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ABSTRACT

A natural goal in multi-agent learning is to learn rationalizable behavior, where
players learn to avoid any Iteratively Dominated Action (IDA). However, standard
no-regret based equilibria-finding algorithms could take exponential samples to
find such rationalizable strategies. In this paper, we first propose a simple yet
sample-efficient algorithm for finding a rationalizable action profile in multi-player
general-sum games under bandit feedback, which substantially improves over the
results of Wu et al. (2021). We further develop algorithms with the first efficient
guarantees for learning rationalizable Coarse Correlated Equilibria (CCE) and
Correlated Equilibria (CE). Our algorithms incorporate several novel techniques to
guarantee the elimination of IDA and no (swap-)regret simultaneously, including
a correlated exploration scheme and adaptive learning rates, which may be of
independent interest. We complement our results with a sample complexity lower
bound showing the sharpness of our guarantees.

1 INTRODUCTION

A common objective in multi-agent learning is to find various equilibria, such as Nash equilibria (NE),
correlated equilibria (CE) and coarse correlated equilibria (CCE). Generally speaking, a player in
equilibrium lacks incentive to deviate assuming conformity of other players to the same equilibrium.
Equilibrium learning has been extensively studied in the literature of game theory and online learning,
and no-regret based learners can provably learn approximate CE and CCE with both computational
and statistical efficiency (Stoltz, 2005; Cesa-Bianchi & Lugosi, 2006).

However, not all equilibria are created equal. As shown by Viossat & Zapechelnyuk (2013), a CCE
can be entirely supported on dominated actions—actions that are worse off than some other strategy in
all circumstances—which rational agents should apparently never play. Approximate CE also suffers
from a similar problem. As shown by Wu et al. (2021, Theorem 1), there are examples where an
ϵ-CE always plays iteratively dominated actions—actions that would be eliminated when iteratively
deleting strictly dominated actions—unless ϵ is exponentially small. It is also shown that standard
no-regret algorithms are indeed prone to finding such seemingly undesirable solutions (Wu et al.,
2021). The intrinsic reason behind this is that CCE and approximate CE may not be rationalizable,
and existing algorithms can indeed fail to find rationalizable solutions.

Different from equilibria notions, rationalizability (Bernheim, 1984; Pearce, 1984) looks at the
game from the perspective of a single player without knowledge of the actual strategies of other
players, and only assumes common knowledge of their rationality. A rationalizable strategy will
avoid strictly dominated actions, and assuming other players have also eliminated their dominated
actions, iteratively avoid strictly dominated actions in the subgame. Rationalizability is a central
solution concept in game theory (Osborne & Rubinstein, 1994) and has found applications in
auctions (Battigalli & Siniscalchi, 2003) and mechanism design (Bergemann et al., 2011).

If an (approximate) equilibrium only employs rationalizable actions, it would prevent irrational
behavior such as playing dominated actions. Such equilibria are arguably more reasonable than
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unrationalizable ones, and constitute a stronger solution concept. This motivates us to consider the
following open question:

Can we efficiently learn equilibria that are also rationalizable?

Despite its fundamental role in multi-agent reasoning, rationalizability is rarely studied from a
learning perspective until recently, with Wu et al. (2021) giving the first algorithm for learning
rationalizable strategies from bandit feedback. However, the problem of learning rationalizable CE
and CCE remains a challenging open problem. Due to the existence of unrationalizable equilibria,
running standard CE or CCE learners will not guarantee rationalizable solutions. On the other hand,
one cannot hope to first identify all rationalizable actions and then find an equilibrium on the subgame,
since even determining whether an action is rationalizable requires exponentially many samples (see
Proposition 2). Therefore, achieving rationalizability and approximate equilibria simultaneously is
nontrivial and presents new algorithmic challenges.

In this work, we address the challenges above and give a positive answer to our main question. Our
contributions can be summarized as follows:

• As a first step, we provide a simple yet sample-efficient algorithm for identifying a ∆-
rationalizable 1 action profile under bandit feedback, using only Õ

(
LNA
∆2

)
2 samples in normal-

form games with N players, A actions per player and a minimum elimination length of L.
This greatly improves the result of Wu et al. (2021) and is tight up to logarithmic factors when
L = O(1).

• Using the above algorithm as a subroutine, we develop exponential weights based algorithms that
can provably find ∆-rationalizable ϵ-CCE using Õ

(
LNA
∆2 + NA

ϵ2

)
samples, and ∆-rationalizable

ϵ-CE using Õ
(

LNA
∆2 + NA2

min{ϵ2,∆2}

)
samples. To the best of our knowledge, these are the first

guarantees for learning rationalizable approximate CCE and CE.
• We also provide reduction schemes that find ∆-rationalizable ϵ-CCE/CE using black-box

algorithms for ϵ-CCE/CE. Despite having slightly worse rates, these algorithms can directly
leverage the progress in equilibria finding, which may be of independent interest.

1.1 RELATED WORK

Rationalizability and iterative dominance elimination. Rationalizability (Bernheim, 1984; Pearce,
1984) is a notion that captures rational reasoning in games and relaxes Nash Equilibrium. Rationaliz-
ability is closely related to the iterative elimination of dominated actions, which has been a focus
of game theory research since the 1950s (Luce & Raiffa, 1957). It can be shown that an action is
rationalizable if and only if it survives iterative elimination of strictly dominated actions3 (Pearce,
1984). There is also experimental evidence supporting iterative elimination of dominated strategies
as a model of human reasoning (Camerer, 2011).

Equilibria learning in games. There is a rich literature on applying online learning algorithms to
learning equilibria in games. It is well-known that if all agents have no-regret, the resulting empirical
average would be an ϵ-CCE (Young, 2004), while if all agents have no swap-regret, the resulting
empirical average would be an ϵ-CE (Hart & Mas-Colell, 2000; Cesa-Bianchi & Lugosi, 2006). Later
work continuing this line of research include those with faster convergence rates (Syrgkanis et al.,
2015; Chen & Peng, 2020; Daskalakis et al., 2021), last-iterate convergence guarantees (Daskalakis
& Panageas, 2018; Wei et al., 2020), and extension to extensive-form games (Celli et al., 2020; Bai
et al., 2022b;a; Song et al., 2022) and Markov games (Song et al., 2021; Jin et al., 2021).

Computational and learning aspect of rationalizability. Despite its conceptual importance, ratio-
nalizability and iterative dominance elimination are not well studied from a computational or learning
perspective. For iterative strict dominance elimination in two-player games, Knuth et al. (1988)
provided a cubic-time algorithm and proved that the problem is P-complete. The weak dominance
version of the problem is proven to be NP-complete by Conitzer & Sandholm (2005).

1An action is ∆-rationalizable if it survives iterative elimination of ∆-dominated actions; c.f. Definition 1.
2Throughout this paper, we use Õ to suppress logarithmic factors in N , A, L, 1

∆
, 1
δ

, and 1
ϵ

.
3For this equivalence to hold, we need to allow dominance by mixed strategies, and correlated beliefs when

there are more than two players. These conditions are met in the setting of this work.
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Hofbauer & Weibull (1996) showed that in a class of learning dynamics which includes replicator
dynamics — the continuous-time variant of Follow-The-Regularzied-Leader (FTRL), all iteratively
strictly dominated actions vanish over time, while Mertikopoulos & Moustakas (2010) proved similar
results for stochastic replicator dynamics; however, neither work provides finite-time guarantees. Co-
hen et al. (2017) proved that Hedge eliminates dominated actions in finite time, but did not extend
their results to the more challenging case of iteratively dominated actions.

The most related work in literature is the work on learning rationalizable actions by Wu et al. (2021),
who proposed the Exp3-DH algorithm to find a strategy mostly supported on rationalizable actions
with a polynomial rate. Our Algorithm 1 accomplishes the same task with a faster rate, while
our Algorithms 2 & 3 deal with the more challenging problems of finding ϵ-CE/CCE that are also
rationalizable. Although Exp3-DH is based on a no-regret algorithm, it does not enjoy regret or
weighted regret guarantees and thus does not provably find rationalizable equilibria.

2 PRELIMINARY

An N -player normal-form game involves N players whose action space are denoted by A =
A1× · · ·×AN , and is defined by utility functions u1, · · · , uN :A → [0, 1]. Let A = maxi∈[N ] |Ai|
denote the maximum number of actions per player, xi denote a mixed strategy of the i-th player
(i.e., a distribution over Ai) and x−i denote a (correlated) mixed strategy of the other players (i.e., a
distribution over

∏
j ̸=iAj). We further denote ui(xi, x−i) := Eai∼xi,a−i∼x−i

ui(ai, a−i). We use
∆(S) to denote a distribution over the set S.

Learning from bandit feedback We consider the bandit feedback setting where in each round,
each player i ∈ [N ] chooses an action ai ∈ Ai, and then observes a random feedback Ui ∈ [0, 1]
such that E[Ui|a1, a2, · · · , an] = ui(a1, a2, · · · , an).

2.1 RATIONALIZABILITY

An action a ∈ Ai is said to be rationalizable if it could be the best response to some (possibly
correlated) belief of other players’ strategies, assuming that they are also rational. In other words,
the set of rationalizable actions is obtained by iteratively removing actions that could never be a best
response. For finite normal-form games, this is in fact equivalent to the iterative elimination of strictly
dominated actions4 (Osborne & Rubinstein, 1994, Lemma 60.1).
Definition 1 (∆-Rationalizability). 5 Define

E1 :=
⋃N

i=1 {a ∈ Ai : ∃x ∈ ∆(Ai),∀a−i, ui(a, a−i) ≤ ui(x, a−i)−∆} ,
which is the set of ∆-dominated actions for all players. Further define

El :=
⋃N

i=1 {a ∈ Ai : ∃x ∈ ∆(Ai),∀a−i s.t. a−i ∩ El−1 = ∅, ui(a, a−i) ≤ ui(x, a−i)−∆} ,
which is the set of actions that would be eliminated by the l-th round. Define L = inf{l : El+1 = El}
as the minimum elimination length, and EL as the set of ∆-iteratively dominated actions (∆-IDAs).
Actions in ∪ni=1Ai \ EL are said to be ∆-rationalizable.

