
De-AntiFake: Rethinking the Protective Perturbations
Against Voice Cloning Attacks

Wei Fan 1 Kejiang Chen 1 Chang Liu 1 Weiming Zhang 1 Nenghai Yu 1

Abstract
The rapid advancement of speech generation mod-
els has heightened privacy and security concerns
related to voice cloning (VC). Recent studies
have investigated disrupting unauthorized voice
cloning by introducing adversarial perturbations.
However, determined attackers can mitigate these
protective perturbations and successfully execute
VC. In this study, we conduct the first system-
atic evaluation of these protective perturbations
against VC under realistic threat models that in-
clude perturbation purification. Our findings re-
veal that while existing purification methods can
neutralize a considerable portion of the protec-
tive perturbations, they still lead to distortions
in the feature space of VC models, which de-
grades the performance of VC. From this perspec-
tive, we propose a novel two-stage purification
method: (1) Purify the perturbed speech; (2) Re-
fine it using phoneme guidance to align it with
the clean speech distribution. Experimental re-
sults demonstrate that our method outperforms
state-of-the-art purification methods in disrupting
VC defenses. Our study reveals the limitations of
adversarial perturbation-based VC defenses and
underscores the urgent need for more robust so-
lutions to mitigate the security and privacy risks
posed by VC. The code and audio samples are
available at https://de-antifake.github.io.

1. Introduction
With rapid advancements in Voice Cloning (VC) technology,
generating highly realistic speech from just a few seconds of
a target speaker’s voice is now possible. This technology has
diverse applications, including enhancing virtual assistants,
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Figure 1. Illustrations of existing protection methods against voice
cloning attacks in the presence of adversarial purification. The
dashed lines represent the operations of the attacker.

chatbots, and providing assistive devices for individuals
with speech impairments (Koronka, 2024; OpenAI, 2024).
However, these advancements also pose risks for illegal uses,
such as deceiving individuals, bypassing speaker verification
systems, or violating copyrights. For instance, VC technol-
ogy has been used to deceive identity verification systems
in banks and government agencies (Nick Evershed, 2023;
Cox, 2023). In a separate incident, scammers impersonated
a CFO during a fraudulent call, tricking an employee into
transferring $25 million (Andrews, 2024). These incidents
highlight the potential of VC to deceive both digital systems
and humans, raising significant security and privacy con-
cerns. In response, organizations such as OpenAI and the
FTC have released reports on VC’s implications (OpenAI,
2024; FTC, 2024).

To address emerging threats posed by VC, researchers have
explored various solutions, including proactive and passive
detection, as well as proactive defense mechanisms (Wenger
et al., 2021; Liu et al., 2024b; San Roman et al., 2024; Chen
et al., 2024; Liu et al., 2024a; Ren et al., 2023; Deng et al.,
2023; Ji et al., 2024; Li et al., 2024; Blue et al., 2022).

Among these approaches, protective perturbations are re-
garded as a promising technique for safeguarding speech.
By adding imperceptible distortions to speech, they prevent
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Figure 2. Comparison of sample distributions (Clean vs. Protected/Purified) in the VC model embedding space. Different colors represent
different speakers. (a) Protected samples. (b-c), purified samples obtained by existing methods (Guo et al., 2024; Wu et al., 2023), which
introduce distortions in the embedding space, including ❶ reduced interclass separability and ❷ deviation of purified samples from their
clean counterparts. (d) Our method aligns purified samples more closely with their original clean versions.

VC models from accurately replicating authentic features
of a speaker (Yu et al., 2023; Huang et al., 2021; Liu et al.,
2023; Yang et al., 2024; Li et al., 2023b; Wang et al., 2023;
Dong et al., 2024), achieving impressive results in reduc-
ing the effectiveness of VC attacks. For example, applying
VC to protected speech results in synthesized speech with
both lower speaker verification accuracy and a perceptually
distinct timbre.

While protective perturbation methods can prevent VC mod-
els from deceiving both machines and humans under ideal
conditions, their performance remains uncertain in more
realistic scenarios where attackers may employ purification
methods to eliminate the perturbations used for defense
prior to performing VC. If these methods cannot remain ef-
fective against such purification strategies, they risk giving
users a false sense of security. Therefore, it is essential to
systematically evaluate their effectiveness in more realis-
tic contexts that include potential purification methods, as
shown in Figure 1.

In this paper, we perform comprehensive evaluation of pro-
tective perturbation methods against VC under a realistic
threat model involving potential purification methods, with
extensive experiments on the most common perturbation
techniques and state-of-the-art VC models. Our results indi-
cate that these protection methods are vulnerable to existing
adversarial purification techniques. To the best of our knowl-
edge, this is the first attempt to explore the vulnerabilities
of protective perturbation-based VC defenses.

Moreover, we observe that existing purification methods
introduce systematic distortions in VC model embedding
spaces, as shown in Figure 2b and Figure 2c. Since VC
models rely on fine-grained feature information to replicate
speaker voices accurately, such distortions degrade their per-
formance in VC tasks. Building on this insight, we propose a
novel two-stage adversarial purification method that reduces

embedding inconsistencies caused by current methods: (1)
In the first stage, we utilize a pretrained unconditional dif-
fusion model to preliminarily purify the samples; (2) In the
second stage, we leverage a stochastic refinement model
to further adjust the samples, aligning them more closely
with the original distribution. Inspired by recent progress in
speech processing (Popov et al., 2021; Tian et al., 2023), we
incorporate phoneme information into the refinement model
to guide the refinement process.

Experimental results demonstrate that our method outper-
forms existing state-of-the-art adversarial purification meth-
ods in overcoming protective measures, enabling VC models
to better capture authentic features. Our research suggests
that current adversarial perturbation-based methods for VC
defense may provide a false sense of security, inspiring the
need for more robust solutions to address the security and
privacy risks posed by advanced VC models.

Our contributions can be summarized as follows:

• We are the first to explore vulnerabilities of protec-
tive perturbation-based VC defenses, propose a real-
istic threat model, and systematically evaluate these
defenses within it. We assess six VC methods and
three protective techniques, revealing the risk that ex-
isting defenses potentially fail to prevent voice cloning
attacks.

• To probe deeper into these risks, we propose a novel
two-stage adversarial purification method to counter
such protective techniques. Experimental results show
that our method outperforms baselines in countering
various protection methods across different cloning
attacks, further exposing potential risks.

• We evaluate the robustness of our purification method
against adaptive protections in a white-box setting. We
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find that even with full access to the gradient infor-
mation of our purification model, generating effective
protective perturbations remains challenging, under-
scoring the need for more advanced techniques to pre-
vent unauthorized data usage in VC.

2. Related Work
2.1. Voice Cloning

Voice cloning refers to the process of generating speech
that imitates the voice of a specific target speaker. It can be
achieved by text-to-speech (TTS) (Betker, 2023; Jia et al.,
2018; Casanova et al., 2022) and voice conversion (Popov
et al., 2022; Qin et al., 2023; Li et al., 2023a; Liu, 2024).

Both paradigms leverage the extracted speaker embeddings
from the target speaker’s audio to capture their vocal charac-
teristics. In TTS, textual input serves as the content source.
The TTS acoustic model, conditioned on the target speaker’s
embeddings, processes this text to generate corresponding
acoustic features (e.g., mel-spectrograms). These acoustic
features are then used by a vocoder to synthesize speech in
the target’s voice. Alternatively, voice conversion typically
utilizes acoustic features from a source speaker’s utterance
for the linguistic content. The voice conversion model then
transforms these features using the target speaker’s embed-
dings to generate speech in the target speaker’s timbre while
retaining the original linguistic content.

