
Unsupervised Learning for Combinatorial
Optimization with Principled Objective Relaxation

Haoyu Wang
Purdue University

wang5272@purdue.edu

Nan Wu
UCSB

nanwu@ucsb.edu

Hang Yang
Georgia Tech.

hyang628@gatech.edu

Cong Hao
Georgia Tech.

callie.hao@gatech.edu

Pan Li
Purdue University

panli@purdue.edu

Abstract

Using machine learning to solve combinatorial optimization (CO) problems is
challenging, especially when the data is unlabeled. This work proposes an unsu-
pervised learning framework for CO problems. Our framework follows a standard
relaxation-plus-rounding approach and adopts neural networks to parameterize
the relaxed solutions so that simple back-propagation can train the model end-to-
end. Our key contribution is the observation that if the relaxed objective satisfies
entry-wise concavity, a low optimization loss guarantees the quality of the final
integral solutions. This observation significantly broadens the applicability of the
previous framework inspired by Erdős’ probabilistic method [1]. In particular, this
observation can guide the design of objective models in applications where the
objectives are not given explicitly while requiring being modeled in prior. We
evaluate our framework by solving a synthetic graph optimization problem, and
two real-world applications including resource allocation in circuit design and
approximate computing. Our framework1 largely outperforms the baselines based
on naïve relaxation, reinforcement learning, and Gumbel-softmax tricks.

1 Introduction

Combinatorial optimization (CO) with the goal of finding the optimal solution from a discrete space is
a fundamental problem in many scientific and engineering applications [2–4]. Most CO problems are
NP-complete. Traditional methods efficient in practice often either depend on heuristics or produce
approximation solutions. Designing these approaches requires considerable insights into the problem.
Recently, machine learning has paved a new way to develop CO algorithms, which asks to use neural
networks (NNs) to extract heuristics from the data [5–7]. Several learning for CO (LCO) approaches
have therefore been developed, providing solvers for the problems including SAT [8–10], mixed
integer linear programming [11–13], vertex covering [14, 15] and routing problems [16–23].

Another promising way to use machine learning techniques is to learn proxies of the CO objectives
whose evaluation could be expensive and time-consuming [24–27]. For example, to optimize
hardware/system design, evaluating the objectives such as computation latency, power efficiency [28],
and resource consumption [29–31] requires running complex simulators. Also, in molecule design,
evaluating the objective properties such as protein fluorescence or DNA binding affinity needs either
costly simulations or living experiments [32–34]. In these cases, proxies of the objectives can be
learned first to reduce the evaluation cost [31], and then optimize these proxies to solve the design
problems. Later, we name the CO problem with proxy objectives as Proxy-based CO (PCO) problems.

1Our code and the datasets are available at: https://github.com/Graph-COM/CO_ProxyDesign

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Graph-COM/CO_ProxyDesign

Relaxation

(Entry-wise Concave)
Deterministic

Rounding

0 1

(For unknown , build entry-wise concave NNs as proxies)

Example:Our Principle:

W/O Constraint Entry-wise Concave

The landscapes of the relaxed proxies

Relaxation
w/o constraint

Gumbel-softmax
w/o constraint

Relaxation
entry-wise concave(Ours)

Optimum recovery probability under different

0 1

0 1

Under the
configuration:

Figure 1: The entry-wise concave relaxation-and-rounding principle (for the case without constraints
as an illustration) and an example. Consider an optimization objective f(X;C), X ∈ {0, 1}n. Here,
C is the problem configuration such as an attributed graph in a graph optimization problem. We
relax the objective to an entry-wise concave fr(X̄;C), X̄ ∈ [0, 1]n. The soft solution by minimizing
fr(X̄;C) will be rounded to a discrete solution (in Def. 1) with performance guarantee. When
f(X;C) is not explicitly given, we will learn its relaxed proxies fr by a NN. This corresponds to
a PCO problem. In the toy example on the right, we first learn different relaxed proxies fr’s with
or without the entry-wise concave constraint. We compare their landscapes in the top-right figure.
We further optimize both proxies and round the obtained soft solutions to integral solutions. The
bottom-right figure shows the optimum-recovery probabilities of different methods under different
C’s.

Moreover, we claim that learning for PCO is often of greater significance than learning for traditional
CO problems because commercial CO solvers such as Gurobi cannot applied in PCO due to the
missing closed-form objectives and the lack of heuristics for such proxy objectives. Generic solvers
such as simulated annealing [35] may be applied while they are extremely slow.

In this work, we propose an unsupervised LCO framework. Our findings are applied to general
CO problems while exhibiting extraordinary promise for PCO problems. Unsupervised LCO has
recently attracted great attentions [1, 9, 20, 36, 37] due to its several great advantages. Traditional
supervised learning often gets criticized for the dependence on huge amounts of labeled data [38].
Reinforcement learning (RL) on the other hand suffers from notoriously unstable training [39].
In contrast, unsupervised LCO is superior in its faster training, good generalization, and strong
capability of dealing with large-scale problems [1]. Moreover, unsupervised learning has never been
systematically investigated for PCO problems. Previous works for PCO problems, e.g., hardware
design [30, 31], were all based on RL. A systematic unsupervised learning framework for PCO
problems is still under development.

Our framework follows a relaxation-plus-rounding approach. We optimize a carefully-designed
continuous relaxation of the cost model (penalized with constraints if any) and obtain a soft solution.
Then, we decode the soft assignment to have the final discrete solution. This follows a common
approach to design an approximation algorithm [40, 41]. However, the soft assignment here is given
by a NN model optimized based on the historical (unlabeled) data via gradient descent. Note that
learning from historical data is expected to facilitate the model understanding the data distribution,
which helps with extracting heuristics, avoiding local minima and achieving fast inference. An
illustration of our principle with a toy-example is shown in Fig. 1. We also provide the pipeline to
empirically evaluate our relaxation-plus-rounding principle in Fig. 2.

Our method shares a similar spirit with [1] while making the following significant contributions.
We abandon the probabilistic guarantee in [1], because it is hard to use for general CO objectives,
especially those based on proxies. Instead, we design a deterministic objective relaxation principle
that gives performance guarantee. We prove that if the objective relaxation is entry-wise concave w.r.t.
the binary optimization variables, a low-cost soft solution plus deterministic sequential decoding
guarantees generating a valid and low-cost integral solution. This principle significantly broadens the
applicability of this unsupervised learning framework. In particular, it guides the design of model
architectures to learn the objectives in PCO problems. We also justify the wide applicability of the
entry-wise concave principle in both theory and practice.

