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Abstract

In this paper, we introduce innovative approaches for accelerating the Jacobi method
for matrix diagonalization, specifically through the formulation of large matrix di-
agonalization as a Semi-Markov Decision Process and small matrix diagonalization
as a Markov Decision Process. Furthermore, we examine the potential of utiliz-
ing scalable architecture between different-sized matrices. During a short training
period, our method discovered a significant reduction in the number of steps re-
quired for diagonalization and exhibited efficient inference capabilities. Importantly,
this approach demonstrated possible scalability to large-sized matrices, indicating
its potential for wide-ranging applicability. Upon training completion, we obtain
action-state probabilities and transition graphs, which depict transitions between
different states. These outputs not only provide insights into the diagonalization
process but also pave the way for cost savings pertinent to large-scale matrices.
The advancements made in this research enhance the efficacy and scalability of
matrix diagonalization, pushing for new possibilities for deployment in practical
applications in scientific and engineering domains.

1 Introduction

The computational task of diagonalizing a matrix is typically an iterative method, and for real sym-
metric matrices, the Jacobi eigenvalue algorithm continues to be a popular choice, even among the
widely popular Householder and QR algorithms (PHI). However, despite having theoretical guaran-
tees and good accuracy for approximate diagonalization problems, the Jacobi eigenvalue algorithm
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often computes far more rotations than are actually necessary to diagonalize a given matrix, due to
the sub-optimal yet converging heuristic used. In practice, these sub-optimal heuristics prevent the
Jacobi algorithm from being a reliable algorithm for diagonalizing larger matrix sizes, and it can
be argued that improvements to the current heuristics are necessary for deployment in real-world
diagonalization problems.

In this paper, we introduce novel approaches to improving such heuristics through the use of Re-
inforcement Learning (sut). We study utilizing different designs for the Monte Carlo Tree Search
(MCTS) algorithm (Chaslot et al., 2008) as well as a lightweight Graph Isomorphic Network (Xu
et al., 2019), a network capable of learning compact graph abstractions, to showcase the possibility
of transfer learning and formulating the Jacobi algorithm as a Markov and Semi-Markov decision
process. We then showcase our discovered paths to the Jacobi eigenvalue problem and discuss the po-
tential increases in speed given the learned heuristics. Finally, our studies empirically show that the
Jacobi eigenvalue algorithm is indeed a sub-optimal heuristic for symmetric matrix diagonalization.

2 Related work

Recent work has demonstrated that the AlphaZero framework is indeed capable of discovering faster
solution paths in games, and has recently been used to find significant improvements to NP-Hard
computer science problems (Silver et al., 2017; 2018). For example, AlphaTensor (Fawzi et al.) has
shown the ability to construct the tensor decomposition problem as a game in order to find faster
matrix multiplication algorithms than previously seen before, while AlphaDev (Alp, 2023) has shown
the ability to search for faster sorting algorithms. (Romero et al., 2023) applies an AlphaZero-based
FastEigen framework to discover improvements on the Jacobi Eigenvalue algorithm. We extend the
capabilities of this work for diagonalization on larger-scale matrices and single models trained on
different sizes through the introduction of semi-Markov decision processes and GIN.

Finding heuristics to enhance the speed of the Jacobi Eigenvalue algorithm is typically the focal
point of many works in this area. (Rusu, 2021) has shown that there exists an improvement in speed
by instead only searching for a subset of the matrix’s largest eigenvalues, while other work focuses on
the parallel implementation aspect of the algorithm. In contrast, our work focuses on the discovery
of the full set of eigenvalues of the matrix, for some approximate tolerance set by the user. We aim
to study alternative heuristics to decrease the number of iterations necessary.

Scalability tends to be a large issue in many RL problems as well. In particular, issues tend to arise
during the process of transferring a model not only to a larger input domain but also to an intractable
larger state space. Often times, it is in fact infeasible to learn the true optimal policy in favor of
a tractable ϵ-optimal policy, where approximate optimal solution, state-value approximations, state
abstractions, and action space reduction techniques are typically used. In this work, we study the
effects of using such techniques Ben-Assayag & El-Yaniv (2021) alongside the AlphaZero framework
to speed up and visualize the learned rotation heuristic of the Jacobi Eigenvalue algorithm.

