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ABSTRACT

Training on large-scale graphs has achieved remarkable results in graph represen-
tation learning, but its cost and storage have raised growing concerns. Generally,
existing graph distillation methods address these issues by employing gradient
matching, but these strategies primarily emphasize matching directions of the
gradients. We empirically demonstrate this can result in deviations in the matching
trajectories and disparities in the frequency distribution. Accordingly, we propose
CrafTing RationaL trajectory (CTRL), a novel graph dataset distillation method.
CTRL introduces gradient magnitude matching during the gradient matching pro-
cess by incorporating the Euclidean distance into the criterion. Additionally, to
avoid the disregard for the evenness of initial feature distribution that the naive ran-
dom sampling initialization may introduce, we adopt a simple initialization strategy
that ensures evenly distributed features. CTRL not only achieves state-of-the-art
performances in 34 cases of experiments on 12 datasets with lossless performances
on 5 datasets but can also be easily integrated into other graph distillation methods
based on gradient matching. The code will be made public.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated superior performances in various graph analysis
tasks, including node classification (Li & Pi, 2019; Xiao et al., 2022), link prediction (Chen et al.,
2022b; Rossi et al., 2022), and graph generation (Van Assche et al., 2022; Vignac et al., 2022).
However, as deep neural networks, training GNNs on large-scale graph datasets comes at a high
cost (Wang et al., 2022; Polisetty et al., 2023). One of the most straightforward ideas is to reduce
the redundancy of the large graph. For example, graph sparsification (Li et al., 2022b; Yu et al.,
2022b) directly removes insignificant edges, while graph coarsening (Chen et al., 2022a; Kammer
& Meintrup, 2022) reduces the graph size by merging similar nodes. Yet the rigid operation graph
sparsification and coarsening conduct heavily rely on heuristic techniques (Cai et al., 2021), which
leads to the disregard for local details and limitation in condensation ratio (Jin et al., 2022b).

The recently proposed methods of graph dataset distillation generate a synthetic graph dataset to
approximate the original graph dataset (Jin et al., 2022b;a; Zheng et al., 2023), which demonstrate
advantages over traditional approaches due to their consideration of global information in graph
data. As shown in Figure 1(a), GCond follows the vision dataset condensation (Zhao et al., 2020)
and proposes a graph condensation method based on gradient-matching. It optimizes synthetic data
by minimizing the gradient matching loss between the gradients of training losses w.r.t the GNN
trained on the original graph and the synthetic graph. GCond is capable of condensing the graph
with an extremely low condensation ratio, while the synthetic graph dataset is expected to achieve
comparable results as training on the original graph dataset.

Although graph condensation methods based on gradient matching have achieved remarkable per-
formance (Jin et al., 2022b;a), the criterion in gradient matching and the initialization they adopt
are still naive. To elaborate, firstly, relying solely on cosine distance as a matching criterion (Jin
et al., 2022b) disregards gradient magnitude, which will cause cumulative errors before achieving
alignment between gradients of real and synthetic data. As shown in Figure 3(a) and 3(b), even if
the cosine distance converges in later stages of matching, it fails to eliminate the accumulated errors
caused by the lack of alignment in gradient magnitude. Secondly, random sampling for initialization
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(a) Condense scheme of GCond (b) Condense scheme of CTRL

(c) Optimization Trajectories (d) Example Sampling results.

Figure 1: (a) and (b) illustrate the pipelines of GCond and CTRL. (c) presents a comparison of
optimization trajectories when training from scratch using real data versus synthetic data generated
under three distinct gradient matching strategies. (d) illustrates the disparity between CTRL sampling
and random sampling in terms of selecting initialization values for synthetic data.

may result in synthetic data that initially exhibit similar features, as shown in Figure 1(d), thereby
causing additional challenges in the optimization process (Liu et al., 2023).

In this paper, we introduce a novel graph condensation method called CrafTing RationaL trajectory
matching (CTRL). CTRL considers both direction and magnitude of gradient (Cantrijn et al., 1992;
Fukuda & Drummond, 2011; Ruder, 2016) during gradient matching. Aiming to avoid singular
features, we cluster each class of the original data into sub-clusters and then samples from each
sub-cluster as initialization values to cover the sample space of the whole class (Liu et al., 2023).
Compared to previous methods, as shown in Figure 1(c) and Figure 1(d), CTRL allows a finer
matching of gradients and obtains initial synthetic data with even feature distribution, effectively
reducing the cumulative errors caused by misalignment in gradient magnitude and gradient direction
(Figure 3(c) and 3(d)). Moreover, by matching the gradient magnitude, CTRL can effectively capture
the frequency distribution of signals in the original graph, empirical studies (Table 6) reveal that the
graph condensed by CTRL accurately mimics the frequency distribution of the original graph.

We further assess the performance of CTRL through comprehensive experiments, to evaluate its
generalization capabilities, we extend its application to node classification and graph classification
tasks. With greater specificity, CTRL effectively reduces the Euclidean distance between gradients to
just 3.7% of their original values while maintaining the cosine distance. Remarkably, we achieve
lossless results on prominent datasets, including Citeseer, Cora, and Flickr for node classification, as
well as the Ogbg-molbace and Ogbg-molbbbp datasets for graph classification. Notably, our approach
yields new state-of-the-art results on the Ogbg-molbace and Ogbn-arxiv datasets, demonstrating
improvements of 6.2% and 6.3%, respectively. Our main contributions are summarized as:

• Based on the analysis of gradient matching, we introduce CTRL, a simple and highly
generalizable method for graph dataset distillation through finer-grained gradient matching.

• In CTRL, the optimization trajectory of our synthetic data closely approximates that of
real data through a weighted combination of cosine distance and Euclidean distance and
effectively captures the feature distribution of real data.

• We conduct experimental evaluations across 18 node classification tasks and 18 graph classi-
fication tasks. The results highlight that our method achieves state-of-the-art performances
in 34 cases of experiments on 12 datasets with lossless performances on 5 datasets.

2



Under review as a conference paper at ICLR 2024

2 HOW CTRL ACHIEVES EFFECTIVE GRADIENT MATCHING

2.1 GRAPH CONDENSATION VIA GRADIENT MATCHING

The objective of the graph condensation via gradient matching framework is to extract latent informa-
tion from a large graph dataset T = {A,X,Y} to synthesize a smaller dataset S = {A′,X′,Y′},
such that a model trained on S can achieve comparable results to one trained on T , where A ∈ RN×N

denotes the adjacency matrix, X ∈ RN×d is the feature, and Y ∈ RN×1 represents the labels, the
first dimension of A′,X′, and Y′ are N′. To summarize, the process essentially revolves around
matching the gradients generated during the training of Graph Neural Networks on both datasets.