Recent advances in deep learning-based speech synthesis
have enabled zero-shot synthesis—allowing the generation
of speech for target speakers whose voices were not in-
cluded in the training data. These zero-shot methods sig-
nificantly increase risks by lowering the barrier to attacks,
as attackers can easily access zero-shot VC services (e.g.,
Elevenlabs (Prime Voice AI, 2025)) and open-source models
without requiring specialized expertise. In response to these
challenges, recent studies have explored countermesures
against deep learning-based zero-shot VC (Huang et al.,
2021; Li et al., 2023b; Yu et al., 2023). Building on these
works, this study focuses on zero-shot VC models.

2.2. Protective Perturbations Against VC Attacks

To protect speech data from zero-shot VC attacks, recent
studies have proposed adding imperceptible adversarial per-
turbations to disrupt the VC process. Huang et al. (2021)
introduce the concept of adding such perturbations to speech
to prevent VC models from synthesizing the voice of pro-
tected speaker. Li et al. (2023b) extended these perturba-
tions to the time domain and incorporated a psychoacoustic
model to ensure their imperceptibility. Yu et al. (2023)
proposed an ensemble learning method to improve the trans-
ferability of these perturbations across different VC models,
enabling them to generalize to unseen models. Additionally,

other studies (Liu et al., 2023; Yang et al., 2024; Wang et al.,
2023; Dong et al., 2024) have explored similar methods to
generate protective perturbations for speech data. While
these methods have achieved notable success in prevent-
ing VC attacks, their effectiveness in real-world scenarios
remains uncertain.

2.3. Adversarial Purification

Since protective perturbations can be viewed as a form of
adversarial attack against VC models, a natural question
arises: can existing adversarial purification methods bypass
these perturbations? Adversarial purification aims to restore
clean data by removing adversarial distortions. In the audio
domain, adversarial purification methods can be broadly di-
vided into two types: transformation-based approaches and
reconstruction-based approaches. Transformation-based
methods use techniques such as filtering, compression, and
smoothing to disrupt adversarial perturbations (Hussain
et al., 2021; Chen et al., 2023). These methods are easy
to use, but not effective. On the other hand, reconstruction-
based methods typically employ self-reconstruction models
to restore clean audio. Recently, Wu et al. (2023) extended
diffusion-based adversarial purification (Nie et al., 2022)
to the audio domain, achieving state-of-the-art results in
mitigating adversarial perturbations in speech command
recognition tasks. Further research has explored diffusion-
based adversarial purification using a combination of the
time and frequency domains (Tan et al., 2024) and hierar-
chical purification (Guo et al., 2024). However, most of
these adversarial purification methods are designed for clas-
sification tasks, including speaker recognition and speech
recognition. Therefore, these methods tend to preserve only
coarse feature information, leading to distortions in VC
model embedding spaces, as illustrated in Figure 2.

3. Threat Model
Overview of the Conflict. Given a target speaker T with
original voice samples x, the attacker may use a voice
cloning model M to synthesize a forged voice M(x) that
mimics the voice of T . To counter this, the protector adds
an imperceptible perturbation δ to x, creating a protected
voice x′ = x+δ. The perturbation δ is bounded by a budget
ϵ, ensuring that x′ remains perceptually similar to x, but
prevents attackers from using x′ to generate a convincing
forgery of T . Therefore, the protector aims to achieve:

H(x′) ≈ H(x),

H(M(x′)) ̸= H(x) and SV(M(x′)) ̸= SV(x),
(1)

where H(·) represents the perceived speaker identity evalu-
ated by human listeners with given audio, and SV(·) repre-
sents the evaluation by speaker verification (SV) systems.

The goal of the attacker is to bypass the protective pertur-
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Figure 3. Inference process of our Purification-Refinement framework (gray dotted box: waveforms and corresponding spectrograms).

bations and generate a forged voice M(p(x′)), where p(·)
denotes a potential purification function used to mitigate the
perturbations in x′. The attacker aims to achieve:

H(M(p(x′))) ≈ H(x) or SV(M(p(x′))) = SV(x), (2)

where the specific choice of targeting humans or SV systems
depends on the intent of the attacker.

Capabilities of the Attacker. The attacker cannot directly
record the original voice samples x of the target speaker
T , but can collect limited samples x′ from public-domain
sources such as social media, video platforms, etc. Mean-
while, they can employ existing voice cloning models to per-
form zero-shot voice cloning with x′. The attacker does not
have the knowledge of the protection methods applied by the
protector, but they may observe perceptible artifacts in x′.
Alternatively, unsatisfactory results from initial cloning at-
tempts may also suggest the presence of protective measures.
Therefore, they will preprocess x′ to mitigate protective per-
turbations before cloning.

Capabilities of the Protector. The protector may recognize
that attackers attempt purification strategies to bypass the
protection mechanisms. We consider two scenarios: (1)
Non-Adaptive Protection, where the protector knows the
structure and gradients of the voice cloning model used by
the attacker, but does not consider the potential purification
strategies. (2) Adaptive Protection, where the protector addi-
tionally knows the purification strategies of the attacker, in-
cluding the structure and gradients of the purification model.

4. Proposed Method
In this section, we introduce our purification method, de-
noted as PhonePuRe. It primarily consists of two compo-
nents: Purification and Phoneme-Guided Refinement.

4.1. Overview: Purification-Refinement Framework

Embedding Distortions in Existing Methods. We first
analyze existing purification methods. Since no prior work
specifically addresses the purification of protective perturba-

tions for voice cloning tasks, we apply existing adversarial
purification methods designed for speech classification tasks
to this problem. The results are visualized in Figure 2.

We observed that while these methods reduce adversarial
noise (evidenced by clustering samples of the same class),
they also introduce systematic distortions in the VC model
embedding space. Specifically, (1) samples from different
classes become closer, and (2) purified samples deviate
further from their original clean versions. Since VC models
rely on embeddings to extract the speech characteristics of
the target speaker, such distortions lead to an inability to
capture accurate features of the speaker, which impacts the
performance of VC.

The embedding distortions in current methods can be at-
tributed to the properties of unconditional diffusion models
used in purification. When diffusion steps are few, the model
fails to fully purify samples. Conversely, with enough dif-
fusion steps, the details of the samples are lost, causing the
model to generate similar samples, as shown in Figure 2. In
essence, the distribution of samples generated by the diffu-
sion model differs from that of clean samples, leading to
suboptimal performance in VC tasks.

Our Proposed Purification-Refinement Framework.
Building on the insight above, we propose a two-stage
framework consisting of a Purification stage and a Phoneme-
Guided Refinement stage. The goal of the first stage is to
preliminarily mitigate the adversarial noise, and the second
stage employs a phoneme-guided diffusion model to fur-
ther refine the purified samples, aligning them more closely
with the clean distribution. Figure 3 illustrates the inference
process of our proposed framework.

The Refinement stage is motivated by the challenge of di-
rectly mapping adversarial samples to clean samples due
to the unknown distribution of adversarial perturbations.
To address this, our approach is based on a key observa-
tion regarding our initial Purification stage. As illustrated
in Figure 4, the Purification stage results in purified clean
samples and purified protected samples exhibiting similar
distributions. This similarity enables the Refinement model
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Figure 4. Distribution comparison of clean and protected samples
(a) Before and (b) After our initial Purification stage in the VC
model embedding space. Different colors represent different speak-
ers. The distribution of clean and protected samples becomes closer
from (a) to (b), indicating that this type of diffusion-based purifica-
tion leads to similar distributions for clean and protected samples,
and provides an accessible starting point for the Refinement stage.

to be trained using only pairs of original clean samples and
purified clean samples. Since purified clean data used for
training is distributionally similar to the purified protected
data encountered during inference, a mapping learned from
the purified clean samples to the true clean distribution can
then be applied to the purified protected samples. Such an
application effectively maps these purified protected sam-
ples toward the clean distribution, aiming to reduce the
embedding distortion common in existing methods.

