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Abstract

Language identification is used as the first step001
in many data collection and crawling efforts002
because it allows us to sort online text into003
language-specific buckets. However, many004
modern languages, such as Konkani, Kash-005
miri, Punjabi etc., are synchronically written006
in several scripts. Moreover, languages with007
different writing systems do not share signif-008
icant lexical, semantic, and syntactic proper-009
ties in neural representation spaces, which is010
a disadvantage for closely related languages011
and low-resource languages, especially those012
from the Indian Subcontinent. To counter013
this, we propose learning script-agnostic rep-014
resentations using several different experimen-015
tal strategies (upscaling, flattening, and script016
mixing) focusing on four major Dravidian lan-017
guages (Tamil, Telugu, Kannada, and Malay-018
alam). We find that word-level script ran-019
domization and exposure to a language writ-020
ten in multiple scripts is extremely valuable for021
downstream script-agnostic language identifi-022
cation, while also maintaining competitive per-023
formance on naturally occurring text.1024

1 Introduction025

In many natural language processing (NLP) tasks026

or data creation efforts, we often need to first iden-027

tify the source language of a particular text. For028

instance, automated translation, part-of-speech029

(POS) tagging, and web scraping for data collec-030

tion must typically identify the text’s language be-031

fore performing the given task. The languages in-032

volved might occur in non-standard scripts, but033

as we show in this paper, modern systems are034

heavily script-dependent in language identification035

(langID). The result is that most current methods036

are unable to account for languages written in037

non-standard scripts. Moreover, script diversity038

1Anonymized code available here :
https://anonymous.4open.science/r/
Script-Agnostic-Lang-ID/

is especially common in low-resource languages. 039

Many bilingual communities choose to write their 040

minority language in the region’s dominant sys- 041

tem (such as those in Pakistan, Iran, China), in- 042

stead of their language’s traditional writing sys- 043

tem (Ahmadi et al., 2023a). It is also common 044

for larger standardized languages to be roman- 045

ized on the internet and in social media. Finally, 046

some languages simply do not possess one stan- 047

dard script, and are written in multiple writing sys- 048

tems. For instance, the Western-Indian Konkani 049

language is actively written in up to 5 scripts: De- 050

vanagari, Romi, Kannada, Malayalam, and Perso- 051

Arabic (Lehal and Saini, 2014; Rajan, 2014). How- 052

ever, most Konkani systems only support Devana- 053

gari and Romi scripts, and would not recognize the 054

language if written in the other three. This illus- 055

trates the need to have script-agnosticism so we 056

can collect high-quality data for low-resource lan- 057

guages, and support their script-diverse nature in 058

NLP applications. 059

Script-agnostic langID is expected to be most 060

useful for closely related languages that currently 061

do not use the same script and where languages 062

often have unique scripts - a scenario most com- 063

monly occurring in the Indian Subcontinent. In 064

this paper, we conduct a case study on script- 065

agnosticism for language identification by focus- 066

ing on the four major Dravidian languages: Tamil, 067

Telugu, Kannada, and Malayalam. We explore 068

three different methods of training script-agnostic 069

embeddings, evaluate on the langID task across do- 070

mains, and offer insights for future work. Broadly, 071

we attempt to answer the following research ques- 072

tions: 073

1. What impact does training on transliterated 074

corpora have on downstream langID? 075

2. How does projecting to one script or upscal- 076

ing to multiple scripts impact performance? 077

3. What impact does intra-sentence script mix- 078

ing have on language identification? 079
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Upscaling 
 All scripts for each language 
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Figure 1: In upscaling, we transliterate each sentence into other scripts to expose the model to data in that language
in all 4 writing systems. For flattening, we aim to reduce this potential vocabulary overload and project all scripts
into 1 script per experiment. The goal is to identify if any of the 4 scripts is a suitable target script for all languages.
Each writing system has a unique number of total letters even though there is large overlap (Table 1), and we think
that this may result in one or the other script to be a suitable script for projection. For the final mixing setup, we
transliterate at the word-level instead (at different noise levels) and allow multiple scripts per sentence.

2 Methods080

Script Flattening Under this setup, we want to081

explore whether the embedding space will bene-082

fit from seeing all the languages in only one com-083

mon script (Figure 1). The idea behind flattening084

the script space from four to one is that with only085

one script, the embedding space (and consequently086

the classification system) can focus on finding dis-087

criminative features between the languages. It is088

worth noting that trainingword representations in a089

single script may perform poorly in real-world set-090

tings and may not be a practical choice since text091

will naturally appear in different scripts and will092

require transliteration as preprocessing. However,093

this experiment is useful to quantify the role that094

script plays in language identification, compared095

to the non-visual distinguishing features of the lan-096

guages.097

Script Upscaling This method takes a given098

training example written in one script and “up-099

scales” it into all 4 scripts (Figure 1). Our intu-100

ition is that seeing every example in each script101

will prevent a model from giving weight to any102

one writing system in its decision-making, forcing103

it to rely on inherent features of the language. In104

other words, we teach the model that a sentence of105

a given language could be written in any script, so106

that it learns not to discriminate on the basis of writ-107

ing system. This contrasts with the approach taken 108

in Brown (2012), where each language-script pair 109

is given a unique language model and their scores 110

are used to make the final classification decision. 111

For our setup, we first created four training files 112

for each language, where a file would include all 113

of the language’s training examples four times–one 114

for each script. Then we concatenated all of these 115

files into one training set. Therefore, our model 116

assumes that a sentence may appear in any of the 117

four writing systems with the same likelihood. 118

Noisy Multi-Script Setup In the final setup, we 119

create synthetic sentences following Algorithm 1 120

(Appendix C) and Figure 1 for both FLORES200 121

data splits. Under this approach, for each noise 122

level n, language lang, and sentence sent, we 123

choose a base script and then randomly pick n% 124

words to transform to new non-base scripts. We 125

train separate text classification fastTextmodels 126

on each of these noisy datasets and evaluate them 127

on test sets with clean, noisy, and merged datasets. 128

This is to evaluate out-of-distribution generaliza- 129

tion and robustness, and the potential usefulness 130

of including noise during the training process. We 131

perform this experiment with permutations of 25%, 132

50%, 75%, and 100% script-noise levels in the 133

training data as done in Ahmadi et al. (2023b). Fi- 134

nally, we train an “All-Noise” model on merged 135

data from all these script-noise levels. 136
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Language 639-3 Family Script Script Code Vowels Consonants

Tamil tam Southern தம ழ் Taml 12 18
Kannada kan Southern ಕನ್ನಡ Knda 16 35
Telugu tel South-Central తెలుగు Telu 16 36

Malayalam mal Southern മലയാളം Mlym 15 42

Table 1: A summary of the characteristics of the four Dravidian languages we study in our experiments. All four
languages use abugidas (alphasyllabaries) for writing and are written from left to right with diacritics. Note that
Tamil has the fewest overall graphemes whereas Malayalam has the most. The last two columns indicate common
vowels and consonants in the language, but each script comes with extended grapheme sets to accomodate other
Indian-language phonemes.