We evaluate our framework over three PCO applications including feature-based edge covering & node
matching problems, and two real-world applications, including imprecise functional unit assignment

2

in approximate computing (AxC) [42–46] and resource allocation in circuit design [24, 30]. In all
three applications, our framework achieves a significant performance boost compared to previous
RL-based approaches and relaxed gradient approaches based on the Gumbel-softmax trick [47–49].
The datasets for these applications are also provided in our github repository.

1.1 Further Discussion on Related Works

Most previous LCO approaches are based on RL [13,14,16–18,22,50–52] or supervised learning [11,
12, 38], as these two frameworks do not hold any special requirements on the formulation of CO
problems. However, they often suffer from the issues of training instability and subpar generalization.
Previous works on unsupervised learning for CO have studied satisfaction problems [9, 36, 53].
Applying these approaches to general CO problems requires problem reductions. Others have
considered max-cut [37] and TSP problems [20], while these works depend on carefully selected
problem-specific objectives. The work most relevant to ours is [1] and we give detailed comparison
in Sec. 3. Note that all previous works on unsupervised learning for CO do not apply to PCO as they
need an explicit objective to manipulate. For PCO problems, previous studies focus on how to learn
more generalizable proxies of the objectives, such as via Bayesian learning [54, 55] and adverserial
training [56, 57]. Once proxies are learned, direct objective relaxation plus gradient descent [56], or
RL [30, 31], or general MIP solvers with reformulations of the objectives [58, 59] have been often
adopted. Studying generalization of proxies is out of the scope of this work while we conjecture that
our suggested entry-wise concave proxies seem smoother than those without constraints (See Fig. 1)
and thus have the potential to achieve better generalization.

2 Preliminaries and Problem Formulation
In this section, we define several useful concepts and notations.

Combinatorial Optimization (CO). Let C ∈ C denote a data-based configuration such as a graph
with weighted edges. Let Ω be a finite set of all feasible combinatorial objects and each object has a
binary vector embedding X = (Xi)1≤i≤n ∈ {0, 1}n. For example, in the node matching problem,
each entry of X corresponds to an edge to denote whether this edge is selected or not. Note that
such binary embeddings are applicable even when the choice is not naturally binary: Choosing at
most one element from a tuple (1, 2, 3) can be represented as a 3-dim binary vector (X1, X2, X3)
with the constraint X1 +X2 +X3 ≤ 1. W.l.o.g, we assume an algebraic form of the feasible set
Ω ≜ {X ∈ {0, 1}n : g(X;C) < 1} where g(X;C) ≥ 0 for all X ∈ {0, 1}n 2. For notational
simplicity, we only consider one inequality constraint while our later discussion in Sec. 3 and our
case studies in Sec. 5 may contain multiple inequalities. Given a configuration C and a constraint Ω,
a combinatorial optimization (CO) is to minimize a cost f(·;C) by solving

min
X∈{0,1}n

f(X;C), s.t. g(X;C) < 1. (1)

Proxy-based CO (PCO). In the many applications, the cost or the constraint may not be cheaply
evaluated. Some proxies of the cost f or the constraint g often need to be learned from the historical
data. With some abuse of notations, we interchangably use f (g, resp.) to denote the objective (the
constraint, resp.) and its proxy.

Learning for CO/PCO (LCO). A LCO problem is to learn an algorithm Aθ(·) : C → {0, 1}n, say
a neural network (NN) parameterized by θ to solve CO or PCO problems. Given a configuration
C ∈ C, we expect Aθ to (a) generate a valid solution X̂ = Aθ(C) ∈ Ω and (b) minimize f(X̂;C).

There are different approaches to learn Aθ. Our focus is unsupervised learning approaches where
given a configuration C, no ground-truth solution X∗ is used during the training. θ can only be
optimized just based on the knowledge of the cost and the constraint, or their proxies. Note that in
this work, for PCO problems, the proxies are assumed to be trained based on ground-truth values of
f(X;C) given different (X,C) pairs, which is supervised. Unsupervised learning in this work refers
to the way to learn Aθ(C).

Erdős’ Probabilistic Method (EPM). The EPM has recently been brought for LCO [1]. Specifi-
cally, The EPM formulates Aθ(C) as a randomized algorithm that essentially gives a probabilistic

2Normalization (g(·;C) − gmin)/(g
+
min − gmin) where g+min = minX∈{0,1}n\Ω g(X;C) and gmin =

minX∈{0,1}n g(X;C) always satisfies the property. g+min, gmin often can be easily estimated in practice.

3

distribution over the solution space {0, 1}n, which solves the optimization problem:

min
θ

E [l(X;C)] , where l(X;C) ≜ f(X;C) + β1g(X;C)≥1, X ∼ Aθ(C) and β > 0 . (2)

Karalias & Loukas proved that with β > maxX∈Ω f(X;C) and a small expected loss E [l(X,C)] <

β, sampling a sufficiently large number of X̂ ∼ Aθ(C) guarantees the existance of a feasible X̂ ∈ Ω

that achieves the cost f(X̂;C) ≤ E [l(X,C)] [1]. Although this guarantee makes EPM intriguing,
applying EPM in practice is non-trivial. We will explain the challenge in Sec. 3.1, which inspires our
solutions and further guides the objective design for general CO and PCO problems.

3 The Relaxation Principle for Unsupervised LCO
In this section, we start with the practical issues of EPM. Then, we introduce our solutions by
proposing a relaxation principle of the objectives, which gives performance guarantee for general
practical unsupervised LCO.

3.1 Motivation: The Practical Issues of EPM

Applying EPM in practice has two fundamental difficulties. First, optimizing θ in Eq.(2) is generally
hard as the gradient dX

dθ (note here each entry of X is binary) may not exist so the chain rule cannot
be used. We discuss the potential solutions to this problem in Sec. 3.4. Second, EPM needs to sample
a large number of X ∼ Aθ(C) for evaluation to achieve the performance guarantee in [1]. This is
not acceptable where the evaluation per sample is time-consuming and expensive.

So, in practice, Karalias & Loukas consider a deterministic method. They view Aθ(C) ∈ [0, 1]n as
the parameters of Bernouli distributions to generate the entries of X so E[X] = Aθ(C). First, they
optimize minθ l(Aθ(C), C) instead of minθ E[l(X,C)], and then, sequentially round the probability
Aθ(C) to discrete X ∈ {0, 1}n by comparing conditional expectations, e.g., E[l(X,C)|X1 = 0]
v.s. E[l(X,C)|X1 = 1] to decide X1. However, such conditional expectations cannot be efficiently
computed unless one uses Monte-Carlo sampling or l has special structures as used in the two
case studies in [1], i.e., max-clique and graph-partition problems. However, what special structures
are needed has not been defined, which blocks the applicability of this framework to general CO
problems, especially for the PCO problems where the objectives l are learned as models.