3 Background

Monte Carlo Tree Search (MCTS) Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm (Ben-Assayag & El-Yaniv, 2021). The core idea behind MCTS is to build a search tree
incrementally by simulating random games or trajectories starting from the current state of the
game. The search tree comprises nodes representing different states and edges representing possible
actions. MCTS allocates computational resources to promising parts of the search space, gradually
refining its understanding of which actions lead to favorable outcomes. By leveraging simulations,
MCTS can effectively explore the state space and identify promising actions, making it particularly
well-suited for games with high branching factors and uncertainty.



Depoyable RL @ RLC 2024

AlphaZero is an architecture that utilizes a function approximator alongside the MCTS algorithm.
Unlike previous approaches that relied on domain-specific heuristics and handcrafted features, Alp-
haZero learns to play games solely through self-play and reinforcement learning. The neural network
is trained using a combination of supervised learning from expert games and reinforcement learning
from self-play. During self-play, AlphaZero generates training data by playing games against itself,
continuously refining its strategy and improving its performance over time. It combines the neural
network’s evaluations with MCTS to guide its search, focusing computational resources on promising
parts of the search space while still maintaining exploration.

Graph Isomorphic Network (GIN) The Graph Isomorphic Network, a variant of a graph
neural network, has been specifically designed to capture detailed graph structure information as
well as the underlying connections and interactions between nodes. According to Xu et al. (2019)
and Ma et al. (2022), these networks excel in identifying and encoding the intricate patterns and
relationships inherent in graph data. A defining feature of Graph Isomorphic Networks is their ability
to handle varying input dimensions, ensuring invariance in how graphs are processed regardless of
their size or complexity.

3.1 The Jacobi Cyclic and Classical Jacobi algorithms

The Jacobi Eigenvalue algorithm The Jacobi eigenvalue algorithm Wilkinson (1965) is an it-
erative method that computes the diagonalization of a real symmetric matrix M through a series
of rotations. Each rotation matrix (or Givens rotation Wilkinson (1965)), denoted by J(p, q, θ), is
constructed through the equations:

J(p, q, θ)k,k = 1 for k ̸= p, q

J(p, q, θ)p,p = c = J(p, q, θ)q,q

J(p, q, θ)p,q = −s = −J(p, q, θ)q,p

J(p, q, θ)i,j = δi,j otherwise.

where θ is used for c = cos(θ), and s = sin(θ) and is computed in a way such that the indices p, q of
M i+1 = J(p, q, θ)T M iJ(p, q, θ) is zero Fedorov (2013). The indices p, q are selected to correspond
to an upper diagonal element of M i, i.e., p > q.

The algorithm proceeds as follows for M i: Choose indices p and q, p ̸= q, such that |mpq| is
maximized, and perform the rotation through M i+1 = J(p, q, θ)T M iJ(p, q, θ). Typically, M i+1 is
continuously computed until the summation of the off-diagonal elements of M i is smaller than a
desired threshold.

Necessity for the Jacobi Cyclic algorithm Often, the classical Jacobi algorithm be-
comes infeasible due to an O(n2) search for |mi,j |. In this scenario, it becomes necessary to
implement a cyclic variation of the Jacobi algorithm that avoids an O(n2) expense. The Jacobi
cyclic rotation is a method that simply cycles through all the upper diagonal indices in some cyclic
ordering of the class of cyclic orderings C. The same cyclic ordering is often repeated until the
summation of the off-diagonal elements of A is smaller than a desired threshold. Given the nature
of finite index selection for the goal of diagonalization, we model the cyclic Jacobi method and the
classical Jacobi method as a Semi-Markov Decision Process, and as a Markov Decision Process,
respectively.

4 Methods

Jacobi Rotations as a Markov Decision Process We define the selection of the matrix index
to be zeroed out as a fully observable Markov Decision Process (MDP) Puterman (1994), denoted by
the tuple M = (S,A, T , R, γ), where S is the state space, A is the action space, T is the transition
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function T (st−1, at−1), R is the reward function, and γ is the discount factor. The goal is to solve
the Markov Decision Process, i.e., find the optimal policy π∗, such that the reward and value of
each state are maximized for the agent. During self-play of the MCTS algorithm Silver et al. (2017)
between two or more players, each state is the current upper diagonal of a matrix in the form of a
graph (Figure 8), and we define the transition function to be the resulting matrix after applying the
Givens rotation M i+1 = J(i, j, θ)T M iJ(i, j, θ) on the current matrix state M i. We then define the
reward to be +1 for the player reaching the state of a fully diagonalized matrix first, and -1 for all
other players. Lastly, the action space at each step consists of all non-zero indices i, j of the upper
diagonal of the matrix, from which the agent can select the index to zero out with a Givens rotation.