IPA ISO TEL KAN MAL TAM

/ka/ ka క ಕ ക க
/kha/ kha ఖ ಖ ഖ க₂
/ga/ ga గ ಗ ഗ க₃
/gha/ gha ఘ ಘ ഘ க₄

Table 2: Tamil has only one letter to represent the above-
mentioned 4 sounds common in the other 3 Dravidian
languages. So, the transliterator introduces subscripts
to differentiate the four sounds in the source script.
There are 5 such character series but we only show the
velar phonemes’ series.

3 Experiments137

Dataset and Languages We use the FLO-138

RES200 dataset (Costa-jussà et al., 2024; Goyal139

et al., 2022; Guzmán et al., 2019) for training and140

in-domain testing in all our experiments. In order141

to ensure that our models would work well on test142

data that was not simply from FLORES200, we143

also tested on three out-of-domain sets: GlotStory-144

Books (Kargaran et al., 2023), UDHR (Kargaran145

et al., 2023), and MCS-350 (Agarwal et al., 2023).146

We do not transliterate these datasets since the goal147

is to measure potential performance drops on natu-148

rally occurring text compared to traditional models.149

We also use a subset of monolingual data from In-150

dicCorp (Kakwani et al., 2020) for an experiment151

involving non-parallel training in §4.2. For this152

paper, we explore script-agnosticism for 4 major153

languages (Table 1) that fall within the same lan-154

guage family and use four distinct writing systems.155

Details about each of the datasets are available in156

Appendix A and language profiles in Appendix B.157

Transliteration We use the Aksharamukha2158

python package to transliterate between our four159

2https://pypi.org/project/aksharamukha/

Model Acc N

CLD3 (Salcianu et al., 2020) 0.98 101
langid.py (Lui and Baldwin, 2012) 1.0 97
Franc3 1.0 419
fastText (Joulin et al., 2017) 1.0 176
HeLI-OTS (Jauhiainen et al., 2022) 0.99 200

Table 3: This table shows different popular language
identification systems, their accuracies on FLORES-200
and the number of supported languages (N). We chose
fastText as our root model since it achieves a high
accuracy, supports many languages, and can be easily
trained from scratch.

writing systems. Since the library is primarily de- 160

signed for Indic writing systems, it provides an ex- 161

tremely low-loss 1:1 transliteration, which is suit- 162

able for our purposes. This 1:1 mapping is pos- 163

sible because Indic writing systems descend from 164

a shared ancestor - Brahmi script, and they all 165

have unique and mappable graphemes for different 166

phonemes. The only exception (across all Indian 167

writing systems) is Tamil script, which also de- 168

scends fromBrahmi, but in its modern form, it uses 169

one grapheme to represent aspirated and unaspi- 170

rated or voiced and unvoiced versions of a sound. 171

Aksharamukha adds subscripts (see Appendix Ta- 172

ble 2) to differentiate these sounds, but we remove 173

them during preprocessing as they are only found 174

in Tamil writing in literary and classical settings. 175

Training Model Choice Table 3 shows the per- 176

formance of commonly used off-the-shelf langID 177

models on the FLORES200 dev set. Out of the 178

three highest performing models (with F1 score of 179

1.0) in Table 3, only fastText (Bojanowski et al., 180

2017) and langid.py can be trained with custom 181

files. fastText, trained on data from Wikipedia, 182

Tatoeba and SETimes, supports a wider number 183

of languages in its base model, is known to work 184
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well with unknown words, and is very easy to185