3.2 Our Approach: Relaxation plus Rounding, and Performance Guarantee

Our solution does not use the probabilistic modeling but directly adopts a relaxation-plus-rounding
approach. We optimize a relaxation of the objective lr and obtain a soft solution X̄ ∈ [0, 1]n. Then,
we deterministically round the entries in X̄ to a solution X in the discrete space {0, 1}n. Note that
throughout the paper, we use X̄ to denote a soft solution and X to denote a discrete solution. The
question is whether the obtained solution may still achieve the guarantee as EPM does. Our key
observation is that such success essentially depends on how to relax the objective l.

Therefore, our first contribution beyond [1] is to propose the principle (Def. 2) to relax general costs
and constraints. With this principle, the unsupervised LCO framework can deterministically yield
valid and low-cost solutions (Thm. 1) as the EPM guarantees, and is applied to any objective l.

First, we introduce the pipeline. Consider a relaxation of a deterministic upper bound of Eq.(2):

min
θ

lr(θ;C) ≜ fr(X̄;C) + βgr(X̄;C), where X̄ = Aθ(C) ∈ [0, 1]n , β > 0. (3)

Here fr(·;C) : [0, 1]n → R is the relaxation of f(·;C), which satisfies fr(X;C) = f(X;C) for
X ∈ {0, 1}n. The relation between the constraint g and its relaxation gr is similar, i.e., gr(X;C) =
g(X;C) for X ∈ {0, 1}n. Here, we also use the fact that gr(X;C) provides a natural upper bound
1g(X;C)≥1 ≤ gr(X;C) for X ∈ {0, 1}n given the normalization of g(X;C) adopted in Sec. 2.

Now, suppose the parameter θ gets optimized so that lr(θ;C) is small. Further, we adopt the
sequential rounding in Def. 1 to adjust the continuous solution X̄ = Aθ(C) to discrete solution X .
Definition 1 (Rounding). Given a continuous vector X̄ ∈ [0, 1]n and an arbitrary order of the
entries, w.o.l.g., i = 1, 2, ..., n, round X̄i into 0 or 1 and fix all the other variables un-changed. Set
Xi = argminj=0,1 fr(X1, ..., Xi−1, j, X̄i+1, ..., X̄n;C) + βgr(X1, ..., Xi−1, j, X̄i+1, ..., X̄n;C),
replace X̄i with Xi and repeat the above procedure until all the variables become discrete.

4

Note that our rounding procedure does not need to evaluate any conditional expectations
E[l(X;C)|X1] which EPM in [1] requires. Instead, we ask both relaxations fr and gr to sat-
isfy the principle in Def. 2. With this principle, the pipeline allows achieving a valid and low-cost
solution X , as proved in Theorem 1. We leave the proof in Appendix A.1.
Definition 2 (The Entry-wise Concave Principle). For any C ∈ C, hr(·;C) : [0, 1]n → R is
entry-wise concave if for any γ ∈ [0, 1] and any X̄, X̄ ′ ∈ [0, 1]n that are only different in one entry,

γhr(X̄;C) + (1− γ)hr(X̄
′;C) ≤ hr(γX̄ + (1− γ)X̄ ′;C).

Note that entry-wise concavity is much weaker than concavity. For example, the function
hr(X̄1, X̄2) = −Relu(X̄1X̄2), X̄1, X̄2 ∈ R is entry-wise concave but not concave.
Theorem 1 (Performance Guarantee). Let β > maxX∈Ω f(X;C) and minX∈Ω f(X;C) ≥ 0 in
Eq.(3). Suppose the relaxed cost fr and constraint gr are entry-wise concave, and the learned
parameter θ achieves lr(θ;C) < β. Then, rounding (Def. 1) the relaxed solution X̄ = Aθ(C)
generates a valid discrete solution X ∈ Ω such that f(X;C) < lr(θ;C).

When there are multiple constraints g(j)(X;C) < 1 for j = 1, 2, ..., we may use relaxation
β
∑

j g
(j)
r (X;C) as the penalty term in Eq.(3), where g

(j)
r is a relaxation of g(j). It can be shown

that if
∑

j g
(j)
r satisfies the condition of entry-wise concavity, the guarantee of Thm. 1 still applies.

3.3 The Wide Applicability of Entry-wise Concave Relaxations

We have introduced the entry-wise concave principle to relax the objective to associate our framework
with performance guarantee. The question is how widely applicable this principle could be.

Actually, every function with binary inputs can be relaxed as an entry-wise affine (also called multi-
linear) function with the exactly same values at the discrete inputs, as shown in Theorem 2. Note that
entry-wise affinity is a special case of entry-wise concavity. In Sec. 5, we will provide the design of
NN architecture (for PCO) and math derivation (for CO) that guarantee formulating an entry-wise
concave function. Note that the objectives for max-clique and graph-partition problems used in [1]
are essentially entry-wise affine.
Theorem 2 (Wide Applicability). For any binary-input function h(·) : {0, 1}n → R, there exists a
relaxation hr(·) : [0, 1]n → R such that (a) hr(X) = h(X) for X ∈ {0, 1}n and (b) hr is entry-wise
affine, i.e., for any γ ∈ [0, 1] and any X̄, X̄ ′ ∈ [0, 1]n that are only different in one entry,

γhr(X̄) + (1− γ)hr(X̄
′) = hr(γX̄ + (1− γ)X̄ ′).

Proof sketch. Set hr(X̄) =
∑

X∈{0,1}n h(X)
∏n

j=1 X̄
Xj

j (1−X̄j)
(1−Xj), which satisfies (a) and (b).

Note that we suppose that X̄0
j = 1 for any X̄j ∈ [0, 1]. The detailed proof is in Appendix A.2.

Although Theorem 2 shows the existence of entry-wise affine relaxations, the constructed repre-
sentation in the proof depends on higher-order moments of the input entries, which make it hard
to be implemented by a model, say a NN architecture. However, we claim that using entry-wise
concave functions is able to implicitly generate higher-order moments via representations based on
low-order moments. For example, when n = 2, we could use the composition of −Relu(·) and affine
operators (only 1st-order moments) to achieve universal representation (See Prop. 1 and the proof in
Appendix A.3). For general n, we leave as a future study.
Proposition 1. For any binary-input function h(X1, X2), there exists parameters {wij} such that
an entry-wise concave function hr(X̄1, X̄2) = w00 −

∑3
i=1 Relu(wi1X̄1 + wi2X̄2 + wi0) satisfies

hr(X1, X2) = h(X1, X2) for any X1, X2 ∈ {0, 1}.

