowledge 437

pairs, leading to less diversity of Psub, allowing the 438

model to learn all overshadowed Psub and recover 439

from overshadowing more quickly. 440

Figures 2b and 2e (P=5, D=2.6M) demonstrate 441

that larger models (M) exhibit shorter or absent 442

onset phases, indicating an earlier occurrence of 443

knowledge overshadowing. This is due to the 444

stronger generalization capabilities of larger mod- 445

els, leading them to quickly learn and overgeneral- 446

ize dominant patterns. However, larger models also 447

show a shortened duration phase and a rapid de- 448

cline in RO during recovery, suggesting enhanced 449

capacity to differentiate {Xdom, Xsub}, thus recov- 450

ering faster despite earlier overshadowing. 451
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(a) Popularity (P) (b) Model Size (M) (c) Dataset Size (D)

(d) Popularity (P) (e) Model Size (M) (f) Dataset Size (D)

Figure 2: (a) ∼ (c) show the dynamic variation of RO relating to P, M and D in model training phase. Higher
Knowledge Popularity (P) and Model Size (M) tend to result in an earlier onset, shorter duration, and quicker
recovery from knowledge overshadowing. In contrast, a larger Dataset Size (D) also leads to an earlier onset but is
associated with a slower recovery phase. (d) ∼ (f) show the duration of onset stage, high RO (> 90%) stage as well
as recovery stage, and RO’s rate of change during the onset and recovery stages.

(a) M = 70M (b) M = 410M (c) M = 1.4B

Figure 3: The co-evolution between RO & LP in different M. Early high overall loss and low LP leads to intensive
optimization of Pdom and RO rises up to near 100%. As training progresses, subordinate knowledge loss proportion
(LP) rises, shifting optimization focus to Psub errors, initiating RO’s recovery phase, validated across models.

In Figures 2c and 2f (P=5, M=70M) larger D452

leads to an earlier onset of overshadowing, with453

RO peaking sooner. This is because more data per454

epoch provides more iterations and exposure to the455

dominant pattern, accelerating its generalization.456

Conversely, the recovery phase is prolonged with457

larger datasets. The increased diversity of Psub in458

larger datasets requires more epochs for the model459

to learn all instances and recover.460

Notably, across various parameter combinations,461

RO often approaches 100% in the early training462

stages and finally recovers to 0%. We hypothesize463

this phenomenon stems from initial high-loss state,464

where optimization efforts disproportionately fo-465

cus on reducing the larger loss contribution from466

Pdom. Our subsequent observations regarding LP467

corroborate this. 468

The dynamic nature of knowledge overshad- 469

owing arises from the co-evolution relationship 470

between the LP and RO. As depicted in Figure 471

3, in the early training stages, when the overall loss 472

is high and the contribution from Psub is small, the 473

optimization process tends to concentrate on the 474

Pdom and RO rapidly approaches 100%. How- 475
ever, as training progresses and LP begins to rise, 476

eventually nearing its peak, Psub takes a substantial 477

portion of the remaining loss. At this juncture, the 478

model’s optimization efforts shift to focus on these 479

errors from Psub. This shift initiates the recovery 480

phase, leading to a decline in RO. Therefore, the 481

insufficient optimization results in the overshadow- 482

ing, which is consistent across varying M. 483
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Figure 4: The circuit-based analysis of proposed PHANTOMCIRCUIT. (a) shows the average attention scores
allocated to {Xdom, Xsub} across epoch. (b) focuses on the onset and recovery phases and shows that the appear
and disappear of high attention heads (attention score greater than 0.2) attribute to the reduce and raise of RO. (C)
shows the logits and ranks of Ysub, Ydom across layers. The main structure of circuit (with 400 edges totally) and
attention mode show that high attention head a5.h1 and MLP layer m5 contribute to the juncture of Ysub ’s rank.
Solid lines denote direct information flow, while dashed lines indicate indirect flow in circuit structure map.