train. Therefore, fastText will serve as the train-186

ing model for our experiments. Macro F1 score is187

computed across all 4 languages to identify a sys-188

tem with the best overall coverage and accuracy.189

Moreoever, fastText provides an efficient way190

to glean subword information and is known to bet-191

ter handle out of vocabulary words. Like all other192

language identification systems, it does not come193

with script-agnosticism support. All experiments194

were run on CPU due to fastText’s optimizations.195

Training and Evaluation We obtain our results196

based on the original versions and transliterations197

of the test sets provided by FLORES200, us-198

ing fastText skipgram models on a downstream199

language identification task (extrinsic evaluation).200

For evaluation, while F1 scores are popular in201

langID studies, they are hard to interpret and only202

have significant advantages when there is a class203

imbalance in the data distribution. We have se-204

lected a training and test set that is evenly dis-205

tributed and is not imbalanced. Therefore, we opt206

for reporting top-1 accuracy since it is appropriate207

here and easier to interpret.208

Three BaselineModels Our first baselinemodel209

(FLORES200) was trained on the raw language210

.dev files from FLORES200. We chose this as a211

baseline, given that it represents an easy and intu-212

itive approach to training a language classification213

model, without any augmentation or modifications.214

Our second baseline (SEPARATE) keeps all script-215

language pairs separate during training and classi-216

fication (Brown, 2012). That is, for 4 languages217

and 4 unique scripts, we’ll end up with 16 total pre-218

diction classes. For reporting accuracies, we pool219

together results from all scripts for each language.220

Our third baseline (WIKI) is a language identifi-221

cation model pre-trained on Wikipedia, SETimes,222

and Tatoeba, boasting support for 176 languages223

(Joulin et al., 2017). Note that due to this large dis-224

crepancy in training data size, its performance will225

not be directly comparable to other models.226

4 Results227

We present our results for the Baseline, Flatten-228

ing, Upscaling, and Noisy models here. In gen-229

eral, our script-agnostic models demonstrate good230

performance above the baselines on the transliter-231

ated test sets, and our methods comparable to tra-232

ditional approaches on clean data.233

4.1 Script Flattening 234

Under the Flattening experimental setup, even 235

though certain languages have higher accuracies 236

than others, each language appears to have com- 237

parable performance across scripts ( Table 4). For 238

instance, Tamil sees 8̃0% accuracy on all flattened 239

tests; in fact, each language’s scores vary less than 240

one percent when flattening to any given script. 241

The uniformity across scripts suggests that any par- 242

ticular script does not play a major role in the mod- 243

els’ decision-making. This matches and confirms 244

our initial hypotheses, since there is no alternative 245

script for the model to consider when evaluating 246

language identity. Upon comparison with the base- 247

line, our flattened models are far superior both in 248

unconventional script scenarios, and when aver- 249

aged across the four languages. In some cases, the 250

baseline only classifies correctly 25% of the time, 251

while our models consistently perform with over 252

90% average accuracy on the transliterated FLO- 253

RES200 test set. With respect to individual lan- 254

guage scores, the baseline classifies with slightly 255

more accuracy when language and writing system 256

match, but this is merely due to its heavy reliance 257

on script, and does not speak to its overall perfor- 258

mance. When script and language are not the same, 259

the baseline is easily fooled; for example, in many 260

cases it cannot classify even a single example cor- 261

rectly for certain languages. 262

Interpretability Analysis Interestingly, there is 263

a difference in performance across the individ- 264

ual language scores for both models, where they 265

correctly identify certain languages more often 266

than others. For example, Malayalam scores 267

near 100%, while Tamil is only correctly classi- 268

fied 80% of the time. To interpret differences 269

in accuracy scores across languages, we utilize 270

a game-theoretic metric, Shapley Additive Expla- 271

nations, or SHAP (Lundberg and Lee, 2017), to 272

compute global-level explanations across the train- 273

ing dataset. We focus on finding explanations 274

for false positive features in Tamil sentences that 275

have been predicted as Malayalam. We obtained 276

translations for Tamil using Agarathi4 and Google 277

Translate, and for Malayalam using Google Trans- 278

late and Olam5. Appendix Table 10 displays all 279

the relevant words and characters in mispredicted 280

Tamil sentences. While not all positively weighted 281

4https://agarathi.com. அகராதி/agarathi means
dictionary in Tamil

5Malayalam Dictionary - https://olam.in/

4
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Scripts→ Taml Knda Mlym Telu
Languages ↓ Baseline Flatten Baseline Flatten Baseline Flatten Baseline Flatten

TAMIL 94.37 80.43 - 80.63 - 80.93 - 80.73
KANNADA - 91.60 92.59 92.19 - 91.60 - 91.70

MALAYALAM 69.27 99.31 88.93 98.32 100.00 98.42 88.93 98.91
TELUGU - 93.68 - 93.77 - 93.08 94.07 93.77

AVERAGE 40.91 91.25 45.28 91.23 25.00 91.01 45.75 91.28

Table 4: We find that no particular script is best suited to the flattening task and each script can allow for identifi-
cation of the four Dravidian languages relatively faithfully. Although marginally, the Telugu script Flatten model
performs best and so we include it in cross-domain experiments in 4.4. There is also a noticeable drop in per-
formance for Tamil language, regardless of script (see Appendix D for interpretability analysis). Columns show
scripts and rows indicate language. Baseline models are trained on all four languages in their original scripts and
then tested on the transliterated flatten setups. We expect them to only predict the corresponding language for each
script (and have -, meaning 0, for others), but we observe that they sometimes predict other languages too, despite
not seeing them in the training corpus.

WIKI FLORES200 train - 25% train - 50% train - 75% train - 100%
3,988 3,984 7,968 11,952 15,952

ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA ORI TRA

TAM 100 25 94.37 23.59 48.02 48.84 77.96 78.04 91.8 92.02 95.26 95.16
KAN 100 25 92.59 23.15 74.41 74.18 89.62 90.02 92.69 92.76 95.06 95.06
MAL 100 25 86.78 95.85 95.41 99.11 97.83 99.7 99.68 99.7 99.65 99.65
TEL 100 25 94.07 23.52 47.23 46.89 92.49 92.86 94.37 94.47 95.36 95.41

AVG 100 25 95.26 39.26 66.38 66.33 89.80 89.69 94.64 94.73 96.35 96.32

Table 5: Transliteration of at least 75% of the data is required for Upscale models to perform at par with comparable
baselines (FLORES200) on naturally occurring text. Additionally, these Upscale models also show high perfor-
mance on transliterated test sets. The first two columns evaluate the fastText baselines on WIKI and FLORES200
datasets. The next four columns show Upscale models, trained on 25%, 50%, 75%, and 100% of the original train-
ing examples transliterated. The row underneath displays the amount of training data. Each model was tested on
the original test set (ORI), without any transliterations, and a test set (TRA) with all examples transliterated to all
scripts. Rows show language-specific langID performance.

words may have exact parallels in Malayalam, we282

think the score may come from positively corre-283

lated morphological features within the word itself,284

since Tamil and Malayalam share many word suf-285

fixes, prefixes, pluralization rules, prepositions etc.286

Our interpretability investigation revealed that this287

is due to presence of some positive MAL signal in288

TAM sentences, due to the lexical, semantic, and289

phylogenetic similarity of the two languages. This290

overlap causes a small number of sentences to be291

assigned a high probability of both TAM and MAL,292

with MALwinning by a slight margin. For more de-293

tailed results, plots, and explanations, please refer294

to Appendix §D295

4.2 Upscale 296

Our upscaled model performs quite well on the test 297

sets, with over 96% accuracy (Table 5). Moreover, 298

while it drastically outperformed the baseline on 299

transliterated data, it scores higher on native script 300

sentences as well. These results demonstrate that 301

the model was able to correctly disentangle script 302

and language using data augmentation. 303

Comparison with Flattening When comparing 304

the Flattening results to Upscale, it is important 305

to recognize that the latter model was trained on 306

four times the amount of data, since we transliter- 307

ated to all four scripts as opposed to flattening to 308

a single script. Granted, the task was more com- 309

plex as the model needs to handle 4 different writ- 310

ing systems per language. But, in order to nor- 311
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FLORES-TRA FLORES-ORI GLOT UDHR MCS350 Avg

BASELINE (FLORES200) 39.26 95.26 82.41 79.00 45.34 68.25
4-WAY PARALLEL 96.32 96.35 81.67 77.54 44.79 79.33

NON-PARALLEL 94.39 94.37 84.61 83.86 51.76 81.80

Table 6: This table compares two Upscaled models, each trained on 997 examples per language, which are then
transliterated to all scripts. One is trained on 4-way parallel data, and the other on examples that are not parallel
from IndicCorp. The slight discrepancy of performance is likely a result of data from different domains. TRA for
FLORES represents the test set that contains transliterations and ORI represents the default FLORES test set.