4.2. Purification: Unconditional Diffusion

During the Purification stage, we employ the model pro-
posed by Kong et al. (2021), which applies the diffusion
process directly to audio waveforms. Given an input adver-
sarial audio waveform xadv, the Purification stage P (·) uses
both the forward and reverse diffusion processes to produce
the purified waveform xpur. In the forward diffusion pro-
cess, noise is progressively added to the initial waveform
xadv over Tpur diffusion steps to form the final noised xTpur .
At each timestep t, the process is expressed as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

t = 1, 2, . . . , Tpur,
(3)

where βt denotes the variance schedule, and x0 = xadv. The
reverse process denoises the waveform xTpur in the same Tpur
steps, and at each step, it is formulated as:

xt−1 ∼ pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I),

t = Tpur, Tpur − 1, . . . , 1,
(4)

where µθ(xt, t) is the mean function parameterized by θ,
σ2
t is the time-dependent variance schedule, and x0 = xpur.

The entire Purification stage can be viewed as a sequence of
diffusion and denoising steps, formalized as:

xpur = Pθ(xadv), (5)

where θ denotes the parameters of the Purification stage.

4.3. Refinement: Phoneme-Guided Score-Based
Diffusion

The Refinement stage operates in the complex spectrogram
domain. Given a set of clean speech samples {x(i)}Ni=1,
we obtain their purified versions x

(i)
pur = Pθ

(
x(i)

)
. We

then create a dataset D = {(x(i),x
(i)
pur)}Ni=1 by pairing clean

and purified speech, which correspond to their complex
spectrograms denoted as DC = {(m(i),m

(i)
pur)}Ni=1, where

m = STFT(x) (Short-Time Fourier Transform). The goal
of the Refinement stage is to learn the conditional distri-
bution pϕ(m|mpur) over DC. To achieve this, we employ
a phoneme-guided score-based diffusion model to learn a
parameterized approximation of pϕ(m|mpur).

Phoneme Representation. The intuition behind using
phonemes as guidance is based on the observation that pro-
tective perturbations against VC models are primarily de-
signed to disrupt the speaker-specific characteristics of the
audio, while phonemes encode the content information of
speech. Since these protective perturbations are typically
imperceptible and not explicitly designed to interfere with
the speech content, they are likely to have a minimal impact
on the phoneme information. Thus, phoneme information
can be utilized as a clue to guide the Refinement phase.

Specifically, we represent phonemes using the average mag-
nitude spectrogram, denoted as Λ, which has the same
shape as the linear magnitude spectrogram |m| of the audio
x. To compute Λ, three steps are followed: (1) First, ob-
tain the text transcription for each training sample. Then,
perform phoneme alignment using the forced aligner (an
acoustic model which aligns text to audio at the phoneme
level, implemented in tools like Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017)) to convert the transcrip-
tion of each training sample into a time-aligned phoneme
sequence; (2) Next, compute the linear magnitude spec-
trograms of all training samples; (3) For each phoneme,
calculate the average linear magnitude spectrogram across
all instances of that phoneme in the training set as its rep-
resentation. These representations are stored in an average
phoneme dictionary.

In the Refinement stage, the audio samples and their corre-
sponding text are set as input. Then we use forced aligner to
perform phoneme alignment and look up the phoneme dic-
tionary to retrieve the average spectrograms for the aligned
phonemes. These averaged values are concatenated along
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the time axis to form a phoneme representation Λ.

Score-Based Diffusion. To incorporate phoneme infor-
mation, we concatenate the phoneme representation Λ
with the complex spectrogram mpur to form the guid-
ing input [mpur,Λ] for the Refinement stage. We em-
ploy a score-based diffusion model based on the Ornstein-
Uhlenbeck Stochastic Differential Equation (OUSDE) fol-
lowing Welker et al. (2022). During training, given a clean
sample m0 and its purified version mpur, the distribution of
the diffused state mτ can be expressed as:

mτ = µ(m0, [mpur,Λ], τ) + σ(τ)z, (6)

where µ and σ are defined following the variance-exploding
scheme of Särkkä & Solin (2019), and z ∼ NC(0, I). There-
fore, the denoising score matching objective is used to train
the score model sϕ (Song et al., 2021):

L(ϕ) = E

[∥∥∥∥sϕ(mτ , [mpur,Λ], τ) +
z

σ(τ)

∥∥∥∥2
2

]
. (7)

where we employ a score estimator sϕ based on the NCSN++
architecture (Song et al., 2021), and ϕ denotes the parame-
ters of the Refinement stage.

During inference, we perform forward diffusion on mpur
to obtain the noised state mTref = mpur + σ(Tref)z, where
z ∼ NC(0, I), and Tref represents the final time step for
the Refinement process. We then perform reverse sampling
with step size ∆τ = Tref

N , where N is the total number of
reverse steps. At each discrete step, we use a predictor-
corrector sampling scheme, a discrete sampling method,
corrected by one-step annealed Langevin dynamics (Song
et al., 2021), to compute mτ−∆τ using the score function
of mτ , yielding the refined spectrogram mref. Finally, mref
is converted back to the time domain through the inverse
STFT (ISTFT) to obtain the refined audio waveform xref.
The overall Refinement stage R(·) can be expressed as:

xref = Rϕ(xpur,Λ) = Rϕ(Pθ(xadv),Λ), (8)

where the refined audio waveform xref is the final output of
our whole purification method.

5. Experiments
5.1. Experimental Setup

Voice Cloning Methods. We selected six advanced
VC methods for evaluation, including three TTS models:
YourTTS (Casanova et al., 2022), SV2TTS (Jia et al., 2018),
and TorToise (Betker, 2023); and three voice conversion
models: DiffVC (Popov et al., 2022), OpenVoice V2 (Qin
et al., 2023), and SeedVC (Liu, 2024). Implementation
details are provided in App. A.1.

Protection Methods. We evaluated three mainstream pro-
tective perturbation methods: AttackVC (Huang et al.,
2021), AntiFake (Yu et al., 2023) and VoiceGuard (Li et al.,
2023b), which achieve the highest protection success rates
in our experiments. Details of the protection methods can
be found in App. A.3.

Adversarial Purification Baselines. We compare our
method against five recent adversarial purification meth-
ods: the transformation-based WaveGuard (Hussain et al.,
2021) and SpeakerGuard (Chen et al., 2023), and the
reconstruction-based AudioPure (Wu et al., 2023), WavePu-
rifier (Guo et al., 2024), and DualPure (Tan et al., 2024).
Details are provided in App. A.4.

Evaluation Dataset. The evaluation set consists of 25
speakers from the test-clean subset of LibriSpeech (Panay-
otov et al., 2015), each contributing 5 sentences. These
speakers do not overlap with those in the training set of
the adversarial purification models. We apply all six VC
methods to the evaluation set, resulting in 750 (25× 5× 6)
synthetic speech samples. Following previous work (Yu
et al., 2023; Huang et al., 2021; Li et al., 2023b), we filter
739 synthetic speech samples that successfully pass at least
one SV system for subsequent evaluation.