Notice that E1 ⊆ · · · ⊆ EL = EL+1. Here ∆ plays a similar role as the reward gap for best arm
identification in stochastic multi-armed bandits. We will henceforth use ∆-rationalizability and
survival of L rounds of iterative dominance elimination (IDE) interchangeably6. Since one cannot
eliminate all the actions of a player, |EL| ≥ N , which further implies L ≤ N(A− 1) < NA.

2.2 EQUILIBRIA IN GAMES

We consider three common learning objectives, namely Nash Equilibrium (NE), Correlated Equilib-
rium (CE) and Coarse Correlated Equilibrium (CCE).

4See, e.g., the Diamond-In-the-Rough (DIR) games in Wu et al. (2021, Definition 2) for a concrete example
of iterative dominance elimination.

5Here we slightly abuse the notation and use ∆ to refer to both the gap and the probability simplex.
6Alternatively one can also define ∆-rationalizability by the iterative elimination of actions that are never

∆-best response, which is mathematically equivalent to Definition 1 (see Appendix A.1).
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Definition 2 (Nash Equilibrium). A strategy profile (x1, · · · , xN ) is an ϵ-Nash equilibrium if

ui(xi, x−i) ≥ ui(a, x−i)− ϵ,∀a ∈ Ai,∀i ∈ [N ].

Definition 3 (Correlated Equilibrium). A correlated strategy Π ∈ ∆(A) is an ϵ-correlated equilib-
rium if ∀i ∈ [N ],∀ϕ : Ai → Ai,∑

ai∈Ai,a−i∈A−i
Π(ai, a−i)ui(ai, a−i) ≥

∑
ai∈Ai,a−i∈A−i

Π(ai, a−i)ui(ϕ(ai), a−i)− ϵ.

Definition 4 (Coarse Correlated Equilibrium). A correlated strategy Π ∈ ∆(A) is an ϵ-CCE if
∀i ∈ [N ],∀a′ ∈ Ai,∑

ai∈Ai,a−i∈A−i
Π(ai, a−i)ui(ai, a−i) ≥

∑
ai∈Ai,a−i∈A−i

Π(ai, a−i)ui(a
′, a−i)− ϵ.

When ϵ = 0, the above definitions give exact Nash equilibrium, correlated equilibrium, and coarse
correlated equilibrium, respectively. It is well known that ϵ-NE are ϵ-CE, and ϵ-CE are ϵ-CCE.
Furthermore, we call an ϵ-CCE/CE that only plays ∆-rationalizable actions a.s. a ∆-rationalizable
ϵ-CCE/CE.

2.3 CONNECTION BETWEEN EQUILIBRIA AND RATIONALIZABILITY

It is known that all actions in the support of an exact CE are rationalizable (Osborne & Rubinstein,
1994, Lemma 56.2). However, one can easily construct an exact CCE that is supported on dominated
(hence, unrationalizable) actions (see e.g. Viossat & Zapechelnyuk (2013, Fig. 3)). One might be
tempted to suggest that running a CE solver immediately finds a CE (and hence CCE) that is also
rationalizable. However, the connection between CE and rationalizability becomes quite different
when it comes to approximate equilibria, which are inevitable in the presence of noise. As shown
by Wu et al. (2021, Theorem 1), an ϵ-CE can be entirely supported on iteratively dominated action,
unless ϵ = O(2−A). In other words, rationalizability is not guaranteed by running an approximate
CE solver unless with an extremely high accuracy. Therefore, finding ϵ-CE and CCE that are
simultaneously rationalizable remains a challenging open problem.

Since NE is a subset of CE, all actions in the support of an (exact) NE would also be rationalizable.
Unlike approximate CE, for ϵ < poly(∆, 1/N, 1/A)), one can show that any ϵ-Nash equilibrium is
still mostly supported on rationalizable actions.

Proposition 1. If x∗ = (x∗
1, · · · , x∗

N ) is an ϵ-Nash with ϵ < ∆2

24N2A , ∀i, Pra∼x∗
i
[a ∈ EL] ≤ 2Lϵ

∆ .

Therefore, for two-player zero-sum games, it is possible to run an approximate NE solver and
automatically find a rationalizable ϵ-NE. However, this method will induce a rather slow rate7, and
we will provide a much more efficient algorithm for finding rationalizable ϵ-NE in Section 4.

3 LEARNING RATIONALIZABLE ACTION PROFILES

In order to learn a rationalizable CE/CCE, one might suggest identifying the set of all rationalizable
actions, and then learn CE or CCE on this subgame. Unfortunately, as shown by Proposition 2, even
the simpler problem of deciding whether one single action is rationalizable is statistically hard.
Proposition 2. For ∆ < 0.1, any algorithm that correctly decides whether an action is ∆-
rationalizable with 0.9 probability needs Ω(AN−1∆−2) samples.

This negative result motivates us to consider an easier task: can we at least find one rationalizable
action profile sample-efficiently? Formally, we say a action profile (a1, . . . , aN ) is rationalizable
if for all i ∈ [N ], ai is a rationalizable action. This is arguably one of the most fundamental tasks
regarding rationalizability. For mixed-strategy dominance solvable games (Alon et al., 2021), the
unique rationalizable action profile will be the unique NE and also the unique CE of the game.
Therefore this easier task per se is still of practical importance.

In this section we answer this question in the affirmative. We provide a sample-efficient algorithm
which finds a rationalizable action profile using only Õ

(
LNA
∆2

)
samples. This algorithm will also

serve as an important subroutine for algorithms finding rationalizable CCE/CE in the later sections.
7For two-player zero-sum games, the marginals of any CCE is an NE so NE can be found efficiently. This is

not true for general games, where finding NE is computationally hard and takes Ω(2N ) samples.
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Algorithm 1 Iterative Best Response

1: Initialization: choose a
(0)
i ∈ Ai arbitrarily for all i ∈ [N ]

2: for l = 1, · · · , L do
3: for i ∈ [N ] do
4: For all a ∈ Ai, play (a, a

(l−1)
−i ) for M times, compute player i’s average payoff ûi(a, a

(l−1)
−i )

5: Set a(l)i ← argmaxa∈Ai
ûi(a, a

(l−1)
−i ) // Computing the empirical best response

6: return (a
(L)
1 , · · · , a(L)

N )

The intuition behind this algorithm is simple: if an action profile a−i can survive l rounds of IDE,
then its best response ai (i.e., argmaxa∈Ai

ui(a, a−i)) can survive at least l+1 rounds of IDE, since
the action ai can only be eliminated after some actions in a−i are eliminated. Concretely, we start
from an arbitrary action profile (a

(0)
1 , . . . , a

(0)
N ). In each round l ∈ [L], we compute the (empirical)

best response of a(l−1)
−i for each i ∈ [N ], and use those best responses to construct a new action

profile (a(l)1 , . . . , a
(l)
N ). By constructing iterative best responses, we will end up with an action profile

that can survive L rounds of IDE, which means surviving any number of rounds of IDE according to
the definition of L. The full algorithm is presented in Algorithm 1, for which we have the following
theoretical guarantee.

Theorem 3. With M =
⌈
16 ln(LNA/δ)

∆2

⌉
, with probability 1− δ, Algorithm 1 returns an action profile

that is ∆-rationalizable using a total of Õ
(
LNA
∆2

)
samples.

Wu et al. (2021) provide the first polynomial sample complexity results for finding rationalizable
action profiles. They prove that the Exp3-DH algorithm is able to find a distribution with 1 − ζ

fraction supported on ∆-rationalizable actions using Õ
(

L1.5N3A1.5

ζ3∆3

)
samples under bandit feedback8.

Compared to their result, our sample complexity bound Õ
(
LNA
∆2

)
has more favorable dependence

on all problem parameters, and our algorithm will output a distribution that is fully supported on
rationalizable actions (thus has no dependence on ζ).

We further complement Theorem 3 with a sample complexity lower bound showing that the linear
dependency on N and A are optimal. This lower bound suggests that the Õ

(
LNA
∆2

)
upper bound is

tight up to logarithmic factors when L = O(1), and we conjecture that this is true for general L.
Theorem 4. Even for games with L ≤ 2, any algorithm that returns a ∆-rationalizable action profile
with 0.9 probability needs Ω

(
NA
∆2

)
samples.

Conjecture 5. The minimax optimal sample complexity for finding a ∆-rationalizable action profile
is Θ

(
LNA
∆2

)
for games with minimum elimination length L.

4 LEARNING RATIONALIZABLE COARSE CORRELATED EQUILIBRIA (CCE)

In this section we introduce our algorithm for efficiently learning rationalizable CCEs. The high-level
idea is to run no-regret Hedge-style algorithms for every player, while constraining the strategy inside
the rationalizable region. Our algorithm is motivated by the fact that the probability of playing a
dominated action will decay exponentially over time in the Hedge algorithm for adversarial bandit
under full information feedback (Cohen et al., 2017). The full algorithm description is provided in
Algorithm 2, and here we explain several key components in our algorithm design.