malize the effect of the number of examples, we312

also trained it using three variations of our training313

data: 25%, 50%, and 75% of the original exam-314

ples transliterated. As expected, the 25% model315

performed much worse than the 100% model, and316

we saw improvements as we included more of the317

data. Interestingly, the results were only compara-318

ble to the Flattening model once we trained with319

at least 75% of the original examples. We suspect320

this is due to the difference between the number of321

cross-language examples and the number of cross-322

script examples. For instance, even though the323

25% Upscaled model has nearly the same number324

of training examples as any of the Flattening mod-325

els, many of these sentences are merely transliter-326

ated versions of each other, rather than full trans-327

lations or original examples. This distribution ap-328

pears to allow themodel to become script-agnostic,329

but sacrifices the ability to identify languages in330

the process. This suggests that although Upscaling331

may perform better than Flattening overall, Flatten-332

ing can perform similarly with fewer examples.333

Learningwithout n-way parallel data It seems334

that Upscale models correctly ignore script in their335

decision-making process and so far, they have336

been trained on n-way parallel data; however, this337

could be a potential confounder. Therefore, we338

compare the performance of two script-upscaled339

models –one trained on 4-way parallel data, the340

other on non-parallel data– keeping the number of341

training examples per language constant for fair-342

ness. For non-parallel data, we use subsets of the343

monolingual corpora from IndicCorp for Telugu,344

Tamil, and Malayalam. We reuse the FLORES200345

examples for Kannada, since these are not parallel346

to the data for the other three languages.347

Our evaluation on the FLORES transliterated348

and clean test sets as well as all out-of-domain349

sets is in Table 6. The two models have largely350

similar results. The original 4-way parallel model351

does somewhat better on the FLORES test sets, 352

and the non-parallel model has the better accuracy 353

on average; however, these discrepancies can be 354

expected due to the domain differences in data 355

sources. Overall, it appears that both models are 356

comparable and therefore using explicitly parallel 357

data has a negligible effect. 358

4.3 Noisy Multi-Script 359

In the intra-sentence noise setup, performance 360

varies to a large degree between the models, but ac- 361

curacy distributions for each model stay relatively 362

constant across test sets (Table 7). Our Script- 363

Upscaled model is the best on average with over 364

99% accuracy, and the All-Noise model follows 365

closely behind with a 98.82% score. Beyond these 366

two, scores drop significantly to the 50-65% range, 367

which is undesirable for a 4-class langID task. 368

This is likely explained by the size of the train- 369

ing sets. The Baseline, as well models with noise 370

settings from 25 to 100, used data from four sets 371

(one for each language) with varying script per- 372

mutations. However, our All-Noise model was 373

trained on a merged dataset consisting of sentences 374

at all noise levels (i.e. four times the data). This 375

is similar to the Script-Upscaled model that had 376

access to each language’s sentences transliterated 377

to the four different scripts, and is likely what al- 378

lowed the two models to perform so well. We be- 379

lieve that the Script-Upscaledmodel performed the 380

best because it was consistently shown the same 381

sentence in all four scripts, forcing it to become 382

truly script-agnostic. The All-Noise model was 383

able to do this to a large degree, but due to random- 384

ness and slight inconsistencies in permutations, it 385

likely was not able to completely disregard script 386

in its decision-making process. Therefore, script- 387

mixing within sentences seems to be an extremely 388

challenging setup for models and requires data aug- 389

mentation for reasonable performance. 390
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 7: Even after introducing transliteration noise at different levels within sentences, the N@all and Upscale
models are competitive implying that we can use word-level script-mixing without sacrificing performance. The
table has been abridged due to space constraints, but an extended version with results for 25, 50, 75, and 100%
noise-levels is in Appendix Table 9. N@25,50,75,100 and the baseline models were trained with 3988 sentences
per class. The Upscale and N@all models (last two columns) were trained with 15952 sentences per class and are
therefore more comparable with each other. The baseline was trained on original FLORES200 data.

Test Dataset→ FLORES200 GLOT UDHR MCS350 AVERAGE
Test Set Size→ 4048 3934 285 15000 5817

baseline (WIKI) 100.00 99.96 100.00 71.75 92.93
BASELINE (SEPARATE) 25.00 24.92 20.35 25.00 23.81
BASELINE (FLORES200) 95.26 82.41 79.00 45.34 75.50

FLATTEN (TELU) 91.28 43.18 44.56 33.95 53.24
UPSCALE (16K) 96.35 81.67 77.54 44.79 75.09

NOISE (ALL) 95.41 80.19 76.14 43.41 73.79

Table 8: We share three fastText-based baseline models (trained on FLORES200, separate language and script
classes, and Wikipedia) along with the best model from each of our 3 experimental setups (upscale, flatten, noise).
We test them on out of domain data to test domain transfer of the learned embeddings. Overall, the UPSCALE (16K)
and NOISE (ALL) models have comparable performance to BASELINE (FLORES200) demonstrating that the multi-
script training doesn’t lead to a significant degradation in performance on the languages’ naturally occurring native
scripts. Note that the WIKI model is trained on all of Wikipedia, and therefore its performance is not directly
comparable to any of the other models. The SEPARATE baseline performs the poorest, likely due to the low amount
of data required for a 16-way classification task.

4.4 Cross-Domain Performance391

A comparison of our models on the clean FLO-392

RES200 test set, as well as out-of-domain sets393

is in Table 8. The FLORES200 BASELINE per-394

forms well in-distribution and on similar long-395

length GLOT and UDHR datasets, but poorly on396

MCS350 (children’s stories domain and shorter397

sentences). The WIKI baseline is better than the398

FLORES200 baseline across all datasets, showing399

that is has built a better representation space for400

the languages. The UPSCALE (16K) and NOISE (ALL)401

models have comparable performance to BASELINE402

(FLORES200), demonstrating that the multi-script403

training does not lead to a significant degrada-404

tion in performance on the languages’ conven- 405

tional/native scripts. The FLATTEN algorithm nat- 406

urally performs poorly compared to the other mod- 407

els in this setting since it is only exposed to one 408

script. Therefore, it may not be a practical choice 409

for real-world language identification. 410

5 Discussion 411

The results demonstrate that all of our script- 412

agnostic language identification models (Flatten- 413

ing, Noise, and Scipt-Upscaled) perform well 414

above the baselines on examples that utilize a non- 415

standard script. In certain cases where data is in na- 416

tive script, our baseline models can surpass some 417
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script-agnostic ones; this is likely because the base-418

