

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FLOORPLANQA: A BENCHMARK FOR SPATIAL REASONING IN LLMs USING STRUCTURED REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today’s LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.

1 INTRODUCTION

Recent progress in large language models (LLMs) has revealed strong capabilities in structured reasoning, yet spatial inference over plausible, physically feasible environments such as indoor layouts remains poorly understood. In numerous practical applications, including architectural design, assistive planning, and embodied interaction, spatial understanding is handled through structured formats such as JSON, in which objects are specified by position, size, and orientation, rather than through images or natural language. Reasoning in these contexts requires geometric inference over symbolic layouts, not pixel-level perception.

We introduce **FloorplanQA**, a benchmark to evaluate spatial reasoning in LLMs using 2D floor-plans represented in structured text-based formats. Each instance consists of a JSON-encoded layout paired with natural language questions that require the model to compute distances, evaluate placement feasibility, assess visibility, and reason about spatial constraints. FloorplanQA isolates symbolic spatial reasoning over inputs that mirror the abstractions used by designers, architects, and agents operating in structured environments.

Although LLMs can increasingly be used in tool-assisted pipelines, for example to invoke spatial solvers or generate code, this work focuses on models’ *direct, unaided* reasoning capabilities. FloorplanQA is designed to probe what LLMs can infer from structured input alone, without relying on external computation or visual grounding, in order to measure their unassisted capabilities. This baseline is important because even in tool-rich systems, models benefit from some unaided spatial ability to anticipate outputs and avoid trivial errors.

Specifically, our contributions are as follows:

- We introduce a dataset of 2,000 structured 2D layouts, including 600 each from synthetically generated kitchens, living rooms, and bedrooms, plus 200 layouts sourced from the Habitat Synthetic Scenes Dataset (HSSD) (Khanna et al., 2023), providing a realism check. All are represented in JSON and paired with spatial reasoning questions.

- 054 • We provide a diverse suite of 16,000 spatial reasoning questions, eight questions per layout,
055 covering geometric relations, placement feasibility, spatial occupancy, and navigation.
- 056 • We establish structured evaluation protocols and scoring metrics that enable a fine-grained
057 diagnosis of reasoning performance by task type and error mode.
- 058 • We conduct a comparative analysis of 15 LLMs, including 7 reasoning-focused models, as
059 well as 8 standard models, revealing consistent failure patterns in spatial inference from
060 symbolic input.

062 FloorplanQA provides a benchmark of layouts, questions, and evaluation metrics for assessing spa-
063 tial reasoning in language models, focusing on symbolic floorplans that integrate geometry and
064 semantics in ways that mirror real architectural abstractions.

066 2 RELATED WORK

069 Prior benchmarks have explored spatial reasoning across vision and language domains.
070 CLEVR Johnson et al. (2017) is a synthetic visual question answering dataset designed to test com-
071 positional reasoning, including basic spatial relations. In real-world settings, SpatialSense Yang
072 et al. (2019) focuses on recognizing spatial relations in images through adversarially mined exam-
073 ples. Benchmarks like BabyAI Chevalier-Boisvert et al. (2019), ALFRED Shridhar et al. (2020),
074 and Room-to-Room (R2R) Anderson et al. (2018) integrate spatial understanding into embodied
075 tasks, requiring agents to follow instructions involving navigation and object manipulation in simu-
076 lated environments. Recent datasets such as ScanQA Azuma et al. (2022) and 3DSRBench Ma et al.
077 (2024a) extend spatial reasoning evaluation into 3D environments, emphasizing the need for models
078 to comprehend and reason about spatial relationships in three dimensions.

079 Vision-language models have advanced spatial reasoning but often handle it qualitatively. The
080 VQA dataset Antol et al. (2015) challenges models to answer questions about images, while VL-
081 T5 Cho et al. (2021) unifies vision-and-language tasks via text generation. Recent work on 3D scene
082 graphs Armeni et al. (2019) introduces structured representations of environments, facilitating spa-
083 tial reasoning. However, these approaches may miss fine-grained geometric details necessary for
084 precise spatial inference. Efforts like SpatialVLM Chen et al. (2024) aim to endow vision-language
085 models with enhanced spatial reasoning capabilities, addressing some of these limitations.

086 Advancements in generative models have also contributed to spatial reasoning tasks. Layout-
087 GPT Feng et al. (2023) leverages large language models for compositional visual planning and
088 layout generation, while Holodeck Yang et al. (2024) enables language-guided generation of 3D
089 embodied AI environments. Similarly, AnyHome Fu et al. (2024) focuses on open-vocabulary gen-
090 eration of structured and textured 3D homes, highlighting the integration of language and spatial
091 understanding in generative contexts. Infinigen Indoors (Raistrick et al., 2024) offers richly ren-
092 dered 3D scenes but often produces implausible object placement due to non-convergent simulated
093 annealing. LayoutVLM Sun et al. (2024) and FirePlace Huang et al. (2025) improve layout gener-
094 ation via optimization and constraint solving, respectively. But they assess output realism, not the
095 model’s ability to infer constraints directly. In contrast, our benchmark tests symbolic reasoning
096 without tool-assisted refinement.

097 Evaluations of large language models’ spatial understanding have been conducted in studies like
098 Evaluating Spatial Understanding of Large Language Models Yamada et al. (2024), which assesses
099 the spatial reasoning capabilities of LLMs through structured tasks. Additionally, benchmarks such
100 as BALROG Paglieri et al. (2025) test agentic reasoning in game environments, further exploring
101 the spatial and decision-making abilities of language and vision-language models. While these
102 efforts reveal important limitations in high-level spatial understanding, our benchmark isolates low-
103 level geometric reasoning in structured layouts, providing fine-grained and task-specific insights into
104 models’ spatial competence. Recent 3D-LLM surveys such as (Ma et al., 2024b) cover tasks like
105 navigation and interaction, but not symbolic spatial reasoning. FloorplanQA fills this gap by testing
106 raw spatial competence from structured layouts without multimodal input.

107 FloorplanQA addresses the gap in existing benchmarks by directly evaluating structured spatial
108 inference from symbolic room layouts. Unlike prior benchmarks relying on raw images or focusing
109 on commonsense spatial language, FloorplanQA provides explicit spatial representations (object

108 coordinates and dimensions) and tests models’ abilities to perform precise spatial reasoning tasks,
 109 such as calculating distances, assessing visibility, and verifying object fit within a controlled setting.
 110
 111

112 3 METHOD

115 3.1 SYNTHETIC LAYOUT GENERATION

117 Our initial aim was to use publicly available real-world floorplan datasets. However, a comprehensive
 118 review revealed significant limitations, as several prominent datasets such as SUNCG (Song
 119 et al., 2017) and HouseExpo (Li et al., 2019) are not accessible due to unresolved copyright claims.
 120 Other large-scale resources—including 3D-FRONT (Fu et al., 2020), Structured3D (Zheng et al.,
 121 2020), and InteriorNet (Li et al., 2018)—are procedurally generated but impose constraints on lay-
 122 out diversity, furniture semantics, or downstream reuse. Datasets like CubiCasa5K (Kalervo et al.,
 123 2019) and Rent3D (Liu et al., 2015) offer fixed architectural plans from real environments but lack
 124 furnishing annotations. RPLAN (Wu et al., 2019), despite its scale, is not publicly released, and the
 125 dataset of Di et al. (2020), while large, is procedurally generated with realtor supervision and im-
 126 poses restrictions on reuse. Given these legal, practical, and methodological constraints, we found
 127 synthetic data generation to be the most viable alternative.

128 We generated 1,800 synthetic indoor layouts using Gemini 2.5 Pro, a large language model fine-
 129 tuned for spatial reasoning (Google Gemini Robotics Team, 2025). Although our evaluation includes
 130 multiple LLMs (including Gemini variants), there is no circularity: the data-generation step is one-
 131 off and separate from evaluation. For evaluation, models solely produce answers to the benchmark
 132 questions, and correctness is computed by deterministic geometric routines against ground-truth
 133 solutions derived from the layouts, so no model output is used to generate data or to grade itself.

134 The generation process comprises two stages. First, we specify room geometries using explicit
 135 constraints on shape, adjacency, and design principles related to circulation, symmetry, and zoning.
 136 These constraints are encoded directly in the LLM prompt. Second, each room is furnished
 137 according to style-specific guidelines (e.g., a bedroom must contain a bed and storage), also defined
 138 in structured prompts, to encourage both visual realism and functional plausibility. Approximately
 139 one-third of candidate layouts are filtered out by a rule-based spatial validity filter that enforces ba-
 140 sic clearance and accessibility constraints. The checks remove scenes with inaccessible furniture
 141 and implausible adjacencies, such as sofas blocking doors or a refrigerator overlapping a table; see
 142 Appendix B.3 for the full set of cases. Full prompts, generation templates, and validation scripts are
 143 provided in the Supplementary Material.

145 3.2 LAYOUT EXTRACTION FROM HSSD DATASET

147 To complement the synthetically generated layouts, we further incorporated 200 layouts extracted
 148 from the Habitat Synthetic Scenes Dataset (HSSD-200). HSSD provides 211 high-quality, human-
 149 authored 3D scenes designed with the Floorplanner interface and populated with 18,656 objects
 150 across 466 semantic categories. Unlike purely procedural datasets, HSSD offers fine-grained se-
 151 mantics, 3D assets, and close correspondence to real interiors, making it an effective proxy for
 152 real-world interior layouts.

153 For our purposes, we project each 3D scene to a 2D floorplan and retain only select structural and
 154 furniture elements. Decorative or auxiliary objects (e.g., *vases*, *plants*, *cushions*, *artworks*, *posters*,
 155 *bottles*, *shoes*, *candles*) are removed to reduce clutter; see Appendix C for the full details. We
 156 then use an α -convex hull (Asaeedi et al., 2014; Edelsbrunner & Mücke, 1994) to smooth object
 157 boundaries, yielding polygonal layouts that are not restricted to axis-aligned rectangles. This step
 158 is necessary because raw HSSD projections often produce overly dense polygons, with redundant
 159 vertices along straight or nearly straight segments; applying an α -hull reduces spurious complexity
 160 while preserving concavity, which avoids unnecessary token overhead in downstream LLM pro-
 161 cessing. This ensures compatibility with our synthetic layouts, while maintaining the richer geometric
 162 variety of HSSD.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Table 1: Left side: The illustration of the overall breakdown by room type for the entire 2,000-layout benchmark, encompassing both the synthetic component and the layouts extracted from the HSSD. Right side: Detailed distribution of the synthetic subset of the FloorplanQA benchmark (1,800 layouts) across room type, internal style, and geometric configuration.

Room Type	Style	Rectangular	L-Shaped	Open	Total
Kitchen	L-Shaped	208	36	105	600
	U/G-Shaped	42	128	2	
	Island-Based	2	0	33	
	Wall / Galley	17	10	17	
Living Room	Fireplace-Centric	55	1	34	600
	Conversational	66	3	37	
	Multi-Zone	73	176	46	
	TV-Focused	78	3	28	
Bedroom	With Workstation	98	35	28	600
	Traditional	114	59	57	
	Efficient Small	65	3	8	
	Welcoming Guest	75	30	28	
Total		893	484	423	1800

Figure 1: Representative layouts from FloorplanQA. **Generated**: kitchen, living room, bedroom. **HSSD**: living room (last image). Generated objects are axis-aligned boxes; HSSD uses arbitrary polygons.

3.3 UNIFIED DATASET

Together, these two sources yield a dataset of 2,000 layouts: 1,800 synthetically generated via Gemini 2.5 Pro and 200 extracted from HSSD. The two subsets share a unified polygonal representation, enabling consistent downstream processing. Figure 1 shows examples from both sources while Table 1 summarizes room, style, and geometry distributions across the synthetic subset with the figure next to it providing a breakdown by room type.

3.4 QUESTION TAXONOMY AND PROMPTING

FloorplanQA assesses spatial reasoning by presenting models with a single natural language question per symbolic layout. Questions span a range of topological and functional types, including numeric computations (distances, areas), spatial feasibility (object placement), visibility, and requirement violations. Some questions require fine-grained metric reasoning, others test whether a model can respect physical constraints. A categorized list of question types is shown in Table 2.

Each question is generated by filling a parameterized template with layout-specific variables such as object names, measurements, and task-specific contextual information (e.g. units for distance, clearance for paths, or which object-types should not occlude visibility). Prompts are issued in zero-shot settings, without few-shot examples or role-based instructions. Instead, we enforce simple structural markers—such as a required checklist and a final-answer line—to encourage stepwise reasoning.

