FLOORPLANQA: A BENCHMARK FOR SPATIAL REASONING IN LLMS USING STRUCTURED REPRESENTATIONS

Anonymous authorsPaper under double-blind review

ABSTRACT

We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today's LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.

1 Introduction

Recent progress in large language models (LLMs) has revealed strong capabilities in structured reasoning, yet spatial inference over plausible, physically feasible environments such as indoor layouts remains poorly understood. In numerous practical applications, including architectural design, assistive planning, and embodied interaction, spatial understanding is handled through structured formats such as JSON, in which objects are specified by position, size, and orientation, rather than through images or natural language. Reasoning in these contexts requires geometric inference over symbolic layouts, not pixel-level perception.

We introduce **FloorplanQA**, a benchmark to evaluate spatial reasoning in LLMs using 2D floor plans represented in structured text-based formats. Each instance consists of a JSON-encoded layout paired with natural language questions that require the model to compute distances, evaluate placement feasibility, assess visibility, and reason about spatial constraints. FloorplanQA isolates symbolic spatial reasoning over inputs that mirror the abstractions used by designers, architects, and agents operating in structured environments.

Although LLMs can increasingly be used in tool-assisted pipelines, for example to invoke spatial solvers or generate code, this work focuses on models' *direct, unaided* reasoning capabilities. FloorplanQA is designed to probe what LLMs can infer from structured input alone, without relying on external computation or visual grounding, in order to measure their unassisted capabilities. This baseline is important because even in tool-rich systems, models benefit from some unaided spatial ability to anticipate outputs and avoid trivial errors.

Specifically, our contributions are as follows:

• We introduce a dataset of 2,000 structured 2D layouts, including 600 each from synthetically generated kitchens, living rooms, and bedrooms, plus 200 layouts sourced from the Habitat Synthetic Scenes Dataset (HSSD) (Khanna et al., 2023), providing a realism check. All are represented in JSON and paired with spatial reasoning questions.

- We provide a diverse suite of 16,000 spatial reasoning questions, eight questions per layout, covering geometric relations, placement feasibility, spatial occupancy, and navigation.
- We establish structured evaluation protocols and scoring metrics that enable a fine-grained diagnosis of reasoning performance by task type and error mode.
- We conduct a comparative analysis of 15 LLMs, including 7 reasoning-focused models, as well as 8 standard models, revealing consistent failure patterns in spatial inference from symbolic input.

FloorplanQA provides a benchmark of layouts, questions, and evaluation metrics for assessing spatial reasoning in language models, focusing on symbolic floorplans that integrate geometry and semantics in ways that mirror real architectural abstractions.

2 RELATED WORK

Prior benchmarks have explored spatial reasoning across vision and language domains. CLEVR Johnson et al. (2017) is a synthetic visual question answering dataset designed to test compositional reasoning, including basic spatial relations. In real-world settings, SpatialSense Yang et al. (2019) focuses on recognizing spatial relations in images through adversarially mined examples. Benchmarks like BabyAI Chevalier-Boisvert et al. (2019), ALFRED Shridhar et al. (2020), and Room-to-Room (R2R) Anderson et al. (2018) integrate spatial understanding into embodied tasks, requiring agents to follow instructions involving navigation and object manipulation in simulated environments. Recent datasets such as ScanQA Azuma et al. (2022) and 3DSRBench Ma et al. (2024a) extend spatial reasoning evaluation into 3D environments, emphasizing the need for models to comprehend and reason about spatial relationships in three dimensions.

Vision-language models have advanced spatial reasoning but often handle it qualitatively. The VQA dataset Antol et al. (2015) challenges models to answer questions about images, while VL-T5 Cho et al. (2021) unifies vision-and-language tasks via text generation. Recent work on 3D scene graphs Armeni et al. (2019) introduces structured representations of environments, facilitating spatial reasoning. However, these approaches may miss fine-grained geometric details necessary for precise spatial inference. Efforts like SpatialVLM Chen et al. (2024) aim to endow vision-language models with enhanced spatial reasoning capabilities, addressing some of these limitations.

Advancements in generative models have also contributed to spatial reasoning tasks. Layout-GPT Feng et al. (2023) leverages large language models for compositional visual planning and layout generation, while Holodeck Yang et al. (2024) enables language-guided generation of 3D embodied AI environments. Similarly, AnyHome Fu et al. (2024) focuses on open-vocabulary generation of structured and textured 3D homes, highlighting the integration of language and spatial understanding in generative contexts. Infinigen Indoors (Raistrick et al., 2024) offers richly rendered 3D scenes but often produces implausible object placement due to non-convergent simulated annealing. LayoutVLM Sun et al. (2024) and FirePlace Huang et al. (2025) improve layout generation via optimization and constraint solving, respectively. But they assess output realism, not the model's ability to infer constraints directly. In contrast, our benchmark tests symbolic reasoning without tool-assisted refinement.

Evaluations of large language models' spatial understanding have been conducted in studies like Evaluating Spatial Understanding of Large Language Models Yamada et al. (2024), which assesses the spatial reasoning capabilities of LLMs through structured tasks. Additionally, benchmarks such as BALROG Paglieri et al. (2025) test agentic reasoning in game environments, further exploring the spatial and decision-making abilities of language and vision-language models. While these efforts reveal important limitations in high-level spatial understanding, our benchmark isolates low-level geometric reasoning in structured layouts, providing fine-grained and task-specific insights into models' spatial competence. Recent 3D-LLM surveys such as (Ma et al., 2024b) cover tasks like navigation and interaction, but not symbolic spatial reasoning. FloorplanQA fills this gap by testing raw spatial competence from structured layouts without multimodal input.

FloorplanQA addresses the gap in existing benchmarks by directly evaluating structured spatial inference from symbolic room layouts. Unlike prior benchmarks relying on raw images or focusing on commonsense spatial language, FloorplanQA provides explicit spatial representations (object

coordinates and dimensions) and tests models' abilities to perform precise spatial reasoning tasks, such as calculating distances, assessing visibility, and verifying object fit within a controlled setting.

3 Метнор

3.1 SYNTHETIC LAYOUT GENERATION

Our initial aim was to use publicly available real-world floorplan datasets. However, a comprehensive review revealed significant limitations, as several prominent datasets such as SUNCG (Song et al., 2017) and HouseExpo (Li et al., 2019) are not accessible due to unresolved copyright claims. Other large-scale resources—including 3D-FRONT (Fu et al., 2020), Structured3D (Zheng et al., 2020), and InteriorNet (Li et al., 2018)—are procedurally generated but impose constraints on layout diversity, furniture semantics, or downstream reuse. Datasets like CubiCasa5K (Kalervo et al., 2019) and Rent3D (Liu et al., 2015) offer fixed architectural plans from real environments but lack furnishing annotations. RPLAN (Wu et al., 2019), despite its scale, is not publicly released, and the dataset of Di et al. (2020), while large, is procedurally generated with realtor supervision and imposes restrictions on reuse. Given these legal, practical, and methodological constraints, we found synthetic data generation to be the most viable alternative.

We generated 1,800 synthetic indoor layouts using Gemini 2.5 Pro, a large language model fine-tuned for spatial reasoning (Team et al., 2025a). We evaluate using many LLMs, including Gemini 2.5 Pro, but while employing an LLM for both data generation and evaluation could appear circular, our evaluation pipeline is entirely independent: the LLM is used solely for data generation, and evaluation is performed via deterministic spatial reasoning tasks.

The generation process comprises two stages. First, we specify room geometries using explicit constraints on shape, adjacency, and design principles related to circulation, symmetry, and zoning. These constraints are encoded directly in the LLM prompt. Second, each room is furnished according to style-specific guidelines (e.g., a bedroom must contain a bed and storage), also defined in structured prompts, to encourage both visual realism and functional plausibility. Approximately one-third of candidate layouts are filtered out by a rule-based spatial validity filter that enforces basic clearance and accessibility constraints. The checks remove scenes with inaccessible furniture and implausible adjacencies, such as sofas blocking doors or a refrigerator overlapping a table; see Appendix B.3 for the all set of cases. Full prompts, generation templates, and validation scripts are provided in the Supplementary Material.

3.2 LAYOUT EXTRACTION FROM HSSD DATASET

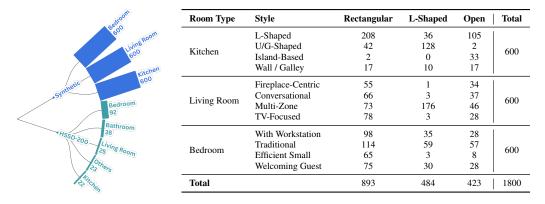
To complement the synthetically generated layouts, we further incorporated 200 layouts extracted from the Habitat Synthetic Scenes Dataset (HSSD-200) (Khanna et al., 2023). HSSD provides 211 high-quality, human-authored 3D scenes designed with the Floorplanner interface and populated with 18,656 objects across 466 semantic categories. Unlike purely procedural datasets, HSSD offers fine-grained semantics, 3D assets, and close correspondence to real interiors, making it an effective proxy for real-world interior layouts.

For our purposes, we project each 3D scene to a 2D floorplan and retain only select structural and furniture elements. Decorative or auxiliary objects (e.g., vases, plants, cushions, artworks, posters, bottles, shoes, candles) are removed to reduce clutter. We then use an α -convex hull (Asaeedi et al., 2014; Edelsbrunner & Mücke, 1994) to smooth object boundaries, yielding polygonal layouts that are not restricted to axis-aligned rectangles. This step is necessary because raw HSSD projections often produce overly dense polygons, with redundant vertices along straight or nearly straight segments; applying an α -hull reduces spurious complexity while preserving concavity, which avoids unnecessary token overhead in downstream LLM processing. This ensures compatibility with our synthetic layouts, while maintaining the richer geometric variety of HSSD.