lines use script as a basis for determining language419

ID. The All-noise model showed very good perfor-420

mance, and we suspect it remains second to the421

Upscaled setting primarily due to the variability422

of the training data. Unlike the Upscaled model,423

it may not see every example transliterated to all424

scripts, and thus may not become completely ag-425

nostic of script. However, it is a strong contender426

and its performance on other downstream tasks and427

the quality of its learned representations should be428

evaluated in future work when scaling to a larger429

number of languages and scripts.430

In the practical setting, our models –especially431

Script-Upscaled– appear to be a reasonable alter-432

native to current language identification systems.433

Additionally, it is likely that had we trained an Up-434

scaledmodel onWikipedia, wewould have seen re-435

sults that matched the WIKI baseline on noiseless436

data. The large amount of storage and computa-437

tional power for this endeavor, in addition to poten-438

tial challenges in transliterating to so many scripts,439

would have been beyond the scope of our current440

work. However, future work should carefully ex-441

plore creation of script-agnostic WIKI langIDmod-442

els as well. Our Upscaling approach is relatively443

straightforward, and requires no more examples444

than for a standard language identification system.445

Since transliteration can be done automatically and446

cheaply, our final proposal is a script-based data-447

augmentation process for complete sentences and448

within sentences. When expanding to other lan-449

guages and scripts, lossy transliteration quality in450

non-Indic systems may be a challenge, and we rec-451

ommend using the International Phonetic Alpha-452

bet (IPA) as a bridge for high-quality and natural453

transliteration.454

6 Related Work455

Previous work has demonstrated that script bar-456

riers discourage transfer learning from high-457

resource languages into low-resource languages’458

representation spaces, especially for Neural Ma-459

chine Translation (Muller et al., 2021; Anasta-460

sopoulos and Neubig, 2019). Moreover, script di-461

versity negatively impacts low-resource languages462

disproportionately because their training data is463

often of poor quality and smaller in size (Pfeif-464

fer et al., 2021). Consequently, researchers have465

focused on transliteration, romanization, phonetic466

representation etc. to reduce vocabulary sizes467

and allow lexical sharing between languages with 468

different writing systems (Amrhein and Sennrich, 469

2020). 470

Another common approach relies on existing 471

pre-trained models and fine-tuning them with dif- 472

ferent transliterated versions of the originally sup- 473

ported languages (Muller et al., 2021; Dhamecha 474

et al., 2021). This is an instance of the com- 475

mon hierarchical pipeline (Goutte et al., 2014; Lui 476

et al., 2014; Bestgen, 2017) or fine-tuning-based 477

approach for language identification (Jauhiainen 478

et al., 2018; Agarwal et al., 2023; Ahmadi et al., 479

2023a). Most recently, Moosa et al. (2023) con- 480

ducted a study on effects of transliteration onmulti- 481

lingual language modeling, which focused on two 482

kinds of models: a multi-script model with native 483

scripts of each language (matching our BASELINE 484

setup) and a uni-script model with only one script 485

for all languages (similar to our FLATTEN setup). 486

As a natural extension of their work, we also 487

consider UPSCALE and NOISE setups for Dravidian 488

languages, as described in §3. Unlike their work, 489

we do not fine-tune on downstream tasks, but in- 490

stead focus on including the transliteration in the 491

original training data to give the model the ability 492

to handle non-native scripts without losing perfor- 493

mance on the original script. Moreover, our work 494

is not only motivated from a lexical-sharing and 495

transfer-learning perspective, but is grounded with 496

the aim of supporting synchronic and diachronic di- 497

graphia adequately in NLP applications and tasks. 498

7 Conclusion 499

We introduce and evaluate three new kinds of 500

language identification models that are script- 501

agnostic. All of our systems have been shown to 502

outperform the baseline on examples that are not 503

written in the standard script. Two of our models 504

(Upscaled and All-Noise) perform especially well 505

on both clean and transliterated data. Our meth- 506

ods may provide a reasonable alternative to train- 507

ing language identifiers that can correctly classify 508

text based on the language used, rather than the 509

script in which it is written. Future work should ex- 510

pand to includemore languages and scripts, as well 511

as performing thorough intrinsic evaluation on the 512

learned embeddings to determine if these would be 513

effective on other downstream tasks. 514
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Limitations515

Extending to a larger set of languages We note516

that our models were only trained and evaluated517

using the four major Dravidian languages - Tamil,518

Telugu, Malayalam, and Kannada. Extending the519

successful experiments (upscale and all-noise) to a520

larger number of writing systems may prove chal-521

lenging in terms of computational resources and522

dataset sizes. Data loss associated with script con-523

version and non-phonetic scripts is a likely chal-524

lenge (and potential limitation) when we scale our525

approach to more scripts.526

Unknown Scripts Note that our approach helps527

bring script-agnosticism to scripts included during528

training time. Themodel will still struggle with un-529

known writing systems, and for this, we will need530

to scale to an extremely large number of writing531

systems, which we leave for future work.532

Data loss due to script-conversion Most In-533

dic scripts have a 1:1 phonetic mapping between534

graphemes, but there may still be letters that are535

not mapped accurately (truly unique sounds in cer-536

tain languages). In our study, three of the four537

scripts have direct phonetic mappings, while only538

one (Tamil) includes aspirated sounds that are not539

translatable to the other writing systems. This540

means that two different scripts representing the541

same word can have two different character distri-542

butions.543

Ethics Statement544

Languages may be written in non-native scripts to545

obfuscate their presence on the internet, and the546

use script-agnostic embeddings would be able to547

discover and accurately identify such text during548

web crawls. This may have some downstream549

privacy and surveillance related concerns that are550

out of scope for this work. Currently, our pilot551

study uses the FLORES200 dataset to train em-552

beddings, but in the future, a larger corpora such553

as Wikipedia, CommonCrawl, or other publicly554

crawled data can be used, which may bring with it555

several concerns around data ownership and copy-556

right.557
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A Out-of-Domain Datasets773