To ensure verifiable outputs, each prompt specifies a response schema consisting of a brief structured justification and a final answer line. For example, a distance query is phrased as:

216
 217 Table 2: FlooplansQA question taxonomy. The example question shown is an instantiation of the
 218 template used to generate all questions of that type. Each task is labeled with a format code: **N**
 219 (scalar), **B** (boolean), **S** (sequence), and **L** (list), and a question reasoning category.

Type	Example Question	Format	Category
Distance	Calculate the Euclidean distance in meters between the centroids of the fridge and the stove	N	Metric
Free Space	Calculate the total non-occupied floor area in square meters	N	Topology
View Angle	Compute the smallest absolute angle in degrees between the vector from the centroid of the sofa to the centroid of the TV and the global north vector $(0, 1)$	N	Metric
Repositioning	Calculate how far the ottoman be moved in the left direction until it touches another object or the wall	N	Dynamic
Max Box	Calculate the area in square meters (m^2) of the largest rectangle that can fit inside the room	N	Topology
Placement	Check if a $2m \times 3m$ desk table can fit fully inside the room without overlaps	B	Topology
Shortest Path	Determine the shortest valid path that maintains a clearance of 15 cm from all other objects, starting from centroid of the stove and ending at the centroid of door	S	Dynamic
Visibility	Find all objects that intersect the vector from the centroid of the window to the centroid of the fireplace	L	Topology

241 **Prompt: Distance Query**

242
 243 Given the layout of a `{room_type}` in `{format}`,
 244 calculate the Euclidean distance in meters between the
 245 centroids of '`{obj1}`' and '`{obj2}`'.

246
 247 If the format, object names, or required inputs are missing, invalid, or inconsistent, the model must
 248 return: `*Final answer*: ERROR`. Otherwise, responses must follow the scheme, for example:

249 **Response Schema**

250
 251 Begin by providing a concise checklist (3–7 bullets)
 252 of the conceptual steps necessary for calculating the Euclidean
 253 distance. Then, carefully walk through each reasoning step
 254 required to calculate the distance.

255
 256 Respond in the following strict format:
 257 `### Output Format`
 258 `<step-by-step calculations>`
 259 `*Final answer*: <answer>`

260
 261 This structure invokes step-by-step reasoning and each question ends with
 262 `*Final Answer*: <answer>`, enabling robust extraction even when APIs lack native
 263 structured-output support.

264
 265 Layouts are represented in a structured JSON format. Each entry contains a `layout_id`, the
 266 `room_type`, and explicit geometric descriptions. The `room_boundary` is stored as a closed
 267 polygon, while `walls` are represented separately as a list of line segments. Openings such as win-
 268 dows and doors are included in a dedicated `openings` field rather than flattened into the object
 269 list. All furnishings and functional elements (e.g., bed, sofa, table) are stored in the `objects` list,

270 with each object defined by a labeled polygon. In the synthetic data, these polygons are axis-aligned
 271 bounding boxes (four points), whereas in HSSD they can exhibit arbitrary shapes and orientations.
 272 Object names are suffixed with instance identifiers (e.g., `fridge_1`, `table_3`) to ensure that referents
 273 remain unique and stable across prompt construction and answer evaluation. Coordinates are
 274 expressed in meters in a right-handed 2D Cartesian frame ($+x$ to the right, $+y$ upward). The global
 275 origin $(0, 0)$ is not fixed to the layout’s lower-left corner and may vary across layouts. The prompt
 276 used to generate examples according to this schema is in Appendix I.

277 We group these questions into three reasoning categories. **Metric** tasks require explicit numerical
 278 computation, such as calculating centroids, measuring distances between objects, or evaluating the
 279 angle between an inter-object vector and a reference axis. **Topology** category involves geometric and
 280 relational reasoning, including checking placement feasibility, computing free space, or identifying
 281 whether an object blocks the direct line of sight between two others. **Dynamic** category addresses
 282 layout-changing procedures, such as repositioning an object until contact with a boundary or another
 283 object, or computing a valid collision-free path between two objects.

284 These categories are intended to capture the core modes of spatial reasoning in FloorplanQA, ranging
 285 from low-level geometric calculation to higher-level relational and procedural inference. While
 286 not strictly disjoint, they provide a diagnostic framework for analyzing model behavior and diagnosing
 287 failure modes.

288 In addition to categorizing by reasoning type, each task is also associated with an answer format
 289 code that specifies the expected output structure and the corresponding scoring rule. Scalar outputs
 290 (**N**) are scored by relative error with a default tolerance of 2%; for complex area-computation tasks
 291 (e.g., `Free_Space`), the tolerance is relaxed to 5%. These tolerances are chosen to accommodate
 292 minor numerical instability in LLM outputs while remaining strict. Sensitivity studies supporting the
 293 constant choice, including tolerance sweeps showing that thresholds affect only absolute accuracies
 294 and not model rankings, are provided in Appendix G.1. Sequence outputs (**S**) are evaluated with a
 295 Fréchet threshold of 0.6 m, approximating minimal human clearance, and must be valid (collision-
 296 free, no overlaps). Threshold sweeps for path validation are reported in Appendix G.2. List outputs
 297 (**L**) are evaluated by set equality. Together, the categories and format codes define the taxonomy
 298 summarized in Table 2, which reports task coverage and examples for each case.

3.5 EVALUATION PROTOCOL AND SCORING

301 Each question in FloorplanQA is paired with a reference answer computed directly from the sym-
 302 bolic layout, enabling fully automated and deterministic evaluation of model outputs. Depending
 303 on the response type, correctness is assessed using numeric comparison with fixed tolerances, string
 304 matching, or geometric validation checks.

305 For numerical questions (e.g., distances, areas, angles), predictions are accepted if they fall within
 306 a relative error threshold. Sequence outputs are evaluated for both format and semantic correct-
 307 ness. Rather than requiring exact coordinate matches, we validate paths using geometric plausibility
 308 conditions of collision avoidance and sufficient proximity to a ground-truth trajectory. Deviation
 309 thresholds are set conservatively to tolerate minor geometric variations without crediting qualita-
 310 tively wrong routes.

312 To differentiate reasoning failures from extraction or formatting issues, we apply a regex-based pars-
 313 ing pipeline, covering a fixed set of expected answer patterns (e.g., ‘*Final answer*’ tokens in
 314 lower case or with surrounding symbols). If no answer is produced, or if the extracted content does
 315 not match a valid format, we count the response as an error (which is also considered incorrect).
 316 We provide a detailed breakdown of accuracy in Appendix E. In our evaluations, the proportion of
 317 invalidly formatted answers is below 1%.

318 We also explicitly track cases where no answer is returned due to truncation (API: `stop_reason`
 319 = `Token Limit`), a failure mode that disproportionately affects reasoning-heavy models. An
 320 aggregated per-model summary of truncation rates, invalid-format proportions, and parser sensitivity
 321 is reported in Table 8 (Appendix ??).

322 To account for truncation, we report in Appendix J both the percentage of responses truncated by
 323 token limits and an adjusted accuracy computed only over valid (non-truncated) answers. These
 324 adjusted accuracies can be interpreted as an approximate upper bound on performance under our

324 prompting setup, since with larger token budgets models could in principle complete more solutions
 325 at similar quality. We therefore do not interpret non-truncated accuracy as a fully fair standalone
 326 score, as truncation occurs primarily on the most challenging questions and can artificially inflate
 327 performance.
 328

329 3.6 MODEL INFERENCE SETUP

330
 331 All models are queried using standard chat-based completion APIs, with prompts constructed as
 332 described above. We evaluate both large and mid-size models, including reasoning and standard
 333 variants. Large reasoning-oriented and standard models are allocated up to 12,288 tokens per com-
 334 pletion, enabling them to process long layout descriptions and produce multi-step outputs. Mid-size
 335 models, including the GPT family variants optimized for speed and Qwen3-30B, are limited to 8,192
 336 tokens. These budgets reflect our observations that larger models generate longer intermediate jus-
 337 tifications and thus consume more tokens.
 338

339 GPT-5 is evaluated under a distinct configuration: its reasoning intensity can't be disabled, so we run
 340 it with reasoning and verbosity set to "low," with a maximum output length of 4,096 tokens, while
 341 GPT-5-mini is run with reasoning and verbosity set to "medium," with a maximum output length of
 342 8,192 tokens.
 343

344 No model receives fine-tuning or prompt adaptation specific to FloorplanQA. All prompts are zero-
 345 shot, with the system message and output formatting constraints held fixed. For each model, we
 346 use the default inference configuration provided by its vendor, with temperature set to 0. The only
 347 exception is GPT-5, for which the temperature cannot be modified and defaults to 1.
 348

349 Each model is evaluated over 1800 generated layouts and 200 layouts from HSSD, with one question
 350 from each type posed per layout. Evaluation is fully automated, from layout serialization and prompt
 351 insertion to parsing, with no manual curation.
 352

353 All models are evaluated on identical input distributions and scoring criteria, enabling cross-system
 354 comparisons that are architecture-agnostic and directly comparable.
 355

356 4 RESULTS

357 We evaluated the performance of the model on a dataset of 2,000 layouts, consisting of 600 kitchens,
 358 600 living rooms, 600 bedrooms, and 200 additional layouts from HSSD. Each layout is paired with
 359 one question sampled from a pool of 8 parameterized templates, filtered by room applicability. This
 360 yields 16,000 layout-question pairs. The full taxonomy is shown in Table 2.
 361

362 We evaluate fifteen models, spanning a wide range of parameter scales, architectures, and training
 363 regimes. The reasoning-oriented models include GPT-5 (OpenAI, 2025a), GPT-OSS-120B (Open-
 364 AI, 2025b), DeepSeek-R1-0528 (DeepSeek-AI, 2025), GPT-5-mini, Gemini Flash 2.5 (Google
 365 DeepMind, 2025), GPT-OSS-20B, and Qwen3-30B-A3B-Thinking-2507 (Yang et al., 2025). The
 366 general-purpose (standard) models include Claude Sonnet 4 (Anthropic, 2025), GPT-4.1 (OpenAI
 367 et al., 2024), Moonshot Kimi-K2-Instruct (Kimi Team, 2025), Qwen3-Coder-480B-A35B-Instruct,
 368 Qwen3-235B-A22B-Instruct-2507, GPT-4.1-mini, Qwen3-30B-A3B-Instruct-2507, and Devstral-
 369 Small-2505 (MistralAI, 2025). All models are evaluated in identical zero-shot conditions using
 370 standardized prompts and serialized layout inputs, as described in Section 3. Complete results dis-
 371 aggregated by question type, room type, and model are provided in Appendix E.
 372

373 4.1 QUANTITATIVE RESULTS

374 We begin by aggregating accuracy across models and question types for both *reasoning* and *general*
 375 model families. Figure 2 summarizes accuracy: the top row shows general models, and the bottom
 376 row shows reasoning models. In each figure, the left panel summarizes accuracy by model, and the
 377 right panel summarizes accuracy by question across room types.
 378

379 Kitchens lead across models because overlaps are rare, so most queries are straightforward. Scores
 380 on HSSD tend to lag behind the other room types; irregular, non-axis-aligned geometry and denser
 381 overlap make these layouts more demanding, see Appendix D for detailed statistics. Bedrooms and
 382 living rooms are mid-tier and nearly equal, lying between kitchens and HSSD.
 383

Figure 2: Accuracy of general (top) and reasoning (bottom) models. The left panel summarizes accuracy by model, averaged across all question types. The right panel summarizes accuracy by question, averaged across all models within the respective general or reasoning family. Each column corresponds to a specific room type represented in our dataset: **Kitchens**, **Living Rooms**, **Bedrooms** (synthetic subsets), plus **HSSD** layouts.

Comparing model families, general models struggle when many overlaps must be merged; they often treat object areas independently (no union), which hurts *Free Space* and *Max Box* and carries over into path planning. Reasoning models handle those cases with unions and rotations better, so they show gains on *Free Space* and *Max Box*. A practical limitation remains: **Gemini Flash 2.5** and **DeepSeek-R1** hit token limits on larger layouts, which drops scores, especially in HSSD.