To achieve this alignment, the following steps are undertaken: Fitstly, both on the large graph dataset
T and the small synthetic dataset S , we train a GNN model parameterized with θ, denotes as GNNθ

and compute the parameter gradients at each layer for this model. We then use the gradients from the
synthetic dataset to update the GNN model. The optimization goal is to minimize the distance D
between the gradients at each layer, essentially, this aligns the training trajectories of the models over
time, making them converge.

The above process can be described by the following formula:

min
S

L (GNNθS (A,X),Y) s.t θS = argmin
θ

L(GNNθ(A
′,X′),Y′), (1)

min
S

Eθ0∼Pθ0
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D
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∇θL

(
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)
,∇θL

(
GNNθT

t
(A,X) ,Y

))]
, (2)

where T is the number of steps of the whole training trajectory, and θS
t ,θT

t denote the model
parameters trained on S and T at time step t. The distance D is further defined as the sum of the
distance between two gradients at each layer.

2.2 GRAPH CONDENSATION VIA CRAFTING RATIONAL TRAJECTORY

Weakness of cosine distance only. In previous gradient matching-based graph dataset condensation
methods (Jin et al., 2022b;a), the cosine distance was primarily used as a criterion to measure the
distance between gradients. However, cosine distance mainly reflects the similarity in direction
between gradients but can not effectively address the vector nature of gradients, i.e., does not capture
the differences in magnitude between gradients (Fukuda & Drummond, 2011; Ruder, 2016), which
leads to bias in gradient matching. In the initial stages, due to the lack of convergence in matching
gradients’ magnitude and direction, the errors accumulate, resulting in significant trajectory deviations
and ultimately a misalignment between the synthesized data and real data.

Refined matching criterion. To provide better guidance for gradient matching, inspired by Jiang
et al. (2022), we introduce the Euclidean distance as a supplement to matching loss. Specifically,
we utilize a linear combination of cosine similarity complement and Euclidean distance as the
metric for measuring gradient directions and magnitudes. We assign different weights to balance the
significance of these two metrics through a hyperparameter β. Given two gradient GS ∈ Rd1×d2 and
GT ∈ Rd1×d2 at a specific layer, we defined the distance dis(·, ·) as follows:

dis(GS ,GT ) =

d2∑
i=1

(1− β)∗

1− Gi
S ·Gi

T∥∥∥Gi
S
∥∥∥ ∥∥∥Gi

T
∥∥∥
+ β∗(∥ Gi

S −Gi
T ∥)

 , (3)

where Gi
S , Gi

T are the i-th column vectors of the gradient matrices. With the above formulation,
we achieve vector gradient matching.

Initialization of synthetic data. Traditional graph condensation methods suffer from limitations in
effectively capturing the feature distribution of real data. As shown in Figure 1(d), random sampling
initialization brings uneven feature distribution. This leads to suboptimal initial optimization points
in the distillation process, thereby causing a degradation of training efficiency. To tackle this problem,
CTRL adopts K-Means (Hartigan & Wong, 1979; Arthur & Vassilvitskii, 2007) on the node features
in each class of real data, dividing each class of real data into M sub-clusters, where M is the number
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of synthetic data instances for that class. For each sub-cluster, we randomly sample a node feature
from it to serve as the initial value for synthetic data. Such that the feature distribution of our synthetic
data initialization becomes even closer to the feature distribution of real data (Liu et al., 2023), while
it only requires clustering data from a specific class at a time, which is exceptionally cost-effective in
terms of computation.

2.3 BRIDGING GRAPH FREQUENCY DISTRIBUTION TO GRADIENT MAGNITUDES

In this section, we initially introduce the definition and measurement methods of graph signal
distribution as explored in prior research. Subsequently, we empirically demonstrate a strong
correlation between graph frequency distribution and the gradient magnitudes generated during
the training of GNNs. This observation further elucidates why incorporating gradient magnitude
matching can yield improved results in the domain of graph dataset distillation.

Measurement of graphs signals. Graph spectral analysis provides insights into the frequency content
of signals on graphs. This allows the graph signal to be decomposed into components of different
frequencies based on the graph discrete Fourier transform (GDFT) (Stankovic et al., 2019; Cheng
et al., 2022), as shown in Eq. (4) and Eq. (5).

L = I −D− 1
2AD− 1

2 = UΛUT , (4)

x̂ = UTx, x̂H = UT
Hx, x̂L = UT

Lx, (5)

where L denotes a regularized graph Laplacian matrix, U is a matrix composed of the eigenvectors of
L. Λ is a diagonal matrix with the eigenvalues of L on its diagonal, and x = (x1, x2, · · · , xN )T ∈ RN

and x̂ = (x̂1, x̂2, · · · , x̂N )T = UTx ∈ RN represent a signal on the graph and the GDFT of x,
respectively, while UH and UL correspond to matrices containing eigenvectors associated with
eigenvalues that are above and below the specified cutoff frequency τ . Furthermore, x̂H and x̂L

represent signals attributed to high-frequency and low-frequency components respectively.

However, this process is often time-consuming due to the Laplacian matrix decomposition required.
Following the previous work (Tang et al., 2022), we introduce the definition of the high-frequency
area, represented by Eq. (6).

Shigh =

∑N
k=1 λkx̂

2
k∑N

k=1 x̂
2
k

=
xTLx

xTx
, (6)

where x̂2
k/Σ

N
i=1x̂

2
i denotes the spectral energy distribution at λk(1 ≤ k ≤ N), as the spectral energy

on low frequencies contributes less on Shigh, this indicator increases when spectral energy shifts to
larger eigenvalues. Note that Shigh is defined under the premise of x being a one-dimensional vector.
In subsequent computations, Shigh is computed for each feature dimension and averaged.

Matching frequency distribution. Previous studies have shown that aligning the frequency distribu-
tion of synthetic data with real data can enhance the quality of synthetic data (Martinkus et al., 2022;
Luo et al., 2022). However, matching the frequency domain distribution during gradient matching is
challenging due to time-consuming matrix decomposition and significant differences in the number
of nodes between original and synthetic graphs. Surprisingly, through experiments with three graph
models and four commonly used GNN models, we discovered a strong correlation between the
frequency distribution and the gradient magnitude during training.

As shown in Figure 2, with the high-frequency area increasing gradually, the gradient size generated
has an obvious upward trend. Furthermore, 8 of the 12 experiments showed a correlation greater than
0.95, more details of the experiment are in Appendix B.4. Based on these experimental results, we can
further validate the effectiveness of our approach. Considering gradient magnitude alignment during
the gradient matching process not only explicitly accounts for the vector properties of gradients,
enhancing the precision of gradient alignment, but also indirectly assists in emulating frequency
distribution similar to real data within synthetic data. We provide further evidence in Sec. 3.3.
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(a) Train with SGC model (b) Train with ChebNet model

Figure 2: (a) and (b) demonstrate the relationship between average gradient magnitude and graph
spectral distribution for synthetic graphs conforming to the Erdos-Renyi model, training with SGC
and ChebNet respectively. The curves shown are the result of fitting a fourth-order polynomial.
Altering the frequency distribution causes a significant impact on the model gradient during training.