Evaluation Metrics. Our evaluation includes both objective
and subjective metrics. Objective metrics include speaker
verification accuracy (SVA) for effectiveness and objective
mean opinion score (MOS) for naturalness. The SVA com-
ponent is measured using x-vector-based SV (xSVA) (Des-
planques et al., 2020) and d-vector-based SV (dSVA) (Wan
et al., 2018), calculated as:

SVA =
1

N

N∑
i=1

SV(xi
cloned), (9)

where xi
cloned is the i-th cloned speech sample, N is the

total number of cloned samples, and SV(·) is the binary
decision by x-vector or d-vector-based SV model. For the
objective MOS, we employ NISQA (Mittag et al., 2021),
a neural network-based model for objective audio quality
assessment, which evaluates overall quality and naturalness
on a scale of 1 to 5, with higher scores indicating better
quality. Subjective metrics involve perceived speaker sim-
ilarity, assessed by human listeners who determine if two
samples are from the same speaker using a four-level scale:
Same (Certain), Same (Uncertain), Different (Uncertain),
and Different (Certain). Details are provided in App. A.6.

Training Details. Our method trains two models sepa-
rately, and cascades them during inference. The Purification
model is based on a pretrained unconditional DiffWave
model (Kong et al., 2021) which is then fine-tuned on the
LibriSpeech (Panayotov et al., 2015) dataset in the time

6
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Table 1. Speaker verification accuracy of synthesized speech on the evaluation dataset.

Purification Method
Protected WaveGuard SpeakerGuard DualPure WavePurifier AudioPure OursProtection

Method
VC

Method xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA

YourTTS 0.034 0.029 0.328 0.155 0.277 0.136 0.067 0.025 0.286 0.301 0.597 0.417 0.672 0.689
SV2TTS 0.019 0.000 0.038 0.008 0.038 0.033 0.067 0.000 0.298 0.264 0.279 0.306 0.654 0.744
Tortoise 0.059 0.042 0.051 0.025 0.034 0.025 0.025 0.000 0.203 0.167 0.441 0.475 0.627 0.725
DiffVC 0.029 0.040 0.048 0.032 0.096 0.113 0.019 0.016 0.317 0.379 0.231 0.331 0.673 0.823
OpenVoice* 0.433 0.405 0.327 0.207 0.240 0.241 0.048 0.026 0.337 0.190 0.471 0.534 0.625 0.776
SeedVC* 0.331 0.455 0.153 0.211 0.395 0.325 0.000 0.000 0.355 0.447 0.363 0.642 0.702 0.805

AntiFake

Avg. 0.152 0.164 0.159 0.105 0.186 0.146 0.037 0.011 0.299 0.293 0.401 0.451 0.660 0.762

YourTTS 0.108 0.000 0.571 0.359 0.605 0.544 0.412 0.350 0.588 0.612 0.739 0.515 0.748 0.709
SV2TTS 0.127 0.140 0.173 0.107 0.221 0.273 0.067 0.074 0.510 0.636 0.731 0.868 0.740 0.893
Tortoise 0.131 0.092 0.195 0.175 0.381 0.350 0.034 0.000 0.508 0.283 0.746 0.833 0.754 0.883
DiffVC 0.173 0.282 0.231 0.169 0.260 0.476 0.000 0.000 0.587 0.661 0.817 0.903 0.846 0.935
OpenVoice 0.000 0.000 0.394 0.293 0.327 0.345 0.048 0.043 0.481 0.336 0.635 0.724 0.663 0.862

AttackVC

Avg. 0.108 0.108 0.317 0.216 0.366 0.394 0.118 0.086 0.536 0.505 0.734 0.777 0.750 0.861

YourTTS 0.050 0.000 0.521 0.136 0.462 0.330 0.378 0.282 0.496 0.563 0.672 0.417 0.697 0.621
SV2TTS 0.058 0.058 0.106 0.033 0.115 0.017 0.067 0.282 0.375 0.421 0.596 0.752 0.731 0.851
Tortoise 0.042 0.008 0.161 0.175 0.136 0.083 0.025 0.000 0.407 0.242 0.712 0.742 0.754 0.892
DiffVC 0.029 0.121 0.173 0.121 0.135 0.185 0.000 0.000 0.510 0.508 0.683 0.847 0.750 0.903
OpenVoice 0.000 0.000 0.327 0.164 0.212 0.224 0.067 0.034 0.317 0.207 0.606 0.759 0.683 0.853

VoiceGuard

Avg. 0.036 0.039 0.262 0.125 0.217 0.163 0.113 0.115 0.423 0.385 0.656 0.712 0.723 0.830

Total 0.099 0.104 0.246 0.148 0.256 0.234 0.089 0.070 0.419 0.394 0.597 0.647 0.711 0.818
The asterisk (*) indicates black-box senario (see App. A.3). Best performance is highlighted in bold.

domain. The Refinement model is trained on pairs of the
original clean samples and purified samples derived from an
augmented LibriSpeech dataset as described in section 4.3.
The Refinement stage operates in the complex spectrogram
domain, utilizing a 16 kHz STFT with a window size of 510,
hop length of 128, and square-root Hann window. Details
of the training process can be found in App. A.5.

5.2. Main Results

Objective Evaluation.

Existing Protection and Purification Methods. We first eval-
uate existing methods from the perspective of effectiveness
under the threat model in section 3. Table 1 shows the xSVA
and dSVA of speech synthesized using protected or puri-
fied samples in two SV systems. We present the results of
the best-performing purification methods from each paper;
other results are provided in App. B.1.

We find that without adversarial purification, all protec-
tion methods successfully reduce the SVA to below 20%
in a white-box setting. However, when using purification
methods, we observe a significant increase in the SVA. For
instance, AudioPure can increase the xSVA to an average of
59.7%. This indicates that existing adversarial purification
methods can neutralize protective perturbations, allowing
attackers to successfully clone the protected speech.

Nevertheless, we find that existing methods still result in a
relatively low SVA under certain protection methods. For
example, AudioPure has a dSVA of only 45.1% against the

AntiFake protection. Additionally, when listening to these
purified samples, they appear muffled and contain notice-
able artifacts, indicating that existing methods introduce
distortions, which likely contribute to the lower SVA.
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Figure 5. Distribution of (a) Cosine similarity between clean and
protected/purified samples in VC model embedding space; (b)
Speaker verification scores for synthesized speech using clean,
protected, and purified samples.

Our Purification Method. We first examine whether our
method reduces the distortion in VC model embedding
space. As illustrated in Figure 5a and Figure 2d, embed-
dings of purified samples are brought closer to those of clean
samples, demonstrating effective distortion reduction.

We further evaluate the effectiveness of our method by an-
alyzing speaker verification performance. As shown in Ta-
ble 1, our method achieves the highest xSVA and dSVA
across all VC models and protection methods. In particular,
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Table 2. Ablation study of our components in different protection methods.

AntiFake AttackVC VoiceGuard TotalMethod Purification
Stage

Refinement
Stage

Phoneme
Guidance xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA

w/o Purification ✗ ✓ ✓ 0.324 0.339 0.446 0.500 0.279 0.274 0.350 0.371
w/o Refinement ✓ ✗ ✗ 0.401 0.451 0.734 0.776 0.656 0.712 0.597 0.646
w/o Phoneme ✓ ✓ ✗ 0.632 0.719 0.743 0.829 0.710 0.810 0.695 0.786
Full model ✓ ✓ ✓ 0.660 0.762 0.750 0.861 0.723 0.830 0.711 0.818

Table 3. Objective MOS of synthesized speech.

Clean Protected AudioPure WavePurifier Ours

3.42 ± 0.59 3.16 ± 0.65 3.14 ± 0.55 3.34 ± 0.67 3.36 ± 0.58

our method achieves a dSVA of 76.2% on the AntiFake
protection method, surpassing existing methods by at least
31.1%. Figure 5b compares the distribution of speaker veri-
fication scores for speech synthesized from various samples.
Compared to existing methods, our method’s distribution
is closer to that of clean speech, which aligns with the im-
proved fidelity observed in VC model embedding space,
confirming that our method significantly enhances the abil-
ity of VC models to replicate the target speaker identity.