The occurrence of overshadowing in pre-484

trained LLMs can be understood with dynamics485

analysis results above. Initially, large M and D486

promote the rapid generalization of Xdom ↔ Xbg487

and overshadowing onset. The subsequent inad-488

equate optimization of the Psub is exacerbated489

by the sheer scale and diversity of training data,490

which brings prolonged overshadowing effect and491

exceeded sharp recovery effect from large M (e.g.,492

trillion tokens for training LlaMa-2-7B ).493
The knowledge circuit’s attentional allocation494

to differences between dominant and overshad-495

owed knowledge inputs dictates the extent of496

knowledge overshadowing. Figure 4 (a) shows497

the variation of circuit’s average attention scores on498

{Xdom, Xsub} throughout the training phase. The499

higher average attention alleviates overshadowing,500

while lower attention exacerbates it.501
Figure 4 (b) shows the circuit dynamics across502

the onset and recovery phases of knowledge over-503

shadowing. These bar plots show the attention504

scores of individual attention heads in a specific 505

epoch, indicating that when the RO declines, some 506

attention heads, defined as high attention heads, 507

exhibiting high focus on {Xdom, Xsub} emerge 508

within the circuit. The threshold for high atten- 509

tion is set at 0.2 for the length of Xsub is one fifth 510

of the length of input prompt in synthetic dataset. 511

Conversely, when knowledge overshadowing in- 512

tensifies, a subset of these critical attention heads 513

tends to disappear from the circuit. 514
Furthermore, by focusing on the circuit’s inter- 515

nal mechanisms and structure within a specific 516

epoch, as shown in Figure 4 (c), we leverage the 517

circuit-based analysis of our proposed PHANTOM- 518

CIRCUIT. First, according to the logits and ranks 519

of Ydom and Ysub across layers, the 5th layer is 520

a juncture where the rank of Ysub exceeds Ydom. 521

Subsequently, by focusing on the circuit structure, 522

we identify the internal mechanisms driving this 523

juncture. A high attention head, a5.h1 (layer 5), 524

crucially channels information to the subsequent 525
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Figure 5: Overshadowing recovery via optimized circuit. In the finetuned model, Xdom ↔ Xbg causes the original
full model to incorrectly predict Ydom. First, we detect the Xsub, Ysub, Ydom automatically by calculating the
minimum SR-PMI . Then, optimizing the knowledge circuit by pruning edges to keep only key nodes enhances the
attention on {Xdom, Xsub}, enabling the recovery from overshadowing and facilitating correct Ysub prediction.