Correlated Exploration Scheme. In the bandit feedback setting, standard exponential weights
algorithms such as EXP3.IX require importance sampling and biased estimators to derive a high-
probability regret bound (Neu, 2015). However, such bias could cause a dominating strategy to lose
its advantage. In our algorithm we adopt a correlated exploration scheme, which essentially simulates
full information feedback by bandit feedback using NA samples. Specifically, at every time step t,

8Wu et al. (2021)’s result allows trade-off between variables via different choice of algorithmic parameters.
However, a ζ−1∆−3 factor is unavoidable regardless of choice of parameters.
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Algorithm 2 Hedge for Rationalizable ϵ-CCE

1: (a⋆1, · · · , a⋆N )← Algorithm 1

2: For all i ∈ [N ], initialize θ
(1)
i (·)← 1[· = a⋆i ]

3: for t = 1, · · · , T do
4: for i = 1, · · · , N do
5: For all a ∈ Ai, play (a, θ

(t)
−i) for Mt times, compute player i’s average payoff u(t)

i (a)

6: Set θ(t+1)
i (·) ∝ exp

(
ηt
∑t

τ=1 u
(τ)
i (·)

)
7: For all t ∈ [T ] and i ∈ [N ], eliminate all actions in θ

(t)
i with probability smaller than p, then

renormalize the vector to simplex as θ̄(t)i

8: output:
(∑T

t=1⊗n
i=1θ̄

(t)
i

)
/T

the players take turn to enumerate their action set, while the other players fix their strategies according
to Hedge. For i ∈ [N ] and t ≥ 2, we denote θ

(t)
i the strategy computed using Hedge for player i in

round t. Joint strategy (a, θ
(t)
−i) is played to estimate player i’s payoff u(t)

i (a). It is important to note
that such correlated scheme does not require any communication between the players—the players
can schedule the whole process before the game starts.

Rationalizable Initialization and Variance Reduction. We use Algorithm 1, which learns a
rationalizable action profile, to give the strategy for the first round. By carefully preserving the
disadvantage of any iteratively dominated action, we keep the iterates inside the rationalizable region
throughout the whole learning process. To ensure this for every iterate with high probability, a
minibatch is used to reduce the variance of the estimator.

Clipping. In the final step, we clip all actions with small probabilities, so that iteratively dominated
actions do not appear in the output. The threshold is small enough to not affect the ϵ-CCE guarantee.

4.1 THEORETICAL GUARANTEE

In Algorithm 2, we choose parameters in the following manner:

ηt = max

{√
lnA
t , 4 ln(1/p)

∆t

}
,Mt =

⌈
64 ln(ANT/δ)

∆2t

⌉
, and p = min{ϵ,∆}

8AN . (1)

Note that our learning rate can be bigger than the standard learning rate in FTRL algorithms when t
is small. The purpose is to guarantee the rationalizability of the iterates from the beginning of the
learning process. As will be shown in the proof, this larger learning rate will not hurt the final rate.
We now state the theoretical guarantee for Algorithm 2.

Theorem 6. With parameters chosen as in Eq.(1) , after T = Õ
(

1
ϵ2 + 1

ϵ∆

)
rounds, with probability

1− 3δ, the output strategy of Algorithm 2 is a ∆-rationalizable ϵ-CCE.The total sample complexity is

Õ
(
LNA
∆2 + NA

ϵ2

)
.

Remark 7. Due to our lower bound (Theorem 4), an Õ(NA
∆2 ) term is unavoidable since learning

a rationalizable action profile is an easier task than learning rationalizable CCE. Based on our
Conjecture 5, the additional L dependency is also likely to be inevitable. On the other hand, learning
an ϵ-CCE alone only requires Õ( A

ϵ2 ) samples, where as in our bound we have a larger Õ(NA
ϵ2 ) term.

The extra N factor is a consequence of our correlated exploration scheme in which only one player
explores at a time. Removing this N factor might require more sophisticated exploration methods
and utility estimators, which we leave as future work.
Remark 8. Evoking Algorithm 1 requires knowledge of L, which may not be available in practice.
In that case, an estimate L′ may be used in its stead. If L′ ≥ L (for instance when L′ = NA), we
can recover the current rationalizability guarantee, albeit with a larger sample complexity scaling
with L′. If L′ < L, we can still guarantee that the output policy avoids actions in EL′ , which are,
informally speaking, actions that would be eliminated with L′ levels of reasoning.
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4.1.1 OVERVIEW OF THE ANALYSIS

We give an overview of our analysis of Algorithm 2 below. The full proof is deferred to Appendix C.

Step 1: Ensure rationalizability. We will first show that rationalizability is preserved at each iterate,
i.e., actions in EL will be played with low probability across all iterates. Formally,
Lemma 9. With probability at least 1− 2δ, for all t ∈ [T ] and all i ∈ [N ], ai ∈ Ai ∩ EL, we have
θ
(t)
i (ai) ≤ p.

Here p is defined in (1). Lemma 9 guarantees that, after the clipping in Line 7 of Algorithm 2, the
output correlated strategy be ∆-rationalizable.

We proceed to explain the main idea for proving Lemma 9. A key observation is that the set of
rationalizable actions, ∪ni=1Ai \EL, is closed under best response—for the i-th player, as long as the
other players continue to play actions in∪j ̸=iAj\EL, actions inAi∩EL will suffer from excess losses
each round in an exponential weights style algorithm. Concretely, for any a−i ∈ (

∏
j ̸=iAj) \ EL

and any iteratively dominated action ai ∈ Ai ∩ EL, there always exists xi ∈ ∆(Ai) such that
ui(xi, a−i) ≥ ui(ai, a−i) + ∆.

With our choice of p in Eq. (1), if other players choose their actions from ∪j ̸=iAj\EL with probability
1− pAN , we can still guarantee an excess loss of Ω(∆). It follows that∑t

τ=1 u
(τ)
i (xi)−

∑t
τ=1 u

(τ)
i (ai) ≥ Ω(t∆)− Sampling Noise.

However, this excess loss can be obscured by the noise from bandit feedback when t is small. Note
that it is crucial that the statement of Lemma 9 holds for all t due to the inductive nature of the proof.
As a solution, we use a minibatch of size Mt = Õ

(
⌈ 1
∆2t

⌉
) in the t-th round to reduce the variance of

the payoff estimator u(t)
i . The noise term can now be upper-bounded with Azuma-Hoeffding by

Sampling Noise ≤ Õ
(√∑t

τ=1
1
Mt

)
≤ O(t∆),

Combining this with our choice of the learning rate ηt gives

ηt

(∑t
τ=1 u

(τ)
i (xi)−

∑t
τ=1 u

(τ)
i (ai)

)
≫ 1. (2)

By the update rule of the Hedge algorithm, this implies that θ(t+1)
i (ai) ≤ p, which enables us to

complete the proof of Lemma 9 via induction on t.

Step 2: Combine with no-regret guarantees. Next, we prove that the output strategy is an ϵ-CCE.
For a player i ∈ [N ], the regret is defined as RegretiT = maxθ∈∆(Ai)

∑T
t=1⟨u

(t)
i , θ − θ

(t)
i ⟩. We can

obtain the following regret bound by standard analysis of FTRL with changing learning rates.

Lemma 10. For all i ∈ [N ], RegretiT ≤ Õ
(√

T + 1
∆

)
.

Here the additive 1/∆ term is the result of our larger Õ(∆−1t−1) learning rate for small t. It
follows from Lemma 10 that T = Õ

(
1
ϵ2 + 1

∆ϵ

)
suffices to guarantee that the correlated strategy

1
T

(∑T
t=1⊗n

i=1θ
(t)
i

)
is an (ϵ/2)-CCE. Since pNA = O(ϵ), the clipping step only minorly affects

the CCE guarantee and the clipped strategy 1
T

(∑T
t=1⊗n

i=1θ̄
(t)
i

)
is an ϵ-CCE.

4.2 APPLICATION TO LEARNING RATIONALIZABLE NASH EQUILIBRIUM

Algorithm 2 can also be applied to two-player zero-sum games to learn a rationalizable ϵ-NE
efficiently. Note that in two-player zero-sum games, the marginal distribution of an ϵ-CCE is
guaranteed to be a 2ϵ-Nash (see, e.g., Proposition 9 in Bai et al. (2020)). Hence direct application of
Algorithm 2 to a zero-sum game gives the following sample complexity bound.
Corollary 11. In a two-player zero-sum game, the sample complexity for finding a ∆-rationalizable
ϵ-Nash with Algorithm 2 is Õ

(
LA
∆2 + A

ϵ2

)
.

This result improves over a direct application of Proposition 1, which gives Õ
(

A3

∆4 + A
ϵ2

)
sample

complexity and produces an ϵ-Nash that could still take unrationalizable actions with positive
probability.
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Algorithm 3 Adaptive Hedge for Rationalizable ϵ-CE

1: (a⋆1, · · · , a⋆N )← Algorithm 1

2: For all i ∈ [N ], initialize θ
(1)
i ← (1− |Ai|p)1[· = a⋆i ] + p1

3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: For all a ∈ Ai, play (a, θ

(t)
−i) for M (t)

i times, compute player i’s average payoff u(t)
i (a)

6: For all b ∈ Ai, set θ̂(t+1)
i (·|b) ∝ exp

(
ηbt,i
∑t

τ=1 u
(τ)
i (·)θ(τ)i (b)

)
7: Find θ

(t+1)
i ∈ ∆(Ai) such that θ(t+1)

i (a) =
∑

b∈Ai
θ̂
(t+1)
i (a|b)θ(t+1)

i (b)

8: For all t ∈ [T ] and i ∈ [N ], eliminate all actions in θ
(t)
i with probability smaller than p, then

renormalize the vector to simplex as θ̄(t)i

9: output:
(∑T

t=1⊗n
i=1θ̄

(t)
i

)
/T

5 LEARNING RATIONALIZABLE CORRELATED EQUILIBRIUM

In order to extend our results on ϵ-CCE to ϵ-CE, a natural approach would be augmenting Algorithm 2
with the celebrated Blum-Mansour reduction (Blum & Mansour, 2007) from swap-regret to external
regret. In this reduction, one maintains A instances of a no-regret algorithm {Alg1, · · · ,AlgA}. In
iteration t, the player would stack the recommendations of the A algorithms as a matrix, denoted by
θ̂(t) ∈ RA×A, and compute its eigenvector θ(t) as the randomized strategy in round t. After observing
the actual payoff vector u(t), it will pass the weighted payoff vector θ(t)(a)u(t) to algorithm Alga for
each a. In this section, we focus on a fixed player i, and omit the subscript i when it’s clear from the
context.