3.3 Unified Dataset

Together, these two sources yield a dataset of 2,000 layouts: 1,800 synthetically generated via Gemini 2.5 Pro and 200 extracted from HSSD. The two subsets share a unified polygonal representation,

Table 1: Layout distribution in PlanQA by room type, style, and geometry, with room-wise totals.



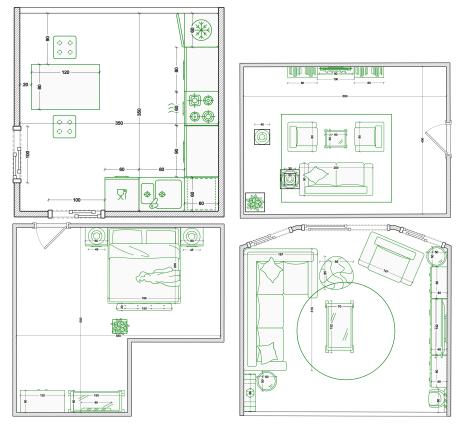


Figure 1: Representative layouts from FloorplanQA. **Generated**: top left (kitchen), top right (living room), bottom left (bedroom). **HSSD**: bottom right. Generated objects are axis-aligned boxes; HSSD uses arbitrary polygons.

enabling consistent downstream processing. Figure 1 shows examples from both sources while Table 1 summarizes room, style, and geometry distributions across the synthetic subset with the figure next to it providing a breakdown by room type.

3.4 QUESTION TAXONOMY AND PROMPTING

FloorplanQA assesses spatial reasoning by presenting models with a single natural language question per symbolic layout. Questions span a range of topological and functional types, including numeric computations (distances, areas), spatial feasibility (object placement), visibility, and re-

Response Schema

quirement violations. Some questions require fine-grained metric reasoning, others test whether a model can respect physical constraints. A categorized list of question types is shown in Table 2.

Each question is generated by filling a parameterized template with layout-specific variables such as object names, measurements and task-specific contextual information (e.g. units for distance, clearance for paths, or which object-types should not occlude visibility). Prompts are issued in zero-shot settings, without few-shot examples or role-based instructions. Instead, we enforce simple structural markers—such as a required checklist and a final-answer line—to encourage stepwise reasoning.

To ensure verifiable outputs, each prompt specifies a response schema consisting of a brief structured justification and a final answer line. For example, a distance query is phrased as:

```
Prompt: Distance Query

Given the layout of a {room_type} in {format}, calculate the Euclidean distance in meters between the centroids of `{obj1}` and `{obj2}`.
```

If the format, object names, or required inputs are missing, invalid, or inconsistent, the model must return: *Final answer*: ERROR . Otherwise, responses must follow the scheme, for example:

```
Begin by printing a layout_id, then provide a concise checklist (3--7 bullets) of the conceptual steps necessary for calculating the Euclidean distance. Then, carefully walk through each reasoning step required to calculate the distance.

Respond in the following strict format:
```

Output Format
<step-by-step calculations>
Final answer: <answer>

This structure invokes step-by-step reasoning and each question ends with *Final Answer*: <answer> , enabling robust extraction even when APIs lack native structured-output support.

Layouts are represented in a structured JSON format. Each entry contains a layout_id, the room_type, and explicit geometric descriptions. The room_boundary is stored as a closed polygon, while walls are represented separately as a list of line segments. Openings such as windows and doors are included in a dedicated openings field rather than flattened into the object list. All furnishings and functional elements (e.g., bed, sofa, table) are stored in the objects list, with each object defined by a labeled polygon. In the synthetic data, these polygons are axis-aligned bounding boxes (four points), whereas in HSSD they can exhibit arbitrary shapes and orientations. Object names are suffixed with instance identifiers (e.g., fridge_1, table_3) to ensure that referents remain unique and stable across prompt construction and answer evaluation. Coordinates are metric (meters) in a right-handed 2D frame with the room origin at the lower-left of the bounding box. The prompt used to generate examples according to this schema is in the Appendix, Fig. 16.

We group these questions into three reasoning categories. **Metric** tasks require explicit numerical computation, such as calculating centroids, measuring distances between objects, or evaluating the angle between an inter-object vector and a reference axis. **Topology** category involves geometric and relational reasoning, including checking placement feasibility, computing free space, or identifying whether an object blocks the direct line of sight between two others. **Dynamic** category addresses layout-changing procedures, such as repositioning an object until contact with a boundary or another object, or computing a valid collision-free path between two objects.

Table 2: PlanQA question taxonomy. The example question shown is an instantiation of the template used to generate all questions of that type. Each task is labeled with a format code: **N** (scalar), **B** (boolean), **S** (sequence), and **L** (list), and a question reasoning category.

Type	Example Question	Format	Category
Distance	Calculate the Euclidean distance in meters be- tween the centroids of the fridge and the stove	N	Metric
Free Space	Calculate the total non-occupied floor area in square meters	N	Topology
View Angle	Compute the smallest absolute angle in degrees between the vector from the centroid of the sofa to the centroid of the TV and the global north vector (0, 1).	N	Metric
Repositioning	Calculate how far the ottoman be moved in the left direction until it touches another object or the wall	N	Action
Max Box	Calculate the area in square meters (m ²) of the largest rectangle that can fit inside the room	N	Topology
Placement	Check if a 2m × 3m desk table can fit fully inside the room without overlaps	В	Topology
Shortest Path	Determine the shortest valid path that maintains a clearance of 15 cm from all other objects, starting from centroid of the stove and ending at the centroid of door	S	Action
Visibility	Find all objects that intersect the vector from the centroid of the window to the centroid of the fire-place.	L	Topology

These categories are intended to capture the core modes of spatial reasoning in FloorplanQA, ranging from low-level geometric calculation to higher-level relational and procedural inference. While not strictly disjoint, they provide a diagnostic framework for analyzing model behavior and diagnosing failure modes.

In addition to categorizing by reasoning type, each task is also associated with an answer format code that specifies the expected output structure and the corresponding scoring rule. Scalar outputs (**N**) are scored by relative error with a default tolerance of 2%; for complex area-computation tasks (e.g., Free Space), the tolerance is relaxed to 5%. Sequence outputs (**S**) are evaluated with a Fréchet threshold of 0.6 m, approximating minimal human clearance, and must be valid (collision-free, no overlaps). List outputs (**L**) are evaluated by set equality. Together, the categories and format codes define the taxonomy summarized in Table 2, which reports task coverage and examples for each case.

3.5 EVALUATION PROTOCOL AND SCORING

Each question in FloorplanQA is paired with a reference answer computed directly from the symbolic layout, enabling fully automated and deterministic evaluation of model outputs. Depending on the response type, correctness is assessed using numeric comparison with fixed tolerances, string matching, or geometric validation checks.

For numerical questions (e.g., distances, areas, angles), predictions are accepted if they fall within a relative error threshold. Sequence outputs are evaluated for both format and semantic correctness. Rather than requiring exact coordinate matches, we validate paths using geometric plausibility conditions of collision avoidance and sufficient proximity to a ground-truth trajectory. Deviation thresholds are set conservatively to tolerate minor geometric variations without crediting qualitatively wrong routes.

To differentiate reasoning failures from extraction or formatting issues, we apply a regex-based parsing pipeline based on regular expressions, covering a fixed set of expected answer patterns (e.g., '*Final answer*' tokens in lower case or with surrounding symbols). If no answer is produced, or if the extracted content does not match a valid format, we count the response as an error (which

is also considered incorrect). We provide a detailed breakdown in Appendix, Section D. In our evaluations, the proportion of invalidly formatted answers is below 1%.

We also explicitly track cases where no answer is returned due to truncation (API: stop_reason = Token Limit), a failure mode that disproportionately affects reasoning-heavy models. To account for this, we report in the Appendix, Section H both the percentage of responses truncated by token limits and an adjusted accuracy computed only over valid (non-truncated) answers. These adjusted accuracies can be interpreted as an approximate upper bound on overall dataset performance, since with unlimited token budgets models could in principle reach that quality.

3.6 Model Inference Setup

All models are queried using standard chat-based completion APIs, with prompts constructed as described above. We evaluate both large and mid-size models, including reasoning and standard variants. Large reasoning-oriented and standard models are allocated up to 12,288 tokens per completion, enabling them to process long layout descriptions and produce multi-step outputs. Mid-size models, including the GPT family variants optimized for speed and Qwen3-30B, are limited to 8,192 tokens. These budgets reflect our observations that larger models generate longer intermediate justifications and thus consume more tokens.

GPT-5 is evaluated under a distinct configuration: its reasoning mode cannot be directly constrained by context length, so we run it with reasoning and verbosity set to "low," with a maximum output length of 4,096 tokens, while GPT-5-mini is run with reasoning and verbosity set to "medium," with a maximum output length of 8,192 tokens.

No model receives fine-tuning or prompt adaptation specific to FloorplanQA. All prompts are zeroshot, with the system message and output formatting constraints held fixed. For each model, we use the default inference configuration provided by its vendor, with temperature set to 0. The only exception is GPT-5, for which the temperature cannot be modified and defaults to 1.

Each model is evaluated over 600 generated layouts and 200 layouts from HSSD, with one question from each type posed per layout. Evaluation is fully automated, from layout serialization and prompt insertion to parsing, with no manual curation.

All models are evaluated on identical input distributions and scoring criteria, enabling cross-system comparisons that are architecture-agnostic and driectly comparable.

4 Results

We evaluated the performance of the model on a dataset of 2,000 layouts, consisting of 600 kitchens, 600 living rooms, 600 bedrooms, and 200 additional layouts from HSSD. Each layout is paired with one question sampled from a pool of 8 parameterized templates, filtered by room applicability. This yields 16,000 layout—question pairs. The full taxonomy is shown in Table 2.