3.4 Discussion: Methods to Directly Optimize the Randomized Objective in EPM Eq.(2)

The naïve way to optimize the randomized objective in Eq.(2) without worrying about the specific
form of the objective l is based on the policy gradient in RL via the logarithmic trick, i.e., estimating
the gradient dl

dθ via (f(X;C)+β1g(X;C)≥1) logP(X) by sampling X ∼ Aθ(C). However, the policy
gradient suffers from notoriously large variance [39] and makes RL hard to converge. Therefore,
methods such as actor critic [60] or subtracting some baselines l(X;C)− b [61] have been proposed.

5

Label of

Label of
entry-wise

concave/affine
proxy

...

Random Sampling

Supervised
Training

...

Proxy Relaxation in PCO Problems

C1, X1

Cn, Xn

Explicitly Write
entry-wise

concave/affine
proxy

Proxy Relaxation in CO problems

Randomly Sampled configurations

...
C1 Cn

Unsupervised Training
with Loss:

C'

A Testing Instance

C'

Relaxed Solution Rounding

C'

Discrete Solution

Training Testing

C

Figure 2: The pipeline of empirical evaluation in Sec. 4 and Sec. 5 on our relaxation-and-rounding
principle. For a PCO task whose cost function or constraints are unknown, we first build NNs with
the entry-wise concave (CON) / affine (AFF) structure to learn as their proxies (fr(X̄;C), gr(X̄;C))
via supervised learning. For traditional CO tasks, we follow our principle and explicitly write their
entry-wise affine costs and constraints relaxation. Then, we learn the algorithm Aθ to optimize the
relaxed loss function fr(X̄;C) + βgr(X̄;C) in an unsupervised manner. After training, with any
unseen testing instance C ′, we run our Aθ to infer the relaxed soft solution X̄ , and then round the
soft solution into discrete solution X with performance guarantee.

RL Gumbel-softmax Ours

Objective No Limit No Limit Entry-wise Concave
Optimizer Log Trick Gumbel Trick No Limit
Inference Sampling Sampling Deter. Rounding

Train. Time Slow Fast Fast
Convergence Hard Medium Easy
Infer. Time Slow Slow Fast

Table 1: The comparison among RL (policy gradi-
ent), Gumbel-softmax methods and our principled
objective relaxation. Our methods are in need of
much less training time and inference time.

Another way to solve Eq.(2) is based on repa-
rameterization tricks to reduce the variance of
gradients [62, 63]. Specifically, we set the en-
tries of output X̄ = Aθ(C) ∈ [0, 1]n as the
parameters of Bernoulli distributions to gener-
ate X , i.e., Xi ∼ Bern(X̄i), for 1 ≤ i ≤ n.
To make dXi/dX̄i computable, we may use
the Gumble-softmax trick [47–49]. However,
this approach suffers from two issues. First, the
estimation of the gradient is biased. Second, as
Aθ(C) is essentially a randomized algorithm,
sampling sufficiently many X ∼ Aθ(C) is needed to guarantee a valid and low-cost solution. How-
ever, such evaluation is costly as discussed in Sec. 3.1. So, empirically, we can also compare Aθ(C)
with a threshold to determine X , which does not have performance guarantee. We compare different
aspects of RL, Gumbel-softmax tricks and our relaxation approach in Table 1.

4 Applying Our Relaxation Principle to Learning for CO

Method Twitter RBtest

Badloss+R 0.768 ± 0.203 (0.17s/g) 0.702 ± 0.102 (0.33s/g)
EPM [1] 0.924 ± 0.133 (0.17s/g) 0.788 ± 0.065 (0.23s/g)

AFF (ours) 0.926 ± 0.113 (0.17s/g) 0.787 ± 0.065 (0.33s/g)

Table 2: Approximation Rate in the max clique.
‘s/g’ denotes the average time cost per graph.

First, we test our relaxation principle in a learn-
ing for CO (max clique) task, where we can
explicitly write both the cost functions and the
constraints into an entry-wise affine form. In
this case, our framework and EPM [1] share the
same pipeline, though the relaxation principle
and the deterministic performance guarantee are
firstly proposed in this work. The entry-wise
affine objective relaxation of the max clique is −(β+1)

∑
(i,j)∈E X̄iX̄j +

β
2

∑
i ̸=j X̄iX̄j . Here, we

use a real-world dataset (Twitter [64]) and a synthetic dataset (RBtest [1]), and show the experiment
results in Table. 2. We follow the settings in [1] and use a 6:2:2 dataset split for training, validating
and testing, each test instance runs within 8 seeds. Our entry-wise affine pipeline achieves almost
the same performance as EPM. To show the importance of the relaxation principle, we also propose
‘Badloss+R’. This baseline imposes trigonometric functions to the original entry-wise affine functions
f ′
r(X̄;C) = fr(sin(9πX̄/2);C), g′r(X̄;C) = gr(sin(9πX̄/2);C), where sin(·) operates on each

entry of the input vector. Note that the relaxed functions also match the original objectives at discrete
points, i.e., f ′

r(X;C) = fr(X;C) = f(X;C) when X ∈ {0, 1}, while with different relaxations.
The poor performance of ‘Badloss+R’ reveals the importance of our principle for relaxation.

6

5 Applying Our Relaxation Principle to Learning for PCO

In this section, we apply our relaxation principle to three PCO applications: (I) feature-based edge
covering & node matching, (II) resource allocation in circuit design, and (III) imprecise functional
unit assignment in approximate computing. All the applications have graph-based configurations C.
So later, we first introduce how to use graph neural networks (GNNs) to build proxies that satisfy
our relaxation principle. Such GNN-based proxies will be used as the cost function relaxation fr
in all the applications. Our principle can also guide the relaxation of explicit CO objectives. The
constraints in applications (I)(III) are explicit and their relaxation can be written into the entry-wise
affine form. The constraint in (II) needs another GNN-based entry-wise concave proxy to learn.

5.1 GNN-based Entry-wise Concave Proxies

We consider the data configuration C as an attributed graph (V,E,Z) where V is the node set,
E ⊆ V ×V is the edge set and Z is the node attributes. We associate each node with a binary variable
and group them together X :∈ {0, 1}|V |. where for each v ∈ V , Xv = 1 indicates the choice of the
node v. Note that our approach can be similarly applied to edge-level variables (see Appendix C.3),
which is used in application (I). Let X̄ still denote the relaxation of X .