1. FLORES200: Open-source n-way parallel774

dataset consisting of sentences from 842 web775

articles, translated into a large number of lan-776

guages (Costa-jussà et al., 2024; Goyal et al.,777

2022; Guzmán et al., 2019). Each language’s778

example are in the same order, and are sepa-779

rated into .dev and .devtest files, contain-780

ing 997 and 1012 sentences, respectively.781

2. GlotStoryBooks6: Open-licensed curated782

library of books (Kargaran et al., 2023)783

from a variety of sources in 176 languages784

(Yankovskaya et al., 2023; Ogundepo et al.,785

2023). Each sample contains a sentence along786

with its language identifier and script.787

3. UDHR (Universal Declaration of Human788

Rights): We use Kargaran et al. (2023)’s789

public domain preprocessed version of the790

UDHR dataset, where each sample is a para-791

graph along with a language identifier. The792

authors removed errors and formatting issues793

in the original UDHR data and made this794

clean version available7.795

4. MCS-350: Multilingual Children’s Stories796

dataset, released by Agarwal et al. (2023),797

contains over 50K children’s stories cu-798

rated primarily from two sources - African799

Storybooks Initiative and Pratham Story-800

weaver, both open-source story repositories801

for African and Indian languages respectively.802

For our experiments, we use the monolingual803

data files available on the authors’ GitHub804

repository8 for Tamil, Malayalam, Kannada,805

and Telugu. Compared to UDHR, the sen-806

tences are relatively smaller in length since807

they are not from the legal domain, and unlike808

GlotStoryBooks, the authors don’t apply any809

length-based filtering to the curated stories.810

5. IndicCorp9: Monolingual, sentence-level811

corpora for English and 11 Indian languages812

from the Dravidian and Indo-Aryan fami-813

lies (Kakwani et al., 2020). It consists of 8.8814

6https://huggingface.co/datasets/cis-lmu/
GlotStoryBook

7https://huggingface.co/datasets/cis-lmu/
udhr-lid

8https://github.com/magarw/limit
9https://paperswithcode.com/dataset/

indiccorp

billion tokens and is sourced mostly from In- 815

dian news crawls (articles, blog posts, maga- 816

zines), though it also takes data from the OS- 817

CAR corpus. 818

B Brief Language Profiles 819

1. Tamil (tam), a Southern-Dravidian language, 820

is spoken by over 80 million people and is 821

an official language in Sri Lanka, the Indian 822

states of Tamil Nadu and Puducherry, and of 823

the Indian Constitution’s Eighth Schedule. It 824

is curently most widely written in the Tamil 825

abugida - தம ழ் எழுத்து (tamizh ezhuttu). 826

2. Telugu (tel), a South-Central Dravidian lan- 827

guage, is spoken by about 100 million peo- 828

ple and is the most spoken Dravidian lan- 829

guage. It is also an Eighth Schedule language 830

of the Indian Constitution and is official in the 831

Indian states of Andhra Pradesh, Telangana, 832

and Puducherry (Yanam). It is written in Tel- 833

ugu abugida - తెలుగు లిపి (telugu lipi) 834

3. Malayalam, (mal), another Southern- 835

Dravidan language is the smallest language 836

from our selection, spoken by about 40 837

million people in Southern India. It is an 838

Eighth Schedule language and is official 839

in the southernmost Indian state of Kerala. 840

It is written in the Malayalam abugida - 841

മലയാളം അക്ഷരങ്ങൾ (malayalam 842

aksharangal). 843

4. Kannada (kan), also a member of the 844

Southern-Dravidian language subfamily, is 845

spoken by about 60 million people, mostly 846

within India. It is an official language of the 847

Indian Constitution’s eighth schedule and is 848

the sole official language of Karnataka state. 849

It is widely written in Kannada script, which 850

is closely related to the Telugu script and is 851

also an abugida, but diverged around 1300CE 852

- ಕನ್ನಡ ಅಕ್ಷರ ಾಲೆ (kannada aksharamale). 853

C Noise-Experiments Extended Results 854

D Interpreting Flattening Results 855

The default baseline (in-distribution) is a 856

fastText model trained on FLORES200 data, 857

keeping the languages in their original scripts 858

without any transliterations. For the flattening 859

experiments, we project all data to one script at 860

a time. Since the test data is flattened to a single 861
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Data Language Baseline N@25 N@50 N@75 N@100 N@all Upscale

CLEAN

Tamil 23.59 40.19 14.95 42.81 26.75 93.08 95.26
Kannada 23.15 76.38 58.75 77.32 67.27 93.33 95.16
Malayalam 86.78 94.54 99.93 95.11 99.51 99.63 99.70
Telugu 23.52 51.63 40.07 44.64 51.14 94.89 95.45

25

Tamil 35.05 36.25 14.20 39.98 25.08 99.90 100.00
Kannada 31.38 77.21 56.93 78.82 64.76 99.40 99.60
Malayalam 85.74 95.58 99.90 96.18 99.80 99.90 100.00
Telugu 36.18 52.66 38.29 43.82 51.96 99.10 99.90

50

Tamil 38.87 36.86 14.30 39.68 26.38 99.70 100.00
Kannada 41.84 77.30 55.83 79.23 66.67 99.29 99.59
Malayalam 86.00 96.48 100.00 96.17 96.17 99.90 99.90
Telugu 43.50 52.47 38.67 42.50 52.77 99.40 99.70

75

Tamil 45.01 37.34 14.83 39.35 25.93 99.80 100.00
Kannada 44.08 76.34 56.22 78.77 64.91 98.79 98.89
Malayalam 88.56 96.86 100.00 95.85 99.39 100.00 100.00
Telugu 47.61 52.59 39.19 43.65 52.79 99.59 99.70

100

Tamil 44.21 36.99 15.96 39.63 24.80 99.70 100.00
Kannada 41.19 77.23 55.97 77.53 64.68 98.58 98.48
Malayalam 87.46 96.43 100.00 96.74 99.39 99.80 99.90
Telugu 42.35 53.09 38.70 42.96 52.38 99.80 99.80

all

Tamil 40.77 36.86 14.82 39.66 25.55 99.77 100.00
Kannada 39.72 77.02 56.24 78.59 65.25 99.02 99.14
Malayalam 86.94 96.34 99.97 96.24 99.57 99.90 99.95
Telugu 42.40 52.70 38.71 43.32 52.47 99.47 99.77

AVG * 50.27 65.72 52.60 64.52 60.79 98.82 99.16

Table 9: Even after introducing noise at all levels, the N@all and Upscale models are competitive implying that
we can both use the word-level script-mixing without sacrificing performance on clean or noisy data. Among the
noise@25,50,75 settings, we observe that 50% and 100% noise have drastic impact on classification accuracy for
≥ 2 languages. N@25,50,75,100 and the baseline models were trained with 3988 sentences per class. The Upscale
and N@all models were trained with 15952 sentences per class and are therefore more comparable with each other.
The baselinen was trained on FLORES200 data.