We evaluate fifteen language models, spanning a wide range of parameter scales, architectures, and training regimes. The reasoning-oriented models include GPT-5 (OpenAI, 2025a), GPT-OSS-120B (OpenAI, 2025b), DeepSeek-R1-0528 (DeepSeek-AI, 2025), GPT-5-mini, Gemini Flash 2.5 (Gemini Team, Google, 2025), GPT-OSS-20B, and Qwen3-30B-A3B-Thinking-2507 (Yang et al., 2025). The general-purpose (standard) models include Claude Sonnet 4 (Anthropic, 2025), GPT-4.1 (OpenAI et al., 2024), Moonshot Kimi-K2-Instruct (Team et al., 2025b), Qwen3-Coder-480B-A35B-Instruct, Qwen3-235B-A22B-Instruct-2507, GPT-4.1-mini, Qwen3-30B-A3B-Instruct-2507, and Devstral-Small-2505 (MistralAI, 2025). All models are evaluated in identical zero-shot conditions using standardized prompts and serialized layout inputs, as described in Section 3. Complete results disaggregated by question type, room type, and model are provided in Appendix, Section D.

4.1 QUANTITATIVE RESULTS

We begin by aggregating accuracy across models and question types for both *reasoning* and *general* model families. Figure 2 reports results for general models, and Figure 3 shows results for reasoning

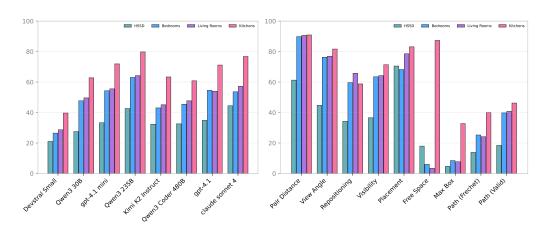


Figure 2: General Models Accuracy. (Left) By Model. (Right) By Question.

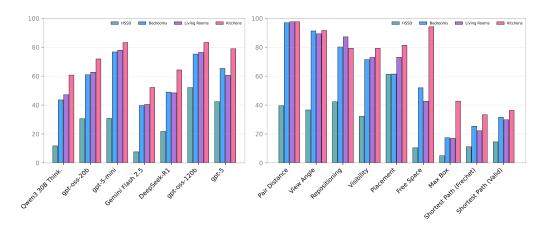


Figure 3: Reasoning Models Accuracy. (Left) By Model. (Right) By Question.

models. In each figure, the left panel summarizes accuracy by model, and the right panel summarizes accuracy by question across room types.

Kitchens lead across models because overlaps are rare, so most queries are straightforward. Scores on HSSD tend to lag behind the other room types; irregular, non-axis-aligned geometry and denser overlap make these layouts more demanding (Appendix, Sec. C). Bedrooms and living rooms are mid-tier and nearly equal, lying between kitchens and HSSD.

Comparing model families, general models struggle when many overlaps must be merged; they often treat object areas independently (no union), which hurts *Free Space* and *Max Box* and carries over into path planning. Reasoning models handle those cases with unions and rotations better, so they show gains on *Free Space* and *Max Box*. A practical limitation remains: **Gemini Flash 2.5** and **DeepSeek-R1** hit token limits on larger layouts, which drops scores, especially in HSSD.

Task difficulty also follows a consistent order. Metric Category questions: *Pair Distance* and *View Angle* are usually high; *Repositioning*, *Visibility* and *Placement* are mid; *Max Box* and *Free Space* benefit most from reasoning; both remain highly complex, comparable to *Shortest Path*. Accuracy falls as object counts and overlap density rise, with the steepest declines in HSSD layouts.

4.2 ABLATION

To evaluate the robustness of layout interpretation under alternate encodings, we perform a format ablation that replaces the standard JSON layout with a semantically equivalent XML version. This

Table 3: Accuracy using JSON vs XML layout encoding. Each cell shows performance on the original JSON representation and its equivalent XML rendering.

Model	Repositioning	View Angle	Visibility
GPT-OSS-120B	$60.5 \rightarrow 59.0$	$74.0 \rightarrow 74.0$	$70.0 \rightarrow 72.0$
GPT-OSS-20B	$40.0 \rightarrow 39.0$	$37.5 \rightarrow 38.5$	$45.5 \rightarrow 43.5$
Qwen3-235B-A22B	$39.0 \rightarrow 42.0$	$50.5 \rightarrow 54.0$	$70.5 \rightarrow 65.5$

substitution preserves all geometric and object-level content while modifying only the syntax and structural serialization. Prompt-level ablation is described in the Appendix, Section E. To avoid recomputing the full suite, we focus on the most variance-sensitive (Appendix, Figures 5 and 6) question types for HSSD layouts: View Angle, Visibility, and one task from a different category —Repositioning (Dynamic). We apply each input-format ablation to three representative models: two reasoning models (GPT-OSS-120B, GPT-OSS-20B) and one large general model (Qwen3-235B-A22B) for the same subset of HSSD layouts. As shown in Table 3, accuracy is largely stable across formats for most categories; the GPT-OSS models change minimally, while Qwen shows modest fluctuations. This suggests that these models encode layout semantics in a manner that is relatively invariant to low-level representation details.

5 CONCLUSION

We introduced **FloorplanQA**, a benchmark for spatial reasoning over symbolic 2D layouts aligned with architecture and robotics practice. We evaluated 15 language models (8 general, 7 reasoning) on 2,000 layouts (1,800 synthetic; 200 semi–real HSSD) across tasks ranging from metric queries to visibility, placement, and shortest path with clearance.

Empirically, metric and simple visibility queries are reliable; kitchens score highest because overlaps are rare. HSSD layouts are more demanding—irregular, non–axis-aligned shapes and dense overlaps expose weaknesses such as centroid miscalculation and missed unions. Reasoning models improve notably on *Free Space* and *Max Box* by handling overlaps and rotations more consistently, while general models often subtract object areas independently and fail under heavy overlap. *Shortest Path* is sufficiently challenging because it requires multiple correct steps (clearance buffering, collision checks, and path search), where errors compound.

These results indicate that current LLMs lack sufficiently robust internal geometric representations for complex spatial inference. Two complementary directions follow. *Near term*: hybridize with external geometric solvers or symbolic planning modules—set operations (unions/differences), centroid via shoelace, clearance buffering, oriented rectangle search, and A* path planning—to compensate for the models' weaknesses in collision avoidance and clearance reasoning. *Longer term*: train with explicit spatial constraints and harder distributions (irregular, overlap—heavy layouts), and include constraint—violation exemplars and geometry-aware objectives so models learn to maintain coherence under rotation, clearance, and union operations in design-oriented tasks.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

Anthropic. System card: Claude opus 4 claude sonnet 4. https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf, 2025. Accessed: Sep 24, 2025.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2015.

- Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2019.
 - Saeed Asaeedi, Farzad Didehvar, and Ali Mohades. Alpha-concave hull, a generalization of convex hull, 2014. URL https://arxiv.org/abs/1309.7829.
 - Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. ScanQA: 3D Question Answering for Spatial Scene Understanding, May 2022. URL http://arxiv.org/abs/2112.10482. arXiv:2112.10482 [cs].
 - Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas, and Fei Xia. SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities, January 2024. URL http://arxiv.org/abs/2401.12168.arXiv:2401.12168 [cs].
 - Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language learning. In *International Conference on Learning Representations (ICLR)*, 2019.
 - Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text generation. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.
 - DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
 - Weidong Di, Kejia Liu, Xuefei Ma, and Yongdong Dong. Deep layout of custom-size furniture for interior decoration. *IEEE Transactions on Visualization and Computer Graphics*, 27(9):3859–3870, 2020.
 - Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. *ACM Trans. Graph.*, 13(1):43–72, January 1994. ISSN 0730-0301. doi: 10.1145/174462.156635. URL https://doi.org/10.1145/174462.156635.
 - Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and William Yang Wang. LayoutGPT: Compositional Visual Planning and Generation with Large Language Models, October 2023. URL http://arxiv.org/abs/2305.15393. arXiv:2305.15393 [cs].
 - Huanlian Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Ying Li, Qixuan Zeng, Cheng Sun, Wenzheng Yang, Ruigang Yang, and Hao Pan. 3d-front: 3d furnished rooms with layouts and semantics. *arXiv preprint arXiv:2011.09127*, 2020.
 - Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. AnyHome: Open-Vocabulary Generation of Structured and Textured 3D Homes, July 2024. URL http://arxiv.org/abs/2312.06644. arXiv:2312.06644 [cs].
 - Gemini Team, Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. Technical Report Gemini 2.5, Google DeepMind, Mountain View, CA, June 2025. URL https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf.
 - Ian Huang, Yanan Bao, Karen Truong, Howard Zhou, Cordelia Schmid, Leonidas Guibas, and Alireza Fathi. Fireplace: Geometric refinements of llm common sense reasoning for 3d object placement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
 - Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