Applying this reduction to Algorithm 2 directly, however, would fail to preserve rationalizability
since the weighted loss vector θ(t)(a)u(t) admit a smaller utility gap θ(t)(a)∆. Specifically, consider
an action b dominated by a mixed strategy x. In the payoff estimate of instance a,∑t

τ=1 θ
(τ)(a)

(
u(τ)(b)− u(τ)(x)

)
≳ ∆

∑t
τ=1 θ

(τ)(a)−
√∑t

τ=1
1

M(τ) ≱ 0, (3)

which means that we cannot guarantee the elimination of IDAs every round as in Eq (2).

In Algorithm 3, we address this by making
∑t

τ=1 θ
(τ)(a) play the role as t, tracking the progress

of each no-regret instance separately. In time step t, we will compute the average payoff vector u(t)

based on M (t) samples; then as in the Blum-Mansour reduction, we will update the A instances of
Hedge with weighted payoffs θ(t)(a)u(t) and will use the eigenvector of θ̂ as the strategy for the next
round. The key detail here is our choice of parameters, which adapts to the past strategies {θ(τ)}tτ=1:

M
(t)
i :=

⌈
maxa

64θ
(t)
i (a)

∆2·
∑t

τ=1 θ
(τ)
i (a)

⌉
, ηat,i := max

{
2 ln(1/p)

∆
∑t

τ=1 θ
(τ)
i (a)

,
√

A lnA
t

}
, p = min{ϵ,∆}

8AN . (4)

Compared to Eq (1), we are essentially replacing t with an adaptive
∑t

τ=1 θ
(τ)(a). We can now

improve (3) to∑t
τ=1 θ

(τ)(a)
(
u(τ)(b)− u(τ)(x)

)
≳ ∆

∑t
τ=1 θ

(τ)(a)−
√∑t

τ=1
θ(τ)(a)2

M(τ) ≳ ∆
∑t

τ=1 θ
(τ)(a).

(5)

This together with our choice of ηat allows us to ensure the rationalizability of every iterate. The full
algorithm is presented in Algorithm 3.
We proceed to our theoretical guarantee for Algorithm 3. The analysis framework is largely similar
to that of Algorithm 2. Our choice of M (t)

i is sufficient to ensure ∆-rationalizability via Azuma-
Hoeffding inequality, while swap-regret analysis of the algorithm proves that the average (clipped)
strategy is indeed an ϵ-CE. The full proof is deferred to Appendix D.

Theorem 12. With parameters in Eq. (4), after T = Õ
(
A
ϵ2 + A

∆2

)
rounds, with probability 1− 3δ,

the output strategy of Algorithm 3 is a ∆-rationalizable ϵ-CE . The total sample complexity is
Õ
(

LNA
∆2 + NA2

min{∆2,ϵ2}

)
.
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Algorithm 4 Rationalizable ϵ-CCE via Black-box Reduction

1: (a⋆1, · · · , a⋆N )← Algorithm 1

2: For all i ∈ [N ], initialize A(1)
i ← {a⋆i }

3: for t = 1, 2, . . . do
4: Find an ϵ′-CCE Π with black-box algorithm O in the sub-game Πi∈[N ]A

(t)
i

5: ∀i ∈ [N ], a′i ∈ Ai, evaluate ui(a
′
i,Π−i) for M times and compute average ûi(a

′
i,Π−i)

6: for i ∈ [N ] do
7: Let a′i ← argmaxa∈Ai

ûi(a,Π−i) // Computing the empirical best response
8: A(t+1)

i ← A(t)
i ∪ {a′i}

9: if A(t)
i = A(t+1)

i for all i ∈ [N ] then
10: return Π

Compared to Theorem 6, our second term has an additional A factor, which is quite reasonable
considering that algorithms for learning ϵ-CE take Õ(A2ϵ−2) samples, also A-times larger than the
ϵ-CCE rate.

6 REDUCTION-BASED ALGORITHMS

While Algorithm 2 and 3 make use of one specific no-regret algorithm, namely Hedge (Exponential
Weights), in this section, we show that arbitrary algorithms for finding CCE/CE can be augmented
to find rationalizable CCE/CE. The sample complexity obtained via this reduction is comparable
with those of Algorithm 2 and 3 when L = Θ(NA), but slightly worse when L≪ NA. Moreover,
this black-box approach would enable us to derive algorithms for rationalizable equilibria with more
desirable qualities, such as last-iterate convergence, when using equilibria-finding algorithms with
these properties.

Suppose that we are given a black-box algorithm O that finds ϵ-CCE in arbitrary games. We can then
use this algorithm in the following “support expansion” manner. We start with a subgame of only
rationalizable actions, which can be identified efficiently with Algorithm 1, and call O to find an
ϵ-CCE Π for the subgame. Next, we check for each i ∈ [N ] if the best response to Π−i is contained
in Ai. If not, this means that the subgame’s ϵ-CCE may not be an ϵ-CCE for the full game; in this
case, the best response to Π−i would be a rationalizable action that we can safely include into the
action set. On the other hand, if the best response falls in Ai for all i, we can conclude that Π is
also an ϵ-CCE for the original game. The details are given by Algorithm 4, and our main theoretical
guarantee is the following.
Theorem 13. Algorithm 4 outputs a ∆-rationalizable ϵ-CCE with high probability, using at most
NA calls to the black-box CCE algorithm and Õ

(
N2A2

min{ϵ2,∆2}

)
additional samples.

Using similar algorithmic techniques, we can develop a reduction scheme for rationalizable ϵ-CE.
The detailed description for this algorithm is deferred to Appendix E. Here we only state its main
theoretical guarantee.
Theorem 14. There exists an algorithm that outputs a ∆-rationalizable ϵ-CE with high probability,
using at most NA calls to a black-box CE algorithm and Õ

(
N2A3

min{ϵ2,∆2}

)
additional samples.

7 CONCLUSION

In this paper, we consider two tasks: (1) learning rationalizable action profiles; (2) learning rationaliz-
able equilibria. For task 1, we propose a conceptually simple algorithm whose sample complexity
is significantly better than prior work (Wu et al., 2021). For task 2, we develop the first provably
efficient algorithms for learning ϵ-CE and ϵ-CCE that are also rationalizable. Our algorithms are
computationally efficient, enjoy sample complexity that scales polynomially with the number of
players and are able to avoid iteratively dominated actions completely. Our results rely on several
new techniques which might be of independent interests to the community. There remains a gap
between our sample complexity upper bounds and the available lower bounds for both tasks, closing
which is an important future research problem.
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A FURTHER DETAILS ON RATIONALIZABILITY

A.1 EQUIVALENCE OF NEVER-BEST-RESPONSE AND STRICT DOMINANCE

It is known that for finite normal form games, rationalizable actions are given by iterated elimination
of never-best-response actions, which is in fact equivalent to the iterative elimination of strictly
dominated actions (Osborne & Rubinstein, 1994, Lemma 60.1). Here, for completeness, we include
a proof that the iterative elimination of of actions that are never ∆-best-response gives the same
definition as Definition 1. Notice that it suffices to show that for every subgame, the set of never
∆-best response actions and the set of ∆-dominated actions are the same.

Proposition A.1. Suppose that an action a ∈ Ai is never a ∆-best response, i.e. ∀Π−i ∈
∆(
∏

j ̸=iAi), ∃u ∈ ∆(Ai) such that

ui (a,Π−i) ≤ ui (u,Π−1)−∆.

Then a is also ∆-dominated, i.e. ∃u ∈ ∆(Ai), ∀Π−i ∈ ∆(
∏

j ̸=iAi)

ui (a,Π−i) ≤ ui (u,Π−1)−∆.

Proof. That a is never a ∆-best response is equivalent to

min
Π−1

max
u
{ui (a,Π−i)− ui (u,Π−1)} ≤ −∆.

That a is ∆-dominated is equivalent to

max
u

min
Π−1

{ui (a,Π−i)− ui (u,Π−1)} ≤ −∆.

Equivalence immediately follows from von Neumman’s minimax theorem.

A.2 PROOF OF PROPOSITION 1

Proof. We prove this inductively with the following hypothesis:

∀l ≥ 1,∀i ∈ [N ],
∑
a∈Ai

x∗
i (a) · 1[a ∈ El] ≤

2lϵ

∆
.

Base case: By the definition of ϵ-NE, ∀i ∈ [N ], ∀x′ ∈ ∆(Ai),

ui(x
∗
i , x

∗
−i) ≥ ui(x

′, x∗
−i)− ϵ.

Note that if ã ∈ E1 ∩ Ai, ∃x ∈ ∆(Ai) such that ∀a−i,

ui(ã, a−i) ≤ ui(x, a−i)−∆.

Therefore if we choose

x′ := x∗
i −

∑
a∈Ai

1[a ∈ E1]x
∗
i (a)ea +

∑
a∈Ai

1[a ∈ E1]x
∗
i (a) · x(a),

that is if we play the dominating strategy instead of the dominated action in x∗
i , then

ui(x
′, x∗

−i) ≥ ui(x
∗
i , x

∗
−i) +

∑
a∈Ai

x∗
i (a) · 1[a ∈ E1]∆.

It follows that ∑
a∈Ai

x∗
i (a) · 1[a ∈ E1] ≤

ϵ

∆
.
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Induction step: By the induction hypothesis, ∀i ∈ [N ],∑
a∈Ai

x∗
i (a) · 1[a ∈ El] ≤

2lϵ

∆
.