To learn a discrete function h : {0, 1}|V | × C → R, we adopt a GNN as the relaxed proxy of h. We
first define a latent graph representation in RF whose entries are all entry-wise affine mappings of X .

Latent representation: ϕ(X̄;C) = W +
∑
v∈V

UvX̄1 +
∑

v,u∈V,(v,u)∈E

Qv,uX̄vX̄u (4)

where W is the graph representation, Uv’s are node representations and Qv,u are edge representations.
These representations do not contain X and are given by GNN encoding C. Here, we consider at
most 2nd-order moments based on adjacent nodes as they can be easily implemented via current
GNN platforms [65, 66]. Then, we use ϕ to generate entry-wise affine & concave proxies as follows.

Entry-wise Affine Proxy (AFF): ha
r(X̄;C) = ⟨wa, ϕ(X̄;C)⟩. (5)

Entry-wise Concave Proxy (CON): hc
r(X̄;C) = ⟨wc,−ReLU(ϕ(X̄;C))⟩+ b. (6)

where wa, wc ∈ RF , b ∈ R are learnt parameters and wc ≥ 0 guarantees entry-wise concavity. Other
ways to implement GNN-based entry-wise concave proxies are also introduced in Appendix C.1.

5.2 The Setting up of the Experiments

Baseline fr ,gr Aθ Inference

Naïve + R no limit no limit rounding
RL no limit RL sampling

GS-Tr+S no limit GS sampling
GS-Tr+R no limit GS rounding

Table 3: The baselines in the paper.

Training & Evaluation Pipeline. In all the applications, we
adopt the following training & evaluation pipeline. First, we
have a set of observed configurations D1 ⊂ C. Each C ∈ D1 is
paired with one X ∈ {0, 1}n. We use the costs f(X,C) (and
constraints g(X,C)) to train the relaxed proxies fr(X,C) (and
gr(X,C), if cannot be derived explicitly), where the relaxed
proxies follow either Eq.(5) (named AFF) or Eq.(6) (named
CON). Then, we parameterize the LCO algorithm Aθ(C) ∈
[0, 1]n via another GNN. Based on the learned (or derived) fr and gr, we optimize θ by minimizing∑

C∈D1
lr(θ;C), where lr is defined according to Eq.(3). We will split D1 into a training set

and a validation set for hyperparameter-tuning of both proxies and Aθ. We have another set of
configurations D2 ⊂ C used for testing. For each C ∈ D2, we use the relaxation X̄ = Aθ(C) plus
our rounding to evaluate the learned algorithm Aθ(·). We follow [1] and do not consider fine-tuning
Aθ over the testing dataset D2 to match the potential requirement of the fast inference.

Baselines. We consider 4 common baselines that is made up of different learnable relaxed proxies
fr, gr, algorithms Aθ and inference approaches as shown in Table 3. For the proxies fr, gr for
baselines, we apply GNNs without the entry-wise concave constraint and use X as one node attribute
while keeping all other hyper-parameters exactly the same as CON other than the way to deal with
the discrete variables to make fair comparison (See details in Appendix. C); For the algorithm Aθ,
we provide the Gumbel-softmax trick based methods (GS-Tr) [48, 49], the actor-critic-based RL
method [60] (RL) and the naïve relaxation method (Naïve); For the inference approaches, we consider
Monte Carlo sampling (S) and our proposed rounding (R) procedure. Although the baselines adopt
proxies that are different from ours, we guarantee that their proxies approximate the ground-truth

7

A plain picture

(a) One Config.

OPT score: 321.03543364590644

(b) Optimal X∗

AFF score: 323.52710031257317

(c) AFF (Ours)

GS-Tr+R score: 353.09793364590644

(d) GS Trick + R
Figure 3: The visualization for node matching in Application I. Our method avoids large multiplica-
tions 87 ∗ 96 and 94 ∗ 82 where GS-Trick cannot, and generate a solution different but close to OPT.

f, g over the validation dataset at least no worse than ours. In application II, we also consider two
non-learnable algorithms to optimize the proxies without relaxation constraints, simulated annealing
(SA) [35] and genetic algorithms (GA) [67, 68]. In application III, we put all of the required AxC
units either close to the input (C-In) or close to the output (C-Out) of the approximating computing
circuit as additional baselines. More details of the experiments setups and hyperparameter tuning can
be found in Appendix C. We also obtain the optimal solutions (OPT) for applications I and III via
brute-force search for comparison.

5.3 Application I: Feature-based Edge Covering & Node Matching in Graphs

This application is inspired by [69]. Here, each configuration C is a 4× 4 grid graph whose node
attributes are two-digit images generated by random combinations of the pictures in MNIST [70].
We associated each edge with variables X ∈ {0, 1}|E|. The objective is the sum of edge weights
f(X;C) =

∑
e∈E weXe where we is unknown in prior and needed to be learned. The ground truth

of we is a multiplication of the numbers indicated by the images on the two adjacent nodes. We adopt
ResNet-50 [71] (to refine node features) plus GraphSAGE [72] to encode C. We consider using both
Eq.(5) and Eq.(6) to formulate the relaxed cost fr(X̄;C). Training and validating fr are based on
100k randomly sampled C paired with randomly sampled X . Note that 100k is much smaller than
the entire space {0, 1}|E| × C is of size 224 × 10016.

Next, as the constraint here is explicit, we can derive the relaxation of the constraints for this
application. First, the constraint relaxation of the edge covering problem can be written as

Edge Covering Constraint: gr(X̄;C) =
∑
v∈V

∏
e:v∈e

(1− X̄e). (7)

Each production term in Eq.(7) indicates that for each node, at least one edge is selected. We can
easily justify that gr is entry-wise affine and Ω = {X ∈ {0, 1}|E| : gr(X;C) < 1} exactly gives the
feasible solutions to the edge covering problem.

Similarly, we can derive the constraint for node matching by adding a further term to Eq.(7).

Node Matching Constraint: gr(X̄;C) =
∑
v∈V

[
∏
e:v∈e

(1− X̄e) +
∏

e1,e2:v∈e1,e2,e1 ̸=e2

X̄e1X̄e2]. (8)

Here, the second term indicates that no two edges adjacent to the same node can be selected. This is a
case with two constraints while we combine them together. We can easily justify that gr is entry-wise
affine and Ω = {X ∈ {0, 1}|E| : gr(X;C) < 1} groups exactly the feasible solutions to the node
matching problem.