- Aleksi Kalervo, Juha Ylioinas, Marko Häikiö, Antti Karhu, and Juho Kannala. Cubicasa5k: A dataset and an improved multi-task model for floorplan image analysis. *arXiv preprint arXiv:1904.01920*, 2019.
 - Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra, Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for Object-Goal Navigation. *arXiv* preprint, 2023.
 - Chengshu Li, Fei Yan, Siyuan Xia, Qiwei Cheng, Ziyu Li, Xiaoping Fan, Guanghua Zhang, and Fenglin Wang. Houseexpo: A large-scale 2d indoor layout dataset for learning-based algorithms on mobile robots. *arXiv preprint arXiv:1903.09845*, 2019.
 - Wenbo Li, Seyedmajid Saeedi, John McCormac, Ronald Clark, Andrew J. Davison, and Stefan Leutenegger. Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. In *Proceedings of the British Machine Vision Conference (BMVC)*, pp. 77, 2018.
 - Chen Liu, Alexander G. Schwing, Kaustav Kundu, Raquel Urtasun, and Sanja Fidler. Rent3d: Floorplan priors for monocular layout estimation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3413–3421, 2015.
 - Wufei Ma, Haoyu Chen, Guofeng Zhang, Celso M. de Melo, Alan Yuille, and Jieneng Chen. 3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark, December 2024a. URL http://arxiv.org/abs/2412.07825.arXiv:2412.07825 [cs].
 - Xianzheng Ma, Yash Bhalgat, Brandon Smart, Shuai Chen, Xinghui Li, Jian Ding, Jindong Gu, Dave Zhenyu Chen, Songyou Peng, Jia-Wang Bian, Philip H Torr, Marc Pollefeys, Matthias Nießner, Ian D Reid, Angel X Chang, Iro Laina, and Victor Adrian Prisacariu. When Ilms step into the 3d world: A survey and meta-analysis of 3d tasks via multi-modal large language models. arXiv preprint arXiv:2405.10255, 2024b. URL https://arxiv.org/abs/2405.10255.
 - MistralAI. Devstral: Introducing the best open-source model for coding agents. https://mistral.ai/news/devstral, May 2025. Accessed: 2025-09-25.
 - OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf, 2025a.
 - OpenAI. gpt-oss-120b gpt-oss-20b model card, 2025b. URL https://arxiv.org/abs/2508.10925.
 - OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
 - Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster, Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games, April 2025. URL http://arxiv.org/abs/2411.13543. arXiv:2411.13543 [cs].
 - Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng. Infinigen indoors: Photorealistic indoor scenes using procedural generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21783–21794, June 2024.
- Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.
 - Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. Semantic scene completion from a single depth image. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1746–1754, 2017.

- Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat, Federico Tombari, Manling Li, Nick Haber, and Jiajun Wu. Layoutvlm: Differentiable optimization of 3d layout via vision-language models. arXiv preprint arXiv:2412.02193, 2024.
 - Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint arXiv:2503.20020*, 2025a.
 - Kimi Team, Yifan Bai, and Yiping Bao. Kimi k2: Open agentic intelligence, 2025b. URL https://arxiv.org/abs/2507.20534.
 - Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. Data-driven interior plan generation for residential buildings. *ACM Transactions on Graphics (TOG)*, 38(6): 1–12, 2019.
 - Yutaro Yamada, Yihan Bao, Andrew K. Lampinen, Jungo Kasai, and Ilker Yildirim. Evaluating Spatial Understanding of Large Language Models, April 2024. URL http://arxiv.org/abs/2310.14540. arXiv:2310.14540 [cs].
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Kaiyu Yang, Olga Russakovsky, and Jia Deng. Spatialsense: An adversarially crowdsourced benchmark for spatial relation recognition. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2019.
 - Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch, Mark Yatskar, Aniruddha Kembhavi, and Christopher Clark. Holodeck: Language Guided Generation of 3D Embodied AI Environments, April 2024. URL http://arxiv.org/abs/2312.09067. arXiv:2312.09067 [cs].
 - Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large photo-realistic dataset for structured 3d modeling. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 519–535, 2020.

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL FOR PLANQA

This technical appendix includes an overview of the dataset generation process, dataset statistics, followed by full evaluation results on our generated QA pairs for reseanoning and general models, along with aggregated metrics and ablation studies. It also presents an extended taxonomy of spatial reasoning tasks, explanations of selected failure cases, an expanded analysis of vision-language models (VLMs), and examples of prompts used for both generation and questioning.

The full dataset and all code used for generation, evaluation, and visualization are provided in the supplementary materials.

B DETAILS ON SYNTHETIC DATA GENERATION

Room layouts were generated using Gemini 2.5 Pro, specifically fine-tuned for spatial reasoning and bounding-box tasks (Team et al., 2025a). Below, we describe the detailed procedure and constraints. All generation scripts, prompts, constraint-checking code, and random seeds are included in the code for full reproducibility.

B.1 ROOM SHAPE GENERATION

We generated 600 layouts each for kitchens, bedrooms, and living rooms. These layouts include a variety of geometries and sizes, with clearly defined room structures containing windows, doors, and corner cutouts where applicable. All layouts follow specifications tailored to each room type.

Each layout falls into one of three shape categories: rectangular, L-shaped, or open. Size categories were defined individually for each room type and were incorporated into the generation prompts based on common assumptions about typical room dimensions.

The distribution of room shapes and sizes is shown in Table 4, and example layout types are illustrated in Fig. 1.

T. 1. 1. 4. Cl	1		1	1
Table 4: Shape and	1 6178 AISTANIITIA	n across generated	Tayours to	r each room tyne -
Table 4. Shape and	a size distributio	n across generated	iayouts io	cacii i oomi type.

Room Type	Shape Distribution (Rect / L-shaped / Open)	Size Categories (in m²) (Small / Medium / Large)
Kitchen	40% / 40% / 20%	≤7 / 7-18 / >18
Bedroom	50% / 30% / 20%	8-12 / 12-18 / >18
Living Room	40% / 40% / 20%	20 / 22 / 24

Geometric and Structural Constraints: Room geometries were procedurally varied using prompt-based guidance to produce rectangular, L-shaped, and open-plan configurations. The following structural properties were described in the prompts but not explicitly enforced during layout generation:

- L-shaped rooms were described as rectangular spaces with a square cutout from one corner.
 To maintain usable proportions, each leg of the L shape was suggested to be at least 1.5,m wide and deep.
- Open-plan rooms, apart from living rooms, were prompted without doors and with one full wall removed. This was intended to vary room shapes and simplify layout generation.
- Doors were described with widths between 0.8,m and 1.0,m, selected randomly. Windows were chosen from a fixed set of widths: 0.6,m, 0.75,m, 0.9,m, 1.2,m, and 1.5,m.
- Prompts included guidance to place all elements such as doors, windows, and cutouts entirely within room boundaries.

Window Placement: Window placement followed prompt-based guidelines aimed at supporting daylight access and layout clarity:

- The total window length was set to exceed 15 percent of the room's floor area. It was used as a simple proxy to ensure visible window openings and visual balance along the walls.
- Windows on the same wall were the same size to support visual balance. Small, isolated windows were not used.
- Long windows, over 1.5 m, were split into segments with 0.05 to 0.15 m gaps for a more modular appearance.
- Windows were not placed opposite each other or on the same wall as a door, as such arrangements are less common and were not emphasized in the prompt design.

B.2 FURNITURE AND APPLIANCE PLACEMENT

In the second stage, each room was populated with furniture and appliances based on layout style and object-specific constraints. While the styles differ by room type—such as enforcing a work triangle in kitchens, orienting seating around a focal point in living rooms, or centering beds symmetrically in bedrooms—the overall placement process followed a unified set of rules:

- All floor-standing objects must be placed without overlaps, except in semantically grouped cases (e.g., lamps on tables, chairs under tables).
- Clearance zones must be preserved around doors, main pathways, and functional elements such as beds, appliances, and desks.
- Placement follows a priority order: essential furniture is placed first, followed by optional and decorative elements only if space allows.
- Major objects like fridges, ovens, and beds must be anchored to structural walls or room boundaries.

Layouts violating any of these hard constraints, due to overlap, clearance issues, or improper attachment, were automatically discarded.

B.3 LAYOUT SELECTION CRITERIA

Approximately one-third of the initially generated room layouts were filtered-out using a set of geometric and functional constraints. These filters were designed to ensure realistic object placement, functional usability, and architectural plausibility. While these rules are based on general design principles, they are not based on any specific design standard. Instead, they are the result of iterative development, focusing specifically on addressing cases where our prompts lead to unlikely or implausible layouts. After filtering, we retained 600 valid layouts for each room type.

• Non-overlapping objects (with exceptions): Each pair of objects must satisfy axisaligned bounding box (AABB) separation constraints, unless they belong to a known exception category. For two objects A and B with bounding boxes $(x_1^A, y_1^A, x_2^A, y_2^A)$ and $(x_1^B, y_1^B, x_2^B, y_2^B)$, non-overlapping requires:

$$x_2^A \le x_1^B$$
 or $x_2^B \le x_1^A$ or $y_2^A \le y_1^B$ or $y_2^B \le y_1^A$

This constraint is not enforced for the following semantically compatible object pairs: (i) rug with any object placed on top of it; (ii) lamp with nightstand, desk, or table; (iii) tv with tv_stand; (iv) chair objects with desk or table.

These exception pairs are considered contextually collocated or hierarchically related (e.g., support/surface relationships) and are therefore allowed to overlap.

• Non-blocking door clearance: Doors have physical thickness and are defined by bounding boxes $(x_1^d, y_1^d, x_2^d, y_2^d)$. A clearance zone of $door \ length$ meters is required in front of the door to ensure swing space and accessibility. The position of this zone depends on which wall the door is attached to.

808

- No windows on opposite walls: We did not include layouts with windows on directly
 opposite walls, as such configurations are uncommon in typical residential designs.
- **Appliances against walls or cutout edges**: Large fixtures like fridges and ovens must be flush against at least one wall or cutout boundary. This is formalized by enforcing:

$$x_1=0$$
 or $x_2=W$ or $y_1=0$ or $y_2=D$ or edge of cutout

For rooms with cutouts, an object may align with a cutout boundary, defined as additional wall segments with known coordinates.

These constraints were iteratively selected to address common implausible layouts generated by Gemini 2.5 Pro using our prompts. They are not universal requirements for real layouts, nor a complete set of constraints, but aim to avoid frequent sources of implausibility in generated layouts.

C ROOM STATISTICS

Table 5 reports summary statistics for the layouts. Kitchens are the smallest spaces on average, with relatively few objects and overlaps but a high density due to compact geometry. Living rooms are the largest, with slightly more objects overall but lower density, reflecting their open layout. Bedrooms fall in between, with similar object counts to kitchens but more frequent overlaps.