Now consider

x̃i :=
x∗
i −

∑
a∈Ai

1[a ∈ El] · x∗
i (a)ea

1−
∑

a∈Ai
1[a ∈ El] · x∗

i (a)
, (∀i ∈ [N ])

which is supported on actions on in El. The induction hypothesis implies ∥x̃i − x∗
i ∥1 ≤ 6lϵ/∆.

Therefore ∀i ∈ [N ], ∀a ∈ Ai, ∣∣ui(a, x̃−i)− ui(a, x
∗
−i)
∣∣ ≤ 6Nlϵ

∆
.

Now if ã ∈ (El+1 \ El) ∩ Ai, since x̃−i is not supported on El, ∃x ∈ ∆(Ai) such that

ui(ã, x̃−i) ≤ ui(x, x̃−i)−∆.

It follows that

ui(ã, x
∗
−i) ≤ ui(x, x

∗
−i)−∆+

12Nlϵ

∆
≤ ui(x, x

∗
−i)−

∆

2
.

Using the same arguments as in the base case,∑
a∈Ai

x∗
i (a) · 1[a ∈ El+1 \ El] ≤

ϵ

∆− 12Nlϵ
∆

≤ 2ϵ

∆
.

It follows that ∀i ∈ [N ], ∑
a∈Ai

x∗
i (a) · 1[a ∈ El+1] ≤

2(l + 1)ϵ

∆
.

The statement is thus proved via induction on l.

B FIND ONE RATIONALIZABLE ACTION PROFILE

B.1 PROOF OF PROPOSITION 2

Proof. Consider the following N -player game denoted by G0 with action set [A]:

ui (·) = 0 (1 ≤ i ≤ N − 1)
uN (aN ) = ∆ · 1[aN > 1].

Specifically, a payoff with mean u is realized by a skewed Rademacher random variable with 1+u
2

probability on +1 and 1−u
2 on −1. In game G0, clearly for player N , the action 1 is ∆-dominated.

However, consider the following game, denoted by Ga∗ (where a∗ ∈ [A]N−1)

ui (·) = 0, (1 ≤ i ≤ N − 1)
uN (aN ) = ∆, (aN > 1)

uN (1, a−N ) = 2∆ · 1[a−N = a∗].

It can be seen that in game Ga∗ , for player N , the action 1 is not dominated or iteratively strictly
dominated. Therefore, suppose that an algorithm O is able to determine whether an action is
rationalizable (i.e. not iteratively strictly dominated) with 0.9 accuracy, then its output needs to be
False with at least 0.9 probability in game G0, but True with at least 0.9 probability in game Ga∗ . By
Pinsker’s inequality,

KL(O(G0)||O(Ga∗)) ≥ 2 · 0.82 > 1,

where we used O(G) to denote the trajectory generated by running algorithm O on game G. Mean-
while, notice that G0 and Ga∗ is different only when the first N − 1 players play a∗. Denote

13
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the number of times where the first N − 1 players play a∗ by n(a∗). Using the chain rule of
KL-divergence,

KL(O(G0)||O(Ga∗)) ≤ EG0
[n(a∗)] ·KL

(
Ber

(
1

2

)∥∥∥∥Ber(1 + 2∆

2

))
(a)

≤ EG0 [n(a
∗)] · 1

1−2∆
2

· (2∆)2

(b)

≤ 10∆2EG0
[n(a∗)] .

Here (a) follows from reverse Pinsker’s inequality (see e.g. Binette (2019)), while (b) uses the fact
that ∆ < 0.1. This means that for any a∗ ∈ [A]N−1,

EG0 [n(a
∗)] ≥ 1

10∆2
.

It follows that the expected number of samples when running O on G0 is at least

EG0

 ∑
a∗∈[A]N−1

n(a∗)

 ≥ AN−1

10∆2
.

B.2 PROOF OF THEOREM 3

Proof. We first present the concentration bound. For l ∈ [L], i ∈ [N ], and a ∈ Ai, by Hoeffding’s
inequality we have that with probability at least 1− δ

LNA ,∣∣∣ui(a, a
(l−1)
−i )− ûi(a, a

(l−1)
−i )

∣∣∣ ≤√4 ln(ANL/δ)

M
≤ ∆

4
.

Therefore by a union bound we have that with probability at least 1− δ, for all l ∈ [L], i ∈ [N ], and
a ∈ Ai, ∣∣∣ui(a, a

(l−1)
−i )− ûi(a, a

(l−1)
−i )

∣∣∣ ≤ ∆

4
.

We condition on this event for the rest of the proof.

We use induction on l to prove that for all l ∈ [L] ∪ {0}, (a(l)1 , · · · , a(l)N ) can survive at least l rounds
of IDE. The base case for l = 0 directly holds. Now we assume that the case for 1, 2, . . . , l− 1 holds
and consider the case of l.

For any i ∈ [N ], we show that a(l)i can survive at least l rounds of IDE. Recall that a(l)i is the
empirical best response, i.e.

a
(l)
i = argmax

a∈Ai

ûi(a, a
(l−1)
−i ).

For any mixed strategy xi ∈ ∆(Ai), we have that

ui(a
(l)
i , a

(l−1)
−i )− ui(xi, a

(l−1)
−i )

≥ûi(a
(l)
i , a

(l−1)
−i )− ûi(xi, a

(l−1)
−i )−

∣∣∣ui(a
(l)
i , a

(l−1)
−i )− ûi(a

(l)
i , a

(l−1)
−i )

∣∣∣− ∣∣∣ui(xi, a
(l−1)
−i )− ûi(xi, a

(l−1)
−i )

∣∣∣
≥0− ∆

4
− ∆

4
= −∆

2
.

Since actions in a
(l−1)
−i can survive at least l− 1 rounds of ∆-IDE, a(l)i cannot be ∆-dominated by xi

in rounds 1, · · · , l. Since xi can be arbitrarily chosen, a(l)i can survive at least l rounds of ∆-IDE. We
can now ensure that the output (a(L)

1 , · · · , a(L)
N ) survives L rounds of ∆-IDE, which is equivalent to

∆-rationalizability (see Definition 1).

The total number of samples used is

LNA ·M = Õ

(
LNA

∆2

)
.
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B.3 PROOF OF THEOREM 4

Proof. Without loss of generality, assume that ∆ < 0.1. Consider the following instance where
A1 = · · · = AN = [A]:

ui(ai) = ∆ · 1[ai = 1], (i ̸= j)

uj(aj , a−j) =

{
∆ · 1[aj = 1] (a−j ̸= {1}N−1)

∆ · 1[aj = 1] + 2∆ · 1[aj = a] (a−j = {1}N−1)
.

Denote this instance by Gj,a. Additionally, define the following instance G0:

ui(ai) = ∆ · 1[ai = 1]. (∀i ∈ [N ])

As before, a payoff with expectation u is realized as a random variable with distribution 2Ber( 1+u
2 )−1.

It can be seen that the only difference between G0 and Gj,a lies in uj(a, {1}N−1). By the KL-
divergence chain rule, for any algorithm O,

KL (O(G0)∥O(Gj,a)) ≤ 10∆2 · EG0

[
n(aj = a, a−j = {1}N−1)

]
,

where n(aj = a, a−j = {1}N−1) denotes the number of times the action profile (a, 1N−1) is played.
Note that in G0, the only action profile surviving two rounds of ∆-IDE is (1, · · · , 1), while in
Gj,a, the only rationalizable action profile is (1, · · · , 1︸ ︷︷ ︸

j−1

, a, 1, · · · , 1). To guarantee 0.9 accuracy, by

Pinsker’s inequality,

KL (O(G0)||O(Gj,a)) ≥
1

2
|O(G0)−O(Gj,a)|2 > 1.

It follows that ∀j ∈ [N ], a > 1,

EG0

[
n(aj = a, a−j = {1}N−1)

]
≥ 1

10∆2
.

Thus the total expected sample complexity is at least∑
a>1,j∈[N ]

EG0

[
n(aj = a, a−j = {1}N−1)

]
≥ N(A− 1)

10∆2
.

C OMITTED PROOFS IN SECTION 4

We start our analysis by bounding the sampling noise. For player i ∈ [N ], action ai ∈ Ai, and
τ ∈ [T ], we denote the sampling noise as

ξ
(τ)
i (ai) := u

(τ)
i (ai)− ui(ai, θ

(τ)
−i ).

We have the following lemma.
Lemma C.1. Let Ω1 denote the event that for all t ∈ [T ], i ∈ [N ], and ai ∈ Ai,∣∣∣∣∣

t∑
τ=1

ξ
(τ)
i (ai)

∣∣∣∣∣ ≤ 2

√√√√ln(ANT/δ)

t∑
τ=1

1

Mτ
.

Then Pr[Ω1] ≥ 1− δ.

Proof. Note that
∑t

τ=1 ξ
(τ)
i (ai) can be written as the sum of

∑t
τ=1 Mτ mean-zero bounded terms.

By Azuma-Hoeffding inequality, with probability at least 1 − δ
ANT , for a fixed i ∈ [N ], t ∈ [T ],

ai ∈ Ai, ∣∣∣∣∣
t∑

τ=1

ξ
(τ)
i (ai)

∣∣∣∣∣ ≤ 2

√√√√ln(ANT/δ)

t∑
τ=1

Mτ ·
(

1

Mτ

)2

. (6)

A union bound over i ∈ [N ], t ∈ [T ], ai ∈ Ai proves the statement.
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Lemma C.2. With probability at least 1− 2δ, for all t ∈ [T ] and all i ∈ [N ], ai ∈ Ai ∩ EL,

θ
(t)
i (ai) ≤ p.

Proof. We condition on the event Ω1 defined in Lemma C.1 and the success of Algorithm 1. We
prove the claim by induction in t. The base case for t = 1 holds directly by initialization. Now we
assume the case for 1, 2, . . . , t holds and consider the case of t+ 1.