3 EXPERIMENTS

3.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. To better evaluate the performance of CTRL, we conducted experiments on six node
classification datasets: Cora, Citeseer (Kipf & Welling, 2016), Ogbn-arxiv (Hu et al., 2020), Ogbn-
XRT (Chien et al., 2021), Flickr (Zeng et al., 2020), and Reddit (Hamilton et al., 2017), as well as six
graph classification datasets, multiple molecular datasets from Open Graph Benchmark (OGB) (Hu
et al., 2020), TU Datasets (MUTAG and NCI1) (Morris et al., 2020), and one superpixel dataset
CIFAR10 (Dwivedi et al., 2020). For specific settings, we follow the settings of Jin et al. (2022b) and
Jin et al. (2022a). More statistics on datasets are provided in Appendix A.1.

Implementation details. For node classification, without specific designation, in the condense stage,
we adopt the 2-layer GCN with 128 hidden units as the backbone, and we adopt the settings on Jin
et al. (2022b) and Jin et al. (2022a). For graph classification, we adopt a 3-layer GCN with 128 hidden
units as the model for one-step gradient matching. Additionally, we finetuned our hyperparameter β
for different datasets. More details can be found in Appendix A.2.

Evaluation. We first learn synthetic graphs according to each type of baseline algorithm, then train a
GCN classifier on which. Subsequently, we evaluate its classification performance on the real graphs’
test sets. In the context of node classification tasks, we condense the entire graph and the training
set graphs for transductive datasets and inductive datasets, respectively. For graph condensation, we
repeat the generation process of condensed graphs 5 times with different random seeds and train
GCN on these graphs with 10 different random seeds. Finally, we report the average performance
and variance across all kinds of experiments.

3.2 COMPARISON WITH BASELINES

For node classification, We compare our proposed CTRL with seven baselines: graph coarsening
methods (Huang et al., 2021), Random, which randomly selected nodes to form the original graph,
core set methods (Herding (Welling, 2009) and K-Center (Sener & Savarese, 2017)), DC-Graph is
proposed as a baseline in (Jin et al., 2022b), and the state-of-the-art graph condensation methods
GCond (Jin et al., 2022b) and SFGC (Zheng et al., 2023). For graph classification, We compare our
proposed CTRL with the above three coreset methods: Random, Herding, and K-Center, the above
DC-Graph, and Doscond (Jin et al., 2022a). We report the performances in Table 1 and Table 2.

Based on the results, we have noted the following observations: 1) In most cases of the node
classification tasks, CTRL demonstrates better performance than any baseline method. Compared
with Gcond, which is also based on gradient matching with significant improvements of up to 6.4%.
2) Across all datasets for graph classification, CTRL still achieves better performance (up to 6.2%)
than Doscond, which uses MSE distance as the criterion of gradient matching loss.
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Table 1: Performance comparison to baselines in the node classification tasks. CTRL achieves the
highest results in most cases on node classification and lossless results in 3 of 6 datasets. We report
test accuracy (%) on Citeseer, Cora, Ogbn-arxiv, Ogbn-XRT, Flickr and Reddit. Bold entries are best
results, highlight mark the lossless results.

Dataset Ratio Random Herding K-Center Coarsening DC-Graph GCond SFGC CTRL(ours) Whole Dataset

Citeseer
0.90% 54.4±4.4 57.1±1.5 52.4±2.8 52.2±0.4 66.8±1.5 70.5±1.2 71.4±0.5 73.3±0.4

71.7±0.11.80% 64.2±1.7 66.7±1.0 64.3±1.0 66.9±0.9 59.0±0.5 70.6±0.9 72.4±0.4 73.5±0.1

3.60% 69.1±0.1 69.0±0.1 69.1±0.1 65.3±0.5 66.3±1.5 69.8±1.4 70.6±0.7 73.4±0.2

Cora
1.30% 63.6±3.7 67.0±1.3 64.0±2.3 31.2±0.2 67.3±1.9 79.8±1.3 80.1±0.4 81.9±0.1

81.2±0.22.60% 72.8±1.1 73.4±1.0 73.2±1.2 65.2±0.6 67.6±3.5 80.1±0.6 81.7±0.5 81.8±0.1

5.20% 76.8±0.1 76.8±0.1 76.7±0.1 70.6±0.1 67.7±2.2 79.3±0.3 81.6±0.8 81.8±0.1

Ogbn-arxiv
0.05% 47.1±3.9 52.4±1.8 47.2±3.0 35.4±0.3 58.6±0.4 59.2±1.1 65.5±0.7 65.6±0.3

71.4±0.10.25% 57.3±1.1 58.6±1.2 56.8±0.8 43.5±0.2 59.9±0.3 63.2±0.3 66.1±0.4 66.5±0.3

0.50% 60.0±0.9 60.4±0.8 60.3±0.4 50.4±0.1 59.5±0.3 64.0±1.4 66.8±0.4 67.6±0.2

Ogbn-XRT
0.05% 55.1±2.1 60.6±2.3 52.7±3.5 48.4±0.4 60.4±0.5 55.1±0.3 55.4±0.1 61.1±0.5

73.4±0.10.25% 64.2±1.4 64.4±1.7 60.8±2.2 51.3±0.3 61.5±0.2 68.1±0.4 67.7±0.1 69.4±0.4

0.50% 65.7±2.1 68.3±2.2 62.3±3.4 56.9±0.1 68.2±0.3 69.3±0.4 66.5±0.1 70.4±0.1

Flickr
0.10% 41.8±2.0 42.5±1.8 42.0±0.7 41.9±0.2 46.3±0.2 46.5±0.4 46.6±0.2 47.1±0.1

47.2±0.10.50% 44.0±0.4 43.9±0.9 43.2±0.1 44.5±0.1 45.9±0.1 47.1±0.1 47.0±0.1 47.4±0.1

1.0% 44.6±0.2 44.4±0.6 44.1±0.4 44.6±0.1 45.8±0.1 47.1±0.1 47.1±0.1 47.5±0.1

Reddit
0.01% 46.1±4.4 53.1±2.5 46.6±2.3 40.9±0.5 88.2±0.2 88.0±1.8 89.7±0.2 89.2±0.2

93.9±0.00.05% 58.0±2.2 62.7±1.0 53.0±3.3 42.8±0.8 89.5±0.1 89.6±0.7 90.0±0.3 90.6±0.2

0.50% 66.3±1.9 71.0±1.6 58.5±2.1 47.4±0.9 90.5±1.2 90.1±0.5 90.3±0.3 91.9±0.4

Table 2: The graph classification performance comparison to baselines. CTRL achieves the highest
results in all cases on graph classification and lossless results in 2 of 6 datasets. We report the
ROC-AUC for the first three datasets and accuracies (%) for others. Whole Dataset indicates the
performance of the original dataset. Bold entries are best results, highlight mark the lossless results.