Task difficulty follows a consistent pattern in terms of accuracy. Metric-category questions, such as *Pair Distance* and *View Angle*, achieve the highest accuracies. *Repositioning*, *Visibility*, and *Placement* yield mid-range accuracies. *Max Box* and *Free Space* benefit most from reasoning-oriented models, yet their accuracies remain low and are comparable in difficulty to *Shortest Path*. Accuracy decreases as object count and overlap density increase, most notably on HSSD layouts. A detailed analysis of each question category, with visualizations and representative failure cases, is provided in Appendix H.

4.2 ABLATION

To evaluate the robustness of layout interpretation under alternate encodings, we perform a **format** ablation that replaces the standard JSON layout with a semantically equivalent XML version. This substitution preserves all geometric and object-level content while modifying only the syntax and structural serialization. The **prompt level** and **semantic** ablations are described in Appendix, Sections G.3, G.4. To avoid recomputing the full suite, we focus on the most variance-sensitive question types for HSSD layouts, as shown in Appendix E.4 (Figs. 5 and 6): *View Angle*, *Visibility*,

432 Table 3: Accuracy using JSON vs XML layout encoding. Each cell shows performance on the
 433 original JSON representation and its equivalent XML rendering.

435 Model	436 Repositioning	437 View Angle	438 Visibility
GPT-OSS-120B	60.5 → 59.0	74.0 → 74.0	70.0 → 72.0
GPT-OSS-20B	40.0 → 39.0	37.5 → 38.5	45.5 → 43.5
Qwen3-235B-A22B	39.0 → 42.0	50.5 → 54.0	70.5 → 65.5

441 and one task from a different category—Repositioning (Dynamic). We apply each input-
 442 format ablation to three representative models: two reasoning models (GPT-OSS-120B, GPT-OSS-
 443 20B) and one large general model (Qwen3-235B-A22B) for the same subset of HSSD layouts. As
 444 shown in Table 3, accuracy is largely stable in both formats for most categories; the GPT-OSS
 445 models change minimally, while Qwen shows modest fluctuations. This suggests that these models
 446 encode layout semantics in a manner that is relatively invariant to low-level representation details.

447 Additionally, beyond input-format robustness, we evaluate whether external computation and visual
 448 renderings change performance. Tool-augmented (Python Code Interpreter) and VLM-based set-
 449 tings are analyzed in Section F: tools substantially improve scalar tasks, while gains are limited on
 450 dynamic planning tasks, and VLM inputs yield selective improvements without changing overall
 451 model trends.

453 5 CONCLUSION

455 We introduced **FloorplanQA**, a benchmark for spatial reasoning over symbolic 2D layouts aligned
 456 with architecture and robotics practice. We evaluated 15 language models (8 general, 7 reasoning)
 457 on 2,000 layouts (1,800 synthetic; 200 semi-real HSSD) across tasks ranging from metric queries
 458 to visibility, placement, and shortest path with clearance.

460 Empirically, metric and simple visibility queries are reliable; kitchens score highest because overlaps
 461 are rare. HSSD layouts are more demanding—irregular, non-axis-aligned shapes and dense overlaps
 462 expose weaknesses such as centroid miscalculation and missed unions. Reasoning models improve
 463 notably on *Free Space* and *Max Box* by handling overlaps and rotations more consistently, while
 464 general models often subtract object areas independently and fail under heavy overlap. *Shortest Path*
 465 is sufficiently challenging because it requires multiple correct steps (clearance buffering, collision
 466 checks, and path search), where errors compound.

467 These results indicate that current LLMs lack sufficiently robust internal geometric representations
 468 for complex spatial inference. We also ran a small set of capability extensions to probe where
 469 models benefit from extra modalities. Enabling a Python Code Interpreter yields strong gains on
 470 arithmetic-heavy scalar tasks (distance, angles, visibility), while harder optimization and planning
 471 tasks (e.g., *Max Box* and *Shortest Path*) remain challenging because failures often stem from
 472 incorrect spatial reasoning or imperfect model-written code. Providing rendered floorplan images to
 473 VLMs yields improvements on some visually grounded cases (such as object fit and certain metric
 474 cues), but does not consistently increase overall performance across tasks, indicating that symbolic
 475 input already provides a strong baseline and that visual benefits depend on ability to understand the
 476 rendering representation.

477 Two complementary directions follow. *Near term*: hybridize with external geometric solvers or
 478 symbolic planning modules—set operations (unions/differences), centroid via shoelace, clearance
 479 buffering, oriented rectangle search, and A* path planning—to compensate for the models’ weak-
 480 nesses in collision avoidance and clearance reasoning. *Longer term*: train with explicit spatial
 481 constraints and harder distributions (irregular, overlap-heavy layouts), and include constraint-violation
 482 exemplars and geometry-aware objectives so models learn to maintain coherence under rotation,
 483 clearance, and union operations in design-oriented tasks. Beyond these preliminary directions, po-
 484 tential improvements include multi-step interaction (e.g., asking an agent to verify or revise its solu-
 485 tion using a rendered floorplan). We view these as promising follow-up projects, while FloorplanQA
 already provides a strong standalone benchmark to measure progress in spatial reasoning for layout
 design.

486 REFERENCES
487

488 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
489 Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
490 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE Con-*
491 *ference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

492 Anthropic. System card: Claude opus 4 & claude sonnet 4. <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf>, 2025.

494 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
495 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE International*
496 *Conference on Computer Vision (ICCV)*, 2015.

497 Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and
498 Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In
499 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2019.

500 Saeed Asaeedi, Farzad Didehvar, and Ali Mohades. Alpha-concave hull, a generalization of convex
501 hull, 2014. URL <https://arxiv.org/abs/1309.7829>.

502 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. ScanQA: 3D Question
503 Answering for Spatial Scene Understanding, May 2022. URL <http://arxiv.org/abs/2112.10482>. arXiv:2112.10482 [cs].

504 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
505 Leonidas Guibas, and Fei Xia. SpatialVLM: Endowing Vision-Language Models with Spa-
506 tial Reasoning Capabilities, January 2024. URL <http://arxiv.org/abs/2401.12168>.
507 arXiv:2401.12168 [cs].

508 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
509 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
510 grounded language learning. In *International Conference on Learning Representations (ICLR)*,
511 2019.

512 Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
513 generation. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.

514 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
515 2025. URL <https://arxiv.org/abs/2501.12948>.

516 Weidong Di, Kejia Liu, Xuefei Ma, and Yongdong Dong. Deep layout of custom-size furniture for
517 interior decoration. *IEEE Transactions on Visualization and Computer Graphics*, 27(9):3859–
518 3870, 2020.

519 Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. *ACM Trans. Graph.*,
520 13(1):43–72, January 1994. ISSN 0730-0301. doi: 10.1145/174462.156635. URL <https://doi.org/10.1145/174462.156635>.

521 Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
522 Xin Eric Wang, and William Yang Wang. LayoutGPT: Compositional Visual Planning and Gen-
523 eration with Large Language Models, October 2023. URL <http://arxiv.org/abs/2305.15393>. arXiv:2305.15393 [cs].

524 Huanlian Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Ying Li, Qixuan Zeng, Cheng Sun, Wenzheng
525 Yang, Ruigang Yang, and Hao Pan. 3d-front: 3d furnished rooms with layouts and semantics.
526 *arXiv preprint arXiv:2011.09127*, 2020.

527 Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. AnyHome: Open-Vocabulary Generation
528 of Structured and Textured 3D Homes, July 2024. URL <http://arxiv.org/abs/2312.06644>. arXiv:2312.06644 [cs].

529 Sean Gillies et al. Shapely: Manipulation and analysis of geometric objects, 2007. URL <https://shapely.readthedocs.io/>. Version 2.0 or later. Available at: <https://shapely.readthedocs.io/>.

540 Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
 541 long context, and next-generation agentic capabilities. Technical report, Google DeepMind,
 542 June 2025. URL https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf.

543

544 Google Gemini Robotics Team. Gemini robotics: Bringing AI into the physical world. *arXiv*
 545 preprint, 2025. URL <https://arxiv.org/abs/2503.20020>.

546

547 Ian Huang, Yanan Bao, Karen Truong, Howard Zhou, Cordelia Schmid, Leonidas Guibas, and
 548 Alireza Fathi. Fireplace: Geometric refinements of llm common sense reasoning for 3d ob-
 549 ject placement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 550 *Recognition (CVPR)*, 2025.

551

552 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
 553 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 554 reasoning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 555 (*CVPR*), 2017.

556

557 Aleksi Kalervo, Juha Ylioinas, Marko Häikiö, Antti Karhu, and Juho Kannala. Cubicasa5k:
 558 A dataset and an improved multi-task model for floorplan image analysis. *arXiv preprint*
 559 *arXiv:1904.01920*, 2019.

560

561 Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
 562 Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. Habitat Synthetic
 563 Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for Object-
 564 Goal Navigation. *arXiv preprint*, 2023.

565

566 MoonshotAI Kimi Team. Kimi k2: Open agentic intelligence, 2025. URL <https://arxiv.org/abs/2507.20534>.

567

568 Chengshu Li, Fei Yan, Siyuan Xia, Qiwei Cheng, Ziyu Li, Xiaoping Fan, Guanghua Zhang, and
 569 Fenglin Wang. Houseexpo: A large-scale 2d indoor layout dataset for learning-based algorithms
 570 on mobile robots. *arXiv preprint arXiv:1903.09845*, 2019.

571

572 Wenbo Li, Seyedmajid Saeedi, John McCormac, Ronald Clark, Andrew J. Davison, and Stefan
 573 Leutenegger. Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. In *Pro-
 ceedings of the British Machine Vision Conference (BMVC)*, pp. 77, 2018.

574

575 Chen Liu, Alexander G. Schwing, Kaustav Kundu, Raquel Urtasun, and Sanja Fidler. Rent3d: Floor-
 576 plan priors for monocular layout estimation. In *Proceedings of the IEEE Conference on Computer*
 577 *Vision and Pattern Recognition (CVPR)*, pp. 3413–3421, 2015.

578

579 Wufei Ma, Haoyu Chen, Guofeng Zhang, Celso M. de Melo, Alan Yuille, and Jieneng Chen.
 3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark, December 2024a. URL
<http://arxiv.org/abs/2412.07825>. arXiv:2412.07825 [cs].

580

581 Xianzheng Ma, Yash Bhalgat, Brandon Smart, Shuai Chen, Xinghui Li, Jian Ding, Jindong Gu,
 582 Dave Zhenyu Chen, Songyou Peng, Jia-Wang Bian, Philip H Torr, Marc Pollefeys, Matthias
 583 Nießner, Ian D Reid, Angel X Chang, Iro Laina, and Victor Adrian Prisacariu. When llms step
 584 into the 3d world: A survey and meta-analysis of 3d tasks via multi-modal large language models.
arXiv preprint arXiv:2405.10255, 2024b. URL <https://arxiv.org/abs/2405.10255>.

585

586 MistralAI. Devstral: Introducing the best open-source model for coding agents. <https://mistral.ai/news/devstral>, May 2025.

587

588 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>,
 589 2025a.

590

591 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025b. URL <https://arxiv.org/abs/2508.10925>.

592

593 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, et al. Gpt-4
 594 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

594 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
 595 Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foer-
 596 ster, Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking Agentic LLM and
 597 VLM Reasoning On Games, April 2025. URL <http://arxiv.org/abs/2411.13543>.
 598 arXiv:2411.13543 [cs].

599 Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu
 600 Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng. In-
 601 finigen indoors: Photorealistic indoor scenes using procedural generation. In *Proceedings of the*
 602 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21783–21794,
 603 June 2024.

604 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
 605 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
 606 for everyday tasks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 607 *Recognition (CVPR)*, 2020.

608 Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
 609 Semantic scene completion from a single depth image. In *Proceedings of the IEEE Conference*
 610 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 1746–1754, 2017.

611 Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick
 612 Haber, and Jiajun Wu. Layoutvlm: Differentiable optimization of 3d layout via vision-language
 613 models. *arXiv preprint arXiv:2412.02193*, 2024.

614 Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhang Wang, Yu-Hao Qi, and Ligang Liu. Data-driven
 615 interior plan generation for residential buildings. *ACM Transactions on Graphics (TOG)*, 38(6):
 616 1–12, 2019.

617 Yutaro Yamada, Yihan Bao, Andrew K. Lampinen, Jungo Kasai, and İlker Yıldırım. Evaluating
 618 Spatial Understanding of Large Language Models, April 2024. URL <http://arxiv.org/abs/2310.14540>. arXiv:2310.14540 [cs].