MLP layer, m5. The a5.h1 also appears to inherit526

its high attention state from earlier layers, medi-527

ated by the layer 4 MLP (m4), leading it to not528

only continue elevating the logits for Ysub but also529

to attenuate the previously rapid growth of Ydom’s530

logits, thereby facilitating the observed rank rever-531

sal. The attention map on the right confirms its532

high focus on {Xdom, Xsub}.533

Knowledge circuit-guided optimization repre-534

sents a promising strategy to mitigate the knowl-535

edge overshadowing effect. Figure 5 illustrates536

our findings. We first finetune the model on fine-537

tuning dataset. During the recovery phase, we ran-538

domly choose some Psub. Feeding Psub to the orig-539

inal full model (M = 410M), the prediction is still540

Ydom instead of expected Ysub, and shows a signifi-541

cant gap in probability as well.542

We then detect the Ysub, Ydom and Xsub for cho-543

sen Psub automatically, replace the Xsub of place-544

holder token "something". With these components,545

we obtain the Pdom as corrupt input and Psub as546

clean input to construct a knowledge circuit. A547

golden section search algorithm is employed to de-548

termine the optimal number of edges for building549

Copt. The optimized circuit structure map shows550

that some attention heads are pruned, which are551

often low attention heads, or exhibit no significant552

attentional pattern towards the core task-relevant553

information. Retained high attention heads are554

key to differentiating Pdom from Psub which give555

significant attention to {Xdom, Xsub}. Some low556

attention heads also remain, implying that even in557

the circuit, processing background knowledge Xbg558

and linking it to the distinctive elements Xsub is559

crucial for correct inference. The performance of 560

the optimized circuit Copt is then evaluated by feed- 561

ing it the clean input Psub, while Pdom serves as the 562

baseline for contrast. Finally, the circuit success- 563

fully produces Ysub, demonstrating the elimination 564

of the overshadowing effect. 565

Future work will enhance the circuit optimiza- 566

tion metric M by incorporating Ysub’s absolute 567

logit alongside the logit difference with Ydom for 568

more effective guidance. Developing a compre- 569

hensive evaluation framework for circuit-based re- 570

covery is also crucial. These steps will evolve 571

PHANTOMCIRCUIT into an integrated platform for 572

efficient analysis and robust optimization of knowl- 573

edge overshadowing. 574

5 Conclusion 575

This paper investigates hallucinations in LLMs 576

caused by knowledge overshadowing, and intro- 577

duces PHANTOMCIRCUIT, a novel knowledge 578

circuit-based analysis framework. PHANTOMCIR- 579

CUIT first analyzes the training dynamics of over- 580

shadowing, finding that dominant knowledge popu- 581

larity, model size, and dataset size critically shape 582

the onset, duration, and recovery of overshadowing. 583

Apart from that, the persistent overshadowing in 584

pretrained models stems from inadequately opti- 585

mized subordinate knowledge loss. By analyzing 586

knowledge circuits, we find that changes in critical 587

attention heads’ focus on subordinate knowledge 588

directly correlate with the recovery or onset of over- 589

shadowing. Finally, optimizing these knowledge 590

circuits presents a promising strategy for mitigating 591

knowledge overshadowing. 592
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Limitations593

Despite the insights provided by PHANTOMCIR-594

CUIT, this study has several limitations that open595

avenues for future research:596

1. The dynamic analysis of knowledge circuits597

throughout training is computationally inten-598

sive, potentially hindering scalability to very599

large models or extensive training. We aim600

to develop more computationally efficient601

techniques for approximating circuit evolu-602

tion, such as checkpoint-based analysis or603

lightweight probing.604

2. This study concentrates on a specific type605

of knowledge overshadowing, leaving more606

complex or subtle interference patterns un-607

addressed. Future work will broaden PHAN-608

TOMCIRCUIT’s scope to investigate a wider609

range of overshadowing phenomena, includ-610

ing those in multi-hop reasoning.611

3. Future efforts will focus on evolving our612

instance-specific circuit optimizations into a613

generalized mitigation toolkit, supported by614

a comprehensive evaluation framework. Key615

improvements will target the precision of au-616

tomated overshadowed knowledge identifica-617

tion and the broader efficacy of circuit-based618

interventions. Ultimately, we aim to develop619

PHANTOMCIRCUIT as a robust platform for620

both in-depth analysis and effective, general-621

izable overshadowing mitigation.622
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A More Related Work960