Note that our above derivation also generalizes the node-selection framework in [1] to edge selection.
With the learned fr and the derived gr, we further train and validate Aθ over the 100k sampled
(X,C)’s and test on another 500 randomly sampled C’s. Method Edge covering Node matching

Naive+R 68.52 429.12
RL 51.29 426.97

GS-Tr+S 63.36 -
GS-Tr+R 46.91 429.39

CON(ours) 49.59 422.47
AFF(ours) 44.55 418.96
OPT(gt) 42.69 416.01

Table 4: Performance on application I
(graph optimization).

Evaluation. Table 4 shows the evaluation results. In the
GS-Tr+S method, the number of sampling is set to 120
(about 2.5 times the inference time of our deterministic
rounding). Note that for node matching, GS-Tr+S could
hardly sample a feasible node matching solution within
120 samples. The experiment results show that our
principled proxy relaxation exceeds the other baselines
on both tasks. Also, we observe that AFF outperforms
CON, which results from the fact that f(X;C) in these
two problems are naturally in entry-wise affine forms

8

0 20 40 60 80

The ground truth value (DSP)

0

20

40

60

80

Th
e

pr
ed

ic
te

d
va

lu
e

(D
SP

)

No limit:y_train = 1.004x+0.006, y_test = 0.946x+0.598
train
test

0 10 20 30 40 50 60

The ground truth value (DSP)

0

10

20

30

40

50

60

Th
e

pr
ed

ic
te

d
va

lu
e

(D
SP

)

Affine:y_train = 0.988x+0.217, y_test = 0.937x+0.808

train
test

0 20 40 60 80

The ground truth value (DSP)

0

20

40

60

80

Th
e

pr
ed

ic
te

d
va

lu
e

(D
SP

)

Concave:y_train = 0.988x+0.154, y_test = 0.957x+0.455
train
test

Figure 4: Comparing different proxies for learning DSP usage. Left, no constraint; Middle, entry-wise
affine constraint (Eq. (5)); Right, entry-wise concave constraint (Eq.(6))

with low-order (1st-order) moments. One instance of node matching randomly selected from the test
set is shown in Fig. 3. More visualization results can be found in Fig. 6 in the appendix.

5.4 Application II: Resource Allocation in Circuit Design

Resource allocation in field-programmable gate array (FPGA) design is a fundamental problem which
can lead to largely varied circuit quality after synthesis, such as area, timing, and latency. In this
application, we follow the problem formulation in [24, 30], where the circuit is represented as a data
flow graph (DFG), and each node represents an arithmetic operation such as multiplication or addition.
The goal is to find a resource allocation for each node to be either digital signal processor (DSP) or
look-up table (LUT), such that the final circuit area (i.e., actual DSP and LUT usage) after synthesis
is minimized. Notably, different allocation solutions result in greatly varied DSP/LUT usage due to
complicated synthesis process, which cannot be simply summed up over each node. To obtain precise
DSP/LUT usage, one must run high-level synthesis (HLS) [73] and place-and-route [74] tools, which
can take up to hours [24, 30].

In this application, each configuration C is a DFG with > 100 nodes, where each node is allocated
to either DSP or LUT. Node attributes include operation type (i.e., multiplication or addition) and
data bitwidth. More details about the dataset can be found in Appendix C.5. Let X ∈ {0, 1}|V |

denote the mapping to DSP or LUT. Let fr and gr denote the proxies of actual LUT and actual DSP
usage, respectively. Note that given different constraints on the DSP usage, we will normalize gr as
introduced in Sec. 2. We train and validate fr, gr,Aθ on 8, 000 instances that consist of 40 DFGs
(C), each DFG with 200 different mappings (X), and test Aθ over 20 DFGs. Note that the actual
LUT and DSP usages of each training instance has been collected by running HLS in prior. We also
run HLS to evaluate the actual LUT and DSP usages for the testing cases given the learned mappings.

Evaluation. We rank each method’s best actual LUT usage under the constraint of different percent-
ages (40% - 70%) of the maximum DSP usage in each testing instance, then calculate the averaged
ranks. Fig. 5 shows the results. Our entry-wise concave proxy achieves the best performance.
GS-Tr+R is slightly better than RL, and both of them exceed SA and GA. We do not include our
entry-wise affine proxy in the ranking list, because the affine proxy could be much less accurate
than the proxy without constraints and the entry-wise concave proxy. The comparison between
these proxies on learning DSP usage (& LUT usage) is shown in Fig. 4 (& Fig. 9 in the appendix,
respectively). The gap between different proxies indicates the FPGA circuit contains high-order
moments of the input optimization variables and 2-order entry-wise affine proxy cannot model well.
We do not include the result of GS-Tr+S and Naive+R, because these methods perform poor and
could hardly generate feasible solutions given a constraint of DSP usage. We leave their results in
Table. 7 in the appendix. Moreover, we compare the training time between different methods. To
be fair, all methods run on the same server with a Quadro RTX 6000 GPU. The RL based optimizer
takes 22 GB GRAM, while other optimizers only take 7 GB on average. Fig. 10 in the appendix
further demonstrates that our methods and GS-T methods require much less training time than RL.

Also, to give a fair comparison between learning-based approaches and traditional approaches, we
implement GA with parallel (on GPU) cost-value inference for all the populations in each generation.
We set the population size as 256, which is the same as the batch size that we used to train/infer
Aθ. The performance of GA in Fig. 5 is obtained under the condition that the inference time of
the implemented parallel GA is about the same as that of our CON method. Fig. 8 in the appendix
provides more detailed comparison on the performance and the inference time between GA with
different numbers of generations and our CON method.

9

DSP usage 40% 45% 50% 55% 60% 65% 70% rank-avg

SA 3.41 3.08 3.50 3.33 3.66 4.16 4.08 3.60

GA 2.75 3.41 2.83 2.91 3.00 3.00 2.75 2.95

RL 3.33 3.58 3.83 3.25 2.91 2.83 2.41 3.16

GS-Tr+R 3.58 2.91 2.58 3.16 2.33 2.58 3.00 2.87

CON 1.83 2.00 2.25 2.25 3.08 2.41 2.66 2.35 2500 3000 3500 4000 4500
Actual LUT Usage

20

30

40

50

60

70

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

Figure 5: The left table shows averaged ranks of the LUT usage given by different methods with the
constraint of different percentage of DSP usage in Application II (resource allocation). The right
figure shows the DSP-LUT usage amount relationship on one test configuration. The HLS baseline
denotes the optimal synthesis results among 200 random mappings.