619 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report,
 620 2025. URL <https://arxiv.org/abs/2505.09388>.

621 Kaiyu Yang, Olga Russakovsky, and Jia Deng. Spatialsense: An adversarially crowdsourced bench-
 622 mark for spatial relation recognition. In *Proceedings of the IEEE International Conference on*
 623 *Computer Vision (ICCV)*, 2019.

624 Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
 625 Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar, Aniruddha Kembhavi,
 626 and Christopher Clark. Holodeck: Language Guided Generation of 3D Embodied AI Environ-
 627 ments, April 2024. URL <http://arxiv.org/abs/2312.09067>. arXiv:2312.09067 [cs].

628 Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large
 629 photo-realistic dataset for structured 3d modeling. In *Proceedings of the European Conference*
 630 *on Computer Vision (ECCV)*, pp. 519–535, 2020.

631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A TECHNICAL APPENDIX AND SUPPLEMENTARY MATERIAL FOR**
 649 **FLOORPLANQA**
 650

651 This appendix details the dataset generation pipeline, dataset statistics, and the full evaluation of
 652 *FloorplanQA* across reasoning and general models. It also includes ablation studies, analysis of
 653 failure cases, and the exact prompts used for data generation and question asking.

654 All artifacts (code, generation prompts, evaluation scripts, and visualization utilities) are included
 655 with the submission as supplementary material.

658 **B DETAILS ON SYNTHETIC DATA GENERATION**
 659

660 Room layouts were generated using Gemini 2.5 Pro, specifically fine-tuned for spatial reasoning and
 661 bounding-box tasks. In the following sections, we describe the detailed procedure and its constraints.
 662 All generation scripts, prompts, constraint-checking code, and random seeds are included in the code
 663 for full reproducibility.

665 **B.1 ROOM SHAPE GENERATION**
 666

667 We generated 600 layouts for each of the kitchens, bedrooms, and living rooms. These layouts fea-
 668 ture a range of geometries and sizes, with clearly defined room structures that incorporate windows,
 669 doors, and corner cutouts where applicable. All layouts follow specifications tailored to each room
 670 type.

671 Each layout falls into one of three shape categories: rectangular, L-shaped, or open. Size categories
 672 were defined individually for each room type and were incorporated into the generation prompts
 673 based on standard assumptions about typical room dimensions.

675 The distribution of room shapes and sizes is shown in Table 4, and example layout types are illus-
 676 trated in Fig. 1.

677 678 Table 4: Shape and size distribution across generated layouts for each room type.

680 Room Type	681 Shape Distribution (Rect / L-shaped / Open)	681 Size Categories (in m²) (Small / Medium / Large)
682 Kitchen	40% / 40% / 20%	$\leq 7 / 7-18 / >18$
683 Bedroom	50% / 30% / 20%	8-12 / 12-18 / >18
684 Living Room	40% / 40% / 20%	20 / 22 / 24

687 **Geometric and Structural Constraints:** The geometry of the room was procedurally varied us-
 688 ing prompt-based guidance to produce rectangular, L-shaped, and open-plan configurations. The
 689 following structural properties were described in the prompts but not explicitly enforced during
 690 layout generation:

- 692 • L-shaped rooms were described as rectangular spaces with a square cutout in one corner.
 693 To maintain usable proportions, each leg of the L shape was suggested to be at least 1.5 m
 694 wide and deep.
- 695 • Open-plan rooms, apart from living rooms, were prompted without doors and with one
 696 whole wall removed. This was intended to vary the room’s shape and simplify the layout
 697 generation process.
- 698 • Doors were described with widths between 0.8 m and 1.0 m, randomly selected. The win-
 699 dows were chosen from a fixed set of widths: 0.6 m, 0.75 m, 0.9 m, 1.2 m, and 1.5 m.
- 700 • The prompts included instructions on placing all elements, such as doors, windows, and
 701 cutouts, entirely within the room boundaries.

702 **Window Placement:** Window placement followed prompt-based guidelines aimed at supporting
 703 daylight access and layout clarity:
 704

- 705 • The total window length was set to exceed 15 percent of the room’s floor area. It was used
 706 as a simple proxy to ensure visible window openings and visual balance along the walls.
- 707 • The windows on the same wall were the same size to support visual balance. Small, isolated
 708 windows were not used.
- 709 • Long windows, over 1.5 m, were split into segments with 0.05 to 0.15 m gaps for a more
 710 modular appearance.
- 711 • The windows were not placed opposite each other or on the same wall as a door, as such
 712 arrangements are less common and were not emphasized in the prompt design.

714 **B.2 FURNITURE AND APPLIANCE PLACEMENT**

716 In the second stage, each room was populated with furniture and appliances based on layout style and
 717 object-specific constraints. While the styles differ by room type—such as enforcing a work triangle
 718 in kitchens, orienting seating around a focal point in living rooms, or centering beds symmetrically
 719 in bedrooms—the overall placement process followed a unified set of rules:

- 721 • All floor-standing objects must be placed without overlaps, except in semantically grouped
 722 cases (e.g., lamps on tables, chairs under tables).
- 723 • Clearance zones must be preserved around doors, main pathways, and functional elements
 724 such as beds, appliances, and desks.
- 725 • Placement follows a priority order: essential furniture is placed first, followed by optional
 726 and decorative elements only if space allows.
- 727 • Major objects like fridges, ovens, and beds must be anchored to structural walls or room
 728 boundaries.

730 Layouts violating any of these hard constraints, due to overlap, clearance issues, or improper attach-
 731 ment, were automatically discarded.

733 **B.3 LAYOUT SELECTION CRITERIA**

735 Approximately one-third of the initially generated room layouts were filtered out using a set of ge-
 736 ometric and functional constraints. These filters were designed to ensure realistic object placement,
 737 functional usability, and architectural plausibility. While these rules are based on general design
 738 principles, they are not based on any specific design standard. Instead, they are the result of itera-
 739 tive development, focusing specifically on addressing cases where our prompts lead to unlikely or
 740 implausible layouts. After filtering, we retained 600 valid layouts for each room type.

- 741 • **Non-overlapping objects (with exceptions):** Each pair of objects must satisfy axis-
 742 aligned bounding box (AABB) separation constraints, unless they belong to a known ex-
 743 ception category. For two objects A and B with bounding boxes $(x_1^A, y_1^A, x_2^A, y_2^A)$ and
 744 $(x_1^B, y_1^B, x_2^B, y_2^B)$, non-overlapping requires:

$$x_2^A \leq x_1^B \quad \text{or} \quad x_2^B \leq x_1^A \quad \text{or} \quad y_2^A \leq y_1^B \quad \text{or} \quad y_2^B \leq y_1^A$$

748 This constraint is not enforced for the following semantically compatible object pairs: (i) rug with any object placed on top of it; (ii) lamp with nightstand, desk, or table;
 749 (iii) tv with tv_stand; (iv) chair objects with desk or table.

751 These exception pairs are considered contextually collocated or hierarchically related (e.g.,
 752 support/surface relationships) and are therefore allowed to overlap.

- 753 • **Non-blocking door clearance:** Doors have physical thickness and are defined by bounding
 754 boxes $(x_1^d, y_1^d, x_2^d, y_2^d)$. A clearance zone of $door_length$ meters is required in front of the
 755 door to ensure swing space and accessibility. The position of this zone depends on which
 756 wall the door is attached to.

- **No windows on opposite walls:** We did not include layouts with windows on directly opposite walls, as such configurations are uncommon in typical residential designs.
- **Appliances against walls or cutout edges:** Large fixtures like fridges and ovens must be flush against at least one wall or cutout boundary. This is formalized by enforcing:

$$x_1 = 0 \text{ or } x_2 = W \text{ or } y_1 = 0 \text{ or } y_2 = D \text{ or edge of cutout}$$

For rooms with cutouts, an object may align with a cutout boundary, defined as additional wall segments with known coordinates.

These constraints were iteratively selected to address common implausible layouts generated by Gemini 2.5 Pro using our prompts. They are not universal requirements for real layouts, nor a complete set of constraints, but aim to avoid frequent sources of implausibility in generated layouts.

C DETAILS ON HSSD LAYOUTS SELECTION

We curate a subset of HSSD layouts to ensure clean geometry and unambiguous supervision for spatial reasoning tasks. Starting from the raw scenes, we generate a 2D floor-plan projection and apply filtering and normalization steps (e.g., geometry cleanup and category unification).

Object filtering. To reduce visual clutter and retain only objects essential for spatial reasoning, we exclude purely decorative or small accessory categories. The banned labels are: accessory, air conditioner, artwork, blanket, boots, bottle, bowl, box, book, brush, candle, cushion, decor, dog, fan, flower, frame, guitar, herb, hook, jar, light, lightbulb, orchids, pendant, pendulum, pet, some plants, poster, pot, shoes, socket, switch, vase, wreath. We also drop subcomponents that fragment footprints without changing free space (e.g., chair/table legs; bed/armchair frames), remove partial cabinet-door leaves, and consolidate multiple near-duplicate small items by keeping a single representative instance. The resulting scenes preserve the functional layout while simplifying geometry. In Figure 3, the left panel shows the layout immediately after 2D projection; the right panel shows the simplified layout after filtering and normalization.

Projection and cleanup. During 2D projection, we correct mislabeled *windows* and *doors*, snap nearly collinear edges, and resolve self-intersections. To smooth rectilinear artifacts and irregular edges in box-like footprints, we apply *alpha-shape*-based convex hulls, then recompute centroids and areas on the cleaned geometry.

Figure 3: HSSD layout selection: comparison of the original (left) and simplified (right) 2D layouts. The simplified version removes redundant or overlapping objects and cleans geometry to produce well-structured input for spatial reasoning tasks.

D ROOM STATISTICS

Table 5 reports summary statistics for the layouts. Kitchens are typically the smallest spaces, with relatively few objects and overlaps, but a high density due to their compact geometry. Living rooms

810 are the largest, with slightly more objects overall but lower density, reflecting their open layout.
 811 Bedrooms fall in between, with similar object counts to kitchens but more frequent overlaps.
 812

813 The HSSD layouts are comparable in scale to bedrooms and living rooms in terms of area and ob-
 814 ject count, but differ in structure: objects are represented with detailed, non-axis-aligned polygons,
 815 resulting in a significantly higher vertex count. They also exhibit more overlaps than the gener-
 816 ated layouts, reflecting their closer alignment with human-authored floorplans. In other respects,
 817 however, the distributions remain broadly consistent.

818 Table 5: Average layout statistics by room type.
 819

Metric	Kitchen	Bedroom	Living Room	HSSD
Avg. Area (m ²)	12.00	17.76	20.75	17.95
Avg. # of Objects	10.35	10.76	11.69	12.20
Avg. # of Overlaps	0.52	1.82	1.52	4.39
Avg. Object Density	0.95	0.66	0.57	0.83
Avg. Vertices per Layout	41.39	43.03	46.77	152.29

820 To further illustrate these statistics, Figure 4 shows the distribution of object counts across all lay-
 821 outs. The histograms confirm the averages reported in Table 5: kitchens are concentrated at lower
 822 counts, typically around 10 objects; bedrooms and living rooms exhibit broader distributions with
 823 slightly higher counts; and HSSD layouts overlap in range but extend to higher counts in the tail.
 824 Overall, the object distributions remain comparable across sources, with no extreme outliers.
 825

855 Figure 4: Distribution of object counts across kitchens, bedrooms, living rooms, and HSSD layouts.
 856

857 E FULL BREAKDOWN BY ROOM TYPE, QUESTION TYPE, AND MODEL

858 E.1 DETAILED ACCURACY BY FULL DATASET

859 Tables 6 and 7 report the full per-model accuracy matrix for the base and reasoning model groups,
 860 respectively. Each table covers nine question categories across four room types, resulting in a total
 861 of 36 rows. The path task is assessed using two complementary metrics: validity and Fréchet
 862 Distance. Together, these question types span a range of challenges, covering both reasoning-heavy
 863

and functionally grounded tasks. The base group includes eight general-purpose models, while the reasoning group includes seven models with explicit reasoning capabilities. For every model, question type accuracy is computed over a fixed set of 600 synthetic layouts (Kitchens, Living Rooms, Bedrooms) and 200 HSSD layouts, ensuring that results are directly comparable across models.

Table 6: Question-level accuracy on full dataset by room type for **standard models**.