A.1 Large Language Models961

First proposed by Brown et al. (2020), Transformer-962

based auto-regressive LLMs have demonstrated963

strong performance across a variety of NLP tasks,964

including question answering (Yue, 2025), in-965

context learning (Dong et al., 2022), and ana-966

logical reasoning (Webb et al., 2023). Pre-967

trained on large-scale text corpora, LLMs have968

acquired extensive real-world knowledge from969

web sources. As a result, models such as In-970

ternLM2.5 (Cai et al., 2024), Qwen2.5 (Team,971

2024), and LLaMA3.3 (Grattafiori et al., 2024)972

have shown excellent performance on world knowl-973

edge benchmarks (Suzgun et al., 2022). There-974

fore, over the past year, LLMs have demonstrated975

remarkable capabilities in understanding-related976

tasks across various fields (Kim et al., 2024; Nam977

et al., 2024; Yan et al., 2024c; Yan and Lee, 2024;978

Yan et al., 2024b; Dong et al., 2025; Su et al., 2025).979

Recently, there has been a growing trend toward980

enhancing LLMs’ reasoning capabilities on com-981

plex tasks (Guo et al., 2025; Jaech et al., 2024) by982

generating long Chain-of-Thoughts (CoTs), with983

reinforcement learning (RL) emerging as an ef-984

fective tool to encourage this behavior (Li et al.,985

2025; Trung et al., 2024). Recently, there have986

also been efforts to explore collaboration between987

LLMs to enhance their reasoning abilities (Zhang988

et al., 2025b; Putta et al., 2024; Masterman et al.,989

2024; Yan et al., 2025b; Chu et al., 2025).990

Despite these advancements, existing LLMs still991

suffer from factual hallucinations in practice (Pan992

et al., 2025; Asgari et al., 2025), with knowledge993

overshadowing identified as a primary contribut-994

ing factor (Zhang et al., 2024b). While existing995

interoperability works make great efforts on the996

mechanism of LLM training and generating (Zhao997

et al., 2024), most of them solely focus on isolated998

model versions like GPT2 (Wang et al., 2023) and999

LLaMA2 (Wendler et al., 2024; Tang et al., 2024).1000

In this paper, we utilize the Pythia suite (Bider-1001

man et al., 2023) to investigate the evolution and1002

underlying mechanisms of knowledge overshadow-1003

ing across models of varying sizes: 70M, 410M,1004

1.4B, and 2.8B parameters. Sharing a unified ar-1005

chitecture, this model suite eliminates design vari-1006

ability, thereby providing clearer and more reliable1007

insights into the scaling behavior of the knowledge1008

overshadowing phenomenon in LLMs.1009

B PHANTOMCIRCUIT Details 1010

B.1 Circuit Construction 1011

Knowledge circuit is as a sparse computational 1012

subgraph within the LLMs. The construction of 1013

such a circuit involves identifying and retaining 1014

the most influential components (nodes, including 1015

MLPs and attention heads) and connections (edges) 1016

while pruning less critical ones. 1017

We adapted the optimized circuit construction 1018

method provided by (Yao et al., 2024). The pro- 1019

cess begins by representing the LLM as a directed 1020

acyclic graph (DAG), G = (V,E), where V 1021

encompasses input embeddings, attention heads, 1022

MLP layers, and output logits, and E represents 1023

the information flow between these components. 1024

The goal is to identify a subgraph C ⊆ G that is 1025

critical for recognize the key component of a given 1026

input prompt, particularly in knowledge overshad- 1027

owing, is Xdom and Xsub, the difference between 1028

Pdom and Psub. 1029

The adapted construction method is similar to 1030

edge attribution patching(EAP) (Conmy et al., 1031

2023), which involves: 1032

1. Paired Inputs: For a given background Xbg, 1033

we create two primary input prompts: Pdom = 1034

(Xbg, Xdom) and Psub = (Xbg, Xsub). We 1035

also consider a "corrupted" version of Psub, 1036

which could be Pdom itself or another prompt 1037

designed to elicit Ydom. Let’s denote the 1038

"clean" input as Pclean (typically Psub) and 1039

the "corrupted" input as Pcorr (designed to 1040

lead to Ydom). 1041

2. Activation Difference Calculation: We run 1042

both Pclean and Pcorr through the model. For 1043

each node v ∈ V that is a potential parent in 1044

an edge, we record its output activation. The 1045

difference in activations between the clean 1046

and corrupted runs for a node vp (parent) is de- 1047

noted as ∆A(vp) = Aclean(vp)−Acorr(vp). 1048

3. Edge Scoring via Gradient-based Attribu- 1049

tion: To score an edge e = (vp, vc) (from par- 1050

ent vp to child vc), we focus on how patching 1051

the activation from vp (i.e., using Aclean(vp) 1052

instead of Acorr(vp) when Pcorr is the main 1053

input) affects a chosen metric M. This metric 1054

M is designed to measure the model’s ten- 1055

dency towards generating Ysub versus Ydom 1056

when the input is Psub. A common choice for 1057

M could be the logit difference between Ysub 1058
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and Ydom at the final layer, or a metric related1059

to our Relative Overshadowing rate (RO).1060

The score S(e) for an edge e can be approxi-
mated by the product of the activation differ-
ence from its parent node and the gradient of
the metric M with respect to the input of its
child node, when the child node receives the
"clean" activation from the parent while other
inputs are "corrupted":

S(e) ≈ EPsub

[
∆A(vp) ·

∂M(Ytarget|Psub)

∂Ainput(vc)

]
where Ytarget is ideally Ysub. The expecta-1061

tion E is taken over instances of Psub in our1062

evaluation set Zsub. In practice, methods like1063

Integrated Gradients (IG) are often used to1064

refine this attribution by integrating gradients1065

along a path from a baseline (corrupted) input1066

to the actual (clean) input.1067

4. Circuit Pruning: Based on the calculated
scores S(e), edges with scores below a certain
threshold τ , or alternatively, edges outside
the top-N highest scores, are pruned from the
graph G. The remaining nodes and edges
form the knowledge circuit Csub.