Dataset Ratio Random Herding K-Center DCG DosCond CTRL(ours) Whole Dataset

ogbg-molbace
0.20% 0.580±0.067 0.548±0.034 0.548±0.034 0.623±0.046 0.657±0.034 0.716±0.025

0.724±0.0051.70% 0.598±0.073 0.639±0.039 0.591±0.056 0.655±0.033 0.674±0.035 0.736±0.014

8.30% 0.632±0.047 0.683±0.022 0.589±0.025 0.652±0.013 0.688±0.012 0.745±0.009

ogbg-molbbbp
0.10% 0.519±0.016 0.546±0.019 0.546±0.019 0.559±0.044 0.581±0.005 0.592±0.011

0.646±0.0041.20% 0.586±0.040 0.605±0.019 0.530±0.039 0.568±0.032 0.605±0.008 0.629±0.006

6.10% 0.606±0.020 0.617±0.003 0.576±0.019 0.579±0.032 0.620±0.007 0.650±0.005

ogbg-molhiv
0.01% 0.719±0.009 0.721±0.002 0.721±0.002 0.718±0.013 0.726±0.003 0.732±0.006

0.757±0.0080.06% 0.720±0.011 0.725±0.006 0.713±0.009 0.728±0.002 0.728±0.005 0.734±0.008

0.30% 0.721±0.014 0.725±0.003 0.725±0.006 0.726±0.010 0.731±0.004 0.737±0.006

MUTAG 1.30% 67.47±9.74 70.84±7.71 70.84±7.71 75.00±8.16 82.21±1.61 83.06±3.15 88.63±1.4413.30% 77.89±7.55 80.42±1.89 81.00±2.51 82.66±0.68 82.76±2.31 83.16±3.62

NCI1
0.10% 51.27±1.22 53.98±0.67 53.98±0.67 51.14±1.08 56.58±0.48 56.69±0.69

71.70±0.200.60% 54.33±3.14 57.11±0.56 53.21±1.44 51.86±0.81 58.02±1.05 58.04±1.28

3.10% 58.51±1.73 58.94±0.83 56.58±3.08 52.17±1.90 60.07±1.58 60.14±1.73

CIFAR10
0.06% 15.61±0.52 22.38±0.49 22.37±0.50 21.60±0.42 24.70±0.70 29.30±0.27

50.75±0.140.20% 23.07±0.76 28.81±0.35 20.93±0.62 29.27±0.77 30.70±0.23 31.21±0.20

1.10% 30.56±0.81 33.94±0.37 24.17±0.51 34.47±0.52 35.34±0.14 35.53±0.38

This suggests that in gradient matching, aligning either direction or magnitude alone introduces bias,
combining both can achieve a better alignment of the gradient trajectories.

3.3 ANALYSIS

Better matching trajectories. To better illustrate the enhanced capacity of our method in crafting
matching trajectories, we conduct experiments on the Reddit dataset with the condensation ratio
of 0.5% and quantify the variations between gradients during the graph condensation, yielding the
results as depicted in Figure 3(a) and 3(b). More experimental details can be found in Appendix B.3

We can observe that in comparison to GCond, CTRL exhibits two notable improvements: 1) By
optimizing both cosine distance and Euclidean distance between gradients, our method effectively
addresses the limitations of methods relying solely on matching cosine distance, which fails to align
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(a) Cosine distance during optimization (b) Euclidean distance during optimization

(c) Accuracies on Reddit (d) Accuracies on Ogbn-arxiv (e) Sensitivity Analysis of β

Figure 3: (a) and (b) illustrate the gradient difference generated during the optimization process using
GCond and CTRL, step refers to the times of calculating gradient matching losses, demonstrating that
our approach not only reduces early-stage cosine distance matching errors but also quickly achieves
matching in Euclidean distance. (c) and (d) show the improvement on Ogbn-arxiv and Reddit datasets
by employing the initialization method of CTRL.

the gradient magnitude. As shown in Figure 3(b), GCond exhibits minimal capability in optimizing
Euclidean distances, with only marginal improvements observed, while CTRL reduces Euclidean
distance between gradients to only 3.7% of the original scale, significantly mitigating the variation in
gradient magnitudes. 2) Our approach does not introduce side effects in terms of gradient direction
alignment. Throughout the entire matching process, both Euclidean distance and cosine distance
consistently maintain smaller values. Which can be explained as matching gradient magnitudes
aiding in the alignment of gradient directions.

Quantitative analysis of frequency domain similarity. We employ multiple metrics to measure
how well synthetic graphs generated by CTRL imitate the distribution of frequency domains in
the original graph, including the proportion of low-frequency nodes, the mean of high-frequency
areas (Tang et al., 2022), spectral peakedness and skewness (Ao et al., 2022), spectral radius (Fan
et al., 2022), and the variance of eigenvalues (Sharma et al., 2019). Subsequently, we calculate these
metrics separately on the synthetic graph and the original graph, then visually depict the correlation
by computing the Pearson coefficient which reflects the overall trend.

We provide the Pearson correlation coefficient and the statistical significance P-value in Table 6. The
results of our experiments on multiple datasets show that CTRL-generated synthetic graphs better
imitate the spectral distribution in the original graphs compared to GCond, demonstrating that the
frequency distribution of the synthetic graph generated by CTRL is more similar to the original graph.
This further substantiates the effectiveness of our approach in simulating the frequency domain.

Ablation study of initialization. In our investigation of the initialization component of synthetic data,
we conduct an ablation study to assess their impact. The results presented in Figure 3(c) and 3(d) are
obtained from experiments conducted on the Reddit and Ogbn-arxiv datasets, using a condensation
rate of 0.50%. Upon examination of the figures, a clear trend emerges: Initialization of CTRL not only
improves performance by approximately 10% at the beginning of training but also leads to significant
improvements throughout the distillation process. This suggests that CTRL’s initialization method
offers a superior starting point for optimizing synthetic data and reduces the additional optimization
challenges because of the gradient misalignment in the early stages of gradient matching, ultimately
resulting in better consistency throughout the entire gradient matching.
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Table 3: Performance across different GNN architectures. Avg. and Std. : the average performance
and the standard deviation of the results of APPNP, Cheby, GCN, SAGE and SGC, ∆(%) denotes
the improvements upon the DG-Graph. We mark the best performance by bold.