Algorithm 1 Synthetic Noise Within Sentences
1: for noise = 25, 50, 75, 100 do
2: for lang = tam, kan,mal, tel do
3: for sent = 0, 1, . . . ..N do
4: Choose 1 base script
5: Choose noise%words to transform
6: for index in chosen indices do
7: nonbase = Chose new script
8: Transform word into nonbase
9: Save transformed data at noise-level
10: Merge-save sentences at all noise levels into a

new file for the all-noise setting

script, we would expect the model to only predict 862

the language that is representative of the writing 863

system. For instance, the baseline model would 864

predict Tamil when it’s shown data from any 865

language in the Tamil script. But, we find that 866

the models (trained on data in 4 different scripts 867

and languages) tend to default to a Malayalam 868

prediction for sentences that it knows are not 869

Tamil (Table 4). This can be seen by the presence 870

of a Malayalam signal across experiments for all 871

4 projection scripts. It also seems that several 872

Malayalam sentences are being misclassified as 873

Tamil (as evident by the less-than-100% accu- 874

racy for the Malayalam row for non-Malayalam 875
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Figure 2: Example: Sentence 0’s SHAP visualization for gold TAM sentence and weights when predicted class is
MAL. Red indicates positive signal for MAL (unwanted) and blue indicates negative signal for MAL (wanted).

scripts).876

For the Upscale experiments (Table 5), we find877

that theWikipedia pre-trainedmodel does not have878

the same bias towards Malayalam as our model,879

and instead is perfectly fit to each language’s writ-880

ing system (100% and 25% accuracy on Origi-881

nal and Transliterated data). The custom-trained882

FLORES200 baseline, on the other hand, has sim-883

ilar performance (between 86-94% for Original884

and 23% for Transliterated). We observe the885

Malayalam-defaulting phenomenon here as well,886

and it is likely that the model is over-predicting887

Malayalam, treating it as an “other” prediction888

bucket.889

For Noise experiments (Table 7), we observe890

similar performance by the FLORES200 baseline891

as on the Upscaling experiments. However, the892

accuracy for non-Malayalam languages seems to893

increase as we increase the amount of noise. To894

interpret differences in accuracy scores across lan-895

guages, we utilize a game-theoretic metric, Shap-896

ley Additive Explanations, or SHAP (Lundberg897

and Lee, 2017), to compute global-level explana-898

tions across the training dataset for all 4 languages.899

As discovered in 4.1, we find that Tamil receives900

a significantly lower accuracy (around 80%) com-901

pared to the other 3 languages, especially com-902

pared to Malayalam (95%+). Therefore, we fo-903

cus on finding explanations for false positive fea-904

tures in Tamil sentences that have been predicted905

as Malayalam. Readers should note that Tamil906

and Malayalam are closely related since they were907

the most recent to diverge from each other among908

the four major Dravidian languages (around the909

9th century CE). Therefore, there are substantial910

vocabulary and grammatical similarities between911

them.912

Table 10 displays all the relevant words and913

characters in mispredicted Tamil sentences. We914

obtained translations for TAM using Agarathi10 and915

Google Translate, and forMAL using Google Trans-916

10https://agarathi.com. அகராதி/agarathi means
dictionary in Tamil

late and Olam11. While not all positively weighted 917

words may have exact parallels in Malayalam, we 918

think the score may come from positively corre- 919

lated morphological features within the word itself, 920

since Tamil and Malayalam share many word suf- 921

fixes, prefixes, pluralization rules, prepositions etc. 922

It is worth noting that our interpretability study re- 923

vealed that for the flattened script condition, the 924

fastText trained models always predict MAL as 925

default. This is not inherently bad because we 926

still receive over 90% accuracy for MAL, KAN and 927

TEL, indicating that the models find sufficient non- 928

MAL signal in the sentence when it’s present. How- 929

ever, for TAM, we saw that there was a 10% gap in 930

performance (i.e TAM prediction accuracy stayed 931

around 80%). Our interpretability investigation re- 932

vealed that this is due to presence of some positive 933

MAL signal in TAM sentences, due to the lexical, 934

semantic, and phylogenetic similarity of the two 935

languages. This overlap causes a small number of 936

sentences to be assigned a high probability of both 937

TAM andMAL, withMAL having themaximum since 938

it is the default prediction being downscored. 939

Results and all graphs from the Interpretability 940

Jupyter notebook have been attached below. It 941

shows the sentence-level explanations for each of 942

the Tamil sentences that were misclassified in the 943

training set with a small margin. 944

11Malayalam Dictionary - https://olam.in/
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Sent TAM in TELU script Weight Transliteration MAL TAM

WORDS
0 ఇ యిల్ 0.039 itaiyil during in between
0 ఒరు 0.025 oru a, an a, an
0 వటివ కక్పప్టుట్ ళళ్న 0.021 vativamaikkuppattullana shaped are designed
1 వఴంకపప్టట్తు 0.041 vazhaankappattathu indulgence provided
2 ఇలె 0.021 illai no, not no, not, ain’t
3 చిఱియ ! 0.031 chizhiyavai small ones small ones
4 నిఱువపప్టట్తు 0.039 nizhuuvappattathu established
5 వరు కుక్ 0.059 varukkaikku to visit
5 ఒరు 0.058 oru a, an a, an
5 వఴంకాతు. 0.029 vazhankaathu don’t give in doesn’t provide
6 పతివాకిన. 0.033 pativaakina regularly were recorded.
7 ఒరు 0.035 oru a, an a, an
7 చ కక్పప్టుకిఱతు. 0.024 chamaikkappatukizhathu is being cooked
8 ఆతరవళికక్విలె. 0.043 aatharavalikkavillai not supported

CHARACTERS
0 వటివ కక్పప్టుట్ ళళ్న 0.052 vativamaikkappattullana
0 ఒరు_ 0.037 oru_ a, an one
0 కుటియేఱఱ్ంక 0.037 kutiyezzhankalai above
0 ఇ యిల్ 0.035 itaiyil in
1 వఴంకపప్టట్త 0.102 vazhankappattatha suffix suffix
1 కుటినీర్ 0.033 kutiniir above
1 అవరక్ళ కుక్ 0.024 avarkulukku to them they
2 కుటియిరుపిప్నుళ్ 0.152 kutiyiruppinul above
3 చిఱియవ 0.125 chizhiyava small ones small ones
4 ఉరువాకుక్ం 0.033 uruvaakkum emerge create
5 నిఱువపప్టట్త 0.112 nizhuvappattatha
6 కుక్_ 0.079 kku_
6 వఴంకాత 0.045 vazhankaatha
6 _ఒరు 0.037 _oru a, an one
7 పతివాకిన 0.119 pativaakina
7 మ యిన్ 0.022 malaiyin
8 చ కక్పప్టుకిఱత 0.048 chamaikkappatukizhatha
8 కుఴి 0.035 kuzhi pit pit
9 చేరప్ (ర్ ) 0.035 cheerppathai (r)