Threshold θ C-In C-Out Naïve RL GS-Tr+S GS-Tr+R CON AFF OPT

3 AxC units 12.42 12.44 3.62 7.68 4.87 3.24 3.18 3.10 2.77
5 AxC units 14.68 14.65 6.20 10.15 8.03 5.86 5.13 5.38 4.74
8 AxC units 17.07 17.04 11.12 12.83 12.65 10.62 10.17 10.04 8.56

Table 5: Relative errors of different methods with the AxC unit constraint as 3,5,8 in Application III.

5.5 Application III: Imprecise Functional Unit Assignment in Approximate Computing

One fundamental problem in approximate computing (AxC) is to assign imprecise functional units
(a.k.a., AxC units) to execute operations such as multiplication or addition [42–46], aiming to
significantly reduce circuit energy with tolerable error. We follow the problem formulation in [45],
where given a computation graph, each node represents either multiplication or addition. The
incoming edges of a node represent its two operands. The goal is to assign AxC units to a certain
number of nodes while minimizing the expected relative error of the output of the computation graph.

In this application, each configuration C is a computation graph with 15 nodes (either multiplication
or addition) that maps a vector in R16 to R. A fixed number θ of nodes are assigned to AxC units
with produce 10% relative error. Let X ∈ {0, 1}|V | denote whether a node is assigned to an AxC unit
or not; the proxy of the objective fr is the expected relative error at the output. We use 100k (X,C)
as the training dataset and the entire solution space is 215 × 215. For each (X,C), the ground-truth,
i.e., expected relative error, is computed by averaging 1k inputs sampled uniformly at random from
[0, 10]16. The constraint gr is

∑
v∈V Xv ≥ θ with normalization, where θ ∈ {3, 5, 8}. We test the

learned Aθ on 500 unseen configurations.

Evaluation. Table. 5 shows the averaged relative errors of the assignments by different methods. The
problem is far from trivial. Intuitively, assigning AxC units closed to the output, we may expect small
error. However, C-Out performs bad. Our proxies AFF and CON obtain comparable best results.
The MAE loss values of the two proxies are also similar, as shown in Table 9 in the appendix. The
reason is that the circuit is made up of 4 layers in total which leads to at most 4-order moments in
the objective function, which is in a medium-level complexity. Training time is also studied for this
application, resulting in the same conclusion as application II (See Table 8 in the appendix).

6 Conclusion

This work introduces an unsupervised end-to-end framework to resolve LCO problems based on
the relaxation-plus-rounding technique. With our entry-wise concave architecture, our framework
guarantees that a low objective value could lead to qualified discrete solutions. Our framework is
particularly good at solving PCO problems where the objectives need to be modeled and learned.
Real-world applications demonstrate the superiority of our method over RL and gradient-relaxation
approaches in both optimization performance and training efficiency. In the future, we aim to further
broaden our framework to the applications where the optimization variables allow using more complex
embeddings than binary embeddings.

7 Acknowledgement

We greatly thank all the reviewers for their valuable feedback and the insightful suggestions. H.
Wang and P. Li are partially supported by 2021 JPMorgan Faculty Award and the NSF award
OAC-2117997.

10

References

[1] N. Karalias and A. Loukas, “Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[2] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[3] G. Naseri and M. A. Koffas, “Application of combinatorial optimization strategies in synthetic
biology,” Nature communications, vol. 11, no. 1, 2020.

[4] Y. Crama, “Combinatorial optimization models for production scheduling in automated manu-
facturing systems,” European Journal of Operational Research, vol. 99, no. 1, 1997.

[5] J. J. Hopfield and D. W. Tank, ““neural” computation of decisions in optimization problems,”
Biological Cybernetics, vol. 52, no. 3, 1985.

[6] K. A. Smith, “Neural networks for combinatorial optimization: a review of more than a decade
of research,” INFORMS Journal on Computing, vol. 11, no. 1, 1999.

[7] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[8] D. Selsam, M. Lamm, B. Benedikt, P. Liang, L. de Moura, D. L. Dill et al., “Learning a sat
solver from single-bit supervision,” in International Conference on Learning Representations,
2018.

[9] S. Amizadeh, S. Matusevych, and M. Weimer, “Learning to solve circuit-sat: An unsupervised
differentiable approach,” in International Conference on Learning Representations, 2018.

[10] E. Yolcu and B. Póczos, “Learning local search heuristics for boolean satisfiability,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[11] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to branch in mixed
integer programming,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,
no. 1, 2016.

[12] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial optimization
with graph convolutional neural networks,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[13] A. Delarue, R. Anderson, and C. Tjandraatmadja, “Reinforcement learning with combinatorial
actions: An application to vehicle routing,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[14] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization
algorithms over graphs,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[15] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional networks
and guided tree search,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[16] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization with
reinforcement learning,” International Conference on Learning Representations (Workshop),
2017.

[17] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial optimization,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[18] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!” in
International Conference on Learning Representations, 2018.

[19] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional network technique
for the travelling salesman problem,” arXiv preprint arXiv:1906.01227, 2019.

[20] B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network guided local search
for the traveling salesperson problem,” International Conference on Learning Representations,
2022.

[21] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning to iteratively solve
routing problems with dual-aspect collaborative transformer,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

11

[22] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon, “Matrix encoding networks
for neural combinatorial optimization,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[23] M. Kim, J. Park et al., “Learning collaborative policies to solve np-hard routing problems,”
Advances in Neural Information Processing Systems, vol. 34, 2021.

[24] N. Wu, H. Yang, Y. Xie, p. Li, and C. Hao, “High-level synthesis performance prediction
using gnns: Benchmarking, modeling, and advancing,” in Proceedings of IEEE/ACM Design
Automation Conference (DAC), 2022., 2022.

[25] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal: Accurate, portable and fast
basic block throughput estimation using deep neural networks,” in International Conference on
Machine Learning, 2019.

[26] G. Zhang, H. He, and D. Katabi, “Circuit-gnn: Graph neural networks for distributed circuit
design,” in International Conference on Machine Learning. PMLR, 2019.

[27] S. Vasudevan, W. J. Jiang, D. Bieber, R. Singh, C. R. Ho, C. Sutton et al., “Learning semantic
representations to verify hardware designs,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[28] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, “Caloree: Learning control for predictable
latency and low energy,” in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems, 2018.

[29] A. Renda, Y. Chen, C. Mendis, and M. Carbin, “Difftune: Optimizing cpu simulator param-
eters with learned differentiable surrogates,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020.