Architectures StatisticsDatasets Methods
MLP GAT APPNP Cheby GCN SAGE SGC Avg. Std. ∆(%)

DC-Graph 67.2 - 67.1 67.7 67.9 66.2 72.8 68.3 2.6 -
GCond 73.1 66.2 78.5 76.0 80.1 78.2 79.3 78.4 4.9 ↑ 10.1Cora
CTRL 77.4 66.7 80.8 77.0 81.6 79.0 81.5 80.0 2.0 ↑ 11.7

DC-Graph 59.9 - 60.0 55.7 59.8 60.0 60.4 59.2 2.0 -
GCond 62.2 60.0 63.4 54.9 63.2 62.6 63.7 61.6 3.7 ↑ 2.4Ogbn-arxiv
CTRL 64.1 60.3 65.3 57.7 65.8 62.9 66.1 63.6 3.5 ↑ 4.4

DC-Graph 43.1 - 45.7 43.8 45.9 45.8 45.6 45.4 0.9 -
GCond 44.8 40.1 45.9 42.8 47.1 46.2 46.1 45.6 1.6 ↑ 0.2Flickr
CTRL 42.6 41.0 46.2 43.1 47.2 46.5 46.7 45.9 1.6 ↑ 0.5

DC-Graph 50.3 - 81.2 77.5 89.5 89.7 90.5 85.7 5.9 -
GCond 42.5 60.2 87.8 75.5 89.4 89.1 89.6 86.3 6.1 ↑ 0.6Reddit
CTRL 43.2 60.0 87.9 75.3 90.3 89.1 89.7 86.5 6.3 ↑ 0.8

Table 4: Comparison of the cross-architecture generalization performance between GCond (on the
left of /) and CTRL (on the right of /) on Cora(a) and Ogbn-arxiv(b). Bold entries are the best results.
↑/↓ : our method show increase or decrease performance. Overall, graphs condensed with CTRL by
different GNNs exhibit stronger transfer performance on other architectures than GCond.

(a) Cora, ratio=2.60%

C/T APPNP Cheby GCN SAGE SGC

APPNP 72.1/76.1↑ 60.8/75.1↑ 73.5/76.7↑ 72.3/72.7↑ 73.1/78.0↑
Cheby 75.3/78.5↑ 71.8/75.8↑ 76.8/74.1↓ 76.4/75.2↓ 75.5/75.6↑
GCN 69.8/72.5↑ 53.2/62.4↑ 70.6/72.3↑ 60.2/60.6↑ 68.7/73.1↑
SAGE 77.1/77.2↑ 69.3/75.9↑ 77.0/79.3↑ 76.1/75.7↓ 77.7/79.1↑
SGC 78.5/80.9↑ 76.0/77.5↑ 80.1/80.7↑ 78.2/74.8↓ 79.3/76.5↓

(b) Ogbn-arxiv, ratio=0.05%

C/T APPNP Cheby GCN SAGE SGC

APPNP 60.3/62.5↑ 51.8/57.3↑ 59.9/63.6↑ 59.0/61.3↑ 61.2/62.5↑
Cheby 57.4/59.2 ↑ 53.5/55.2↑ 57.4/59.0↑ 57.1/55.2↓ 58.2/57.7↓
GCN 59.3/61.4↑ 51.8/55.8↑ 60.3/61.1↑ 60.2/60.3↑ 59.2/61.9↑
SAGE 57.6/60.7↑ 53.9/53.3↓ 58.1/62.9↑ 57.8/55.5↓ 59.0/61.7↑
SGC 57.6/60.6↑ 53.9/55.9↑ 58.1/61.8↑ 57.8/58.9↑ 59.0/61.6↑

Sensitivity analysis of β. To assess the sensitivity of β, we conduct a series of experiments on
the Cora, Citeseer, and Ogbn-arxiv datasets, with distillation ratios of 1.3%, 0.9%, and 0.25%,
respectively. The experimental results indicate that our method is not sensitive to the β, as shown
in Figure 3(e). Specifically, when the value of β varies, the change in accuracy on the test set for
the generated synthetic data does not exceed 1.5%. This validates that CTRL itself possesses good
robustness and does not overly rely on the choice of the β.

Cross-architecture generalization analysis. To further demonstrate the generalization ability of the
graph compression process, we employ a GNN model to condense a graph and train various GNN
architectures on it, subsequently evaluating their performance to analyze the transferability of the
learned representations. Specifically, we selected APPNP, GCN, SGC, GraphSAGE (Hamilton et al.,
2017), Cheby and GAT (Veličković et al., 2017), as well as a standard MLP. As reported in Table 3,
compared to GCond, the improvement of CTRL is up to 2%, demonstrating that the finer-grained
gradient matching does not lead condensed graph to overfit in a single neural network architecture.

Versatility of CTRL. We also evaluate our method on Cora and Ogbn-arxiv graph datasets using
five different graph neural network architectures: APPNP, ChebyNet, GCN, GraphSAGE, and SGC,
as done in Jin et al. (2022b). To be more specific, we first condense each graph dataset separately
using each architecture, then evaluate the condensed graphs on all five architectures and report their
performances in Table 4. The results show that our approach achieves improved performance over
GCond on the majority of model-dataset combinations, demonstrating that CTRL is versatile and
achieves consistent gains across diverse architectures and datasets.

Neural architecture search evaluation. We extend our investigation to neural architecture search
(NAS) to comprehensively assess the performance of our proposed CTRL. Following the setting
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Table 5: Neural Architecture Search. Methods are compared
in validation accuracy correlation and test accuracy obtained
by searched architecture. Whole means the architecture is
searched using whole dataset. CTRL achieved better perfor-
mance than GCond in all 3 datasets.

Dataset
Pearson Correlation / Performance(%)

Whole
Random Herding GCond CTRL Per.(%)

Cora 0.40/82.9 0.21/82.9 0.76/83.1 0.86/83.2 82.6
Citeseer 0.56/71.4 0.29/71.3 0.79/71.3 0.93/72.0 71.6
Pubmed 0.55/80.0 0.21/79.9 0.81/79.7 0.83/80.1 80.5

Table 6: Comparing the distribu-
tion of high-frequency and low-
frequency signals in synthetic graph
generated by CTRL and GCond with
the original graph.

Dataset
Pearson Correlation / P-value

GCond CTRL

Cora 0.90/0.016 0.96/0.003
Citeseer 0.92/0.009 0.95/0.003
Pumbed 0.89/0.016 0.90/0.014

in Jin et al. (2022b), we search 480 architectures on condensed graphs of the Cora, Citeseer, and
Pubmed datasets. The results reported in Table 5 demonstrate the consistent superiority of our method,
evidenced by higher Pearson correlation coefficients (Li et al., 2022a) and improved test performance,
with enhancements of up to 0.14 and 0.4%, respectively. These results underscore the architectures
searched by CTRL are more efficient when trained on the full graph datasets.