Jacobi Cyclic Rotations as a Semi-Markov Decision Process For cases where understanding
the optimal sweep direction can be sufficient to speed up matrix diagonalization, we define the selec-
tion of a set of predetermined cyclic orderings of the upper diagonal matrix indices as a Semi-Markov
Decision Process (SMDP) Puterman (1994), denoted by the tuple: MO = {SO,O, TO, RO, γO}.
Since it has been proven that all complete cyclic orderings will converge BRODLIE & POWELL
(1975), we define the option space O to be a set of common cyclic orderings from a class C, illus-
trated in Figure 1. We define the transition function to be the resulting matrix M i+n after applying
the sequence of n primitive Givens rotations on the current matrix state for all non-zero indices,
according to a selected cyclic ordering. While navigating through a sequence, if an index is approxi-
mately zero, then it is skipped. Since the strategic selection of sweep sequences plays a crucial role in
minimizing the number of primitive rotations required to achieve matrix diagonalization, we define
the reward to be −ϵr for all r primitive rotations that occurred during the option. If a matrix is not
yet diagonalized after a specified max step count, the agent is penalized by the sum of the upper
diagonal elements in the matrix.

5 Results and discussions

5.1 Classic Jacobi Training

We first aim to outperform the heuristic of selecting the maximum upper diagonal element used
in the classic Jacobi algorithm, which we will refer to as the MaxElem policy. MaxElem will serve
as the second player in the MDP described in section 4, until it is surpassed. Once surpassed,
true self-play between agents commences. To generate symmetric matrices for training data, for
smaller matrices N < 5, we generate multiple N × N Hamiltonian matrices from a trajectory file
(the step-by-step evolution of the position of atomic coordinates used in chemistry applications).
Temperatures for each sequence are set at 300K, 400K, and 500K. These matrix sequences are then
randomly split into a set of 750 matrices for self-play and 250 matrices for inference. All larger
symmetric matrices are randomly generated using JAX PRNG seeding. We utilize the AlphaZero
framework as our agent. Due to its lightweight design and potential for transfer, the GIN is selected
as the function approximator Silver et al. (2017) to explore possible scaling advantages for different
sized matrices Ben-Assayag & El-Yaniv (2021). The MCTS hyperparameter Cpunct, which balances
exploration and exploitation in the MCTS tree, is set to

√
2, and the number of self-play iterations

before updating the agent’s policy network is set to 200. Once self-play has concluded, the GIN
model is then trained for 15 epochs, utilizing a learning rate of 0.001, a dropout rate of 0.3, a hidden
dimension size of 128, 5 GINConv layers, and a batch size of 256. We then compare with the best
model to decide if the heuristic has improved. For further details on the GIN training procedure, as
well as the experimented classic Jacobi rollouts, please refer to appendix (A.2).

We perform separate tests on allowing the Graph Isomorphic Network (GIN) to make predictions
on the matrices alone without the help of the Monte Carlo Tree Search (MCTS) state-action value
dictionary, and allowing the use of MCTS with Cpunct = 0, thereby reducing MCTS to utilizing only
Q(s, a).
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Figure 1: Primitive pivot orderings for all 8 baselines/options. During the Jacobi cyclic game, the
goal is to construct an ordering such that the primitive rotations are reduced. Darker pivots (p, q)
are rotated first when the option is selected. During the classic Jacobi rotation game, the agent
selects each pivot individually as an action.
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Figure 2: Comparative analysis of FastGIN performance under different conditions.