Consider a fixed player i ∈ [N ] and iteratively dominated action ai ∈ Ai ∩EL. By definition there
exists a mixed strategy xi such that for all a−i ∩ EL = ∅,

ui(xi, a−i) ≥ ui(ai, a−i) + ∆.

Therefore for τ ∈ [t], by the induction hypothesis for τ ,

ui(xi, θ
(τ)
−i ) ≥ ui(ai, θ

(τ)
−i ) + (1−ANp) ·∆−ANp

≥ ui(ai, θ
(τ)
−i ) + ∆/2. (7)

Consequently,

t∑
τ=1

(u
(τ)
i (xi)− u

(τ)
i (ai))

≥
t∑

τ=1

(ui(xi, θ
(τ)
−i )− ui(ai, θ

(τ)
−i ))− 4 ·

√√√√ln(ANT/δ)

t∑
τ=1

1

Mτ
(By (6))

≥ t∆

2
− 4 ·

√√√√ln(ANT/δ)

t∑
τ=1

1

Mτ
(By (7))

≥ t∆

4
.

Therefore by our choice of learning rate,

θ
(t+1)
i (ai) ≤ exp

(
−ηt ·

t∑
τ=1

(
u
(τ)
i (xi)− u

(τ)
i (ai)

))

≤ exp

(
−4 ln(1/p)

∆t
· ∆t

4

)
= p.

Therefore
θ
(t+1)
i (ai) ≤ p

as desired.

Now we turn to the ϵ-CCE guarantee. For a player i ∈ [N ], recall that the regret is defined as

RegretiT = max
θ∈∆(Ai)

T∑
t=1

⟨u(t)
i , θ − θ

(t)
i ⟩.

Lemma C.3. The regret can be bounded as

RegretiT ≤ O

(√
lnA · T +

ln(1/p) lnT

∆

)
.

Proof. Note that apart from the choice of θ(1), we are exactly running FTRL with learning rates

ηt = max

{√
lnA/t,

4 ln(1/p)

∆t

}
,
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which are monotonically decreasing. Therefore following the standard analysis of FTRL (see, e.g.,
Orabona (2019, Corollary 7.9)), we have

max
θ∈∆(Ai)

T∑
t=1

⟨u(t)
i , θ − θ

(t)
i ⟩ ≤ 2 +

lnA

ηT
+

1

2

T∑
t=1

ηt

≤ 2 +
√
lnA · T +

1

2

T∑
t=1

(√
lnA

t
+

4 ln(1/p)

∆t

)

= O

(√
lnA · T +

ln(1/p) lnT

∆

)
.

However, this form of regret cannot directly imply approximate CCE. We define the following
expected version regret

Regreti,⋆T = max
θ∈∆(Ai)

T∑
t=1

⟨ui(·, θ(t)−i), θ − θ
(t)
i ⟩.

The next lemma bound the difference between these two types of regret
Lemma C.4. The following event Ω2 holds with probability at least 1− δ: for all i ∈ [N ]∣∣∣Regreti,⋆T − RegretiT

∣∣∣ ≤ O
(√

T · ln(NA/δ)
)
.

Proof. We denote
Θi := {e1, e2, . . . , e|Ai|}

Therefore we have∣∣∣Regreti,⋆T − RegretiT

∣∣∣
=

∣∣∣∣∣ max
θ∈∆(Ai)

T∑
t=1

⟨ui(·, θ(t)−i), θ − θ
(t)
i ⟩ − max

θ∈∆(Ai)

T∑
t=1

⟨u(t)
i , θ − θ

(t)
i ⟩

∣∣∣∣∣
=

∣∣∣∣∣max
θ∈Θi

T∑
t=1

⟨ui(·, θ(t)−i), θ − θ
(t)
i ⟩ −max

θ∈Θi

T∑
t=1

⟨u(t)
i , θ − θ

(t)
i ⟩

∣∣∣∣∣
=max

θ∈Θi

∣∣∣∣∣
T∑

t=1

⟨ui(·, θ(t)−i), θ − θ
(t)
i ⟩ −

T∑
t=1

⟨u(t)
i , θ − θ

(t)
i ⟩

∣∣∣∣∣
=max

θ∈Θi

∣∣∣∣∣
T∑

t=1

⟨ui(·, θ(t)−i)− u
(t)
i , θ − θ

(t)
i ⟩

∣∣∣∣∣
Note that ⟨ui(·, θ(t)−i) − u

(t)
i , θ − θ

(t)
i ⟩ is a bounded martingale difference sequence. By Azuma-

Hoeffding’s inequality, for a fixed θ ∈ Θi, with probability at least 1− δ
AN ,∣∣∣∣∣

T∑
t=1

⟨ui(·, θ(t)−i)− u
(t)
i , θ − θ

(t)
i ⟩

∣∣∣∣∣ ≤ O
(√

T · ln(NA/δ)
)

Thus we complete the proof by a union bound.

Proof of Theorem 6. We condition on event Ω1 defined Lemma C.1, event Ω2 defined in Lemma C.4,
and the success of Algorithm 1.

Coarse Correlated Equilibria. By Lemma C.3 and Lemma C.4 we know that for all i ∈ [N ],

Regreti,⋆T ≤ O

(√
lnA · T +

ln(1/p) lnT

∆
+
√
T · ln(NA/δ)

)
.
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Therefore choosing

T = Θ

(
ln(NA/δ)

ϵ2
+

ln2(NA/∆ϵδ)

∆ϵ

)
will guarantee that Regreti,⋆T is at most ϵT/2 for all i ∈ [N ]. In this case the average strategy
(
∑T

t=1⊗N
i=1θ

(t)
i )/T would be an (ϵ/2)-CCE.

Finally, in the clipping step, ∥θ̄(t)i −θ
(t)
i ∥1 ≤ 2pA ≤ ϵ

4N for all i ∈ [N ], t ∈ [T ]. Thus for all t ∈ [T ],
we have ∥ ⊗n

i=1 θ̄
(t)
i −⊗n

i=1θ
(t)
i ∥1 ≤ ϵ

4 , which further implies∥∥∥∥∥(
T∑

t=1

⊗n
i=1θ̄

(t)
i )/T − (

T∑
t=1

⊗n
i=1θ

(t)
i )/T

∥∥∥∥∥
1

≤ ϵ

4
.

Therefore the output strategy Π = (
∑T

t=1⊗N
i=1θ̄

(t)
i )/T is an ϵ-CCE.

Rationalizability. By Lemma C.2, if a ∈ EL ∩ Ai, θ
(t)
i (a) ≤ p for all t ∈ [T ]. It follows that

θ̄
(t)
i (a) = 0, i.e., the action would not be the support in the output strategy Π = (

∑T
t=1⊗N

i=1θ̄
(t)
i )/T .

Sample complexity. The total number of full-information queries is

T∑
t=1

Mt ≤ T +

T∑
t=1

64 ln(ANT/δ)

∆2t

≤ T + Õ

(
1

∆2

)
= Õ

(
1

∆2
+

1

ϵ2

)
.

The total sample complexity for CCE learning would then be

NA ·
T∑

t=1

Mt = Õ

(
NA

ϵ2
+

NA

∆2

)
.

Finally consider the cost of finding one IDE-surviving action profile (Õ
(
LNA
∆2

)
) and we get the

claimed rate.

D OMITTED PROOFS IN SECTION 5

Similar to the CCE case we first bound the sampling noise. For action ai ∈ Ai, and τ ∈ [T ], we
denote the sampling noise as

ξ
(τ)
i (ai) := u

(τ)
i (ai)− ui(ai, θ

(τ)
−i ).

In the CE case, we are interested in the weighted sum of noise
∑t

τ=1 ξ
(τ)
i (ai)θ

(τ)
i (bi), which is

bounded in the following lemma.

Lemma D.1. The following event Ω3 holds with probability at least 1− δ: for all t ∈ [T ], i ∈ [N ],
and ai ∈ Ai, ∣∣∣∣∣

t∑
τ=1

ξ
(τ)
i (ai)θ

(τ)
i (bi)

∣∣∣∣∣ ≤ ∆

4

t∑
τ=1

θ
(τ)
i (bi).

Proof. Note that
∑t

τ=1 ξ
(τ)
i (ai)θ

(τ)
i (bi) can be written as the sum of

∑t
τ=1 M

τ
i mean-zero bounded

terms. Precisely, there are Mτ
i terms bounded by θ

(τ)
i (bi)

Mτ
i

. By the Azuma-Hoeffding inequality, we
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have that with probability at least 1− δ
A2NT ,∣∣∣∣∣

t∑
τ=1

ξ
(τ)
i (ai)θ

(τ)
i (bi)

∣∣∣∣∣ ≤ 2 ·

√√√√ln(ANT/δ)

t∑
τ=1

Mτ
i ·

(
θ
(τ)
i (bi)

Mτ
i

)2

= 2 ·

√√√√ln(ANT/δ)

t∑
τ=1

(θ
(τ)
i (bi))2

Mτ
i

≤ ∆

4
·

√√√√ t∑
τ=1

θ
(τ)
i (bi)

τ∑
j=1

θ
(j)
i (bi)

≤ ∆

4

t∑
τ=1

θ
(τ)
i (bi)

Therefore by a union bound we complete the proof.

Lemma D.2. With probability at least 1− 2δ, for all t ∈ [T ], all i ∈ [N ], and all ai ∈ Ai ∩ EL,

θ
(t)
i (ai) ≤ p

Proof. We condition on the event Ω3 defined in Lemma D.1 and the success of Algorithm 1. We
prove the claim by induction in t. The base case for t = 1 holds directly by initialization. Now we
assume the case for 1, 2, . . . , t holds and consider the case of t+ 1.