The HSSD layouts are comparable in scale to bedrooms and living rooms in terms of area and object count, but differ in structure: objects are represented with detailed, non-axis-aligned polygons, leading to a much higher vertex count. They also exhibit more overlaps than the generated layouts, reflecting their closer alignment with human-authored floorplans. In other respects, however, the distributions remain broadly consistent.

Metric Kitchen **Bedroom Living Room HSSD** Avg. Area (m²) 12.00 17.76 20.75 17.95 Avg. # of Objects 10.35 10.76 11.69 12.20 Avg. # of Overlaps 0.52 1.52 4.39 1.82 Avg. Object Density 0.95 0.66 0.57 0.83 46.77 152.29 Avg. Vertices per Layout 41.39 43.03

Table 5: Average layout statistics by room type.

To further illustrate these statistics, Figure 4 shows the distribution of object counts across all layouts. The histograms confirm the averages reported in Table 5: kitchens are concentrated at lower counts, typically around 10 objects; bedrooms and living rooms exhibit broader distributions with slightly higher counts; and HSSD layouts overlap in range but extend to higher counts in the tail. Overall, the object distributions remain comparable across sources, with no extreme outliers.

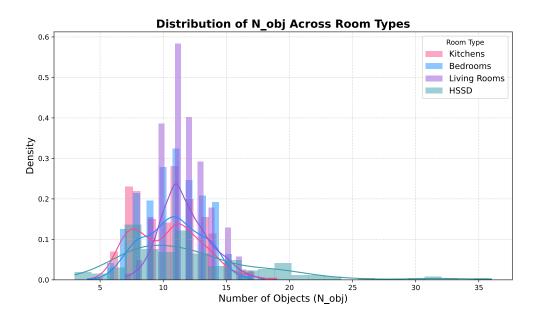


Figure 4: Distribution of object counts across kitchens, bedrooms, living rooms, and HSSD layouts.

D FULL BREAKDOWN BY ROOM TYPE, QUESTION TYPE, AND MODEL

D.1 DETAILED ACCURACY BY FULL DATASET

Tables 6 and 7 report the full per-model accuracy matrix for the base and reasoning model groups, respectively. Each table covers nine question categories across four room types, yielding 36 rows in total. Path is assessed using two complementary metrics: validity and Fréchet Distance. Together, these question types span a range of challenges, covering both reasoning-heavy and functionally grounded tasks. The base group includes eight general-purpose models, while the reasoning group includes seven models with explicit reasoning capabilities. For every model, question type accuracy is computed over a fixed set of 600 synthetic layouts (Kitchens, Living Rooms, Bedrooms) and 200 HSSD layouts, ensuring that results are directly comparable across models.

D.2 TOKEN-LIMIT ANALYSIS AND VALID-ONLY ACCURACY

In addition to overall accuracy, we analyze two complementary aspects of model performance.

First, Tables 9 and 11 quantify the fraction of responses that were terminated due to the TOKEN LIMIT stop reason. This failure mode is particularly relevant for reasoning-oriented models, which often generate longer chain-of-thought outputs.

Second, Tables 10 and 12 report accuracy over *completed* answers only, excluding truncated outputs (e.g., token-limit terminations). This metric isolates models' reasoning performance on successfully produced, well-formed responses.

Together, these analyses complement the full accuracy tables by disentangling reasoning failures from generation truncation and formatting issues.

Table 6: Question-level accuracy @ full dataset by room type for **standard models**.

Question	Room	claude sonnet-4	Spt-4.1	Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K LR B HSSD	99.8 99.5 99.7 88.0	96.5 95.0 96.3 56.0	95.7 94.2 93.3 75.5	96.8 96.8 96.5 66.0	99.2 99.7 99.5 67.0	90.7 88.5 87.8 37.0	89.5 88.8 85.2 44.5	58.8 62.3 60.0 56.0
Placement	K LR B HSSD	87.8 80.5 68.8 72.0	78.0 69.0 59.8 64.5	82.2 73.8 67.5 73.0	80.3 83.2 70.8 70.0	90.2 89.2 76.7 82.0	86.5 75.2 68.7 76.5	85.5 85.7 77.0 71.5	74.2 71.8 56.3 54.5
Reposi- tioning	K LR B HSSD	73.8 79.3 71.0 42.0	63.8 60.3 55.5 47.0	48.7 56.7 48.3 28.0	45.3 64.5 59.5 34.0	83.5 91.3 79.0 39.0	66.3 76.8 72.5 40.5	73.7 72.2 70.0 33.0	14.8 25.0 21.2 10.0
Free space	K LR B HSSD	97.8 0.2 2.7 35.0	93.2 14.2 31.2 16.0	83.0 2.8 1.0 24.0	84.2 1.8 1.3 22.0	95.0 3.5 8.8 17.0	95.2 1.2 0.8 15.5	83.8 0.5 1.0 7.5	66.2 2.7 0.7 6.5
Visibility	K LR B HSSD	87.7 81.7 74.8 46.5	63.2 52.7 57.5 20.0	54.5 43.3 41.0 22.5	67.0 52.2 54.0 26.5	98.3 98.3 96.7 70.5	90.2 86.8 86.3 52.0	91.5 88.7 86.3 45.5	18.5 10.0 10.8 9.0
View angle	K LR B HSSD	92.0 87.7 88.0 67.5	95.3 93.2 90.2 55.0	69.8 59.7 60.3 28.5	78.8 75.3 72.8 46.5	97.0 94.0 95.0 50.5	95.8 93.0 91.2 46.0	74.7 72.2 76.8 34.5	49.7 40.5 35.8 30.0
Max box	K LR B HSSD	47.2 7.8 5.8 5.0	31.8 7.0 6.8 7.5	32.0 5.0 7.3 2.5	26.8 5.7 5.0 2.0	65.5 22.3 29.2 11.5	27.5 4.5 4.8 4.5	26.5 8.8 7.0 3.0	4.5 0.5 1.7 1.0
Shortest path (valid)	K LR B HSSD	59.2 53.0 48.5 28.5	61.7 51.3 52.2 25.0	52.7 42.8 40.7 18.5	39.7 37.3 34.7 18.0	45.2 44.8 44.2 26.0	55.3 47.2 45.8 15.0	21.8 20.3 18.5 5.5	34.2 30.3 33.5 10.5
Shortest path (Fréchet)	K LR B HSSD	45.3 24.7 23.0 15.5	56.8 42.5 42.2 22.5	51.3 27.3 27.7 18.0	28.2 12.3 14.2 8.0	44.2 34.7 38.0 20.0	39.5 26.5 30.5 12.5	17.8 9.2 8.2 2.5	36.2 15.5 18.3 11.5

Table 7: Question-level accuracy @ full dataset by room type for **reasoning models**.

Question	Room	gpt-5	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K LR B HSSD	99.8 98.8 98.3 69.0	99.3 99.3 99.5 78.5	98.0 99.0 96.8 25.5	96.3 96.0 95.5 12.5	100.0 99.7 99.7 32.5	94.2 93.5 93.8 40.5	97.7 97.5 95.3 18.0
Placement	K LR B HSSD	84.7 75.5 61.2 70.0	92.0 89.0 83.5 85.0	89.0 82.2 72.0 79.0	59.7 53.3 35.8 16.0	90.8 86.3 81.2 75.5	85.7 78.5 62.0 74.5	68.2 46.5 34.5 28.5
Reposi- tioning	K LR B HSSD	83.0 85.5 77.8 49.5	85.5 89.8 83.3 60.5	79.2 86.2 83.3 47.5	90.5 91.2 85.2 18.5	84.5 92.8 84.3 53.5	70.8 87.8 78.0 40.0	61.5 77.0 69.2 27.0
Free Space	K LR B HSSD	82.5 47.0 50.5 19.5	99.0 83.3 87.5 31.0	93.0 18.3 34.8 6.5	93.3 17.7 33.3 1.0	99.5 78.5 82.2 5.0	94.8 53.2 74.0 9.0	97.0 0.0 1.2 1.0
Visibility	K LR B HSSD	94.8 95.2 94.2 57.0	94.2 94.0 92.5 70.0	71.3 52.0 53.5 10.0	26.8 11.3 11.2 0.5	98.0 98.0 95.5 39.0	91.5 89.3 89.2 45.5	78.8 70.8 64.2 3.0
View Angle	K LR B HSSD	96.2 93.3 95.2 59.5	98.5 97.3 98.2 74.0	73.7 68.2 75.2 13.5	92.5 91.5 93.8 20.0	88.3 84.5 86.8 25.5	93.5 92.0 91.3 37.5	98.5 98.3 98.3 26.0
Max Box	K LR B HSSD	48.5 17.3 13.0 5.0	62.8 28.2 30.3 9.5	50.5 8.0 11.0 2.5	3.7 0.0 0.0 0.0	85.2 60.3 61.2 17.0	31.3 3.8 5.8 0.5	16.7 0.8 0.5 0.0
Shortest path (valid)	K LR B HSSD	64.7 21.2 58.2 28.5	64.2 66.0 57.8 33.5	12.3 12.5 7.8 8.5	3.2 1.5 1.0 0.0	52.3 53.7 52.0 16.5	43.0 37.7 30.0 13.5	14.2 16.7 14.3 1.0
Shortest path (Fréchet)	K LR B HSSD	56.3 12.3 39.3 22.5	55.5 40.5 44.8 26.5	11.5 9.3 6.0 2.5	3.2 1.3 0.8 0.0	50.5 47.5 47.7 12.0	42.2 28.5 24.2 14.0	14.0 16.3 14.3 1.0

E ADDITIONAL ABLATIONS AND ANALYSIS

To further verify the robustness and generalizability of our evaluation setup, we conducted supplementary analyses beyond the main accuracy tables.