5.2 Classic Jacobi Performance

We briefly discuss the similarity to the results that FastEigen Romero et al. (2023) achieved for
the classic Jacobi algorithm, as our methods also successfully identified faster heuristics for the
Jacobi Eigenvalue algorithm for 5 × 5 matrices compared to the MaxElem heuristic. As illustrated
in Figure 2, FastGIN + MCTS computes a heuristic for the Jacobi Eigenvalue algorithm that far
exceeds the traditional max element heuristic. A significant interpretation of the results shows the
ability to generalize within sets of same-sized matrices. Given that the model(s) were trained on
different temperatures of matrices (5× 5), and then tested on other temperatures, it is clear that a
discernible pattern can be exploited within the matrices. Moreover, the GIN implementation proved
to be lightweight in comparison to the heavier FastEigen model. Self-play training for matrices N ≤ 5
can now be completed on a CPU, surpassing the computation speed of the rotations originally done
by FastEigen. Another key finding is the performance boost that the GIN network receives when
combined with MCTS. While MCTS tends to slow down the algorithm, we recommend pairing it
with MCTS if physical computation time is not a factor. However, it is evident that the number of
timesteps/rotations is typically lower for FastGIN+MCTS.
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5.3 Scalability

Scaling up, we observed that the Graph Isomorphic Network (GIN) generally did not perform well
with large matrices, even after shifting resources to GPU. We hypothesize that training on smaller
graphs likely does not provide enough incentive for the model to plan far ahead to the solution,
given that solutions for a 6× 6 matrix tend to fall under approximately 40 time steps, in contrast to
a 5× 5 matrix which is solvable around 7 steps. It may be necessary to devise a state abstraction or
an intrinsic reward to reliably explore the state space. Due to this observation, we discontinue the
usage of GIN for further experiments and instead rely on a larger convolutional neural network.

Values 5x5 to 6x6 5x5 to 7x7 6x6 7x7
Average Initial Inferenced Reward -0.5 -0.839 -0.5 -0.81

Starting Value Loss 0.23733 0.244 0.219 0.24414
Starting Policy Loss 2.6948 0.0007 0.005732 0.00062

Table 1: Rewards and losses when switching to larger matrices for the cyclic Jacobi Game, although
the GIN provided a lightweight alternative for FastEigen, the transfer performance deteriorated in
response to larger matrices.

5.4 Cyclic Jacobi Training
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Figure 3: Sweep transition probabilities for a 15x15 matrix. (a)

0 1 2 3 4 5 6 7
Sweep Direction

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

Sweep stage 1 

0 1 2 3 4 5 6 7
Sweep Direction

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Sweep stage 2 

0 1 2 3 4 5 6 7
Sweep Direction

0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

Sweep stage 3 

0 1 2 3 4 5 6 7
Sweep Direction

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Sweep stage 4 

0 1 2 3 4 5 6 7
Sweep Direction

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Sweep stage 5 

0 1 2 3 4 5 6 7
Sweep Direction

0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y

Sweep stage 6 

0 1 2 3 4 5 6 7
Sweep Direction

0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y

Sweep stage 7 

Figure 4: Sweep transition probabilities for a 30x30 matrix. (b)
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Figure 5: Sweep transition probabilities for a 50x50 matrix. (c)

In contrast to the FastEigen work, we begin laying the framework towards expanding to real-
world applications. We aim to analyze transitions found by the AlphaZero algorithm to dis-
cover improved cyclic ordering choices for the Jacobi cyclic algorithm. The goal is to con-
struct a distribution of sweeps that perform fewer expected primitive rotations than following the
same initial chosen cyclic patterns repeatedly (as typically done in practice). Hence, we high-
light scores for all 8 baseline policies/options: 0:Horizontal, 1:HorizontalBack, 2:Vertical,
3:VerticalBack, 4:TopLeftBottomRight, 5:TopLeftBottomRightBack, 6:TopRightBottomLeft,
7:TopRightBottomLeftBack; where each policy takes the same action every time, regardless of
state. An illustration is given in Figure 1. As described in Section 4, for the Semi-MDP, we use
ϵ = −0.01 to calculate the reward. We perform experiments with generated symmetric matrices
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Figure 6: Comparative analysis of sweep transition probabilities and graph representations of sweep
transitions across matrices of sizes 15x15, 30x30, and 50x50.

Matrix Size Baseline Alpha Zero Savings (%)
10 200 188 6.23
15 522 469 10.26
20 992 893 10.04
25 1633 1577 3.45
30 2455 2215 9.78
35 3428 3212 6.30
50 7514 6875 8.51

Table 2: Comparison of Givens rotation counts between baseline and AlphaZero implementations.

with dimensions: 10× 10, 15× 15, 20× 20, 25× 25, 30× 30, 35× 35, and 50× 50. Figure 6 presents
a comprehensive analysis of sweep transition probabilities and their graphical representations for
matrices of varying dimensions—15× 15, 30× 30, and 50× 50. We utilize a CNN as per Silver et al.
(2017).