Question	Room	claude sonnet-4	gpt-4.1	Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K	99.8	96.5	95.7	96.8	99.2	90.7	89.5	58.8
	LR	99.5	95.0	94.2	96.8	99.7	88.5	88.8	62.3
	B	99.7	96.3	93.3	96.5	99.5	87.8	85.2	60.0
	HSSD	88.0	56.0	75.5	66.0	67.0	37.0	44.5	56.0
Placement	K	87.8	78.0	82.2	80.3	90.2	86.5	85.5	74.2
	LR	80.5	69.0	73.8	83.2	89.2	75.2	85.7	71.8
	B	68.8	59.8	67.5	70.8	76.7	68.7	77.0	56.3
	HSSD	72.0	64.5	73.0	70.0	82.0	76.5	71.5	54.5
Repositioning	K	73.8	63.8	48.7	45.3	83.5	66.3	73.7	14.8
	LR	79.3	60.3	56.7	64.5	91.3	76.8	72.2	25.0
	B	71.0	55.5	48.3	59.5	79.0	72.5	70.0	21.2
	HSSD	42.0	47.0	28.0	34.0	39.0	40.5	33.0	10.0
Free space	K	97.8	93.2	83.0	84.2	95.0	95.2	83.8	66.2
	LR	0.2	14.2	2.8	1.8	3.5	1.2	0.5	2.7
	B	2.7	31.2	1.0	1.3	8.8	0.8	1.0	0.7
	HSSD	35.0	16.0	24.0	22.0	17.0	15.5	7.5	6.5
Visibility	K	87.7	63.2	54.5	67.0	98.3	90.2	91.5	18.5
	LR	81.7	52.7	43.3	52.2	98.3	86.8	88.7	10.0
	B	74.8	57.5	41.0	54.0	96.7	86.3	86.3	10.8
	HSSD	46.5	20.0	22.5	26.5	70.5	52.0	45.5	9.0
View angle	K	92.0	95.3	69.8	78.8	97.0	95.8	74.7	49.7
	LR	87.7	93.2	59.7	75.3	94.0	93.0	72.2	40.5
	B	88.0	90.2	60.3	72.8	95.0	91.2	76.8	35.8
	HSSD	67.5	55.0	28.5	46.5	50.5	46.0	34.5	30.0
Max box	K	47.2	31.8	32.0	26.8	65.5	27.5	26.5	4.5
	LR	7.8	7.0	5.0	5.7	22.3	4.5	8.8	0.5
	B	5.8	6.8	7.3	5.0	29.2	4.8	7.0	1.7
	HSSD	5.0	7.5	2.5	2.0	11.5	4.5	3.0	1.0
Shortest path (valid)	K	59.2	61.7	52.7	39.7	45.2	55.3	21.8	34.2
	LR	53.0	51.3	42.8	37.3	44.8	47.2	20.3	30.3
	B	48.5	52.2	40.7	34.7	44.2	45.8	18.5	33.5
	HSSD	28.5	25.0	18.5	18.0	26.0	15.0	5.5	10.5
Shortest path (Fréchet)	K	45.3	56.8	51.3	28.2	44.2	39.5	17.8	36.2
	LR	24.7	42.5	27.3	12.3	34.7	26.5	9.2	15.5
	B	23.0	42.2	27.7	14.2	38.0	30.5	8.2	18.3
	HSSD	15.5	22.5	18.0	8.0	20.0	12.5	2.5	11.5

E.2 TOKEN-LIMIT ANALYSIS AND VALID-ONLY ACCURACY

In addition to overall accuracy, we analyze two complementary aspects of model performance.

First, Tables 12 and 14 quantify the fraction of responses that were terminated due to the TOKEN LIMIT stop reason. This failure mode is particularly relevant for reasoning-oriented models, which often generate longer chain-of-thought outputs.

Second, Tables 13 and 15 report accuracy over *completed* answers only, excluding truncated outputs (e.g., token-limit terminations). This metric isolates models' reasoning performance on successfully produced, well-formed responses.

Together, these analyses complement the full accuracy tables by disentangling reasoning failures from generation truncation and formatting issues.

E.3 E.3 AGGREGATED TRUNCATION RATES

Table 8 reports aggregated truncation and error-type statistics for each model, computed by averaging outcomes across all room types and all question categories in the full dataset. A response

918 Table 7: Question-level accuracy on full dataset by room type for **reasoning models**.
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971		
	Question	Room	gpt-5	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K	99.8	99.3	98.0	96.3	100.0	94.2	97.7	
	LR	98.8	99.3	99.0	96.0	99.7	93.5	97.5	
	B	98.3	99.5	96.8	95.5	99.7	93.8	95.3	
	HSSD	69.0	78.5	25.5	12.5	32.5	40.5	18.0	
Placement	K	84.7	92.0	89.0	59.7	90.8	85.7	68.2	
	LR	75.5	89.0	82.2	53.3	86.3	78.5	46.5	
	B	61.2	83.5	72.0	35.8	81.2	62.0	34.5	
	HSSD	70.0	85.0	79.0	16.0	75.5	74.5	28.5	
Repositioning	K	83.0	85.5	79.2	90.5	84.5	70.8	61.5	
	LR	85.5	89.8	86.2	91.2	92.8	87.8	77.0	
	B	77.8	83.3	83.3	85.2	84.3	78.0	69.2	
	HSSD	49.5	60.5	47.5	18.5	53.5	40.0	27.0	
Free Space	K	82.5	99.0	93.0	93.3	99.5	94.8	97.0	
	LR	47.0	83.3	18.3	17.7	78.5	53.2	0.0	
	B	50.5	87.5	34.8	33.3	82.2	74.0	1.2	
	HSSD	19.5	31.0	6.5	1.0	5.0	9.0	1.0	
Visibility	K	94.8	94.2	71.3	26.8	98.0	91.5	78.8	
	LR	95.2	94.0	52.0	11.3	98.0	89.3	70.8	
	B	94.2	92.5	53.5	11.2	95.5	89.2	64.2	
	HSSD	57.0	70.0	10.0	0.5	39.0	45.5	3.0	
View Angle	K	96.2	98.5	73.7	92.5	88.3	93.5	98.5	
	LR	93.3	97.3	68.2	91.5	84.5	92.0	98.3	
	B	95.2	98.2	75.2	93.8	86.8	91.3	98.3	
	HSSD	59.5	74.0	13.5	20.0	25.5	37.5	26.0	
Max Box	K	48.5	62.8	50.5	3.7	85.2	31.3	16.7	
	LR	17.3	28.2	8.0	0.0	60.3	3.8	0.8	
	B	13.0	30.3	11.0	0.0	61.2	5.8	0.5	
	HSSD	5.0	9.5	2.5	0.0	17.0	0.5	0.0	
Shortest path (valid)	K	64.7	64.2	12.3	3.2	52.3	43.0	14.2	
	LR	21.2	66.0	12.5	1.5	53.7	37.7	16.7	
	B	58.2	57.8	7.8	1.0	52.0	30.0	14.3	
	HSSD	28.5	33.5	8.5	0.0	16.5	13.5	1.0	
Shortest path (Fréchet)	K	56.3	55.5	11.5	3.2	50.5	42.2	14.0	
	LR	12.3	40.5	9.3	1.3	47.5	28.5	16.3	
	B	39.3	44.8	6.0	0.8	47.7	24.2	14.3	
	HSSD	22.5	26.5	2.5	0.0	12.0	14.0	1.0	

is counted as **truncated** when it terminates with the TOKEN LIMIT stop reason. We additionally report the fraction of **invalid-format** responses that could not be parsed into a valid answer under our evaluation protocol.

For completeness, Table 8 also includes the proportions of **wrong** and **correct** responses, as well as an **alternative accuracy** (% alt), computed by extracting the last numeric value or the final list from each model’s output. This alternative metric serves purely as a robustness check on the parsing and evaluation pipeline.

E.4 RADAR SUMMARIES

For readability, we also provide radar visualizations that summarize accuracy and variance across models and question types, complementing the main tables.

General models. Figure 5 shows mean accuracy (top left) and variability (top right) across general models, as well as accuracy (bottom left) and variability (bottom right) by question type. Kitchens are consistently easier, while HSSD is the most challenging. Among models, Devstral Small performs noticeably worse, whereas Qwen3-30B achieves a level comparable to that of larger models. Across question types, Pair Distance and View Angle from the Metric category yield the highest accuracy, while more complex tasks such as Max Box and Shortest Path show lower scores and higher variance across rooms.

Reasoning models. Figure 6 presents analogous plots for reasoning models. GPT-family models show stronger results overall. In contrast, DeepSeek-R1 and Gemini Flash 2.5 struggle with token limits, as these models tend to produce very long outputs according to Table 14. By question type,

972
 973 Table 8: Error-type distribution and accuracy on the full dataset. Values are aggregated for each
 974 model by averaging across all room types and all questions. **Truncation** (% trunc.) quantifies the
 975 fraction of responses that were terminated due to the TOKEN LIMIT stop reason. **Invalid-format**
 976 (% invalid) denotes responses that could not be parsed into a valid answer. **Alternative accuracy**
 977 (% alt) reports accuracy computed using the last numeric value or the last list in the model’s output.

Model	% trunc.	% invalid	% wrong	% correct	% alt
gpt-5	3.86	0.27	30.42	65.45	65.45
gpt-oss-120b	2.05	1.05	21.41	75.49	75.53
DeepSeek-R1	31.31	0.78	17.26	50.65	50.65
gpt-5-mini	15.50	1.34	12.54	70.62	70.62
Gemini Flash 2.5	50.58	0.13	10.14	39.15	39.15
gpt-oss-20b	16.94	1.18	21.70	60.18	60.31
Qwen3-30B Think	38.95	0.09	16.52	44.44	44.44
claudie-sonnet-4	0.05	0.07	41.09	58.80	58.80
gpt-4.1	0.14	0.09	41.52	58.25	58.25
Kimi-K2	0.15	0.03	52.04	47.78	47.78
Qwen Coder-480B	0.02	0.09	49.40	50.48	50.48
Qwen-235B	13.64	0.13	20.31	65.92	65.98
gpt-4.1-mini	0.67	0.10	42.18	57.05	57.05
Qwen-30B Instr	6.85	3.09	38.47	51.59	51.84
Devstral Small	2.75	1.56	65.64	30.05	30.07

993
 994 Repositioning and Placement are handled reliably, whereas Max Box and Shortest
 995 Path remain the most difficult as well, with high variance across rooms.

1021
 1022 Figure 5: Radar plots for **general models**, showing mean and standard deviation of accuracy across
 1023 (top) models and (bottom) question type.

Figure 6: Radar plots for **reasoning models**, showing mean and standard deviation of accuracy across (top) models and (bottom) question type.

F TOOLS AND VLM EXPERIMENTS

To complement the text-only benchmark, we additionally evaluate (i) tool-augmented reasoning using an integrated Python interpreter and (ii) vision-language models (VLMs) using rendered floorplan images. These studies measure the potential benefit of external computation and visual input while keeping the task definitions and scoring identical to the main benchmark.

Tool-augmented setting. We enable the Code Interpreter tool for GPT-4.1 and GPT-4.1-mini, allowing the model to invoke a Python sandbox during inference. The model is instructed to use Python whenever numeric computation is needed (e.g., distances, angles, polygon centroids or areas), and to output a final numeric answer in the same format as the raw setting. While the interpreter improves numeric precision, models can still fail on complex tasks either due to incorrect spatial reasoning or because the generated code is incomplete or erroneous. Results are reported in Table 9.

VLM setting and renderings. We also evaluate VLM inputs by providing a top-down rendered floorplan image alongside the text question. We use two controlled rendering styles derived from the same symbolic layout: (i) a minimal contour-based rendering, where room and object polygons are shown as boxes with text labels (similar to Fig. 3, right), and (ii) an icon-based rendering, where objects are depicted with furniture icons instead of bare contours (similar to Fig. 1). Because HSSD contains a wider variety of object categories than our current icon library, icon-based renderings are used only for synthetic layouts, while HSSD layouts use the contour style. VLM results under these input conditions are summarized in Table 9.

Table 9 shows that Code Interpreter substantially improves metric-dominated scalar tasks (distance, angle, visibility, placement), but offers limited benefit on planning-heavy tasks (Max Box, Shortest Path), indicating that remaining errors are primarily spatial rather than arithmetic. VLM inputs provide selective gains, mainly on generated layouts and for object-fit or metric cues, while not consistently improving global performance.