4 RELATED WORK

Dataset Distillation & Dataset Condensation. Dataset distillation (DD) and dataset condensation
(DC) are two techniques to reduce the size and complexity of large-scale datasets for training deep
neural networks. DD condenses a large-scale dataset into a small synthetic one such that the model
trained on the latter achieves comparable performance (Wang et al., 2018; Bohdal et al., 2020;
Nguyen et al., 2020). DC aims to improve the efficiency of DD, a common approach is matching the
gradients (Zhao et al., 2020; Zhao & Bilen, 2021). Both techniques have been applied to various data
modalities, such as images, text, speech, and graphs (Zhang et al., 2023), and have shown promising
results in reducing the training cost (Liu et al., 2022; Wu et al., 2023b). However, there are also
many challenges and open questions in DC, such as how to design an effective matching strategy,
(Sucholutsky & Schonlau, 2020). In this work, we focus on designing a novel matching strategy for
more efficient graph dataset condensation.

Graph Coarsening & Graph Sparsification. Graph coarsening minimizes the size of graph data
while preserving its basic properties (Chen et al., 2022a; Kammer & Meintrup, 2022; Kelley &
Rajamanickam, 2022) by grouping similar nodes into supernodes. Graph Sparsification reduces the
number of edges to make the graph sparser (Li et al., 2022b; Yu et al., 2022a; Chen et al., 2022b),
as there are many redundant relations in the graphs. Both two methods are based on the idea of
coreset selection (Chen et al., 2012; Campbell & Broderick, 2019), aiming to remove less important
information from the original graph. However, these methods rely heavily on heuristic unsupervised
techniques, resulting in poor generalization performance in downstream tasks. Moreover, they are
unable to condense graphs with extremely low condensation ratios.

5 CONCLUSION

We introduce CTRL, a novel approach for graph condensation through finer-grained gradient match-
ing and more rational initialization. This approach exhibits robustness across various scenarios and
achieves lossless results on Cora, Citeseer, Flickr, ogbn-molbace and ogbn-molbbbp. More impor-
tantly, our method is able to be effectively integrated into all gradient-based dataset condensation
methods easily, promising to advance future research in this field. This paper provides comprehensive
experimental analysis, contributing valuable insights for the broader research community.

Limitations and future work. Our current method, while effective for gradient matching, may
cause the potential loss of informative properties, like heterogeneity, during the condensation process.
This limitation can adversely affect performance in subsequent tasks. To overcome these constraints,
we plan to explore a more versatile method in our future research, aiming to preserve informative
properties during the condensation process, ultimately enhancing performance in downstream tasks.
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David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory, 2009.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

Fei He, Akiyoshi Hanai, Hiroshi Nagamochi, and Tatsuya Akutsu. Enumerating naphthalene isomers
of tree-like chemical graphs. In International Conference on Bioinformatics Models, Methods and
Algorithms, volume 4, pp. 258–265. SCITEPRESS, 2016.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutierrez,
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A DATASETS AND IMPLEMENTATION DETAILS

A.1 DATASETS

We evaluate CTRL on three transductive datasets: Cora, Citeseer (Kipf & Welling, 2016), Ogbn-
arxiv (Hu et al., 2020), Ogbn-xrt (Chien et al., 2021), and two inductive datasets: Flickr (Zeng et al.,
2020), and Reddit (Hamilton et al., 2017). We obtain all datasets from PyTorch Geometric(Fey &
Lenssen, 2019) with publicly available splits and consistently utilize these splits in all experiments.
For graph classification, we use multiple molecular datasets from Open Graph Benchmark (OGB) (Hu
et al., 2020) and TU Datasets (MUTAG and NCI1) (Morris et al., 2020) for graph-level property
classification, and one superpixel dataset CIFAR10 (Dwivedi et al., 2020). In addition, we use
Pubmed(Kipf & Welling, 2016) in our neural architecture search (NAS) experiments. Dataset
statistics are shown in Table 7 and 8.

Table 7: Dataset statistics(node classification). The first four are transductive datasets and the last
two are inductive datasets.

Dataset #Nodes #Edges #Classes #Features Training/Validation/Test

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000

Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603
Ogbn-xrt 169,343 1,166,243 40 768 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22312/22313
Reddit 232,965 57,307,946 210 602 15,3932/23,699/55,334

Table 8: Dataset statistics(graph classification).

Dataset Type #Clases #Graphs #Avg.Nodes #Avg. Edges

CIFAR10 Superpixel 10 60,000 117.6 941.07
ogbg-molhiv Molecule 2 41,127 25.5 54.9

ogbg-molbace Molecule 2 1,513 34.1 36.9
ogbg-molbbbp Molecule 2 2,039 24.1 26.0

MUTAG Molecule 2 188 17.93 19.79
NCI1 Molecule 2 4,110 29.87 32.30

A.2 IMPLEMENTATION DETAILS

During the implementation of CTRL, considering datasets with a large number of nodes, where the
feature distribution plays a crucial role in the overall data, such as Ogbn-arxiv, Ogbn-xrt, and Reddit,
we employ the specific initialization method depicted in Sec. 2.2 on them. Additionally, due to the
substantial volume of data and numerous gradient matching iterations, we introduce a threshold tau
during the matching process. We match gradients smaller than this threshold on both direction and
magnitude, while gradients exceeding the threshold were matched solely based on their directions.
Through extensive experimentation, we observe that this strategy reduced computational costs and
led to further performance improvements. For other datasets, due to the smaller dataset size, we
utilize both gradient magnitude and direction for matching throughout the entire matching process
and we directly employ random sampling for initialization. For graph classification tasks, we employ
gradient magnitude and direction matching throughout the graph condensation and adopt a strategy
of random sampling for initialization. And the beta in Figure 3(c), 3(d) are 0.1 and 0.15, respectively.

A.3 HYPER-PARAMETER SETTING

For node classification, without specific mention, we adopt a 2-layer SGC (Wu et al., 2019) with 256
hidden units as the GNN used for gradient matching. We employ a multi-layer perceptron (MLP) as
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the function gΦ models the relationship between A′ and X′. Specifically, we adopt a 3-layer MLP
with 128 hidden units for small graphs (Cora and Citeseer) and 256 hidden units for large graphs
(Flickr, Reddit, and Ogbn-arxiv). We tune the training epoch for CTRL in a range of 400, 600, 1000.
For the choices of condensation ratio r, we divide the discussion into two parts. The first part is
about transductive datasets. For Cora and Citeseer, since their labeling rates are very small (5.2%
and 3.6%, respectively), we choose r to be 25%, 50%, 100% of the labeling rate. Thus, we finally
choose 1.3%, 2.6%, 5.2% for Cora and 0.9%, 1.8%, 3.6% for Citeseer. For Ogbn-arxiv and Ogbn-xrt,
we choose r to be 0.1%, 0.5%, 1% of its labeling rate (53%), thus being 0.05%, 0.2%, 0.5%. The
second part is about inductive datasets. As the nodes in the training graphs are all labeled in inductive
datasets, we choose 0.1%, 0.5%, 0.1% for Flickr and 0.05%, 0.1%, 0.2% for Reddit. The beta that
measures the weight of the direction and magnitude is in 0.1, 0.2, 0.5, 0.7, 0.9, please refer to the
experiments Sec. 3.3 for a detailed sensitivity analysis. For graph classification, we vary the number
of learned synthetic graphs per class in the range of 1, 10, 50 (1, 10 for MUTAG, in the case where
the condensation ratio has already reached 13.3% with a factor of 10, and we will refrain from further
increasing the condensation ratio to ensure the effectiveness of data condensation.) and train a GCN
on these graphs. The beta that measures the weight of the direction and magnitude is between 0.05
and 0.9 for node classification tasks, while between 0.1 and 0.9 for graph classification tasks.