6 Cyclic Jacobi Performance

6.1 Transitions Probabilities

Panels (a), (b), and (c) exhibit the sweep transition probabilities for each corresponding matrix size,
detailing the distribution of paths taken at each sweep stage. As initially expected, stochasticity
in decision-making increases from 15 × 15 towards 30 × 30, and eventually towards 50 × 50. We
hypothesized that as matrices grow larger, the expanding state space and the diluted signal from
the discount factor challenge the agent’s performance. However, panels (d), (e), and (f) visually
encapsulate the transition graphs, suggesting that although stochasticity in sweep direction increases,
there are transitions where selection is approximately deterministic.

In examining the relationship and possible learned structure between the various sweep stages and
matrix sizes in the cyclic Jacobi method, we applied the Chi-squared test Greenwood & Nikulin
(1996) to assess the significance of the AlphaZero-generated distribution for sweep probabilities. The
test yielded a Chi-square statistic of 900.298 with a p-value of approximately 1.6×10−161. This highly
significant result indicates a non-random association between the sweep stages and matrix sizes
utilized by the algorithm. It implies that AlphaZero’s choice of sweep directions during the matrix
diagonalization process is influenced by the matrix size and is strategically varied across different
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Figure 7: Progressive comparison of rotation counts between baseline and AlphaZero strategies
across various matrix sizes. The black points denote the baseline approach, which iteratively applies
sweeps in one of the 8 specific directions/options until diagonalization is achieved. The red dots
represent the AlphaZero method, demonstrating that AlphaZero outperforms the baseline more
significantly as the dimensions of the matrix increase.

stages to optimize performance, suggesting a discernible pattern that becomes more pronounced as
the matrix size increases.

6.2 Preferred Directions as a New Heuristic

Referring back to panel (a), for the 15×15 matrix, the model demonstrates a pronounced preference
for policy 4:TopLeftBottomRight, which tends to successfully complete the game within six sweeps.
However, as the matrix size increases, the option choices initially seem to become dispersed among
a subset of options, particularly favoring diagonal cyclic orderings. This distribution aligns with
observations from Figure 7, indicating that such options tend to offer superior performance compared
to baseline policies. In essence, Figure 6 provides valuable insights into the efficacy of different sweep
strategies and highlights the potential for adaptive policy formulation, which could lead to optimized
algorithms capable of handling the computational demands posed by larger matrices with greater
efficiency.

We begin measuring the potential cost savings as illustrated in Table 2. A concise comparison
of rotation counts between the mean performance of the 8 baseline policies and the Alpha Zero
implementation is presented across a range of matrix sizes. Baseline policies are defined to follow a
predetermined sequence of sweeps to achieve diagonalization. In contrast, Alpha Zero has learned to
utilize the option space to discover possible strategies to reduce the number of primitive rotations,
by adjusting its sweep patterns dynamically. Table 2 demonstrates the average cost savings of using
the Alpha Zero distribution, showing a consistent reduction in the number of primitive rotations
required for matrix diagonalization. The percentage savings column quantifies this improvement,
revealing that Alpha Zero has the potential to outperform common baselines by a significant margin,
particularly as the matrix size increases. The improvements range from around 3.45% for a 25× 25
matrix to over 10% for matrices of sizes 15× 15 and 20× 20, indicating the potential of Alpha Zero
for more efficient computational performance in future matrix diagonalization tasks.

7 Conclusion

We have demonstrated the existence of superior heuristics compared to currently practiced heuristics
for both variants of the Jacobi eigenvalue algorithm. We have also witnessed the effectiveness and
potential downfalls of utilizing the GIN. Given the computational speed increase from Romero et al.
(2023), we expect that the algorithm has achieved a better formulation to allow for scalability to
be more effectively managed when computing the rotation paths in the eigenvalue diagonalization
process.
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A Jacobi Two Player GIN Eigenvalue game

Algorithm 1 Self-Play Algorithm (Two Players CPU, 1 Matrix M i)
Require: N ▷ 2 Players for this example. Result = 0 (values {−1, 0, 1}).