[30] N. Wu, Y. Xie, and C. Hao, “Ironman: Gnn-assisted design space exploration in high-level
synthesis via reinforcement learning,” in Proceedings of the 2021 on Great Lakes Symposium
on VLSI, 2021.

[31] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, A. Nazi et al., “A graph placement methodology for fast chip design,” Nature, vol.
594, no. 7862, 2021.

[32] K. Chen and F. H. Arnold, “Enzyme engineering for nonaqueous solvents: random mutagenesis
to enhance activity of subtilisin e in polar organic media,” Bio/Technology, vol. 9, no. 11, 1991.

[33] C. Angermueller, D. Dohan, D. Belanger, R. Deshpande, K. Murphy, and L. Colwell, “Model-
based reinforcement learning for biological sequence design,” in International Conference on
Learning Representations, 2019.

[34] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Au-
tomatic chemical design using a data-driven continuous representation of molecules,” ACS
Central Science, vol. 4, no. 2, 2018.

[35] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical Science, vol. 8, no. 1, 1993.

[36] J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe, “Run-csp: unsupervised learning of message
passing networks for binary constraint satisfaction problems,” 2019.

[37] W. Yao, A. S. Bandeira, and S. Villar, “Experimental performance of graph neural networks
on random instances of max-cut,” in Wavelets and Sparsity XVIII, vol. 11138. International
Society for Optics and Photonics, 2019.

[38] G. Yehuda, M. Gabel, and A. Schuster, “It’s not what machines can learn, it’s what we cannot
teach,” in International Conference on Machine Learning. PMLR, 2020.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, 2015.

[40] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Dependent rounding and its
applications to approximation algorithms,” Journal of the ACM (JACM), vol. 53, no. 3, 2006.

[41] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “Steiner tree approximation via iterative
randomized rounding,” Journal of the ACM (JACM), vol. 60, no. 1, 2013.

12

[42] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-efficient
design,” in 2013 18th IEEE European Test Symposium (ETS). IEEE, 2013.

[43] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing Surveys
(CSUR), vol. 48, no. 4, 2016.

[44] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco: Modeling and analysis
of circuits for approximate computing,” in 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2011.

[45] D. Ma, R. Thapa, X. Wang, X. Jiao, and C. Hao, “Workload-aware approximate computing
configuration,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021.

[46] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization and high level synthesis
for approximate computing,” in Proceedings of the 52nd Annual Design Automation Conference,
2015.

[47] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochas-
tic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[48] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” Interna-
tional Conference on Learning Representations, 2017.

[49] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous relaxation of
discrete random variables,” International Conference on Learning Representations, 2017.

[50] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo: Policy optimization
with multiple optima for reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[51] R. Wang, Z. Hua, G. Liu, J. Zhang, J. Yan, F. Qi, S. Yang, J. Zhou, and X. Yang, “A bi-level
framework for learning to solve combinatorial optimization on graphs,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[52] Y. Nandwani, D. Jindal, P. Singla et al., “Neural learning of one-of-many solutions for com-
binatorial problems in structured output spaces,” in International Conference on Learning
Representations, 2021.

[53] H. Duan, P. Vaezipoor, M. B. Paulus, Y. Ruan, and C. Maddison, “Augment with care: Con-
trastive learning for combinatorial problems,” in International Conference on Machine Learning.
PMLR, 2022, pp. 5627–5642.

[54] A. Kumar and S. Levine, “Model inversion networks for model-based optimization,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[55] D. Brookes, H. Park, and J. Listgarten, “Conditioning by adaptive sampling for robust design,”
in International Conference on Machine Learning. PMLR, 2019.

[56] B. Trabucco, A. Kumar, X. Geng, and S. Levine, “Conservative objective models for effective
offline model-based optimization,” in International Conference on Machine Learning. PMLR,
2021.

[57] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine, “Data-driven offline
optimization for architecting hardware accelerators,” 2022.

[58] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma, “Strong mixed-integer
programming formulations for trained neural networks,” Mathematical Programming, vol. 183,
no. 1, pp. 3–39, 2020.

[59] T. P. Papalexopoulos, C. Tjandraatmadja, R. Anderson, J. P. Vielma, and D. Belanger, “Con-
strained discrete black-box optimization using mixed-integer programming,” in International
Conference on Machine Learning. PMLR, 2022, pp. 17 295–17 322.

[60] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in Neural Information Processing
Systems, vol. 12, 1999.

[61] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous methods for deep reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2016.

[62] M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison, “Gradient estimation with
stochastic softmax tricks,” Advances in Neural Information Processing Systems, vol. 33, 2020.

13

[63] K. Struminsky, A. Gadetsky, D. Rakitin, D. Karpushkin, and D. P. Vetrov, “Leveraging recursive
gumbel-max trick for approximate inference in combinatorial spaces,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[64] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset collection,” 2014.
[65] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in

ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
[66] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, T. Xiao,

T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[67] S. Mirjalili, “Genetic algorithm,” in Evolutionary algorithms and neural networks. Springer,
2019.

[68] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, 1994.
[69] M. V. Pogančić, A. Paulus, V. Musil, G. Martius, and M. Rolinek, “Differentiation of blackbox

combinatorial solvers,” in International Conference on Learning Representations, 2019.
[70] L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE

Signal Processing Magazine, vol. 29, no. 6, 2012.
[71] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[72] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

Advances in Neural Information Processing Systems, vol. 30, 2017.
[73] AMD/Xilinx, “Vitis ai development environment,” https://www.xilinx.com/products/

design-tools/vitis/vitis-ai.html.
[74] ——, “Vivado development tool,” https://www.xilinx.com/products/design-tools/vivado.html.
[75] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in statistics. Springer,

1992, pp. 492–518.
[76] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[77] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” arXiv
preprint arXiv:1903.02428, 2019.

[78] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations, 2015.

[79] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing
for quantum chemistry,” in International Conference on Machine Learning. PMLR, 2017, pp.
1263–1272.

[80] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal neighbourhood aggrega-
tion for graph nets,” Advances in Neural Information Processing Systems, vol. 33, 2020.

14

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vivado.html

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix D.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec 2 and
Sec 3

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.1,
A.2 and A.3

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See the experiment details in Appendix C.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] The dataset in
application II is adopted from [30].

(b) Did you mention the license of the assets? [Yes] See Appendix E.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

All the new assets are publicly available.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] All the assets obtained from others are publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix E and our data contains no
human information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