B MORE DETAILS ABOUT QUANTITATIVE ANALYSIS

B.1 SELECTION OF THE THRESHOLD.

We determine the optimal frequency domain threshold by first calculating the spectral gap between
the maximum and minimum eigenvalues of the graph Laplacian matrix. Then search over threshold
values within a range centered around the median eigenvalue spanning a fraction of the spectral gap.
For each potential threshold, we compute the graph signal reconstruction error by splitting the signal
into high and low-frequency components based on the threshold, recombining the components, and
quantifying the Euclidean distance between the original and reconstructed signal vectors (Ortega
et al., 2018; Ramı́rez et al., 2021; Leus et al., 2023). The optimal threshold corresponds to the one
minimizing this reconstruction error across all tested values. This optimal data-driven threshold
provides the split that best preserves the graph signal when separating it into high and low-frequency
components, as indicated by the ability to reconstruct the signal with minimal distortion.

B.2 MULTIPLE METRIC.

We select six complementary metrics to provide a comprehensive evaluation of the distribution
of high and low-frequency signals between the synthetic and original graphs. The proportion of
low-frequency nodes directly quantifies the relative abundance of high versus low-frequency signals.
Meanwhile, the mean of the high-frequency signal region for each feature dimension can describe the
right-shift phenomenon in the whole spectrum (Tang et al., 2022) and get a measure of the overall
strength of the high-frequency content. Additionally, spectral peakedness and skewness directly
characterize the shape of the frequency distribution (Gallier, 2016; Ao et al., 2022). Spectral radius
indicates the overall prevalence of high-frequency signals, with a larger radius corresponding to more
high-frequency content (Gao & Hou, 2017; Fan et al., 2022). Finally, the variance of eigenvalues
measures the spread of the frequency distribution (Min & Chen, 2016; Sharma et al., 2019).

Together, these metrics enable multi-faceted quantitative analysis of the frequency distribution from
diverse perspectives, including intuitive reflection of frequency distribution, spectral characterization
to assess distribution shapes, and statistical distribution properties like spread and central tendency.
To provide a more intuitive summarized measure of the similarity between the synthetic and original
graphs across the six metrics, we first normalize all these metrics by simply multiplying or dividing
by powers of 10 in order to mitigate the impact of scale differences, then we compute the Pearson cor-
relation coefficient which reflects the overall trend, complementing the individual metric comparisons.

B.3 MORE DETAILS ABOUT MATCHING TRAJECTORIES.

In the training process, the optimization loss for synthetic data is obtained by training the GNN model
on subgraphs composed of nodes from each class. To better evaluate the optimization effectiveness,
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(a) Cosine distance during opti-
mization - class 0

(b) Cosine distance during opti-
mization - class 28

(c) Cosine distance during opti-
mization - class 32

(d) Euclidean distance during op-
timization - class 0

(e) Euclidean distance during opti-
mization - class 28

(f) Euclidean distance during opti-
mization - class 32

(g) Cosine distance during optimization - all
classes

(h) Euclidean distance during optimization -
all classes

Figure 4: (a)(b)(c)(d)(e)(f)(g) and (h) illustrate the gradient differences generated during the optimiza-
tion process using GCond and CTRL. The first six images depict the gradient disparities produced
by nodes from various classes. Subsequently, the last two images (g) and (h), showcase the overall
gradient differences weighted according to the GCond method. Notably, these results align closely
with the conclusions drawn from previous experiments Sec. 3.3.

we record the gradient differences generated during training between nodes of each class in both
the synthetic and original data. In previous experiments Sec. 3.3, due to space limitations (Reddit
has a total of 40 classes), we presented results for class 3 with a relatively high proportion of nodes.
In this context, to make the experimental results more representative, as depicted in Figure 4, we
showcase representative results for classes with a lower proportion of nodes (class 32), classes with a
moderate proportion of nodes (class 28), and another class with a higher proportion of nodes (class
28). We also present corresponding experimental results for the method of computing the total loss
by weighting the losses generated by different-class nodes according to GCond.

B.4 DETAILS ABOUT GRADIENT MAGNITUDES AND GRAPH SPECTRAL DISTRIBUTION.

Employing the methods outlined in Tang et al. (2022) to create artificial graphs, we first initial-
ize the composite graphs with three graph models, Erdos-Renyi (Erdős et al., 2013), Barabasi-
Albert (Stamatelatos & Efraimidis, 2022), and Watts-Strogatz (Song & Wang, 2014). Subsequently,
we conducted 3*4 sets of experiments on four commonly used GNN models: SGC (Wu et al.,
2019), ChebNet (Defferrard et al., 2016), GCN, and APPNP (Gasteiger et al., 2018), and repeat
each experiment 1000 times by varying the standard deviation of the Gaussian distribution and the
random seed. The results reveal a fairly strong correlation between the high-frequency area and the
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(a) Cora, r = 2.5% (b) Citeseer, r = 1.8% (c) Flickr, r = 0.1%

(d) Ogbn-arxiv, r = 0.05% (e) Reddit, r = 0.1%

Figure 5: When the size of the original datasets is relatively small(a)(b), the resulting composite
dataset tends to exhibit fewer outliers. In contrast, when working with compressed results of large
datasets(c)(d)(e), it is more likely to encounter a higher number of outliers

gradient magnitudes, as shown in Figure 2, with the high-frequency area increasing gradually, the
gradient size generated has an obvious upward trend. Furthermore, 8 of the 12 experiments showed a
correlation greater than 0.95. We conducted several experiments in this study, utilizing the following
implementation details:

We initialize a list of 1,000 random seeds ranging from 0 to 100,000,000. With a fixed random
seed of 0, we created random synthetic graphs using the Erdos-Renyi (Erdős et al., 2013) (edge
probability 0.2), Barabasi-Albert (2 edges per new node) (Stamatelatos & Efraimidis, 2022), and
Watts-Strogatz (Song & Wang, 2014) (4 initial neighbors per node, rewiring probability 0.2) models.
For each random seed, we followed the same procedure: We selected a bias term from [1, 2, 3,
4, 5] in sequence and then used these different bias terms to generate node features following a
Gaussian distribution. With a fixed 200 nodes and 128 feature dimensions, we computed the mean of
high-frequency area for each feature dimension based on the node feature matrix and adjacency matrix
of the synthetic graph. We then trained a simple 2-layer SGC (Wu et al., 2019), ChebNet (Defferrard
et al., 2016), GCN, and APPNP (Gasteiger et al., 2018) for 50 epochs, recording the average gradient
magnitude. We calculated the Spearman correlation coefficient using the 1,000 rounds of results
obtained. The results presented in Figure 2 were from two rounds under the Erdos-Renyi model,
while Table 9 shows the corresponding results under different graph models and GNNs.