1080
 1081 Table 9: Task accuracy for `gpt-4.1-2025-04-14` and `gpt-4.1-mini-2025-04-14` under
 1082 three settings: raw text-only input (Raw), tool-augmented reasoning with a Python interpreter
 1083 (Tools), and vision-language input using rendered floorplans (Img; Icons). **HSSD** columns report
 1084 performance on 200 human-designed scenes. **Generated** columns report performance on 200 syn-
 1085 synthetic scenes (50 kitchens, 75 living rooms, and 75 bedrooms). Cell colors indicate gains (green) or
 1086 drops (red) relative to the corresponding Raw setting for the same model and task.

Question	HSSD						Generated							
	gpt-4.1			gpt-4.1-mini			gpt-4.1			gpt-4.1-mini				
	Raw	Tools	Img	Raw	Tools	Img	Raw	Tools	Img	Icons	Raw	Tools	Img	
Pair distance	56	99	60.5	37	98	51.5	95.5	99.5	99	99.5	86.5	98.5	94.5	99.5
Placement	64.5	95	70.5	76.5	87.5	78.5	65	92.5	61.5	71.5	76	95.5	70.5	81
Repositioning	47	83.5	44.5	40.5	68	37	56.5	48	42	39	70	59.5	45	50.5
Free space	16	44	21.5	15.5	42	26	41	28.5	55	45	24.5	27.5	26	22.5
Visibility	46.5	86.5	36.5	52	70	37	80	89	61.5	56.5	88	71.5	72.5	68
View angle	55	96	63.5	46	93	54	92	99	93.5	95.5	91.5	97	92.5	92.5
Max box	7.5	3	4	4.5	3.5	4	12	11.5	12	10.5	11	8	7.5	9.5
Shortest path (valid)	25	12.5	22.5	15	14	16.5	51	34	46	52	46.5	24.5	44	45
Shortest path (Fréchet)	22.5	12.5	23.5	12.5	9.5	13.5	40.5	31	44	45	24.5	21	33	27

1100
 1101 (a) Max Box tool failure. The model-written code
 1102 returns a suboptimal rotated rectangle (red, 5.57 m^2)
 1103 despite a larger valid axis-aligned rectangle existing (green, 7.57 m^2).
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113

1114 (b) Repositioning tool failure. The true maximum
 1115 downward move is 1.96 m, but the model’s code outputs 0 by treating boundary contact as
 1116 collision.
 1117
 1118
 1119
 1120

1121 Figure 7: Representative failure cases in the tool-augmented setting. While the python interpreter
 1122 improves numeric precision, complex tasks can still fail due to imperfect model-written code and
 1123 geometric edge cases.

1124 As illustrative failure cases, we also observe that tool augmentation does not guarantee correctness
 1125 for tasks that require precise geometric reasoning. In Max Box (Fig. 7a), the model-generated
 1126 Python program performs an approximate rotated/grid search and returns a suboptimal rectangle
 1127 (red, 5.57 m^2), despite a larger valid axis-aligned solution existing (green, 7.57 m^2). In a second
 1128 example from Repositioning (Fig. 7b), the ground-truth maximum downward displacement
 1129 of the dishwasher is 1.96 m, but the model’s tool-based code predicts zero movement. Inspection
 1130 shows that the program treats a shared boundary (the dishwasher touching another object or wall)
 1131 as a collision, and therefore incorrectly concludes that no valid motion is possible for this concrete
 1132 task. These cases highlight that tools reduce arithmetic imprecision, but complex tasks may still fail
 1133 due to imperfect model-written algorithms and sensitivity to geometric edge cases (e.g., boundary
 1134 contact vs. overlap).

1134 **G SENSITIVITY STUDIES FOR NUMERIC TOLERANCES, PATH THRESHOLDS**
 1135 **AND ADDITIONAL ABLATIONS**

1137 **G.1 SENSITIVITY STUDIES FOR NUMERIC TOLERANCES.**

1139 We examine the robustness of our numeric evaluation tolerances for both scalar and area-based
 1140 question types. For clarity and cost control, we conduct these sensitivity analyses on a representative
 1141 subset of six models (three reasoning-focused and three general-purpose).

1142 For scalar metrics (e.g., Pair distance, View angle, Repositioning, and Max Box), Figure 8 shows that
 1143 relative errors are sharply concentrated near zero across models, with a clear knee before $\varepsilon_{\text{rel}} = 2\%$
 1144 (red dashed line). The accompanying tolerance sweep in Figure 10 (left) demonstrates smooth,
 1145 monotone accuracy gains while changing tolerance from 0.5% to 5% without changing model rank-
 1146 ings, indicating that the selection of 2% lies in a stable regime rather than being outcome-sensitive.

1161 Figure 8: Aggregated relative-error distributions for scalar metrics across models. Left: CDF of
 1162 relative error; the dashed line marks $\varepsilon_{\text{rel}} = 2\%$. Right: Histogram showing a strong peak near zero
 1163 and a thin long tail.

1164 For free-space (area) questions, Figure 9 shows a broader, heavier-tailed error distribution; never-
 1165 theless, 5% tolerance lies near saturation for higher-performing models while remaining strict for
 1166 weaker ones. The sweep in Figure 10 (right) confirms that relaxing area tolerance from 1% to 10%
 1167 yields gradual improvements and preserves qualitative conclusions.

1183 Figure 9: Aggregated relative-error distributions for free-space (area) questions across models. Left:
 1184 CDF of relative error; the dashed line marks $\varepsilon_{\text{rel}} = 5\%$. Right: Histogram showing broader, heavier-
 1185 tailed errors compared to scalar tasks.

1186 Overall, these results justify our use of a 2% tolerance for scalar outputs and a 5% tolerance for
 1187 complex area computations.

Figure 10: Tolerance sweeps for scalar (left) and free-space area (right) tasks. Aggregated accuracy increases smoothly as tolerance is relaxed (0.5–5% for scalars; 1–10% for areas), while model rankings remain unchanged.

G.2 SENSITIVITY STUDIES FOR PATH THRESHOLDS

We analyze robustness of shortest-path scoring with respect to the Fréchet threshold τ . Figure 11 shows that accuracy increases smoothly as τ is relaxed, and model rankings remain almost stable across the sweep. We therefore choose $\tau = 0.6$ m as deviations within roughly 0.6 m correspond to paths that remain traversable for a person and allow minor alternate routes without accepting qualitatively different solutions.

In addition, path validity requires collision-free traversal under a clearance buffer of 0.15 m. This value represents a minimal safety margin; larger buffers (e.g., 0.3 m) would incorrectly invalidate many feasible paths in compact rooms, particularly around ~ 0.6 m-scale kitchen utilities, and would over-penalize narrow but realistic layouts.

Figure 11: Shortest-path accuracy as a function of Fréchet tolerance τ . Accuracy rises smoothly with increasing tolerance, while model ordering changes slightly. We use $\tau = 0.6$ m as a moderate, human-scale tolerance.

G.3 PROMPT SENSITIVITY ABLATION

To assess model robustness to prompt variation, we conducted an ablation in which each question was regenerated using the same template but with alternate object references. For example, a question originally referring to a "sofa" might instead use a "bookshelf" in the regenerated version. This allowed us to evaluate whether model performance remains stable under changes in object content while preserving linguistic structure.

As shown in Table 11, accuracy under prompt regeneration is broadly stable; larger models change little, and smaller ones fluctuate modestly. We observe somewhat higher sensitivity for Repositioning: paraphrases can implicitly select different target objects or motion directions, occasionally introducing additional complexity or non-movable cases. Overall, the evaluation appears robust to prompt-level variations.

Table 10: Accuracy under prompt variation. Each cell displays performance on the original prompt, followed by a regenerated version with alternative object references.

Model	Repositioning	View Angle	Visibility
GPT-OSS-120B	60.5 → 59.0	74.0 → 80.0	70.0 → 77.0
GPT-OSS-20B	40.0 → 50.0	37.5 → 35.5	45.5 → 50.0
Qwen3-235B-A22B	39.0 → 49.0	50.5 → 48.0	70.5 → 74.0

G.4 SEMANTIC ABLATION

To evaluate the model’s reliance on semantic object labels rather than purely geometric reasoning, we conduct a *semantic ablation* experiment. In this setting, object identifiers in the scene are permuted (e.g., swapping `bed` and `chair` labels) while keeping all geometry unchanged. The regenerated prompts thus refer to the same physical configuration but with altered object semantics, for instance, a question originally phrased as “move the `chair` left” becomes “move the `bed` left,” even though the underlying geometry is identical.

As summarized in Table 11, tasks that rely primarily on pure metric computation or topological cues, such as `View Angle` and `Visibility`, show minimal changes in accuracy, with only small fluctuations due to prompt phrasing. However, performance on the action-based `Repositioning` task drops sharply under semantic perturbation, indicating that the model partially grounds its reasoning in object semantics rather than spatial configuration alone. This suggests that large language models may entangle linguistic priors with geometric inference when tasks involve physical movement or interaction.

Table 11: Accuracy under prompt variation. Each cell displays performance on the original prompt, followed by a regenerated version with alternative object references.

Model	Repositioning	View Angle	Visibility
GPT-OSS-120B	60.5 → 40.0	74.0 → 73.0	70.0 → 77.0
GPT-OSS-20B	40.0 → 28.0	37.5 → 35.5	45.5 → 44.5
Qwen3-235B-A22B	39.0 → 37.0	50.5 → 43.0	70.5 → 74.0

H CASE STUDIES BY QUESTION TYPE

To better understand the sources of model failure, we conducted a qualitative analysis of representative examples from the benchmark. This section presents visualizations of selected test layouts alongside model responses. By examining both correct and incorrect outputs, we aim to identify common failure patterns and reasoning bottlenecks across different architectures.

H.1 PAIR DISTANCE

Task Definition

In this task, the model is asked: “*Calculate the euclidean distance between the centroids of the `obj_1` and the `obj_2`.*” In the visualization in Figure 12, these two polygons correspond to the sink and the shower; the goal is to compute their centroid-to-centroid distance.

Ground-Truth Computation

To establish the correct answer, we first compute the centroid (x, y) of each polygon. This is done using the *shoelace formula*, which calculates the centroid based on the polygon’s vertices. Once

Figure 12: Pair Distance (bathroom): the red line indicates the centroid-to-centroid segment.

Figure 13: Repositioning (bedroom): red fill indicates the initial pose of bin_2 and green fill indicates the final pose.

both centroids are obtained, the *Euclidean distance* between them is computed. A predicted answer is considered correct if it falls within a tolerance of 2% of the ground-truth distance.

Main Issue

Models often fail on the HSSD dataset because they compute the centroid incorrectly. In earlier experiments, some models used the center of mass instead of the centroid; therefore, the word *centroid* is now explicitly stated in the prompt. Almost all wrong answers come from calculation mistakes in the centroid formula (areas, sums, divisions), not from the distance step. This error does not depend on polygon complexity (number of vertices).

H.2 REPOSITIONING

Task Definition

We pose the question: “*Calculate how far the object can be moved in the direction before it touches another object or the wall.*” In the visualization in Figure 13, the object of interest is bin_2 and the direction is leftward; the goal is to compute its maximum leftward translation before contacting a bathtub.

Ground-Truth Computation

Simulate a leftward, axis-aligned slide of bin_2. Advance until the next step would overlap a wall or another object; take the last non-overlapping pose. Measure the travel distance from the initial position to that pose. Accept model answers within 2% tolerance.

Main Issue

Narrow gaps and obstacles with arbitrary orientations make clearance difficult to estimate. Models often fall back to axis-aligned bounding boxes (discarding shape orientation) or omit the obstacle-union step, which leads to systematic over- or underestimation of feasible travel distances in any direction (left, right, up, or down).

H.3 FREE SPACE

Task Definition

We consider the following question: “*Calculate the total non-occupied floor area in the room?*” In the visualization in Figure 14, the mint-highlighted area represents the space that remains free of objects within the game room; the goal is to compute its total area.

Ground-Truth Computation

We compute the free floor area using geometric operations provided by Shapely (Gillies et al., 2007). All object polygons within the room are merged using unary_union to correctly handle overlaps. The occupied area is then obtained from this union, and the free area is computed as

$$A_{\text{free}} = A_{\text{room}} - A_{\text{union(objects)}}.$$

A model prediction is considered correct if it falls within 5% of the ground-truth free area.