Table 10: Words and characters that have a positive Malayalam explanation weight of > 0.02 for ground-truth
Tamil sentences. All sentences under consideration had a difference of > 0.15 between the Tamil and Malayalam
classes. We pick this threshold since it gives us Tamil sentences that have a high-enough Malayalam signal (or low
Tamil signal) causing the classifier to mispredict.
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outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.3562970.3562970.356297
f
__label__tam

(inputs)

క���ళ�వ�వ��య�ఇ�ఒ�తట�వ�ఏ�������ట���������� యమ�

inputs

ఒ�� ఏ��ం ����ట� ఇ�ం�ళ��, అత�� ర�� వ��క ���య� కట���ం� వ�వ�
ఇన��ం ��� యమ

outputs

__label__tam __label__kan __label__mal __label__tel

0.50.30.1 0.7 0.90.0381440.0381440.038144
base value

0.362340.362340.36234
f
__label__tam

(inputs)

యత�,��ళ�������ప�����ఇ����క�రం����య������ం� ర�

inputs

ఇం��ం�� �ర�� ఉ��య�ళ� �ప�� ��, ��� ����, ����� ��య చ�రంక�� కం�ర

Character Level Explanations > 0.15

ix_array

array([ 906, 1113, 1395, 1687, 2080, 2108, 2224, 2270, 2801])

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.5853720.5853720.585372
f
__label__mal

(inputs)

ళనఒ���వ�క������ ఇ� త� ట � ఇం క�, � ��ంవ��ఱం�క�వఴ���ఇ���త������

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట� ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న

In [ ]:

Out[ ]:

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.40.3 0.8 0.9 10.9173830.9173830.917383
base value

0.4518810.4518810.451881
f
__label__mal

(inputs)

టత�ప�క��� F) - పయ� � అవ� � � � క� � � � � ��90��ఴక��ప����

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.50.4 0.9 1 1.10.9173830.9173830.917383
base value

0.6493570.6493570.649357
f
__label__mal

(inputs)

�ల � ఎవ�ం � ఇ� �����

inputs

�������� ఎవ�ం ఇల�

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 1 1.10.9173830.9173830.917383
base value

0.5209840.5209840.520984
f
__label__mal

(inputs)

యవ��� క� అ� క� ట�ం ఉ� �ం ��క��క������

inputs

అ�క�� ఉ����ం�కళ�� �ట�ం ��� న�� ��యవ

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.6107870.6107870.610787
f
__label__mal

(inputs)

టత� � ఆ� క � � � ��వత��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� త

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.5785740.5785740.578574
f
__label__mal

(inputs)

�తఒ�త����ఴ� � � ( � � � త మ��NA��ంఅ��� �వ���చ���ఎ����

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� ������ం� అ�మ�క� వఴం�త
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.9 10.9173830.9173830.917383
base value

0.4871360.4871360.487136
f
__label__mal

(inputs)

న�����మ ఎ� క� � ట� మ� � తయ�� �అ��ప��కంక��ర���ట

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.60.5 0.9 10.9173830.9173830.917383
base value

0.600850.600850.60085
f
__label__mal

(inputs)

ఱత�ఒ���� న ఉణ� � � � అ�ఒ��ంత��ం��

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱత

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5793890.5793890.579389
f
__label__mal

(inputs)

ల�క� వ�ం న � అ� � అ�ప�����క��

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క��ల�

for i in ix_array:
    shap.plots.bar(shap_values[i][:,2], max_display=20)

In [ ]:
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Explanations > 0.15

for i in ix_array:
    shap.plots.text(shap_values[i])

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5686650.5686650.568665
f
__label__mal

(inputs)

ఇ���ఒ��క�ప� ఇంత� ���ఱ� ంక� ఇ� ��క�,�ంక�క�ప���క���ఴం�వత�

inputs

ఇంత� ��క�, ఇ� ��క���ం ఇ��� ఒ� ఒ�ంక�క�ప�ట�  ���ఱ� ంక� వఴం�వత��
వ�వ�క�ప��� ళ�న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.50.4 0.8 0.90.9173830.9173830.917383
base value

0.4324960.4324960.432496
f
__label__mal

(inputs)

ఴంకప�ట� పయ�క� ���� అవర������� �ంత��90(F) - ��� �ప��� �

inputs

పయ�క� 90(F) - ��� �ప��� � ��� �ంత�� అవర���� ���� వఴంకప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.6203030.6203030.620303
f
__label__mal

(inputs)

ఇ�� ౖ.

-0.19

�������� ఎవ�ం

inputs

�������� ఎవ�ం ఇ�� ౖ.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.479760.479760.47976
f
__label__mal

(inputs)

�య� అ�క�� �ట�ం ఉ����ం �కళ�� ��� న��

inputs

అ�క�� ఉ����ం �కళ�� �ట�ం ��� న�� ��య�!

In [ ]:
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outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.539690.539690.53969
f
__label__mal

(inputs)

�వప�ట� � ఆ�� �య�త��క ��ర�

inputs

ఆ�� �య�త��క ��ర� ��వప�ట� �.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.9 10.9173830.9173830.917383
base value

0.5627540.5627540.562754
f
__label__mal

(inputs)

వ����ఒ�ఴం�� � �ం� అ�మ�క���� ��� చ����త�� �MINAEఎ���ర�

inputs

� ��� చ��� (MINAE), ఎ���ర� � వ���� ఒ� �త�� �� ��� �ం� అ�మ�క� వఴం��.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.4553510.4553510.455351
f
__label__mal

(inputs)

���న ఎ�మ�� క��కంక� అ��ర�� � �యల��ట� �ట���� త మ���

inputs

ఎ�మ�� �యల��ట� �ట���� త క��కంక� మ��� అ��ర�� � ప���న.

outputs

__label__tam __label__kan __label__mal __label__tel

0.80.70.6 0.90.9173830.9173830.917383
base value

0.5887540.5887540.588754
f
__label__mal

(inputs)

ఒ�ప��� ఉణ� ��న �� �ం� �ం� అ�� ఒ�

inputs

ఒ� �ం� ఉణ� త��� ఒ� ��న �� �ం� అ�� చ�క�ప���ఱ�.

outputs

__label__tam __label__kan __label__mal __label__tel

0.70.60.5 0.8 0.90.9173830.9173830.917383
base value

0.5247870.5247870.524787
f
__label__mal

(inputs)

తరవ�క�� అ�వ�ం �ర��� అ�క�� �ణ����న

inputs

అ�వ�ం �ణ����న అ�క�� �ర��� ఆతరవ�క���� ౖ.
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