Quality of Synthesized Speech. Table 3 shows the objective
MOS scores for speech synthesized from samples purified
using our method and existing purification methods. The re-
sults demonstrate that our method yields greater naturalness,
enhancing the ability of the VC model to both replicate the
target speaker identity and produce more natural speech.

Subjective Evaluation.

We follow previous work (Huang et al., 2021) and conduct
a listening test with 20 participants, who are asked to rate
the perceived speaker similarity between the original clean
speech and speech synthesized using clean, protected, and
purified samples. For each pair of utterances, participants
decide if the two utterances are from the same speaker by
selecting one of four options: Same (Certain), Same (Uncer-
tain), Different (Uncertain), and Different (Certain). Each
participant is asked to assess 40 speech pairs, resulting in a
total of 800 evaluations.

Clean Protected AudioPure Ours
0%

20%

40%

60%

80%

100% Same (Certain)
Same (Uncertain)
Different (Uncertain)
Different (Certain)

Figure 6. Perceived speaker similarity between original clean
speech and synthesized speech using clean, protected, and pu-
rified samples, as assessed by human listeners. Audio samples are
available online: https://de-antifake.github.io/samples.

Figure 6 presents our subjective evaluation results. The
results indicate that the speech synthesized from purified
voices not only bypasses SV systems but also exhibits higher
speaker similarity in subjective assessments, demonstrating
potential risks of VC attacks. Furthermore, our purifica-
tion method outperforms existing methods in enhancing the
cloned speech’s perceptual similarity to the original speaker,
thereby increasing the potential for such attacks.

5.3. Ablation Study

Purification-Refinement Framework. We first evaluated
the effectiveness of our two-stage framework, as shown in
Table 2. Compared to the full framework, removing either
the Purification or Refinement stage resulted in worse per-
formance. Without the Refinement stage, the performance
decreased, emphasizing its contribution to improvement.
Conversely, omitting the Purification stage led to much
lower performance, indicating that the Refinement model
fails to neutralize perturbations without prior Purification
stage. This suggests that the Purification stage neutralizes
perturbations, while the Refinement stage enhances perfor-
mance, confirming the effectiveness of our framework.

Phoneme-Guidance in Refinement. We further evaluated
the impact of phoneme guidance in the Refinement phase on
our method, as shown in Table 2. We found that introducing
phoneme guidance improved SVA. Moreover, even with-
out phoneme guidance, our method outperforms existing
methods under all protection strategies.

Perturbation Budget and Purification Steps. Since our
Purification and Refinement stages are cascaded, a natural
question is whether our method simply improves perfor-
mance by increasing the number of diffusion steps. Figure 7
shows the performance of our method against the AttackVC
protection method under different perturbation budgets ϵ
and Purification stage diffusion steps Tpur.

We find that, for the same perturbation budget, as the number
of Purification stage diffusion steps Tpur increases, the pu-
rification performance initially improves and then decreases.
This aligns with our intuition, as more diffusion steps di-
lute both the perturbations and the sample details, making
purified samples blurry or overly smooth. For smaller per-
turbation budgets, fewer diffusion steps generally perform
better, while larger budgets favor more steps.
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Moreover, our full two-stage model outperforms the Pu-
rification stage alone across all perturbation budgets and
diffusion steps, even when the perturbation budget is small.
This suggests that performance improvement comes not
from adding more diffusion steps (since Purification stage
does not achieve the same performance gains with an in-
creased number of steps), but from aligning the purified
distribution with the clean distribution via Refinement, fur-
ther confirming the effectiveness of our framework.
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Figure 7. Impact of perturbation budget and diffusion steps of Pu-
rification stage on our method. In each grid, the lower-left corner
represents the Purification stage only, while the upper-right corner
shows the results for the full two-stage framework.

5.4. Adaptive Protection

Adaptive Protection Strategies. Adaptive protection en-
hances the robustness of perturbations by considering the
impact of purification methods. In a white-box scenario,
where the protector has full access to the attacker’s VC
model, purification methods, and gradients, a common ap-
proach is integrating the purification into the perturbation
generation pipeline to optimize with gradients.

However, the iterative nature of the diffusion models in our
Purification and Refinement stages creates deep computa-
tional graphs, leading to high memory costs, vanishing gra-
dients, and exploding gradients (Lee & Kim, 2023a; Kang
et al., 2024), complicating gradient computation. To over-
come these challenges, we use two approximation methods:

• Backward Pass Differentiable Approximation (BPDA)
Adaptive Protection. We integrate the full purification
method into the perturbation generation pipeline. Following
Nie et al. (2022), we treat the purification process as an iden-
tity transformation during backpropagation, allowing us to
compute approximate gradients and optimize perturbations
end-to-end. Due to the randomness in the diffusion and re-
verse processes, we apply Expectation Over Transformation

(EOT) on BPDA adaptive protection, using EOT sizes of
1, 5, 10, and 15. We use the AttackVC protection method
and implement 150-step BPDA+EOT adaptive protection
for the DiffVC model.

• Adjoint Gradient-Based Adaptive Protection. We inte-
grate the Purification stage into the perturbation generation
pipeline, using the adjoint method from Wu et al. (2023) to
calculate the gradients of the Purification stage, avoiding
out-of-memory issues. Other experimental settings remain
consistent with the BPDA adaptive protection.

Adaptive Protection Results. We implement two adaptive
protection strategies for different purification methods re-
spectively, purify the generated adaptive protection samples,
and then use the purified samples to perform the VC process.
The resulting dSVA of the synthesized speech is shown in
Figure 8. We observe that under both adaptive protection
strategies, our method demonstrates greater robustness than
existing methods. The small variation in dSVA across dif-
ferent EOT sizes indicates that EOT plays a limited role in
generating effective adaptive perturbations. Even at an EOT
size of 15, our method maintains a dSVA above 0.8, indi-
cating that a substantial proportion of synthesized speech
using the purified samples can still evade speaker verifi-
cation. Consequently, even under white-box conditions,
designing adaptive protection for our purification method
remains a challenge for protectors, highlighting the risks we
have identified.
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Figure 8. Robust dSVA under different adaptive strategies.

6. Conclusion
In this paper, we conduct the first systematic evaluation of
protective perturbation-based VC defenses under realistic
threat models that include perturbation purification. Our
experiments demonstrate that attackers can use purification
methods to bypass most of these protections and success-
fully synthesize speech that can deceive both speaker ver-
ification systems and human perception. Furthermore, we
introduce a novel two-stage adversarial purification method,
proposing a Purification-Refinement framework that incor-
porates phoneme guidance during the Refinement stage. Ex-
perimental results demonstrate that our method outperforms
state-of-the-art methods in bypassing perturbation-based
VC defenses and is robust against adaptive protections.
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A. Implement Details
A.1. Implement Details of Voice Cloning

We selected six advanced VC methods for evaluation, in-
cluding three TTS models: YourTTS (Casanova et al., 2022),
SV2TTS (Jia et al., 2018), and TorToise (Betker, 2023); and
three voice conversion models: DiffVC (Popov et al., 2022),
OpenVoice V2 (Qin et al., 2023), and SeedVC (Liu, 2024).

We use official implementations and default parameters for
all VC methods. For TTS models, we follow previous
work (Yu et al., 2023) and use 24 sentences designed to
simulate real-world threat scenarios as the synthetic speech
content. For voice conversion models, we select random
utterances from speakers in the evaluation set who are differ-
ent from the current speaker as the synthetic speech content.
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Figure 9. Effectiveness of VC models in bypassing the SV systems.