Figure 14: Unoccupied Floor Area (game room): the mint fill indicates the unoccupied (free-space) region within the game room.

Figure 15: View Angle (kitchen): smallest absolute angle between the vector from the centroid of the `chair_2` to the centroid of the `window_1` and global north $(0, 1)$.

Main Issue

Accurate free-space estimation hinges on correctly handling overlapping obstacles. A common failure mode is to subtract each object's area independently, rather than forming their geometric union, which double-counts overlaps and systematically underestimates available area. For instance, when we evaluate on HSSD layouts using *GPT-OSS-120B*, cumulative accuracy declines as object count and overlap increase (see Figure 16), consistent with this union-omission error.

Figure 16: Cumulative accuracy versus layout complexity for HSSD using GPT-OSS-120B on the Free-Space task. Accuracy declines sharply as object count and overlap increase, reflecting the model's difficulty in handling overlapping geometries.

H.4 VIEW ANGLE

Task Definition

The prompt is: “Compute the smallest absolute angle between the vector from the centroid of obj_1 to the centroid of obj_2 and the global north vector $(0, 1)$; report θ in degrees.” In the visualization in Figure 15 (kitchen), obj_1 is the `chair_2` and obj_2 is the `window_1`; the goal is to return θ , judged correct within a 2% tolerance.

1404 **Ground-Truth Computation**
 1405 (1) Compute centroids \mathbf{c}_s (for sofa) and \mathbf{c}_v (for TV) using the polygon shoelace formula.
 1406 (2) Form the displacement vector $\mathbf{d} = \mathbf{c}_v - \mathbf{c}_s$ and its unit vector $\hat{\mathbf{d}} = \frac{\mathbf{d}}{\|\mathbf{d}\|}$.
 1407 (3) Let the global north vector be $\mathbf{n} = (0, 1)$ (already unit length). Compute the cosine via $\cos \theta = \text{clip}(\hat{\mathbf{d}} \cdot \mathbf{n}, -1, 1)$.
 1408 (4) Convert to degrees and take the smallest absolute angle: $\theta = \arccos(\cos \theta) \cdot \frac{180}{\pi} \in [0^\circ, 180^\circ]$.
 1409 A prediction is correct if it is within 2% of the ground-truth angle θ .

1410
 1411
 1412
 1413 **Main Issue**
 1414 On HSSD layouts, most errors come from centroid *calculation* mistakes (areas/sums/divisions in the
 1415 shoelace step), not from the dot product. To avoid ambiguity, the prompt explicitly says *centroid*. On
 1416 synthetic layouts (4-point, axis-aligned boxes), centroids are trivial, and this issue does not appear.
 1417
 1418

1419 **H.5 PLACEMENT**
 1420

1421 **Task Definition**
 1422 We consider the following question: “*Check if a given object can be placed in the room*
 1423 *without overlapping walls or other objects?*” In the visualization in Figure 17, the object is a
 1424 2.5 m \times 1.0 m antique storage chest and the room is the living room; the goal is to determine whether
 1425 a collision-free placement is possible. This task evaluates collision detection, spatial constraints, and
 1426 free-space reasoning.
 1427

1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440 Figure 17: Placement (living room): determine whether an *antique storage chest* can be placed without overlapping walls or existing objects (collision-free feasibility).

Figure 18: Shortest Path (living room): ground-truth shortest walkable path with 15 cm clearance is shown in purple; the model’s predicted path in red intersects armchair_1, illustrating a failure case for GPT-OSS-120B due to incorrect obstacle/clearance handling.

1441 **Ground-Truth Computation**
 1442 Form the room polygon and the union of all existing object polygons. Allow arbitrary rotation
 1443 (non-axis-aligned) for the 2 \times 1.5 m rectangle. Search over poses: for each orientation θ , test
 1444 placements where the rotated rectangle is strictly inside the room polygon and has no intersection
 1445 with the object union (i.e., *contains* check for the room and *disjoint* check for obstacles). If any
 1446 collision-free pose exists, return True; otherwise False. Compare the model’s Boolean prediction
 1447 to this result.

1448 **Main Issue**
 1449 The task is harder when non-axis-aligned placements are allowed. Models often mis-handle overlap
 1450 checks under rotation and falsely report feasibility/infeasibility due to incorrect intersection computa-
 1451 tions.
 1452
 1453

1458 H.6 SHORTEST PATH

1459

1460 **Task Definition**1461 The question asks: “Determine the shortest valid path that maintains a clearance of d cm from all
1462 other objects, starting from centroid of the obj_1 and ending at the centroid of the obj_2 .” In
1463 Figure 18 (living room), obj_1 is the TV, obj_2 is armchair₂, and $d = 15$ cm; the goal is to
1464 compute the minimum-length collision-free path (and its length). The figure shows a failure case for
1465 GPT-OSS-120B, where the predicted path violates the clearance by intersecting the armchair₁.1466 **Ground-Truth Computation**1467 Offset obstacles (equivalently, erode free space) by 0.15 m to enforce clearance. Run A* on the
1468 navigable grid to obtain the shortest collision-free path polyline between TV and armchair₂. A
1469 model path is valid if it is collision-free under the same clearance; it is judged correct if its Fréchet
1470 distance to the ground-truth path is ≤ 0.6 m.1471 **Main Issue**1472 More objects and overlaps make clearance buffering, merge obstacles, and narrow corridors, increasing
1473 failure modes. Models often mishandle overlaps, producing paths that cut through obstacles or
1474 declaring no path when one exists.

1475

1476 H.7 VISIBILITY

1477

1478 **Task Definition**1479 The prompt is: “Find all objects that intersect the vector from the centroid of the obj_1 to the cen-
1480 trid of the obj_2 .” In the visualization in Figure 19 (office), obj_1 is the window and obj_2 is the bin;
1481 the goal is to return the set of objects that intersect this segment (excluding the endpoints).

1482

1500 Figure 19: Visibility (office): the table
1501 and armchair (highlighted in orange) intersect
1502 the line segment from the centroid of the window
1503 to the centroid of the bin and constitute
1504 the correct answer.

1505

1506 **Ground-Truth Computation**1507 Compute the centroids of window and bin; form the line segment between these centroids. Return
1508 the set of objects whose bounding boxes intersect this segment, excluding endpoint touches (i.e.,
1509 ignore cases where the segment only touches at its endpoints).

1510

1511 **Main Issue**1512 On HSSD layouts, accuracy is slightly worse due to the larger number of objects and overlaps; the
1513 increased number of polygons along the line increases intersection ambiguity and error rates.1500 Figure 20: Max Box (bedroom): the red rectangle
1501 shows the largest rectangular region that can be
1502 placed without overlaps, excluding soft coverings
1503 such as rugs.

1512 H.8 MAX BOX

1513

1514 **Task Definition**1515 We consider the following question: “*Calculate the area in square meters of the largest rectangle*
1516 *that can fit inside the room*”. In the visualization in Figure 20 (bedroom), the goal is to compute the
1517 maximum-area non-axis-aligned rectangle that fits without overlapping any obstacles, and to report
1518 its area.1519 **Ground-Truth Computation**1520 Let R be the room polygon and O the union of all object polygons except rugs (soft coverings).
1521 Compute free space $F = R \setminus O$. Search over orientations $\theta \in [0, \pi]$: rotate F by $-\theta$, find the largest
1522 *axis-aligned* empty rectangle inside the rotated F , record (w_θ, h_θ) and area $A_\theta = w_\theta h_\theta$, then map
1523 back to get (w^*, h^*, θ^*) with $A^* = \max_\theta A_\theta$.1524 **Main Issue**1525 Harder than simple placement: the model must *optimize* size and orientation, not just answer yes/no.
1526 Allowing rotation makes the search non-convex; more objects and overlaps increase combinatorial
1527 complexity. Models often (i) ignore rotation and return an axis-aligned box, or (ii) mis-handle
1528 overlaps in free space, leading to under- or over-estimated maxima.

1529

1530 **I PROMPTS**

1531

1532 This section illustrates the design of prompt templates used in our benchmark. We first show a
1533 representative example of a question prompt, demonstrating how natural language templates are
1534 instantiated to elicit spatial reasoning skills (Figure 21).

1535

1536 Next, we present two examples of layout-generation prompts for bedrooms. The first specifies
1537 the creation of base room boundaries and openings (walls and windows) (Figure 22). The second
1538 demonstrates how furniture and objects are placed within the generated layout to yield a complete
1539 scene (Figure 23).

1540

1541 For completeness, full prompt templates, formatting rules, and implementation details are provided
1542 in the supplementary code to support reproducibility.

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580

Prompt: Free Space

1581
 1582
 1583 Given the `{room_type}` layout in `{format}`, calculate the total non-occupied (free) floor
 1584 area in square meters (m^2).

1585
 1586 Room layout: `{room}`

1587 Begin with printing a concise checklist (3–7 bullets) of the conceptual steps necessary for
 1588 calculating the free space. Then, carefully walk through each reasoning step required to
 1589 calculate the area.

1590 If the format, object names, or required input data are missing, invalid, or inconsistent, reply
 1591 with: *Final answer*: ERROR

1592
 1593 Limit your output to the step-by-step reasoning only, and do not include any internal reason-
 1594 ing unless explicitly requested. Clearly state the final answer on the last line using the exact
 1595 format specified below.

1596 ### Output Format
 1597 <step-by-step calculations>
 1598 *Final answer*: <area>

1599
 1600 Where <area> is a float rounded to three decimal places, representing the free area in m^2 .
 1601 For example: *Final answer*: 12.347

1602
 1603 Figure 21: Prompt for computing the largest empty rectangle area within a room layout using Chain-
 1604 of-Thought reasoning.

1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

```

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632 Prompt: Generate Bedroom Layouts
1633
1634 Generate a dataset of  $\{N\}$  bedroom layouts in JSON format. Each layout must include:
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

    • A unique layout_id
    • A room dictionary with:
        - width, depth, units (meters)
        - shape ("rectangular", "L-shaped", or "open")
        - shape_description, intended_use, and bed_size_suggestion
    • An objects list with dictionaries containing:
        - label, bbox  $[y0, x0, y1, x1]$ , and a descriptive comment

Layouts must obey structural and spatial constraints:
    • 50% rectangular, 30% L-shaped, 20% open.
    • L-shape cutouts in corners; each remaining segment  $\geq 1.5$  m.
    • All layouts must include a door (except open types); avoid placing doors and windows on the same short wall.
    • Windows must span  $>15\%$  of usable floor area, with equal sizing on shared walls and valid grouping logic.
    • Optional elements: fireplace (for master bedrooms), closet alcove.
    • No overlap or out-of-bound placement. Fireplace must not overlap with doors/windows.
    • Follow a consistent coordinate system: top-left origin,  $x=width$  (left to right),  $y=depth$  (top to bottom).

Return a JSON list of  $\{N\}$  valid layouts. No comments or trailing metadata.

```

Figure 22: Summarized data generation prompt for producing structured and constrained bedroom layouts.

1674
1675
1676
1677
1678
1679
1680
1681
1682

Prompt: Fill Bedroom Layout with Objects

1683
1684
1685
1686
1687

Given a predefined bedroom layout style and room geometry in JSON format, generate a filled 2D bird-view layout. Include a list of placed objects with their bounding boxes and explanatory comments.

Essential fields:

1688
1689
1690
1691
1692
1693
1694
1695

- Each object must have a "label", "bbox" ([y0, x0, y1, x1]), and a descriptive "comment".
- Furniture labels include: "bed", "nightstand", "dresser", "wardrobe", "desk", "chair", "armchair", "rug", "lamp", etc.
- Architectural elements ("door", "window", "cutout_area", "fireplace", "closet_alcove") must match the input layout and remain unmodified.

Placement priorities:

1696
1697
1698
1699
1700
1701
1702
1703
1704

1. Place the "bed" according to the bed_size_suggestion and layout style.
2. Add essential storage: "dresser", "wardrobe", or use "closet_alcove" if defined.
3. Add secondary items (e.g., "nightstand", "desk", "chair") only if space and clearance allow.
4. Add decorative or optional items ("rug", "mirror", "floor_lamp", "plant") last.

Constraints:

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

- Maintain at least 0.75 m clearance for walkways and door swing.
- Beds require 0.6–0.75 m of access space on sides and foot (unless against wall).
- Wardrobes/dressers need 0.6–0.8 m clearance for drawer/door use.
- No object overlap (except table lamps on nightstands or rugs under furniture).
- Use walls efficiently; avoid blocking windows unless unavoidable.
- Ensure mirror has 0.75 m clearance in front; treat "rug" as an anchor but optional.