Table 9: Spearman correlation coefficients of high-frequency area and gradient amplitude under
different graph models and GNN architectures. Strong correlations were shown under almost all
combinations

SGC Cheby APPNP GCN

Erdos-Renyi 0.953 0.965 0.955 0.859

Barabasi-Albert 0.955 0.961 0.875 0.818

Watts-Strogatz 0.946 0.955 0.939 0.679
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C MORE EXPERIMENTS

C.1 VISUALIZATIONS

To better understand the effectiveness of CTRL, we can visualize the condensed graphs in node
classification tasks. It is worth noting that while utilizing the CTRL technique to generate synthetic
graphs, it is possible to encounter outliers in contrast with GCOND, especially when working
with extensive datasets. This phenomenon arises due to the difficulty in learning and filtering out
high-frequency signals present in larger datasets, given the low-pass filtering nature of GNNs. The
presence of outliers in the condensed graphs generated by the CTRL method implies that some of the
high-frequency signals in the original data are well-preserved in the synthesized graph (Sandryhaila &
Moura, 2013a). Previous research has demonstrated the importance of both high and low-frequency
signals in graph data for effective GNN training (Bo et al., 2021; Wu et al., 2023a). This further
substantiates the validity of this observation.

C.2 TIME COMPLEXITY AND RUNTIME

Time complexity. For simplicity, let the number of MLP layers in the adjacency matrix generator
be L, and all the hidden units are d. In the forward process, we first calculate the A′, which has the
complexity of O(N ′2d2). Second, the forward process of GNN on the original graph has a complexity
of O(mLNd2), where m denotes the sampled size per node in training. Third, the complexity of
training on the condensed graph is O(LN ′d). Then, taking into account additional matching metrics
calculations, the complexity of the gradient matching strategy is O(2|θ|+ |A′|+ |X ′|).
The overall complexity of CTRL can be represented as O(N ′2d2) + O(mLNd2) + O(LN ′d) +
O(2|θ|+ |A′|+ |X ′|). Note N ′ < N , we can drop the terms that only involve N ′ and constants (e.g.,
the number of L and m). The final complexity can be simplified as O(mLNd2), thus it can be seen
that although the matching process is much finer, the complexity of CTRL still is linear to the number
of nodes in the original graph.

Running time. We report the running time of the CTRL in two kinds of six groups of classification
tasks. For node classification tasks, we vary the condensing ratio r in the range of {0.9%, 1.8%, 3.6%}
for Citeseer, {1.3%, 2.6%, 5.2%} for Cora, {0.1%, 0.5%, 1.0%} for Ogbn-arxiv, all experiments are
conducted five times on one single V100-SXM2 GPU. For graph classification tasks, We vary the
condensing ratio r in the range of {0.2%, 1.7%, 8.3%} for Ogbg-molbace, {0.1%, 1.2%, 6.1%} for
Ogbg-molbbbp, {0.1%, 0.5%, 1.0%} for Ogbg-molhiv, all experiments are repeated five times on
one single A100-SXM4 GPU.

We also conduct experiments with GCond and Docscond using the same settings, respectively. As
shown in Table 10 and 11, our approach achieved a similar running time to GCond and Doscond, note
that the comparison procedure here improves the cosine distance calculation of GCond, otherwise,
our method would be faster on small datasets.

Table 10: Runing time on Citeseer, Cora and
Ogbn-arxiv for 50 epochs.

Dataset r GCond CTRL

Citeseer
0.9% 68.7±2.4s 71.3±2.5s
1.8% 70.2±2.5s 73.7±2.6s
3.6% 78.1±2.3s 88.6±2.1s

Cora
1.3% 76.4±3.3s 76.8±2.8s
2.6% 77.7±2.2s 78.7±3.4s
5.2% 85.3±3.4s 89.2±2.5s

Ogbn-arxiv
0.1% 939.3±4.9s 967.6±5.8s
0.5% 1008.4±3.1s 1033.4±4.2s
1.0% 1061.3±2.9s 1087.6±1.8s

Table 11: Runing time on Ogbg-molbace,
molbbbp and molhiv for 100 epochs.

Dataset r Doscond CTRL

Ogbg-molbace
0.2% 18.1±1.4s 21.3±1.5s
1.7% 23.1±1.5s 27.4±1.6s
8.3% 26.6±1.3s 29.5±1.1s

Ogbg-molbbbp
0.1% 17.2±1.3s 18.9±1.8s
1.2% 20.2±1.2s 23.4±1.4s
6.1% 22.1±1.4s 24.9±1.5s

Ogbg-molhiv
0.1% 39.6±1.9s 42.3±1.8s
0.5% 40.2±1.1s 43.1±2.2s
1.0% 40.8±1.9s 43.9±1.8s

19



Under review as a conference paper at ICLR 2024

D MORE RELATED WORK

Graph signal processing. Our work is also related to graph signal processing, which studies the
analysis and processing of signals defined on graphs (Ortega et al., 2018; Nica, 2018). Graph signal
processing extends classical signal processing concepts like frequency, filtering, and sampling to
graph signals (Shuman et al., 2013; Sandryhaila & Moura, 2013b), which are functions that assign
values to the nodes or edges of a graph, providing tools for feature extraction, denoising, compression,
and learning on graph-structured data (Hammond et al., 2009; Loukas et al., 2015).

Graph neural networks (GNNs). As the generalization of deep neural networks to graph data, Graph
Neural Networks (GNNs) enhance the representation of individual nodes by utilizing information
from their neighboring nodes(Kipf & Welling, 2016; You et al., 2019; Wu et al., 2022). Due
to their powerful capability in handling graph-structured data, GNNs have achieved remarkable
performance on various real-world tasks, such as social networks(Hoff et al., 2002; Perozzi et al.,
2014), physical(Bear et al., 2020; Raffo et al., 2021; McKay et al., 2022), and chemical interactions(He
et al., 2016; Battaglia et al., 2018; Wu et al., 2020; Zhou et al., 2020), and knowledge graphs(Noy
et al., 2019; Hogan et al., 2021; Ji et al., 2021).
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