A.2. Composition of the Evaluation Dataset

The evaluation set consists of 25 speakers from the test-
clean subset of LibriSpeech (Panayotov et al., 2015), each
contributing 5 sentences, ranging from short (2-4 seconds)
to long (10-15 seconds). These speakers do not overlap with
those in the training set of the purification models. We apply
each of the six VC methods to the evaluation set, generat-
ing a total of 750 (25 × 5 × 6) synthetic speech samples.
Figure 9 shows the xSVA and dSVA of synthesized speech
from original clean samples using different VC models in
our experiment, demonstrating the ability of each model to
clone the target speaker’s voice and their effectiveness in
bypassing the SV system. In accordance with prior stud-
ies (Yu et al., 2023; Huang et al., 2021; Li et al., 2023b), we
filter 739 synthetic speech samples that successfully pass at
least one SV system for subsequent evaluation.

A.3. Implement Details of Protection Methods

For methods with official implementations, we use their
official code. For others, we reproduce them base on the
original descriptions and adjust the parameters as needed to
ensure an SVA of under 20% in a white-box setting.

• AttackVC (Huang et al., 2021): We implemented the
default embedding defense (emb) method from the pa-
per to defend against all VC models in a white-box

setting. For each VC model, we adjust the perturbation
budget ϵ to ensure an SVA under 20%. However, for
the SeedVC model, the embedding defense was unsuc-
cessful, as this model not only relies on the speaker
encoder for speaker information but also uses addi-
tional spectral features. Therefore, we only report the
results for the other five VC models.

• VoiceGuard (Li et al., 2023b): We defend against all
VC models in a white-box setting. For each VC model,
we adjust the adaptive parameter α, which balances
stealth and protection capability, to ensure an SVA un-
der 20%. For the same reasons as with AttackVC, the
defense against the SeedVC model was unsuccessful.
Therefore, we only present the results for the other five
VC models.

• AntiFake (Yu et al., 2023): We used their default pa-
rameters and the combination of all four speaker en-
coders in the ensemble learning strategy, applying the
target-based method from the paper to defend against
all VC models. Since the encoders of the OpenVoice
and SeedVC models are not included in their ensem-
ble learning strategy, we present the results for these
two models as black-box setting results in Table 1 and
Table 5, while the results for the other four models are
presented as white-box setting results.

A.4. Implement Detials of Purification Baselines

For existing adversarial purification methods, we use their
official implementations and default parameters for the ex-
periments. For the reconstruction-based purification meth-
ods, we fine-tuned their official checkpoints on the Lib-
riSpeech dataset for fair comparison.

We have listed the parameters of the existing purification
methods used in our experiments in Table 4. For papers with
multiple methods, the boldface represents the method with
the highest average SVA in our experiments. We discussed
the effectiveness of these methods in section 5.2, and other
results are presented in App. B.1.

A.5. Implement Details of Our Proposed Method

Implement Details of the Purification Model.

The Purification model is based on a pretrained uncondi-
tional DiffWave model1, which is then fine-tuned on the
LibriSpeech (Panayotov et al., 2015) dataset for 16k steps
with a learning rate of 10−4. Due to the input length limita-
tion of the DiffWave model (16,000 samples), we trimmed
all speech samples to a length of 16,000 and fed them indi-
vidually into the Purification model. During the inference
stage, the outputs were then concatenated to match the orig-

1https://github.com/philsyn/diffwave-unconditional
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Table 4. Parameters of existing purification methods in our experiments.

Baseline Method Description Parameters Parameter Value

WaveGuard
(Hussain et al., 2021)

Mel Extraction - Inversion (Mel.) Number of mel bins 80
Downsampling - Upsampling (DS) Down-sampling rate (Hz) 8000
Linear Predictive Coding (LPC) LPC order 20
Frequency Filtering (FF) Negative gain magnitude (dB) 30
Quantization - Dequantization (QT) Number of quantization bits 8

SpeakerGuard
(Chen et al., 2023)

MPEG Compression (MP3-C) Bit rate (constant) 16000
Average Smoothing (AS) Kernel size 3
Median Smoothing (MS) Window size 3

Low-Pass Filter (LPF)

Cut-off frequency (Hz) 4000
Stop-band frequency (Hz) 8000
Pass-band ripple (dB) 3
Stop-band attenuation (dB) 40

Band-Pass Filter (BPF)

Pass-band edge frequencies (Hz) [300, 4000]
Stop-band frequencies (Hz) [50, 8000]
Pass-band ripple (dB) 3
Stop-band attenuation (dB) 40

AudioPure
(Wu et al., 2023)

DiffWave Number of reverse steps 3
DiffSpec Number of reverse steps 3

WavePurifier (Guo et al., 2024)
Number of reverse steps on [0, 2000] Hz 56
Number of reverse steps on [2000, 4000] Hz 40
Number of reverse steps on [4000, 8000] Hz 40

DualPure (Tan et al., 2024) Number of reverse steps 3

inal length. The Purification model operates at a sample
rate of 16 kHz. For reverse diffusion, we set the number of
Purification steps as Tpur = 3, and employ the Denoising
Diffusion Probabilistic Models (DDPM) sampling method
to generate the purified audio.

Implementation Details of the Refinement Model.

Model Architecture and Diffusion Details. For the Refine-
ment model described in section 4.3, we utilize a score
estimator based on the NCSN++ architecture (Song et al.,
2021). The stiffness parameter is fixed at γ = 1.5, the ex-
tremal noise levels are set to σmin = 0.05 and σmax = 0.5,
and the extremal diffusion times are set to T = 1 and
τϵ = 0.03. For reverse diffusion, we use N = 30 time
steps and adopt the predictor-corrector scheme (Song et al.,
2021), applying one step of annealed Langevin dynamics
correction with a step size of r = 0.4.

Data Representation. The Refinement stage operates in the
complex spectrogram domain, using STFT parameters with
a window size of 510, a hop length of 128, and a square-root
Hann window, all at a sample rate of 16 kHz. To compress
the dynamic range of the input spectrograms, we apply
square-root magnitude warping. During training, sequences
of 256 STFT frames (approximately 2 seconds) are ran-
domly sampled from full-length audio samples, normalized
by the maximum absolute value of the purified samples, and
then fed into the network.

Data Augmentation. For the training set of the Refinement
model, we first add noise randomly selected from the DE-

MAND dataset (Thiemann et al., 2013) to the train-clean-
100 subset of LibriSpeech (Panayotov et al., 2015), using
only the first channel of the noise data. The Signal-to-Noise
Ratio (SNR) levels for the added noise are randomly se-
lected from [0, 5, 10, 15,None], where None indicates that
no noise is added to the sample. Then, we use the Purifica-
tion model fine-tuned on the LibriSpeech dataset to purify
these noisy samples and generate the purified data, where
the Purification steps is set as Tpur = 5. The purified data
is paired with the original clean data to form the training
data pairs for the Refinement model. Note that the noise
addition here is not intended for the Refinement model to
learn denoising but serves as a data augmentation strategy
designed to expose the Refinement model to various variants
of the Purification distribution during training.

A.6. Implement Details of Evaluation Metrics

Speaker Verification Systems. We employ two widely
adopted SV systems: the x-vector-based SV2 (xSVA) and
the d-vector-based SV3 (dSVA), which achieve equal er-
ror rates (EERs) of 0.018 and 0.016, respectively, on our
evaluation dataset, representing their ability to distinguish
between different speakers. For xSVA, we use the default
threshold 0.25. For dSVA, we set the threshold to 0.697
using the EER criterion, as there is no default.

Objective Mean Opinion Score. We employ NISQA (Mit-
tag et al., 2021), a neural network-based model for objective

2https://github.com/speechbrain/speechbrain
3https://github.com/resemble-ai/Resemblyzer

15

https://github.com/speechbrain/speechbrain
https://github.com/resemble-ai/Resemblyzer


De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks

Table 5. Speaker verification accuracy of synthesized speech using more existing purification methods.