Csub = (Vsub, Esub)

where Esub = {e ∈ E | |S(e)| ≥ τ} (or1068

top-N criterion) and Vsub consists of nodes1069

connected by edges in Esub.1070

This constructed circuit Csub is then ana-1071

lyzed to understand how dominant knowledge1072

Kdom might overshadow Ksub by examining1073

the attentional features and information flow1074

within it, especially when processing Psub.1075

B.2 Automated Component Identification for1076

Recovery1077

Identifying the Overshadowed Component X∗
sub.1078

A critical precursor to effective circuit-based re-1079

covery is the precise identification of the specific1080

component X∗
sub within the subordinate prompt1081

Psub that is being overshadowed. This is achieved1082

by adapting the Relative Pointwise Mutual Infor-1083

mation (R-PMI) based methodology from (Zhang1084

et al., 2025a, 2024b). The process involves:1085

Iteratively generating contrastive prompts P ′
sub1086

by deleting each candidate token X ′
sub (a potential1087

overshadowed component) from the original Psub.1088

For each pair (Psub, P
′
sub), calculating the R- 1089

PMI for tokens yi in the intersection of their top-k 1090

next-token candidate sets, Vtop(Psub)∩Vtop(P
′
sub), 1091

using 1092

R-PMI(yi;Psub, P
′
sub) = logP (yi|Psub) 1093

− logP (yi|P ′
sub). 1094

Summing only the negative R-PMI values to obtain

SR-PMI−(Psub, P
′
sub) =

∑
min(R-PMI(yi), 0).

The X ′
sub that yields the minimum (most nega- 1095

tive) SR-PMI− is identified as the primary over- 1096

shadowed component, X∗
sub. This selection is 1097

based on the rationale that removing the true X∗
sub 1098

most strongly exposes the model’s bias towards out- 1099

puts favored by the dominant knowledge pattern. 1100

Identifying Target Subordinate Output Ysub. 1101

The intended subordinate output Ysub is identified 1102

by assessing which token from Vtop(Psub) (the 1103

top-k candidates for the original prompt Psub = 1104

(Xbg, Xsub)) exhibits the most significant improve- 1105

ment when the overshadowing influence of back- 1106

ground knowledge (Xbg) or other non-subordinate 1107

components is mitigated. Specifically, we gener- 1108

ate contrastive prompts P ′
sub by masking or alter- 1109

ing components of Xbg (or other identified non- 1110

subordinate elements that contribute to the Xbg ↔ 1111

Ydom association) within Psub. Ysub is then the 1112

token yi ∈ Vtop(Psub) that shows the most substan- 1113

tial rank improvement (or largest increase in log 1114

probability) in these modified prompts P ′
sub com- 1115

pared to its rank in the original Psub. This rank 1116

elevation signifies the “unmasking” of the true sub- 1117

ordinate answer as the dominant, overshadowing 1118

associations are weakened. 1119

Identifying Dominant Output Ydom. The dom- 1120

inant output Ydom is identified as the token that 1121

maintains the highest average rank across all con- 1122

trastive prompts P ′
sub generated by deleting differ- 1123

ent candidate tokens X ′
sub from Psub. This token 1124

represents the model’s most consistent, default out- 1125

put tendency when specific subordinate cues are 1126

variably weakened, likely reflecting the pervasive 1127

influence of dominant knowledge associated with 1128

the background Xbg. 1129

With Xbg (background knowledge), Xsub (iden- 1130

tified subordinate component), the expected Ysub, 1131

and the interfering Ydom established, we prepare 1132

the paired inputs required for knowledge circuit 1133

construction. The clean input is the original sub- 1134

ordinate prompt Psub = (Xbg, Xsub), for which 1135
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the desired output is Ysub. To create the cor-1136