General models. Figure 5 shows mean accuracy (top left) and variability (top right) across general models, as well as accuracy (bottom left) and variability (bottom right) by question type. Kitchens are consistently easier, while HSSD is the most challenging. Among models, Devstral Small performs noticeably worse, whereas Qwen3-30B reaches a level comparable to larger models. Across question types, Pair Distance and View Angle from the Metric category yield the highest accuracy, while more complex tasks such as Max Box and Shortest Path show lower scores and higher variance across rooms.

Reasoning models. Figure 6 presents analogous plots for reasoning models. GPT-family models show stronger results overall. In contrast, DeepSeek-R1 and Gemini Flash struggle with token limits, as these models tend to produce very long outputs according Table 11. By question type, Repositioning and Placement are handled reliably, whereas Max Box and Shortest Path remain the most difficult as well, with high variance across rooms.

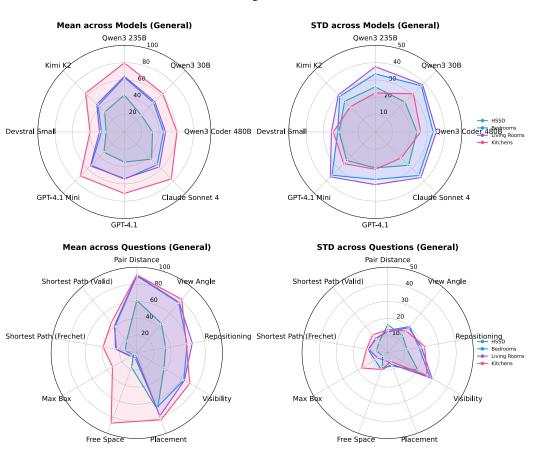


Figure 5: Radar plots for **base models**, showing mean and standard deviation of accuracy across (top) models and (bottom) question type.

Prompt Sensitivity Ablation To assess model robustness to prompt variation, we conducted an ablation in which each question was regenerated using the same template but with alternate object references. For example, a question originally referring to a "sofa" might instead use a "bookshelf" in the regenerated version. This allowed us to evaluate whether model performance remains stable under changes in object content while preserving linguistic structure.



Figure 6: Radar plots for reasoning models, showing mean and standard deviation of accuracy across (top) models and (bottom) question type.

As shown in Table 8, accuracy under prompt regeneration is broadly stable; larger models change little, and smaller ones fluctuate modestly. We observe somewhat higher sensitivity for Repositioning: paraphrases can implicitly select different target objects or motion directions, occasionally introducing additional complexity or non-movable cases. Overall, the evaluation appears robust to prompt-level variation.

Table 8: Accuracy under prompt variation. Each cell shows performance on the original prompt followed by a regenerated version with alternate object references.

Model	Repositioning	View Angle	Visibility
GPT-OSS-120B	$60.5 \rightarrow 59.0$	$74.0 \rightarrow 80.0$	$70.0 \rightarrow 77.0$
GPT-OSS-20B	$40.0 \rightarrow 50.0$	$37.5 \rightarrow 35.5$	$45.5 \rightarrow 50.0$
Qwen3-235B-A22B	$39.0 \rightarrow 49.0$	$50.5 \rightarrow 48.0$	$70.5 \rightarrow 74.0$

CASE STUDIES BY QUESTION TYPE

To better understand the sources of model failure, we conducted a qualitative analysis of representative examples from the benchmark. This section presents visualizations of selected test layouts alongside model responses. By examining both correct and incorrect outputs, we aim to identify common failure patterns and reasoning bottlenecks across different architectures.

F.1 PAIR DISTANCE

Task Definition

In this task, the model is asked: "Find the distance between centroids." For example, in the visualization shown in Figure 7, the question specifies two polygons, and the goal is to compute the distance between their centroids.

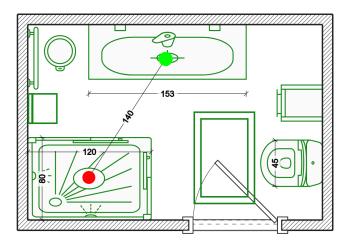


Figure 7: Example layout question: compute the distance between centroids of two polygons.

Main Issue

To establish the correct answer, we first compute the centroid (x,y) of each polygon. This is done using the *shoelace formula*, which calculates the centroid based on the polygon's vertices. Once both centroids are obtained, the *Euclidean distance* between them is computed. A predicted answer is considered correct if it falls within a tolerance of 2% of the ground-truth distance.

Observed Failure Mode

Models often fail on the HSSD dataset because they compute the centroid incorrectly. In earlier experiments, some models used the center of mass instead of centroid, so now the word *centroid* is stated explicitly in the prompt. Almost all wrong answers come from calculation mistakes in the centroid formula (areas, sums, divisions), not from the distance step. This error does not depend on polygon complexity (number of vertices).

F.2 FREE SPACE

Task Definition

The question asks: "What is the total unoccupied floor area in the game room?" An example is shown in Figure 8.

Ground-Truth Computation

Use Shapely to merge overlapping object polygons/bounding boxes inside the room (e.g., unary_union). Compute the union area of objects, then subtract from the room area:

$$A_{\text{free}} = A_{\text{room}} - A_{\text{union(objects)}}.$$

A prediction is correct if it is within 5% of the ground-truth free area.

Main Issue For analysis we use *HSSD* layouts and model *GPT-OSS-120B*. Quality drops as layouts get more complex (more objects and higher overlap). The model handles overlaps poorly: it often subtracts the areas of all objects from the room area without merging overlaps (i.e., it ignores the union), which double-counts covered regions and underestimates free space.

F.3 VIEW ANGLE

Task Definition

Given chair_2 (reference) and window_1 (target) in the kitchen (Fig. 10), compute the alignment

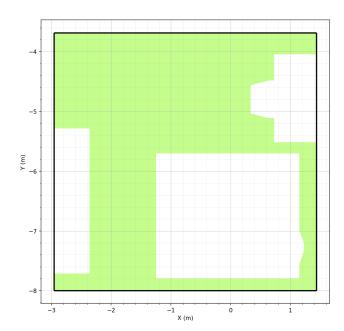


Figure 8: Example layout: compute total unoccupied floor area in the game room.

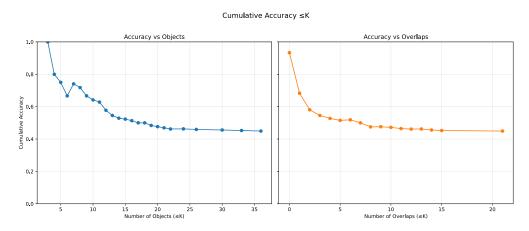


Figure 9: Cumulative accuracy vs. layout complexity for HSSD with GPT-OSS-120B for Free Space question type.. Accuracy declines as object count and overlap increase.

between the facing direction of chair_2 and the direction to the centroid of window_1. The answer is the dot product in [-1,1], judged correct within 2% tolerance.

Ground-Truth Computation

- (1) Get the unit facing vector $\hat{\mathbf{f}}$ of chair_2.
- (2) Compute centroids \mathbf{c}_r (for chair_2) and \mathbf{c}_t (for window_1) via the shoelace formula.

(3) Form
$$\hat{\mathbf{v}} = \frac{\mathbf{c}_t - \mathbf{c}_r}{\|\mathbf{c}_t - \mathbf{c}_r\|}$$

(4) Ground-truth score $s = \hat{\mathbf{f}} \cdot \hat{\mathbf{v}} \in [-1, 1]$. A prediction is correct if it is within 2% of s.

Main Issue

On HSSD layouts, most errors come from centroid *calculation* mistakes (areas/sums/divisions in the shoelace step), not from the dot product. To avoid ambiguity, the prompt explicitly says *centroid*. On synthetic layouts (4-point, axis-aligned boxes), centroids are trivial and this issue does not appear.

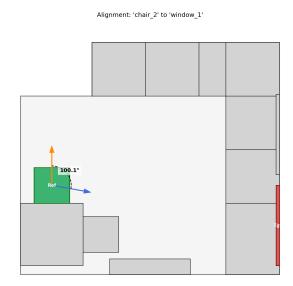


Figure 10: View-Angle example in the kitchen: chair_2 (reference) and window_1 (target).

F.4 VISIBILITY

Task Definition

Find all objects that intersect the vector from the centroid of the window to the centroid of the binf in the office (Fig. 11).

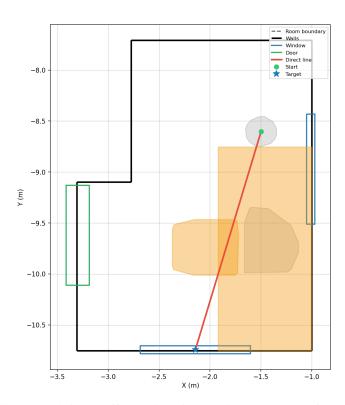


Figure 11: Visibility example in the office: objects intersecting the segment from window centroid to binf centroid.

Ground-Truth Computation

Compute the centroids of window and binf; form the line segment between these centroids. Return the set of objects whose bounding boxes intersect this segment, excluding endpoint touches (i.e., ignore cases where the segment only touches at its endpoints).

Main Issue

On HSSD layouts, accuracy is slightly worse due to the larger number of objects and overlaps: more polygons along the line increase intersection ambiguity and error rates.

F.5 REPOSITIONING

Task Definition

How far can bin_2 move left before hitting a wall or another object? Figure 12 illustrates the setup.

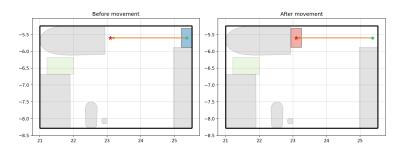


Figure 12: Repositioning in the bedroom: maximal leftward translation of bin_2 without overlap.

Ground-Truth Computation

Simulate a leftward, axis-aligned slide of bin_2. Advance until the next step would overlap a wall or another object; take the last non-overlapping pose. Measure the travel distance from the initial position to that pose. Accept model answers within 2% tolerance.