Consider a fixed player i ∈ [N ], an iteratively dominated action ai ∈ Ai ∩ EL, and an expert bi. By
definition there exists a mixed strategy xi such that for all a−i ∩ EL = ∅,

ui(xi, a−i) ≥ ui(ai, a−i) + ∆

Therefore for τ ∈ [t], by induction hypothesis we have

ui(xi, θ
(τ)
−i ) ≥ ui(ai, θ

(τ)
−i ) + (1−ANp) ·∆−ANp

≥ ui(ai, θ
(τ)
−i ) + ∆/2

Thus we have
t∑

τ=1

(u
(τ)
i (xi)− u

(τ)
i (ai)) · θ(τ)i (bi)

≥
t∑

τ=1

(ui(xi, θ
(τ)
−i )− ui(ai, θ

(τ)
−i )) · θ

(τ)
i (bi)−

∆

4

t∑
τ=1

θ
(τ)
i (bi)

≥∆

2

t∑
τ=1

θ
(τ)
i (bi)−

∆

4

t∑
τ=1

θ
(τ)
i (bi)

=
∆

4

t∑
τ=1

θ
(τ)
i (bi)

By our choice of learning rate,

θ̂
(t+1)
i (ai|bi) ≤ exp

(
−ηbit,i ·

t∑
τ=1

θ
(τ)
i (bi)

(
u
(τ)
i (xi)− u

(τ)
i (ai)

))

≤ exp

(
− 4 ln(1/p)

∆
∑t

τ=1 θ
(τ)
i (b)

· ∆
4

t∑
i=1

θ
(τ)
i (b)

)
= p.

Therefore we conclude

θ
(t+1)
i (ai) =

∑
bi∈Ai

θ̂
(t+1)
i (ai|bi)θ(t+1)

i (bi) ≤ p
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Now we turn to the ϵ-CE guarantee. For a player i ∈ [N ], recall that the swap-regret is defined as

SwapRegretiT := sup
ϕ:Ai→Ai

T∑
t=1

∑
b∈Ai

θ
(t)
i (b)u

(t)
i (ϕ(b))−

T∑
t=1

〈
θ
(t)
i , u

(t)
i

〉
.

Lemma D.3. For all i ∈ [N ], the swap-regret can be bounded as

SwapRegretiT ≤ O

(√
A ln(A)T +

A ln(NAT/∆ϵ)2

∆

)
.

Proof. For i ∈ [N ], recall that the regret for an expert b ∈ Ai is defined as

Regreti,bT := max
a∈Ai

T∑
t=1

θ
(t)
i (b)u

(t)
i (a)−

T∑
t=1

〈
θ̂
(t)
i (·|b), θ(t)i (b)u

(t)
i

〉
.

Since θ
(t)
i (a) =

∑
b∈Ai

θ̂
(t)
i (a|b)θ(t)i (b) for all a and all t > 1,

∑
b∈Ai

Regreti,bT =
∑
b∈Ai

max
ab∈Ai

T∑
t=1

θ
(t)
i (b)u

(t)
i (ab)−

∑
b∈Ai

T∑
t=1

〈
θ̂
(t)
i (·|b)θ(t)i (b), u

(t)
i

〉

= max
ϕ:Ai→Ai

∑
b∈Ai

T∑
t=1

θ
(t)
i (b)u

(t)
i (ϕ(b))−

T∑
t=1

〈∑
b∈Ai

θ̂
(t)
i (·|b)θ(t)i (b), u

(t)
i

〉

≥ max
ϕ:Ai→Ai

T∑
t=1

∑
b∈Ai

θ
(t)
i (b)u

(t)
i (ϕ(b))−

T∑
t=2

〈
θ
(t)
i , u

(t)
i

〉
− 1 ≥ SwapRegretiT − 1.

It now suffices to control the regret of each individual expert. For expert b, we are essentially running
FTRL with learning rates

ηbt,i := max

{
4 ln(1/p)

∆
∑t

τ=1 θ
(τ)
i (b)

,

√
A lnA√

t

}
,

which are clearly monotonically decreasing. Therefore using standard analysis of FTRL (see, e.g.,
Orabona (2019, Corollary 7.9)),

Regreti,bT ≤
lnA

ηbT,i

+

T∑
t=1

ηbt,i · θ
(t)
i (b)2

≤
√

T lnA

A
+

T∑
t=1

θ
(t)
i (b) ·

√
A lnA

t
+

4 ln(1/p)

∆
·

T∑
t=1

θ
(t)
i (b)∑t

τ=1 θ
(τ)
i (b)

≤
√

T lnA

A
+

T∑
t=1

θ
(t)
i (b) ·

√
A lnA

t
+

4 ln(1/p)

∆

(
1 + ln

(
T

p

))
.

Here we used the fact that ∀b ∈ Ai, θ
(1)
i (b) ≥ p, and

T∑
t=1

θ
(t)
i (b)∑τ

i=1 θ
(τ)
i (b)

≤ 1 +

∫ ∑T
t=1 θ

(t)
i (b)

θ
(1)
i (b)

ds

s
= 1 + ln

(∑T
t=1 θ

(t)
i (b)

θ
(1)
i (b)

)

≤ 1 + ln

(
T

p

)
.

Notice that
∑

b∈Ai

∑T
t=1 θ

(t)
i (b) ·

√
A lnA

t ≤ O(
√

A ln(A)T ). Therefore

SwapRegretiT ≤ O(1) +
∑
b∈Ai

Regreti,bT ≤ O

(√
A ln(A)T +

A ln(NAT/∆ϵ)2

∆

)
. (8)
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Similar to the CCE case,, this form of regret can not directly imply approximate CE. We define the
following expected version regret

SwapRegreti,⋆T := sup
ϕ:Ai→Ai

T∑
t=1

〈
ϕ ◦ θ(t)i , ui(·, θ(t)−i)

〉
−

T∑
t=1

〈
θ
(t)
i , ui(·, θ(t)−i)

〉
The next lemma bound the difference between these two types of regret
Lemma D.4. The following event Ω4 has probability at least 1− δ: for all i ∈ [N ],∣∣∣SwapRegreti,⋆T − SwapRegretiT

∣∣∣ ≤ O

(√
AT ln

(
AN

δ

))
.

Proof. Note that∣∣∣SwapRegreti,⋆T − SwapRegretiT

∣∣∣
=

∣∣∣∣∣ sup
ϕ:Ai→Ai

T∑
t=1

〈
ϕ ◦ θ(t)i − θ

(t)
i , ui(·, θ(t)−i)

〉
− sup

ϕ:Ai→Ai

T∑
t=1

〈
ϕ ◦ θ(t)i − θ

(t)
i , u

(t)
i

〉∣∣∣∣∣
≤ sup

ϕ:Ai→Ai

∣∣∣∣∣
T∑

t=1

〈
ϕ ◦ θ(t)i − θ

(t)
i , ui(·, θ(t)−i)− u

(t)
i

〉∣∣∣∣∣ .
Notice that E[u(t)

i ] = ui

(
·, θ(t)−i

)
, and that u

(t)
i ∈ [−1, 1]A. Therefore, ∀ϕ : Ai → Ai,

ξϕt :=
〈
ϕ ◦ θ(t)i − θ

(t)
i , ui

(
·, θ(t)−i

)
− u

(t)
i

〉
is a bounded martingale difference sequence. By Azuma-

Hoeffding inequality, for a fixed ϕ : Ai → Ai, with probability 1− δ′,∣∣∣∣∣
T∑

t=1

ξϕt

∣∣∣∣∣ ≤ 2

√
2T ln

(
2

δ′

)
.

By setting δ′ = δ/(NAA), we get with probability 1− δ/N , ∀ϕ : Ai → Ai,∣∣∣∣∣
T∑

t=1

ξϕt

∣∣∣∣∣ ≤ 2

√
2AT ln

(
2AN

δ

)
.

Therefore we complete the proof by a union bound over i ∈ [N ].

Proof of Theorem 12. We condition on event Ω3 defined Lemma D.1, event Ω4 defined in Lemma D.4,
and the success of Algorithm 1.

Correlated Equilibrium. By Lemma D.3 and Lemma D.4 we know that for all i ∈ [N ],

SwapRegreti,⋆T ≤ O

(√
A ln(A)T +

A ln(NAT/∆ϵ)2

∆
+

√
AT ln

(
AN

δ

))
.

Therefore choosing

T = Θ

(
A ln

(
AN
δ

)
ϵ2

+
A ln3

(
NA
∆ϵδ

)
∆ϵ

)
will guarantee that SwapRegreti,⋆T is at most ϵT/2 for all i ∈ [N ]. In this case the average strategy
(
∑T

t=1⊗N
i=1θ

(t)
i )/T would be an ϵ/2-CE.

Finally, in the clipping step, ∥θ̄(t)i −θ
(t)
i ∥1 ≤ 2pA ≤ ϵ

4N for all i ∈ [N ], t ∈ [T ]. Thus for all t ∈ [T ],
we have ∥ ⊗n

i=1 θ̄
(t)
i −⊗n

i=1θ
(t)
i ∥1 ≤ ϵ

4 , which further implies∥∥∥∥∥(
T∑

t=1

⊗n
i=1θ̄

(t)
i )/T − (

T∑
t=1

⊗n
i=1θ

(t)
i )/T

∥∥∥∥∥
1

≤ ϵ

4
.
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Therefore the output strategy Π = (
∑T

t=1⊗N
i=1θ̄

(t)
i )/T is an ϵ-CE.

Rationalizability. By Lemma D.2, if a ∈ EL ∩ Ai, θ
(t)
i (a) ≤ p for all t ∈ [T ]. It follows that

θ̄
(t)
i (a) = 0, i.e., the action would not be the support in the output strategy Π = (

∑
t⊗iθ̄

(t)
i )/T .