rupt input Pdom, which is designed to elicit the1137

overshadowing effect and output Ydom, we main-1138

tain the background knowledge Xbg but replace1139

the subordinate component Xsub with a generic1140

placeholder token, such as ’something’. Thus,1141

Pdom = (Xbg, “something”). This specific formu-1142

lation of Pdom ensures that while the input structure1143

is similar to Psub, the absence of Xsub allows the1144

strong Xbg ↔ Ydom association to dominate, lead-1145

ing to the incorrect prediction Ydom. These paired1146

inputs, Psub and Pdom, then serve as the founda-1147

tion for the activation difference calculations in our1148

circuit analysis.1149

Some more circuit-based overshadowing recov-1150

ery cases are shown in Table 1.1151

C Dataset Details1152

C.1 Detailed Synthetic Dataset Construction1153

The synthetic dataset was constructed through the1154

following steps to ensure controlled conditions for1155

analyzing knowledge overshadowing dynamics:1156

Fixing text lengths. For all generated data in-1157

stances, consistent token lengths are maintained.1158

The background knowledge (Xbg) was set to a1159

length of 4 tokens. All other core components,1160

namely the dominant knowledge entity (Xdom),1161

subordinate knowledge entity (Xsub), dominant1162

output (Ydom), and subordinate output (Ysub), are1163

each set to a length of 1 token.1164

Dataset generation for specific D and P Com-1165

binations. For each defined combination of to-1166

tal dataset size (D) and knowledge popularity1167

(P), the dataset was built as follows: The dataset1168

comprises multiple distinct groups of knowledge1169

instances. Each group consists of P+1 knowl-1170

edge prompts: a set of P dominant knowledge1171

prompts {P 1
dom, P 2

dom, . . . , PP
dom} and one subor-1172

dinate knowledge prompt Psub. Within each group:1173

• For the P dominant prompts, the ac-1174

tual dominant knowledge entities1175

{X1
dom, X2

dom, . . . , XP
dom} are all unique.1176

However, they all share the same background1177

knowledge component (Xbg) and are associ-1178

ated with the same dominant output (Ydom_g).1179

Thus, each P i
dom = (Xbg, X

i
dom) is paired1180

with Y g
dom.1181

• The single subordinate prompt Psub =1182

(Xbg, Xsub) uses the same background knowl-1183

edge Xbg as the dominant prompts in that1184

group. However, its subordinate knowledge 1185

entity Xsub is distinct from all Xi
dom entities 1186

in that group, and its corresponding output 1187

Ysub is distinct from any Ydom in group. 1188

This structure creates a group: 1189

{(P 1
dom, Y 1

dom), . . . , ((PP
dom, Y P

dom), (Psub, Ysub)}. 1190

Multiple such groups are generated. All to- 1191

kens for Xbg, X
i
dom, Xsub, Ydom, Ysub within each 1192

group, and across different groups, are randomly 1193

sampled from the Pythia tokenizer vocabulary, en- 1194

suring no overlap between the core entities of dif- 1195

ferent groups. This process was repeated until the 1196

total number of tokens in the dataset reached the 1197

target size D. 1198

Cases illustration. We illustrate some groups 1199

for P=5 dataset in Table 2. We directly show token 1200

id. 1201

C.2 Finetuning dataset 1202

For the finetuning dataset, we utilized the Qwen- 1203

Long API to generate instances of virtual knowl- 1204

edge. This generated data subsequently underwent 1205

manual review to identify and remove any instances 1206

that are overly repetitive or semantically too simi- 1207

lar, ensuring a degree of diversity, resulted in D = 1208

1M. 1209

A key distinction from the synthetic dataset con- 1210

struction is that we did not strictly control token 1211

lengths for each component in this dataset. In- 1212

stead of randomly sampled token IDs, the finetun- 1213

ing dataset consists of actual linguistic statements 1214

that, while syntactically and semantically coher- 1215

ent, represent virtual (i.e., fabricated but plausible) 1216

knowledge. The underlying pattern of dominant 1217

and subordinate knowledge construction, however, 1218

mirrors that of the synthetic dataset. 1219

As an example of this dataset, we set the knowl- 1220

edge popularity P=5. Some illustrative cases from 1221

the dataset are shown in Table 3. 1222

D More Dynamics Analysis on Finetuning 1223

Dataset 1224

In addition to validating the efficacy of our circuit- 1225

based overshadowing recovery method, the finetun- 1226

ing dataset serves a dual purpose. We also leverage 1227

it to empirically verify our conclusions regarding 1228

the training dynamics of knowledge overshadow- 1229

ing, specifically concerning the impact of Dataset 1230

Size (D). Consistent with our dynamic analysis 1231

findings, we investigate whether a larger D indeed 1232
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(a) The RO during training phase of the different finetun-
ing dataset size (D).

(b) The co-evolution of LP and RO during training phase
on finetuning dataset.