Final output: a JSON list of objects, including placement and comments. No layout geometry should be altered.

1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

J SUPPLEMENTARY ACCURACY ANALYSES

Table 12: % token-limit stop reason for **general models**.

Question	Room	claude sonnet-4	gpt-4.1	Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
	LR	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.2
	B	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.8
	HSSD	0.0	0.5	0.0	0.0	17.5	8.5	3.5	1.5
Placement	K	0.0	0.0	0.0	0.0	6.5	0.0	1.2	1.2
	LR	0.0	0.0	0.0	0.0	6.0	0.0	1.0	1.5
	B	0.0	0.0	0.0	0.0	17.2	0.0	2.2	0.5
	HSSD	0.0	0.0	0.5	0.0	6.5	0.0	1.5	4.5
Reposi- tioning	K	0.0	0.2	0.0	0.0	5.7	0.0	2.3	0.2
	LR	0.0	0.2	0.0	0.0	1.7	0.0	1.0	1.0
	B	0.0	0.0	0.0	0.0	7.5	0.2	0.8	1.3
	HSSD	0.0	0.0	0.0	0.0	47.0	2.0	29.0	4.5
Free space	K	0.0	0.0	0.2	0.0	0.2	0.0	0.3	2.5
	LR	0.0	0.3	0.0	0.0	4.0	0.0	1.0	10.2
	B	0.0	0.0	0.0	0.0	4.5	0.0	0.3	6.3
	HSSD	0.0	2.0	0.0	0.0	52.5	1.0	39.0	28.5
Visibility	K	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.3
	LR	0.2	0.0	0.0	0.0	0.2	0.2	0.5	0.3
	B	1.0	0.0	0.0	0.0	0.2	0.3	1.3	0.7
	HSSD	0.0	0.0	0.0	0.0	11.5	2.5	11.0	0.0
View angle	K	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.3
	LR	0.0	0.0	0.2	0.2	1.5	0.0	0.2	0.7
	B	0.0	0.0	0.0	0.3	0.5	0.0	0.5	1.2
	HSSD	0.0	0.5	0.0	0.0	26.5	3.0	17.5	2.5
Max box	K	0.0	0.0	0.0	0.0	22.5	0.0	6.2	1.5
	LR	0.0	0.0	0.7	0.0	49.8	0.0	29.3	0.8
	B	0.0	0.0	1.5	0.0	46.5	0.3	21.8	0.8
	HSSD	0.0	0.0	0.5	0.0	45.5	0.5	20.0	3.0
Shortest path	K	0.0	0.2	0.5	0.0	44.3	0.0	41.5	6.7
	LR	0.0	0.0	0.0	0.0	37.8	0.2	46.3	7.8
	B	0.2	0.0	0.0	0.0	40.2	0.0	49.0	9.2
	HSSD	0.0	0.0	0.0	0.0	35.5	0.0	43.0	27.0

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793

1794 Table 13: Question-level accuracy on completed answers for **general models**.
 1795

1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	Question	Room	claudie sonnet-4	gpt-4.1	Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K	99.8	96.5	95.7	96.8	99.2	90.7	89.5	58.9																																								
	LR	99.5	95.2	94.2	96.8	99.7	88.5	88.8	62.4																																								
	B	99.7	96.3	93.5	96.5	99.5	88.0	85.2	60.5																																								
	HSSD	88.0	56.3	75.5	66.0	81.2	40.4	46.1	56.9																																								
Placement	K	87.8	78.0	82.2	80.3	96.4	86.5	86.5	75.0																																								
	LR	80.5	69.0	73.8	83.2	94.9	75.2	86.5	72.9																																								
	B	68.8	59.8	67.5	70.8	92.6	68.7	78.7	56.6																																								
	HSSD	72.0	64.5	73.4	70.0	87.7	76.5	72.6	57.1																																								
Repositioning	K	73.8	63.9	48.7	45.3	88.5	66.3	75.4	14.9																																								
	LR	79.3	60.4	56.7	64.5	92.9	76.8	72.9	25.3																																								
	B	71.0	55.5	48.3	59.5	85.4	72.6	70.6	21.5																																								
	HSSD	42.0	47.0	28.0	34.0	73.6	41.3	46.5	10.5																																								
Free space	K	97.8	93.2	83.1	84.2	95.2	95.2	84.1	67.9																																								
	LR	0.2	14.2	2.8	1.8	3.7	1.2	0.5	3.0																																								
	B	2.7	31.2	1.0	1.3	9.3	0.8	1.0	0.7																																								
	HSSD	35.0	16.3	24.0	22.0	35.8	15.7	12.3	9.1																																								
Visibility	K	63.3	87.7	54.5	67.0	98.3	90.2	91.6	18.6																																								
	LR	52.8	81.7	43.3	52.2	98.5	87.0	89.1	10.0																																								
	B	58.1	74.8	41.0	54.0	96.8	86.6	87.5	10.9																																								
	HSSD	20.0	46.5	22.5	26.5	79.7	53.3	51.1	9.0																																								
View angle	K	92.0	95.3	69.8	78.8	97.5	95.8	74.7	49.8																																								
	LR	87.7	93.2	59.8	75.3	95.4	93.0	72.3	40.8																																								
	B	88.0	90.2	60.3	72.8	95.5	91.2	77.2	36.3																																								
	HSSD	67.5	55.3	28.5	46.5	68.7	47.4	41.8	30.8																																								
Max box	K	47.2	31.8	32.2	26.9	84.5	27.5	28.2	4.6																																								
	LR	7.8	7.0	5.1	5.7	44.5	4.5	12.5	0.5																																								
	B	5.8	6.8	7.4	5.0	54.5	4.9	9.0	1.7																																								
	HSSD	5.0	7.5	2.5	2.0	21.1	4.5	3.8	1.0																																								
Shortest path (valid)	K	59.2	61.7	52.7	39.7	81.1	55.3	37.3	36.6																																								
	LR	53.0	51.3	42.8	37.3	72.1	47.3	37.9	32.9																																								
	B	48.6	52.2	40.7	34.7	73.8	45.8	36.3	36.9																																								
	HSSD	28.5	25.0	18.5	18.0	40.3	15.0	9.7	14.4																																								
Shortest path (Fréchet)	K	45.3	56.8	51.3	28.2	79.3	39.5	30.5	38.8																																								
	LR	24.7	42.5	27.3	12.3	55.8	26.5	17.1	16.8																																								
	B	23.0	42.2	27.7	14.2	63.5	30.5	16.0	20.2																																								
	HSSD	15.5	22.5	18.0	8.0	31.0	12.5	4.4	15.8																																								

Table 14: % token-limit stop reason for **reasoning models**.

Question	Room	gpt-5	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K	0.0	0.0	1.5	3.3	0.0	0.7	2.0
	LR	0.0	0.0	0.8	4.0	0.2	0.7	2.3
	B	0.0	0.0	2.5	4.3	0.2	0.7	4.7
	HSSD	0.0	11.0	70.0	86.5	67.0	39.5	72.0
Placement	K	13.2	0.0	5.2	39.2	6.5	4.5	29.5
	LR	22.7	0.2	7.2	45.8	10.3	12.3	52.5
	B	36.2	0.2	8.2	63.3	12.8	25.7	64.5
	HSSD	27.0	0.0	6.0	84.0	16.5	15.0	70.5
Repositioning	K	0.3	0.0	8.3	1.0	0.0	0.8	7.2
	LR	0.0	0.0	7.5	2.2	0.0	0.5	6.7
	B	0.2	0.0	3.2	1.7	0.0	0.8	8.3
	HSSD	2.0	0.5	33.5	76.0	28.5	22.5	63.0
Free space	K	1.2	0.0	5.5	2.0	0.0	0.8	2.3
	LR	0.2	0.2	41.7	41.7	1.7	13.7	2.3
	B	0.2	0.0	12.2	30.7	1.0	7.8	3.0
	HSSD	5.0	28.5	79.5	96.5	85.0	77.5	98.5
Visibility	K	0.0	1.5	26.7	72.8	0.0	0.3	19.2
	LR	0.0	1.7	46.8	88.2	0.3	1.0	26.3
	B	0.0	1.2	44.5	88.3	1.5	0.2	33.3
	HSSD	0.0	5.0	87.0	99.5	56.5	29.0	96.0
View angle	K	0.0	0.0	25.5	5.5	11.2	1.0	1.0
	LR	0.0	0.0	30.8	5.0	14.3	1.3	0.7
	B	0.0	0.0	23.8	3.7	12.7	1.2	0.8
	HSSD	0.0	7.5	84.5	75.5	73.0	38.0	66.0
Max box	K	0.0	0.0	30.2	95.7	2.0	28.8	62.7
	LR	0.0	0.0	63.5	100.0	5.7	61.0	98.0
	B	0.0	0.0	59.3	100.0	4.7	56.0	98.2
	HSSD	0.0	0.0	58.5	100.0	22.5	33.0	99.0
Shortest path	K	0.2	0.5	78.5	96.2	23.5	36.2	85.2
	LR	61.7	1.2	77.8	97.8	19.8	40.3	81.3
	B	0.5	0.5	79.5	98.0	17.5	50.3	83.7
	HSSD	0.0	3.0	82.0	100.0	65.5	32.5	98.0

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

1902
1903

Table 15: Question-level accuracy on completed answers for **reasoning models**.

Question	Room	gpt-5 120b	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K	99.8	99.3	98.0	96.3	100.0	94.2	97.7
	LR	98.8	99.3	99.0	96.0	99.7	93.5	97.5
	B	98.3	99.5	96.8	95.5	99.7	93.8	95.3
	HSSD	69.0	78.5	25.5	12.5	32.5	40.5	18.0
Placement	K	84.7	92.0	89.0	59.7	90.8	85.7	68.2
	LR	75.5	89.0	82.2	53.3	86.3	78.5	46.5
	B	61.2	83.5	72.0	35.8	81.2	62.0	34.5
	HSSD	70.0	85.0	79.0	16.0	75.5	74.5	28.5
Repositioning	K	83.0	85.5	79.2	90.5	84.5	70.8	61.5
	LR	85.5	89.8	86.2	91.2	92.8	87.8	77.0
	B	77.8	83.3	83.3	85.2	84.3	78.0	69.2
	HSSD	49.5	60.5	47.5	18.5	53.5	40.0	27.0
Free space	K	82.5	99.0	93.0	93.3	99.5	94.8	97.0
	LR	47.0	83.3	18.3	17.7	78.5	53.2	0.0
	B	50.5	87.5	34.8	33.3	82.2	74.0	1.0
	HSSD	19.5	31.0	6.5	1.0	5.0	9.0	1.0
Visibility	K	94.8	94.2	71.3	26.8	98.0	91.5	78.8
	LR	95.2	94.0	52.0	11.3	98.0	89.3	70.8
	B	94.2	92.5	53.5	11.2	95.5	89.2	64.2
	HSSD	57.0	70.0	10.0	0.5	39.0	45.5	3.0
View Angle	K	96.2	98.5	73.7	92.5	88.3	93.5	98.5
	LR	93.3	97.3	68.2	91.5	84.5	92.0	98.3
	B	95.2	98.2	75.2	93.8	86.8	91.3	98.3
	HSSD	59.5	74.0	13.5	20.0	25.5	37.5	26.0
Max Box	K	48.5	62.8	50.5	3.7	85.2	31.3	16.7
	LR	17.3	28.2	8.0	0.0	60.3	3.8	0.8
	B	13.0	30.3	11.0	0.0	61.2	5.8	0.5
	HSSD	5.0	9.5	2.5	0.0	17.0	0.5	0.0
Shortest path (valid)	K	64.7	64.2	12.3	3.2	52.3	43.0	14.2
	LR	21.2	66.0	12.5	1.5	53.7	37.7	16.7
	B	58.2	57.8	7.8	1.0	52.0	30.0	14.3
	HSSD	28.5	33.5	8.5	0.0	16.5	13.5	1.0
Shortest path (Fréchet)	K	56.3	55.5	11.5	3.2	50.5	42.2	14.0
	LR	12.3	40.5	9.3	1.3	47.5	28.5	16.3
	B	39.3	44.8	6.0	0.8	47.7	24.2	14.3
	HSSD	22.5	26.5	2.5	0.0	12.0	14.0	1.0

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943