Main Issue

Tight gaps and non-axis-aligned obstacles make leftward clearance hard to judge. Models often approximate with axis-aligned bounding boxes (ignoring shape orientation) or skip the union step, leading to over-/under-estimated travel distances.

F.6 PLACEMENT

Task Definition

Can a $2.5 \,\mathrm{m} \times 1.0 \,\mathrm{m}$ antique chest in the living room without overlap? (Example visualization in Fig. 13.) This tests collision detection, spatial constraints, and free-space reasoning.

Ground-Truth Computation

Form the room polygon and the union of all existing object polygons. Allow arbitrary rotation (non-axis-aligned) for the 2×3 m rectangle. Search over poses: for each orientation θ , test placements where the rotated rectangle is strictly inside the room polygon and has no intersection with the object union (i.e., *contains* check for the room and *disjoint* check for obstacles). If any collision-free pose exists, return True; otherwise False. Compare the model's Boolean prediction to this result.

Main Issue

The task is harder when non-axis-aligned placements are allowed. Models often mis-handle overlap checks under rotation and falsely report feasibility/infeasibility due to incorrect intersection computations.

SUCCESS: Fit test for: Antique Storage Chest (Extra Large & Deep) (2.5m x 1.0m)

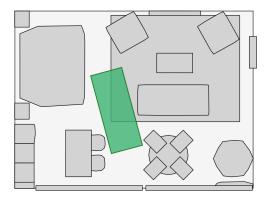


Figure 13: Placement example in the living room: attempting to place an antique chest.

F.7 MAX BOX

Task Definition

What is the area of the largest *non-axis-aligned* rectangular box you can place in the living room without overlaps, ignoring soft coverings (rugs)? An example is shown in Fig. 14.

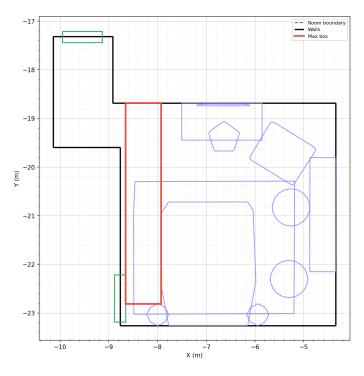


Figure 14: Largest non-axis-aligned rectangle placement in a living room.

Ground-Truth Computation

Let R be the room polygon and O the union of all object polygons except rugs (soft coverings). Compute free space $F = R \setminus O$. Search over orientations $\theta \in [0, \pi)$: rotate F by $-\theta$, find the largest axis-aligned empty rectangle inside the rotated F, record (w_{θ}, h_{θ}) and area $A_{\theta} = w_{\theta}h_{\theta}$, then map back to get (w^*, h^*, θ^*) with $A^* = \max_{\theta} A_{\theta}$.

Main Issue

Harder than simple placement: the model must *optimize* size and orientation, not just answer yes/no. Allowing rotation makes the search non-convex; more objects and overlaps increase combinatorial complexity. Models often (i) ignore rotation and return an axis-aligned box, or (ii) mis-handle overlaps in free space, leading to under- or over-estimated maxima.

F.8 SHORTEST PATH

Task Definition

What is the shortest walkable path from the TV to the armchair_2 with 15 cm clearance? Figure 15 shows a failure case for GPT-OSS-120B in a living room.

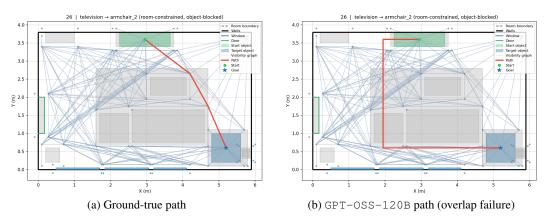


Figure 15: Shortest-path example in a living room. The model fails due to overlap handling.

Ground-Truth Computation

Offset obstacles (equivalently, erode free space) by $0.15\,\mathrm{m}$ to enforce clearance. Run A* on the navigable grid to obtain the shortest collision-free path polyline between TV and armchair. A model path is valid if it is collision-free under the same clearance; it is judged correct if its Fréchet distance to the ground-truth path is $< 0.6\,\mathrm{m}$.

Main Issue

More objects and overlaps make clearance buffering, merge obstacles, and narrow corridors, increasing failure modes. Models often mishandle overlaps, producing paths that cut through obstacles or declaring no path when one exists.

G PROMPTS

This section illustrates the design of prompt templates used in our benchmark. We first show a representative example of a question prompt, demonstrating how natural language templates are instantiated to elicit spatial reasoning skills (Figure 16).

Next, we present two examples of layout-generation prompts for bedrooms. The first specifies the creation of base room boundaries and openings (walls and windows) (Figure 17). The second demonstrates how furniture and objects are placed within the generated layout to yield a complete scene (Figure 18).

For completeness, full prompt templates, formatting rules, and implementation details are provided in the supplementary code to support reproducibility.

Prompt: Free Space Given the {room_type} layout in {format}, calculate the total non-occupied (free) floor area in square meters (m^2) . Room layout: {room} Begin with printing a concise checklist (3–7 bullets) of the conceptual steps necessary for calculating the free space. Then, carefully walk through each reasoning step required to calculate the area. If the format, object names, or required input data are missing, invalid, or inconsistent, reply with: *Final answer*: ERROR Limit your output to the step-by-step reasoning only, and do not include any internal reason-ing unless explicitly requested. Clearly state the final answer on the last line using the exact format specified below. ### Output Format <step-by-step calculations> *Final answer*: <area> Where <area> is a float rounded to three decimal places, representing the free area in m².

Figure 16: Prompt for computing the largest empty rectangle area within a room layout using Chain-of-Thought reasoning.

For example: *Final answer*: 12.347

Prompt: Generate Bedroom Layouts Generate a dataset of {N} bedroom layouts in JSON format. Each layout must include: • A unique layout_id • A room dictionary with: - width, depth, units (meters) - shape ("rectangular", "L-shaped", or "open") - shape_description, intended_use, and bed_size_suggestion • An objects list with dictionaries containing: - label, bbox [y0, x0, y1, x1], and a descriptive comment Layouts must obey structural and spatial constraints: • 50% rectangular, 30% L-shaped, 20% open. • L-shape cutouts in corners; each remaining segment ≥ 1.5 m. All layouts must include a door (except open types); avoid placing doors and win-dows on the same short wall. • Windows must span >15% of usable floor area, with equal sizing on shared walls and valid grouping logic. • Optional elements: fireplace (for master bedrooms), closet alcove. No overlap or out-of-bound placement. Fireplace must not overlap with doors/win-dows. • Follow a consistent coordinate system: top-left origin, x=width (left to right), y=depth (top to bottom). Return a JSON list of {N} valid layouts. No comments or trailing metadata.

Figure 17: Summarized data generation prompt for producing structured and constrained bedroom layouts.

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 **Prompt: Fill Bedroom Layout with Objects** 1522 Given a predefined bedroom layout style and room geometry in JSON format, generate a 1523 filled 2D bird-view layout. Include a list of placed objects with their bounding boxes and 1524 explanatory comments. 1525 Essential fields: 1526 • Each object must have a "label", "bbox" ([y0, x0, y1, x1]), and a descriptive 1527 "comment". 1528 1529 • Furniture labels include: "bed", "nightstand", "wardrobe", "desk", "chair", "armchair", "rug", "lamp", etc. 1530 1531 elements ("door", "window", 1532 "fireplace", "closet_alcove") must match the input layout and re-1533 main unmodified. 1534 Placement priorities: 1535 1. Place the "bed" according to the bed_size_suggestion and layout style. 1536 2. Add essential storage: "dresser", "wardrobe", or use "closet_alcove" 1537 if defined. 1538 3. Add secondary items (e.g., "nightstand", "desk", "chair") only if space 1539 and clearance allow. 1540 1541 4. Add decorative or optional items ("rug", "mirror", "floor_lamp", 1542 "plant") last. 1543 Constraints: Maintain at least 0.75 m clearance for walkways and door swing. 1545 • Beds require 0.6–0.75 m of access space on sides and foot (unless against wall). 1546 1547 • Wardrobes/dressers need 0.6–0.8 m clearance for drawer/door use. 1548 • No object overlap (except table lamps on nightstands or rugs under furniture). 1549 • Use walls efficiently; avoid blocking windows unless unavoidable. 1550 Ensure mirror has 0.75 m clearance in front; treat "rug" as an anchor but optional. 1551 1552 Final output: a JSON list of objects, including placement and comments. No layout geometry should be altered. 1553 1554

1555

1556

1557 1558

Figure 18: Prompt for populating a bedroom layout with functionally and spatially valid object placements, following layout-specific design rules.

"dresser".

"cutout_area",

H SUPPLEMENTARY ACCURACY ANALYSES

Table 9: % token-limit stop reason for **general models**.