Figure 6: The dynamics analysis of knowledge overshadowing in finetuning dataset.

correlates with a slower recovery rate from knowl-1233

edge overshadowing and a prolonged duration of1234

the hallucination effect. To this end, we conduct1235

experiments on the finetuning dataset by fixing1236

Knowledge Popularity at P=5 and Model Size at1237

M=70M, while varying D across values of 0.1M,1238

0.5M, and 1M tokens. The results, as depicted1239

in Figure 6a, corroborate this relationship. Fur-1240

thermore, under the specific configuration of P=5,1241

M=70M, and D=0.5M on the finetuning dataset, we1242

re-examine the interplay between the loss propor-1243

tion of subordinate knowledge (LP) and the rela-1244

tive overshadowing rate (RO). As shown in Figure1245

6b, the observations again support the hypothesis1246

that insufficient optimization of subordinate knowl-1247

edge contributes to the persistence of knowledge1248

overshadowing.1249

It is noteworthy that distinct behaviors are ob-1250

served when comparing the finetuning dataset to1251

the synthetic dataset. Firstly, the recovery from1252

overshadowing on the finetuning dataset is gener-1253

ally slower than on the synthetic dataset for same1254

D. This can be attributed to the richer semantic1255

relationships and greater complexity inherent in1256

the natural language of the finetuning data, which1257

presents a more challenging learning task.1258

Secondly, we observe that the finetuning dataset1259

exhibits a minimal or absent onset phase for knowl-1260

edge overshadowing, where RO typically rise.1261

This is because finetuning commences from a pre-1262

trained model, which has already moved beyond1263

the initial epochs of chaotic, random predictions.1264

Consequently, the model can very rapidly general-1265

ize strong association patterns present in the fine-1266

tuning data. Moreover, the diverse and varied forms1267

of data within the finetuning set may act akin to1268

a beneficial noise signal, prompting the model to1269

pay closer attention to distinguishing features and 1270

differences. This inherent data diversity can help 1271

preemptively mitigate or even eliminate the early 1272

onset stage of knowledge overshadowing that might 1273

otherwise be observed. 1274
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Table 1: Circuit-based overshadowing recovery cases

Case Psub with {Xsub}
M indicator

(logits difference) Ydom & Ysub Full Model Top 5 Prediction Circuit Top 5 Prediction

Case 1
Analysis of the Chrono-Filter device
efficiency for temporal sorting shows
outcome {filtration overload}

Original
model:-1.283 &
Circuit: 0.764

|Time| & |Tem|

Rank 0: Logit: 16.18 Prob:
32.18% Token: |Tem|

Rank 0: Logit: 21.03 Prob:
73.70% Token: |Time|

Rank 1: Logit: 15.42 Prob:
14.98% Token: |Time|

Rank 1: Logit: 19.75 Prob:
20.42% Token: |Tem|

Rank 2: Logit: 14.21 Prob:
4.47% Token: |Sp|

Rank 2: Logit: 17.34 Prob:
1.84% Token: |Filter|

Rank 3: Logit: 14.05 Prob:
3.83% Token: |T|

Rank 3: Logit: 16.40 Prob:
0.72% Token: |E|

Rank 4: Logit: 13.84 Prob:
3.10% Token: |Custom|

Rank 4: Logit: 16.29 Prob:
0.64% Token: |Sp|

Case 2

Constructing psionic wave emitters
necessitates precise tuning involving
specialized harmonic {feedback
loop}

Original model:
-0.745& Circuit:
2.490

|Wave| & |E|

Rank 0: Logit: 17.64 Prob:
37.18% Token: |Wave|

Rank 0: Logit: 17.96 Prob:
46.34% Token: |E|

Rank 1: Logit: 16.89 Prob:
17.65% Token: |E|

Rank 1: Logit: 16.47 Prob:
10.39% Token: |Ps|

Rank 2: Logit: 15.35 Prob:
3.76% Token: |Ps|

Rank 2: Logit: 15.47 Prob:
3.84% Token: |Wave|

Rank 3: Logit: 15.29 Prob:
3.57% Token: |St|

Rank 3: Logit: 15.31 Prob:
3.28% Token: |Energy|

Rank 4: Logit: 15.15 Prob:
3.09% Token: |emitter|

Rank 4: Logit: 14.89 Prob:
2.15% Token: |emitter|

Case 3

Analyzing Ectoplasmic Conduit
energy transfer efficiency through
degrading {structure reinforcement
reveals}