Sample complexity. The total number of queries is∑
i∈[N ]

T∑
t=1

AM
(t)
i ≤ NAT +

∑
i∈[N ]

∑
b∈Ai

T∑
t=1

16θ
(t)
i (b)

∆2 ·
∑t

τ=1 θ
(τ)
i (b)

≤ NAT +
16NA2

∆2
· ln(T/p)

≤ Õ

(
NA2

ϵ2
+

NA2

∆2

)
,

where we used the fact that
T∑

t=1

θ
(t)
i (a)∑τ

i=1 θ
(τ)
i (a)

≤ 1 + ln

(
T

p

)
.

Finally consider the cost of finding one IDE-surviving action profile (Õ
(
LNA
∆2

)
) and we get the

claimed rate.

E DETAILS FOR REDUCTION ALGORITHMS

In this section, we present the details for the reduction based algorithm for finding rationalizable CE
(Algorithm 5) and analysis of both Algorithm 4 and 5.

E.1 RATIONALIZABLE CCE VIA REDUCTION

We will choose ϵ′ = min{ϵ,∆}
3 , M =

⌈
4 ln(2NA/δ)

ϵ′2

⌉
.

Lemma E.1. With probability 1−δ, throughout the execution of Algorithm 4, for every t and i ∈ [N ],
a′i ∈ Ai,

|ûi(a
′
i,Π−i)− ui (a

′
i,Π−i)| ≤ ϵ′.

Proof. First, observe that during every iterate of t before the algorithm returns, the total support size∑t
i=1 |A

(t)
i | is increased by at least 1. It follows that the algorithm returns before t = NA.

By Hoeffding’s inequality,

Pr [|ûi(a
′
i,Π−i)− ui (a

′
i,Π−i)| > ϵ′] ≤ 2 exp

(
−nϵ′2

2

)
≤ δ

N2A2
.

Applying union bound over t, i and a′i proves the statement.

Proof of Theorem 13. Correctness. Since Π is an ϵ-CCE in the subgame ΠN
i=1A

(t)
i , ∀i ∈ [N ],

∀a ∈ A(t)
i

ui (a,Π−i) ≤ ui (Π) + ϵ′.

Because argmaxa∈Ai
ûi(a,Π−i) ∈ A(t)

i , ∀i ∈ [N ], ∀a ∈ Ai

ui (a,Π−i) ≤ ûi (a,Π−i) + ϵ′ ≤ max
a′∈A(t)

i

ûi (a
′,Π−i) + ϵ′

≤ max
a′∈A(t)

i

ui (a
′,Π−i) + 2ϵ′

≤ ui(Π) + 3ϵ′ ≤ ui(Π) + ϵ.

22



Published as a conference paper at ICLR 2023

Therefore Π is an ϵ-CCE in the full game.

Moreover, we claim that for any t, A(t)
i only contains ∆-rationalizable actions. This is true for t = 1

with high probability due to our initialization. Suppose that this is true for t. Notice that the only way
for an action a′i ∈ A

(t+1)
i is to be an empirical best response, which means
ui(a

′
i,Π−i) ≥ ûi(a

′
i,Π−i)− ϵ′ ≥ max

a∈Ai

ûi(a,Π−i)− ϵ′

≥ max
a∈Ai

ui(a,Π−i)− 2ϵ′.

Since ϵ′ < ∆/2, this means that a′i is the ∆-best response to a ∆-rationalizable strategy, and is
therefore ∆-rationalizable. Therefore A(t+1)

i also only contains ∆-rationalizable actions. Our claim
can be thus proven via induction, and it follows that the output strategy is also ∆-rationalizable.

We conclude that the output strategy is a ∆-rationalizable ϵ-CCE with probability 1− 2δ (assuming
the event in Lemma E.1 as well as the rationalizability of the initialization).

Sample complexity. By Theorem 3, Line 1 needs Õ
(
LNA
∆2

)
samples. Since the algorithm returns

before t = NA, the total number of calls to the black-box oracle O is NA. For each t, the number of
samples required is

NAM = Õ

(
NA

min{∆, ϵ}2

)
.

Combining this with the upper bound on t, and the cost for Algorithm 1 gives the total sample
complexity bound

Õ

(
N2A2

min{∆2, ϵ2}

)
.

E.2 RATIONALIZABLE CE VIA REDUCTION

The algorithm for CE is quite similar to the one for CCE, except now when testing whether a
subgame ϵ-CE is an actual ϵ-CE, we need to use the conditional distribution Π|ai, which is the
conditional distribution of the other players’ actions given that player i is told to play ai. The
detailed description is given in Algorithm 5. Similar to the CCE case, we will choose ϵ′ = min{ϵ,∆}

3 ,

M =

⌈
4 ln(2NA2/δ)

ϵ′2

⌉
.

Algorithm 5 Rationalizable ϵ-CE via Black-box Reduction

1: (a⋆1, · · · , a⋆N )← Algorithm 1

2: For all i ∈ [N ], initialize A(1)
i ← {a⋆i } for all i ∈ [N ]

3: for t = 1, 2, . . . do
4: Find an ϵ′-CE, Π, in the sub-game supported on Πi∈[N ]A

(t)
i

5: ∀i ∈ [N ], ai, a
′
i ∈ Ai, sample ui(a

′
i,Π−i|ai) for M times and compute average ûi(a

′
i,Π−i|ai)

6: for i ∈ [N ] do
7: for ai ∈ A(t)

i do
8: Let

a′i ← argmax
a∈Ai

ûi(a,Π|ai)// Computing the empirical best response

9: A(t+1)
i ← A(t)

i ∪ {a′i}
10: if A(t)

i = A(t+1)
i for all i ∈ [N ] then

11: return Π

Lemma E.2. With probability 1−δ, throughout the execution of Algorithm 4, for every t and i ∈ [N ],
a′i ∈ Ai, ai ∈ Ai,

|ûi(a
′
i,Π|ai)− ui (a

′
i,Π|ai)| ≤ ϵ′.
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Proof. First, observe that during every iterate of t before the algorithm returns, the total support size∑t
i=1 |A

(t)
i | is increased by at least 1. It follows that the algorithm returns before t = NA.

By Hoeffding’s inequality,

Pr [|ûi(a
′
i,Π|ai)− ui (a

′
i,Π|ai)| > ϵ′] ≤ 2 exp

(
−nϵ′2

2

)
≤ δ

N2A3
.

Applying union bound over t, i, ai, and a′i proves the statement.

Proof. Note that with high probability, the empirical estimates Û are at most ϵ/4 away from the true
value U . Since a′i is the empirical best response, we have

Ui(a
′
i,Π|ai) ≥ argmax

a∈Ai

Ui(a,Π|ai)− ϵ.

Note that Π|ai is supported on actions that can survive any rounds of ϵ-IDE. Therefore it serves as a
certificate that a′i will never be ϵ-eliminated as well.

Lemma E.3. The returned strategy Π is an ϵ-CE with probability 1− δ.

Proof. When the algorithm terminates, for all i ∈ [N ],

∑
ai∈A(t)

i

Πi(ai) ·

(
max
a∈Ai

ûi(a,Π|ai)− max
a∈A(t)

i

ûi(a,Π|ai)

)
= 0.

Therefore ∑
ai∈A(t)

i

Πi(ai) ·

(
max
a∈Ai

ui(a,Π|ai)− max
a∈A(t)

i

ui(a,Π|ai)

)
≤ 2ϵ′.

Since Π is an ϵ′-CE in the reduced game,

∑
ai∈A(t)

i

Πi(ai) ·

(
max
a∈A(t)

i

ui(a,Π|ai)− ui(ai,Π|ai)

)
≤ ϵ′.

Summing the two inequalities above gives∑
ai∈A(t)

i

Πi(ai) ·
(
max
a∈Ai

ui(a,Π|ai)− ui(ai,Π|ai)
)
≤ 3ϵ′,

which proves the statement.

Lemma E.4. For any t, A(t)
i only contains ∆-rationalizable actions with probability 1− 2δ.

Proof. We prove this inductively. This is true for t = 1 with probability 1− δ due to our initialization.
Suppose that this is true for t. Notice that the only way for an action a′i ∈ A

(t+1)
i is to be an empirical

best response, which means for some ai

ui(a
′
i,Π|ai) ≥ ûi(a

′
i,Π|ai)− ϵ′ ≥ max

a∈Ai

ûi(a,Π|ai)− ϵ′

≥ max
a∈Ai

ui(a,Π|ai)− 2ϵ′.

Since ϵ′ < ∆/2, this means that a′i is the ∆-best response to a ∆-rationalizable strategy, and is
therefore ∆-rationalizable. Therefore A(t+1)

i also only contains ∆-rationalizable actions. Our claim
can be thus proven via induction, and it follows that the output strategy is also ∆-rationalizable.
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Proof of Theorem 14. Correctness. By Lemma E.3 and E.4, the output strategy is a ∆-rationalizable
ϵ-CE with probability 1− 2δ (assuming that the event in Lemma E.2 holds and the rationalizability
of the initialization).

Sample complexity. The total sample complexity is

Õ

(
LNA

∆2

)
+NA×NA2M = Õ

(
N2A3

min{∆, ϵ}2

)
.

25


	Introduction
	Related work

	Preliminary
	Rationalizability
	Equilibria in games
	Connection between Equilibria and Rationalizability

	Learning Rationalizable Action Profiles
	Learning Rationalizable Coarse Correlated Equilibria (CCE)
	Theoretical Guarantee
	Overview of the analysis

	Application to learning rationalizable Nash Equilibrium

	Learning Rationalizable Correlated Equilibrium
	Reduction-based Algorithms
	Conclusion
	Further Details on Rationalizability
	Equivalence of Never-best-response and strict dominance
	Proof of Proposition 1

	Find one rationalizable action profile
	Proof of Proposition 2
	Proof of Theorem 3
	Proof of Theorem 4

	Omitted Proofs in Section 4
	Omitted Proofs in Section 5
	Details for Reduction Algorithms
	Rationalizable CCE via Reduction
	Rationalizable CE via Reduction