Question	Room	claude sonnet-4	\$\text{gpt-4.1}	Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.2 0.0 0.5	0.0 0.0 0.2 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 17.5	0.0 0.0 0.2 8.5	0.0 0.0 0.0 3.5	0.2 0.2 0.8 1.5
Placement	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	6.5 6.0 17.2 6.5	0.0 0.0 0.0 0.0	1.2 1.0 2.2 1.5	1.2 1.5 0.5 4.5
Reposi- tioning	K LR B HSSD	0.0 0.0 0.0 0.0	0.2 0.2 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.7 1.7 7.5 47.0	0.0 0.0 0.2 2.0	2.3 1.0 0.8 29.0	0.2 1.0 1.3 4.5
Free space	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.3 0.0 2.0	0.2 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.2 4.0 4.5 52.5	0.0 0.0 0.0 1.0	0.3 1.0 0.3 39.0	2.5 10.2 6.3 28.5
Visibility	K LR B HSSD	0.2 0.2 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.2 0.2 11.5	0.0 0.2 0.3 2.5	0.2 0.5 1.3 11.0	0.3 0.3 0.7 0.0
View angle	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	0.0 0.2 0.0 0.0	0.0 0.2 0.3 0.0	0.5 1.5 0.5 26.5	0.0 0.0 0.0 3.0	0.0 0.2 0.5 17.5	0.3 0.7 1.2 2.5
Max box	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.7 1.5 0.5	0.0 0.0 0.0 0.0	22.5 49.8 46.5 45.5	0.0 0.0 0.3 0.5	6.2 29.3 21.8 20.0	1.5 0.8 0.8 3.0
Shortest path	K LR B HSSD	0.0 0.0 0.2 0.0	0.2 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	44.3 37.8 40.2 35.5	0.0 0.2 0.0 0.0	41.5 46.3 49.0 43.0	6.7 7.8 9.2 27.0

Table 10: Question-level accuracy @ completed answers for **general models**.

Question	Room	claude sonnet-4	Sgpt-4.1	K' Kimi-K2 Instruct	Qwen3 Coder- 480B	Qwen3 235B	gpt-4.1 mini	Qwen3 30B	Devstral Small
Pair distance	K LR B HSSD	99.8 99.5 99.7 88.0	96.5 95.2 96.3 56.3	95.7 94.2 93.5 75.5	96.8 96.8 96.5 66.0	99.2 99.7 99.5 81.2	90.7 88.5 88.0 40.4	89.5 88.8 85.2 46.1	58.9 62.4 60.5 56.9
Placement	K LR B HSSD	87.8 80.5 68.8 72.0	78.0 69.0 59.8 64.5	82.2 73.8 67.5 73.4	80.3 83.2 70.8 70.0	96.4 94.9 92.6 87.7	86.5 75.2 68.7 76.5	86.5 86.5 78.7 72.6	75.0 72.9 56.6 57.1
Reposi- tioning	K LR B HSSD	73.8 79.3 71.0 42.0	63.9 60.4 55.5 47.0	48.7 56.7 48.3 28.0	45.3 64.5 59.5 34.0	88.5 92.9 85.4 73.6	66.3 76.8 72.6 41.3	75.4 72.9 70.6 46.5	14.9 25.3 21.5 10.5
Free space	K LR B HSSD	97.8 0.2 2.7 35.0	93.2 14.2 31.2 16.3	83.1 2.8 1.0 24.0	84.2 1.8 1.3 22.0	95.2 3.7 9.3 35.8	95.2 1.2 0.8 15.7	84.1 0.5 1.0 12.3	67.9 3.0 0.7 9.1
Visibility	K LR B HSSD	63.3 52.8 58.1 20.0	87.7 81.7 74.8 46.5	54.5 43.3 41.0 22.5	67.0 52.2 54.0 26.5	98.3 98.5 96.8 79.7	90.2 87.0 86.6 53.3	91.6 89.1 87.5 51.1	18.6 10.0 10.9 9.0
View angle	K LR B HSSD	92.0 87.7 88.0 67.5	95.3 93.2 90.2 55.3	69.8 59.8 60.3 28.5	78.8 75.3 72.8 46.5	97.5 95.4 95.5 68.7	95.8 93.0 91.2 47.4	74.7 72.3 77.2 41.8	49.8 40.8 36.3 30.8
Max box	K LR B HSSD	47.2 7.8 5.8 5.0	31.8 7.0 6.8 7.5	32.2 5.1 7.4 2.5	26.9 5.7 5.0 2.0	84.5 44.5 54.5 21.1	27.5 4.5 4.9 4.5	28.2 12.5 9.0 3.8	4.6 0.5 1.7 1.0
Shortest path (valid)	K LR B HSSD	59.2 53.0 48.6 28.5	61.7 51.3 52.2 25.0	52.7 42.8 40.7 18.5	39.7 37.3 34.7 18.0	81.1 72.1 73.8 40.3	55.3 47.3 45.8 15.0	37.3 37.9 36.3 9.7	36.6 32.9 36.9 14.4
Shortest path (Fréchet)	K LR B HSSD	45.3 24.7 23.0 15.5	56.8 42.5 42.2 22.5	51.3 27.3 27.7 18.0	28.2 12.3 14.2 8.0	79.3 55.8 63.5 31.0	39.5 26.5 30.5 12.5	30.5 17.1 16.0 4.4	38.8 16.8 20.2 15.8

Table 11: % token-limit stop reason for **reasoning models**.

Question	Room	Spt-5	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 11.0	1.5 0.8 2.5 70.0	3.3 4.0 4.3 86.5	0.0 0.2 0.2 67.0	0.7 0.7 0.7 39.5	2.0 2.3 4.7 72.0
Placement	K LR B HSSD	13.2 22.7 36.2 27.0	0.0 0.2 0.2 0.0	5.2 7.2 8.2 6.0	39.2 45.8 63.3 84.0	6.5 10.3 12.8 16.5	4.5 12.3 25.7 15.0	29.5 52.5 64.5 70.5
Reposi- tioning	K LR B HSSD	0.3 0.0 0.2 2.0	0.0 0.0 0.0 0.5	8.3 7.5 3.2 33.5	1.0 2.2 1.7 76.0	0.0 0.0 0.0 28.5	0.8 0.5 0.8 22.5	7.2 6.7 8.3 63.0
Free space	K LR B HSSD	1.2 0.2 0.2 5.0	0.0 0.2 0.0 28.5	5.5 41.7 12.2 79.5	2.0 41.7 30.7 96.5	0.0 1.7 1.0 85.0	0.8 13.7 7.8 77.5	2.3 2.3 3.0 98.5
Visibility	K LR B HSSD	0.0 0.0 0.0 0.0	1.5 1.7 1.2 5.0	26.7 46.8 44.5 87.0	72.8 88.2 88.3 99.5	0.0 0.3 1.5 56.5	0.3 1.0 0.2 29.0	19.2 26.3 33.3 96.0
View angle	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 7.5	25.5 30.8 23.8 84.5	5.5 5.0 3.7 75.5	11.2 14.3 12.7 73.0	1.0 1.3 1.2 38.0	1.0 0.7 0.8 66.0
Max box	K LR B HSSD	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	30.2 63.5 59.3 58.5	95.7 100.0 100.0 100.0	2.0 5.7 4.7 22.5	28.8 61.0 56.0 33.0	62.7 98.0 98.2 99.0
Shortest path	K LR B HSSD	0.2 61.7 0.5 0.0	0.5 1.2 0.5 3.0	78.5 77.8 79.5 82.0	96.2 97.8 98.0 100.0	23.5 19.8 17.5 65.5	36.2 40.3 50.3 32.5	85.2 81.3 83.7 98.0

Table 12: Question-level accuracy @ completed answers for **reasoning models**.

Question	Room	Spt-5	gpt-oss 120b	DeepSeek R1-0528	Gemini Flash 2.5	gpt-5 mini-2025	gpt-oss 20b	Qwen3 30B Think.
Pair distance	K LR B HSSD	99.8 98.8 98.3 69.0	99.3 99.3 99.5 78.5	98.0 99.0 96.8 25.5	96.3 96.0 95.5 12.5	100.0 99.7 99.7 32.5	94.2 93.5 93.8 40.5	97.7 97.5 95.3 18.0
Placement	K LR B HSSD	84.7 75.5 61.2 70.0	92.0 89.0 83.5 85.0	89.0 82.2 72.0 79.0	59.7 53.3 35.8 16.0	90.8 86.3 81.2 75.5	85.7 78.5 62.0 74.5	68.2 46.5 34.5 28.5
Reposi- tioning	K LR B HSSD	83.0 85.5 77.8 49.5	85.5 89.8 83.3 60.5	79.2 86.2 83.3 47.5	90.5 91.2 85.2 18.5	84.5 92.8 84.3 53.5	70.8 87.8 78.0 40.0	61.5 77.0 69.2 27.0
Free space	K LR B HSSD	82.5 47.0 50.5 19.5	99.0 83.3 87.5 31.0	93.0 18.3 34.8 6.5	93.3 17.7 33.3 1.0	99.5 78.5 82.2 5.0	94.8 53.2 74.0 9.0	97.0 0.0 1.0 1.0
Visibility	K LR B HSSD	94.8 95.2 94.2 57.0	94.2 94.0 92.5 70.0	71.3 52.0 53.5 10.0	26.8 11.3 11.2 0.5	98.0 98.0 95.5 39.0	91.5 89.3 89.2 45.5	78.8 70.8 64.2 3.0
View Angle	K LR B HSSD	96.2 93.3 95.2 59.5	98.5 97.3 98.2 74.0	73.7 68.2 75.2 13.5	92.5 91.5 93.8 20.0	88.3 84.5 86.8 25.5	93.5 92.0 91.3 37.5	98.5 98.3 98.3 26.0
Max Box	K LR B HSSD	48.5 17.3 13.0 5.0	62.8 28.2 30.3 9.5	50.5 8.0 11.0 2.5	3.7 0.0 0.0 0.0	85.2 60.3 61.2 17.0	31.3 3.8 5.8 0.5	16.7 0.8 0.5 0.0
Shortest path (valid)	K LR B HSSD	64.7 21.2 58.2 28.5	64.2 66.0 57.8 33.5	12.3 12.5 7.8 8.5	3.2 1.5 1.0 0.0	52.3 53.7 52.0 16.5	43.0 37.7 30.0 13.5	14.2 16.7 14.3 1.0
Shortest path (Fréchet)	K LR B HSSD	56.3 12.3 39.3 22.5	55.5 40.5 44.8 26.5	11.5 9.3 6.0 2.5	3.2 1.3 0.8 0.0	50.5 47.5 47.7 12.0	42.2 28.5 24.2 14.0	14.0 16.3 14.3 1.0