Original model:
-3.019 & Circuit:
0.523

|Transfer| &
|Emit|

Rank 0: Logit: 49.08 Prob:
49.26% Token: |Transfer|

Rank 0: Logit: 44.54 Prob:
47.18% Token: |Emit|

Rank 1: Logit: 48.68 Prob:
33.09% Token: |St|

Rank 1: Logit: 44.01 Prob:
27.96% Token: |Transfer|

Rank 2: Logit: 46.66 Prob:
4.38% Token: |Ada|

Rank 2: Logit: 42.38 Prob:
5.48% Token: |St|

Rank 3: Logit: 46.37 Prob:
3.28% Token: |Flow|

Rank 3: Logit: 42.24 Prob:
4.75% Token: |Energy|

Rank 4: Logit: 46.06 Prob:
2.41% Token: |Emit|

Rank 4: Logit: 41.64 Prob:
2.61% Token: |Mi|

Case 4
Shard Relic residual energy output
response to sudden energy {conduit
field spikes} shows

Original model:
-2.623 & Circuit:
3.202

|Output| & |St|

Rank 0: Logit: 40.96 Prob:
91.94% Token: |Output|

Rank 0: Logit: 34.61 Prob:
51.02% Token: |St|

Rank 1: Logit: 38.34 Prob:
6.67% Token: |St|

Rank 1: Logit: 34.24 Prob:
35.19% Token: |Field|

Rank 2: Logit: 35.87 Prob:
0.56% Token: |Fl|

Rank 2: Logit: 31.41 Prob:
2.08% Token: |Output|

Rank 3: Logit: 35.82 Prob:
0.54% Token: |Trans|

Rank 3: Logit: 30.97 Prob:
1.34% Token: |Har|

Rank 4: Logit: 33.51 Prob:
0.05% Token: |Un|

Rank 4: Logit: 30.84 Prob:
1.18% Token: |Fl|
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Table 2: Illustrative examples from the synthetic dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group. Token IDs are shown.

Group Xbg Xdom Ydom Xsub Ysub

Group 1

[10030, 16936, 1050, 10565] 10279 20730

[10030, 16936, 1050, 10565] 24327 20730

[10030, 16936, 1050, 10565] 4619 20730

[10030, 16936, 1050, 10565] 5137 20730

[10030, 16936, 1050, 10565] 785 20730

[10030, 16936, 1050, 10565] 18941 3519

Group 2

[17026, 8837, 3802, 28741] 2496 1077

[17026, 8837, 3802, 28741] 3530 1077

[17026, 8837, 3802, 28741] 11948 1077

[17026, 8837, 3802, 28741] 2028 1077

[17026, 8837, 3802, 28741] 9389 1077

[17026, 8837, 3802, 28741] 25814 5374

Group 3

[18131, 14501, 21161, 311] 4706 7790

[18131, 14501, 21161, 311] 778 7790

[18131, 14501, 21161, 311] 18762 7790

[18131, 14501, 21161, 311] 28591 7790

[18131, 14501, 21161, 311] 28981 7790

[18131, 14501, 21161, 311] 8447 6129

Table 3: Illustrative examples from the Finetuning Dataset (P=5). Each data entry is a row, with fine lines separating
entries within a group.

Group Xbg Xdom Ydom Xsub Ysub

Group 1

Analysis of the Starfire Crystal
Engine reveals primary energy output peak resonance Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output idle cycle Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy

output phase
synchronicity Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output null gravity Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output core temperature Pure Nova

Analysis of the Starfire Crystal
Engine reveals primary energy output cold ignition Quantum Flux

Group 2

Observation of the Chronos Orb’s
temporal distortion signature indicates full moonlight Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates near Leyline Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates while attuned Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates during solstice Stable Chrono-

displacement

Observation of the Chronos Orb’s
temporal distortion signature

indicates etherium
interaction

Stable Chrono-
displacement

Observation of the Chronos Orb’s
temporal distortion signature indicates sudden impact Temporal Anomaly

Group 3

Study of the Xylosian biology
reveals primary nutrient absorption method consuming light Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method after sonic bath Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method during digestion Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method high pressure Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption method thermal vent Molecular

Assimilation

Study of the Xylosian biology
reveals primary nutrient absorption

method xenoflora
consumption

Crystalline
Excretion
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