Purification Method

WaveGuard SpeakerGuard AudioPure

QT LPC FF DS AS MS LPF BPF DiffSpec
Protection
Method

VC
Method

xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA

YourTTS 0.042 0.049 0.118 0.068 0.050 0.029 0.151 0.078 0.034 0.010 0.168 0.107 0.034 0.019 0.059 0.010 0.048 0.050
SV2TTS 0.019 0.017 0.077 0.000 0.029 0.025 0.058 0.017 0.019 0.025 0.038 0.008 0.038 0.008 0.048 0.025 0.067 0.000
Tortoise 0.085 0.042 0.042 0.008 0.059 0.033 0.068 0.008 0.085 0.042 0.034 0.017 0.068 0.033 0.085 0.017 0.034 0.000
DiffVC 0.048 0.040 0.058 0.000 0.202 0.048 0.048 0.024 0.096 0.065 0.077 0.048 0.019 0.040 0.096 0.048 0.000 0.008
OpenVoice* 0.442 0.388 0.033 0.106 0.390 0.385 0.240 0.259 0.308 0.422 0.471 0.474 0.452 0.483 0.221 0.078 0.038 0.043
SeedVC* 0.323 0.463 0.033 0.105 0.452 0.259 0.266 0.309 0.379 0.447 0.331 0.431 0.347 0.528 0.282 0.138 0.016 0.008

AntiFake

Avg. 0.160 0.168 0.060 0.047 0.198 0.131 0.141 0.116 0.156 0.171 0.187 0.181 0.160 0.188 0.134 0.054 0.034 0.017

YourTTS 0.084 0.010 0.328 0.049 0.059 0.010 0.261 0.155 0.067 0.000 0.378 0.262 0.059 0.000 0.084 0.039 0.429 0.165
SV2TTS 0.096 0.174 0.087 0.000 0.413 0.215 0.173 0.174 0.163 0.273 0.154 0.182 0.192 0.182 0.183 0.066 0.038 0.050
Tortoise 0.237 0.275 0.085 0.008 0.381 0.150 0.339 0.200 0.322 0.150 0.297 0.375 0.254 0.208 0.263 0.075 0.059 0.008
DiffVC 0.183 0.282 0.144 0.000 0.663 0.476 0.260 0.427 0.356 0.492 0.327 0.444 0.240 0.371 0.212 0.153 0.067 0.113
OpenVoice 0.010 0.009 0.173 0.026 0.029 0.009 0.154 0.164 0.202 0.284 0.375 0.397 0.135 0.216 0.115 0.052 0.106 0.060

AttackVC

Avg. 0.124 0.156 0.166 0.015 0.304 0.180 0.240 0.228 0.220 0.248 0.308 0.334 0.175 0.202 0.171 0.079 0.146 0.077

YourTTS 0.042 0.019 0.269 0.078 0.042 0.029 0.143 0.029 0.042 0.010 0.269 0.058 0.042 0.010 0.067 0.029 0.202 0.039
SV2TTS 0.096 0.025 0.048 0.000 0.173 0.066 0.077 0.033 0.135 0.058 0.077 0.033 0.067 0.050 0.058 0.033 0.077 0.058
Tortoise 0.085 0.042 0.119 0.008 0.229 0.050 0.161 0.042 0.186 0.033 0.136 0.075 0.195 0.050 0.144 0.050 0.042 0.000
DiffVC 0.058 0.145 0.125 0.000 0.346 0.274 0.144 0.113 0.192 0.177 0.135 0.218 0.067 0.105 0.221 0.089 0.048 0.016
OpenVoice 0.000 0.000 0.106 0.009 0.029 0.000 0.087 0.138 0.135 0.198 0.221 0.216 0.096 0.060 0.048 0.009 0.067 0.060

VoiceGuard

Avg. 0.056 0.048 0.137 0.017 0.162 0.087 0.124 0.072 0.137 0.098 0.169 0.122 0.095 0.057 0.107 0.043 0.089 0.034

Total 0.114 0.124 0.121 0.026 0.222 0.133 0.168 0.139 0.171 0.172 0.221 0.212 0.143 0.149 0.137 0.058 0.090 0.043
The asterisk (*) indicates black-box senario (see App. A.3).

audio quality assessment, which evaluates overall quality
and naturalness on a 1-5 scale, with higher scores indicating
better quality. For reference, the average objective MOS
for the TIMIT dataset is 3.45 ± 0.52 (Yu et al., 2023). Our
method achieves an average objective MOS of 3.36 ± 0.58
on the evaluation dataset as shown in Table 3, indicating that
the synthesized speech is of high quality and naturalness.

Subjective Evaluation. We follow previous work (Huang
et al., 2021) and conduct a listening test with 20 partici-
pants, who are asked to rate the perceived speaker similarity
between the original clean speech and speech synthesized
using clean, protected, and purified samples. For each pair
of utterances, participants decide if the two utterances are
from the same speaker by selecting one of four options:
Same (Certain), Same (Uncertain), Different (Uncertain),
and Different (Certain). Each participant is asked to assess
40 speech pairs, resulting in a total of 800 evaluations. The
clean speech samples are randomly selected from our eval-
uation set. For each selected sample, a protection method
is randomly assigned to generate the protected and purified
versions. Subsequently, a randomly selected VC method is
employed to generate the corresponding synthesized speech
from clean, protected and purified versions. The subjective
evaluation results are presented in Figure 6.

B. Additional Experimental Results
B.1. Additional Results on the Effectiveness of Existing

Adversarial Purification Methods

We have listed the parameters of the existing purification
methods in our experiments in Table 4. For papers with mul-

tiple methods, the boldface represents the method with the
highest average SVA in our experiments. We have discussed
the effectiveness of these methods in section 5.2. In Table 5,
we provide the SVA results for other methods from these
papers. We found that the average SVA of these methods
ranges from 0.043 to 0.222, showing limited effectiveness
in bypassing the protected perturbations. As a result, we did
not discuss these methods in section 5.2.

The underperformance of transformation-based methods
may be due to simple transformations failing to distinguish
between the features of protective perturbations and the
original speech. For example, low-pass, band-pass filtering,
and downsampling can remove certain frequency compo-
nents of the speech, thereby affecting the ability of VC
models to capture speaker characteristics. Additionally, the
underperformance of the DualPure (Tan et al., 2024) and
DiffSpec (Wu et al., 2023) can be attributed to their mel-
spectrogram processing parameters. These methods operate
on spectrograms with 32 mel-bins, which were initially
designed for classification tasks. While 32 mel bins are
sufficient for classification (for the classification models
are trained on inputs of the same dimensionality), recon-
structing waveforms from such a low-resolution spectro-
gram can lead to significant distortion. However, existing
voice cloning models (Casanova et al., 2022; Betker, 2023)
typically utilize mel-spectrograms with 80 mel bins or more
as input, relying on high-fidelity spectral features. In con-
trast, WavePurifier (Guo et al., 2024) employs a higher reso-
lution (256× 256) spectral representation, which preserves
the essential details for voice cloning, thereby performing
significantly better in our experiments. DiffWave, operat-
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Table 6. Ablation study on the impact of data augmentation in different protection methods.
AntiFake AttackVC VoiceGuard TotalMethod Purif.

Stage
Ref.

Stage
Data
Aug.

Phon.
Guide xSVA dSVA xSVA dSVA xSVA dSVA xSVA dSVA

WavePurifier ✓ N/A N/A N/A 0.299 0.293 0.536 0.505 0.423 0.385 0.419 0.394
AudioPure ✓ N/A N/A N/A 0.401 0.451 0.734 0.776 0.656 0.712 0.597 0.646
Ours (w/o Augmentation) ✓ ✓ ✗ ✓ 0.582 0.689 0.747 0.872 0.716 0.812 0.682 0.791
Ours (Full model) ✓ ✓ ✓ ✓ 0.660 0.762 0.750 0.861 0.723 0.830 0.711 0.818

Table 7. Ablation study on the impact of speaker gender.

Speaker Gender Protected WavePurifier AudioPure Ours

Female (16 speakers) 0.103 0.383 0.603 0.796
Male (9 speakers) 0.106 0.414 0.677 0.856

ing directly in the waveform domain, avoids this type of
distortion, similarly leading to better results.

B.2. Quality of Synthesized Speech

Figure 10 shows the objective MOS of the synthesized
speech from our method and existing adversarial purifica-
tion methods. The results show that our method achieves
greater naturalness across different VC models, indicating
that our method not only improves the ability of VC mod-
els to replicate the target speaker’s identity characteristics
but also enhances their ability to synthesize natural speech.
Numerical results are provided in Table 3.
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Figure 10. Objective MOS of VC models synthesized speech.

B.3. Extended Ablation Study

Impact of Refinement Steps. Figure 11 shows the impact
of different Refinement steps N on the SVA of synthesized
speech. We find that the Refinement model approaches op-
timal performance at step N = 15, and the SVA remains
stable between steps 25 and 50. We choose N = 30 as the
number of steps for the Refinement model in our experi-
ments to balance performance and computational efficiency.

Number of Refinement Steps
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Figure 11. Impact of different Refinement steps.

Table 8. Cross-lingual performance of the Refinement stage.

Metric Protected w/o Refinement Full Model

dSVA 0.212 0.933 0.981

Impact of Data Augmentation. We described our data
augmentation strategy in App. A.5. The impact of data
augmentation on SVA is presented in Table 6. The results
indicate that applying data augmentation during the Refine-
ment stage can slightly improve SVA in most cases. Further-
more, even without data augmentation, our method consis-
tently outperforms existing purification methods, showing
our method does not rely on data augmentation.

Impact of Speaker Gender. We present the dSVA results
of our method and existing purification methods for speak-
ers of different genders in Table 7. We observed that our
method outperforms existing purification methods across
both male and female speakers, achieving higher dSVA
values. Additionally, all purification methods yield higher
dSVA results for male speakers compared to female speak-
ers. This may be because female voices typically contain
more high-frequency information, making the separation of
speech from high-frequency artifacts introduced by protec-
tive perturbations more challenging.

Cross-Lingual Performance of the Refinement Stage.
Since phoneme representations are language-dependent, we
investigate the impact of language on our method. We con-
duct a small-batch inference on the Russian LibriSpeech4,

4https://www.openslr.org/96/
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Figure 12. Spectrogram comparison of speech samples as voice cloning inputs. Existing purification methods tend to produce samples
with similar patterns or blurred details, whereas our method retains details similar to those of the clean samples.

which utilizes a non-Latin script. We apply the AttackVC
protection against the DiffVC model and use dSVA as the
evaluation metric. Results in Table 8 indicate our Refine-
ment stage remains effective even when inferring on a lan-
guage distinct from the English training data.

B.4. Visualized Results

The visualization of the samples as voice cloning inputs and
outputs are shown in Figure 12 and Figure 13. As shown
in Figure 12, existing purification methods tend to produce
similar patterns. For example, WavePurifier introduces a
blotchy pattern, while AudioPure’s purified samples typi-
cally exhibit vertical stripes with blurred details, causing
them to deviate from the clean distribution and leading to
a decline in the performance of the VC models (see Fig-
ure 13). In contrast, samples purified with our method retain
details similar to those of the clean samples, enabling the
VC model to better capture the speaker’s characteristics.
These visual results align with both our design objectives
and the numerical experiments.

B.5. Time Cost

We run different purification methods on the NVIDIA RTX
A6000 and obtain the average time spent processing each
second of audio for each method, as shown in Table 9. Since
our method introduces a score-based diffusion model dur-
ing the Refinement phase, the computational time for our

Table 9. Average time consumption per second of audio sample.
N represents the number of Refinement steps.

Method WavePurifier AudioPure Ours (N = 30) Ours (N = 15)

Time Cost (s) 4.405 0.152 1.405 0.866

method is greater than that of AudioPure.

We believe this is acceptable for determined voice cloning
attackers, as voice cloning attacks are typically performed
offline. Attackers usually have only a few protected audio
samples (ranging from a few seconds to a few minutes)
and ample time to prepare their attacks. Moreover, our
method’s computational cost of our method can be reduced
by decreasing the number of steps in the Refinement phase.
For example, when the number of Refinement steps is set
to N = 15, the SVA approaches optimal performance (as
shown in Figure 11), and the processing time per second of
speech sample is 0.866.

C. Discussion
Advanced Adaptive Protection Methods. Although in
section 5.4, white-box adaptive strategies like BPDA and
adjoint struggle to generate effective perturbations in our ex-
periments, several works in vision tasks (Kang et al., 2024;
Lee & Kim, 2023b) have successfully performed adaptive
adversarial attacks against diffusion-based adversarial pu-
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Figure 13. Visualization of voice cloning inputs and corresponding synthesized speech. The first row displays the speech samples as voice
cloning input, while the second and third rows show the corresponding synthesized speech using different voice cloning models. Our
method retains more details in the purified samples, thereby enhancing the VC model’s ability to replicate the speaker’s characteristics.

rification methods. As these methods are primarily designed
for image classification tasks and face challenges such as in-
creased memory usage due to the high resolution of speech
data (e.g., 96k data points for 6s audio at 16kHz vs. 1k
for image in CIFAR-10), they cannot be directly applied
to construct more robust protective perturbations against
voice cloning attacks. However, by processing long audio in
chunks to reduce memory overhead, or by using accelerated
sampling methods as surrogates to reduce computational
graph depth, their core mechanisms could potentially be
adapted for speech tasks, enabling the construction of adap-
tive protection methods robust against our purification.

Future Work on Protection Methods. Our experimental
results indicate that existing perturbation-based VC defenses
are vulnerable when adversarial purification is present in the
attack pipeline. Future work could explore more robust pro-
tective perturbation strategies, such as integrating distortion
layers composed of different types of distortions into the
perturbation generation pipeline to enhance their robustness
against adversarial purification. Additionally, adding pro-
tective perturbations at more advanced speech feature levels
may also enhance the robustness of protective perturbations.

Discussion of Our Purification Method. Although our
purification method has outperformed existing methods

in experiments, there are still some limitations. For in-
stance, our method employs fixed Purification and Refine-
ment timestep in all experiments. However, some studies
have shown that there exists an optimal timestep when diffu-
sion models are used for adversarial purification (Guo et al.,
2024; Nie et al., 2022). Therefore, a fixed timestep may
limit the effectiveness of our method. Future work could
explore the use of adaptive timestep selection strategies to
improve purification effectiveness.

Additionally, our method does not utilize information from
the VC model, which means that our method does not de-
pend on a specific VC model and attacker’s knowledge
about it. However, this design leaves room for improvement:
attackers with access to the VC model and expertise in it
could exploit this information to increase the success rate
of their attacks. For example, attackers could adversarially
fine-tune the purification model using adversarial samples
targeting their VC model to enhance its ability to purify
adversarial perturbations. Future work could investigate
how to leverage information from the VC model to improve
purification effectiveness and thereby increase the success
rate of VC attacks. Furthermore, although we have explored
the use of a specific backbone as the Purification and Re-
finement model in this paper, our Purification-Refinement
framework could benefit from more advanced Purification
and Refinement models.
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