▷ Result = 1 means state is diagonalized., D ▷ MaxDepth
1: Tstart, Tend ∼ Uniform(1, D)
2: B1← initialize Board1(Gi

Mi , Tstart, Tend)
3: B2← initialize Board2(Gi

Mi , Tstart, Tend)
4: BList← append(B1, B2)
5: TrainData← [ ] for i in N
6: Won← [−1 for i in N ]
7: PInd← 0 ▷ Current Player Index
8: Timestep t← 0
9: while True do

10: p̃← MCTS(BList[PInd]) ▷ Stochastic policy vector
11: action ∼ p̃
12: BList[PInd]← UpdateBoard(action)
13: TrainData[PInd]← append(BList[PInd], p̃)
14: Result← GameEnd(BList[PInd])
15: if Result ̸= 0 then
16: Won[PInd]← Result
17: end if
18: if (

∑
(Won) > −N and PInd = N − 1) or (t ≥ D ×N) then

19: if
∑

(Won) = −N then ▷ Fail
20: v ← −1
21: for i in N do
22: TrainData[i]← append(v)
23: end for
24: return TrainData
25: else if

∑
(Won) = N then ▷ Tie

26: v ← ϵ
27: for i in N do
28: TrainData[i]← append(v)
29: end for
30: return TrainData
31: else ▷ Win
32: for i in N do
33: if Won[i] ̸= −1 then
34: TrainData[i]← append(1)
35: else
36: TrainData[i]← append(−1)
37: end if
38: end for
39: return TrainData
40: end if
41: end if
42: PInd← NextPlayerInd()
43: end while
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A.1 Frameworks

A.1.1 Framework for symmetric matrices

We begin by implementing a symmetric matrix M i of size N as graph G = (V, E) with a set of
vertices V (G) = {1, ..., N} where N := |V | and edges E(G) = ei,j , where an edge ei,j connects the
vertices i and j if they are neighbors. We denote the set of neighborhoods of a vertex v as N(v). We
set Gi for all matrices M i to be an unweighted lattice graph corresponding to the upper diagonal of
M i where the value of each vertex vi ∈ V (G) is the corresponding matrix element M i

i,i with vertex
label (i, i).
Note that in order to compute the Givens rotation matrix J i

t during timestep t for a given Matrix
M i:

J i(i, j, θ) = IN

rk,k = 1for k ̸= i,j
rk,k = c for k = i,j
rj,i = −ri,j = −s

Where c = cos(θ), and s = sin(θ) are computed in a way s.t J iM i
i,j = 0 for some M i where i, j is

selected to correspond to an upper diagonal element, i.e i > j

For the GIN implementation, since the full matrix is instead initialized to be a graph during
the MCTS search, the computation is instead performed by indexing the element M i

i,i with a
1-dimension array containing the value of the nodes. Since the 1-dimension array of node values
are a vectorized representation of the upper diagonal values of matrix M, each index is computed
using the closed formula for a matrix of size N :

IndexMi
i,i

= (N ∗ (N + 1)
2 )−

(N − i)( (N − i + 1)
2 + j − i)

This formulation allows the upper diagonal of the current matrix state to be treated as a graph, and
thus larger matrices can be perceived as graphs with additional nodes. Once each matrix has been
modeled as a graph G, we allow the GIN to be responsible for the classification problem of deciding
the value v̂ of the state G, learning the optimal policy vector p̂, and constructing a reasonable
hidden state ht for the current state/graph. We illustrate in this process in detail in Figure (8).

A.1.2 GIN scalability for matrices

We further utilize trained GIN models to perform inference on different sized matrices, rather than
train from scratch. Therefore, to account for the largest number of paths to explore, we utilize heavy
play-outs that prioritize patterns seen in smaller matrices and explore different areas of the Jacobi
eigenvalue algorithm that result in fewer rotations made. The usage and construction of all heavy
roll-outs are discussed more in section (A.2).
Since the GIN will be trained/inferenced on different sizes of graphs, it is required that the predicted
policy is capable of outputting p̂ s.t that p̂ is suitable for all matrix sizes. Note that the starting
action space for all dense symmetric matrices of size N at t = 0 is of size N(N−1)

2 . Therefore, to
allow for a scalable policy, p̂ is instantiated Nmax(Nmax−1)

2 x 1, where Nmax is the N dimension of the
largest matrix expected for the model to do inference on. Given a smaller matrix, we normalize the
vector to account for the smaller inherent action space. An illustration is given by Figure (9).

Once v̂ and p̂ have been computed, we follow the standard AlphaZero framework MCTS rollout
algorithm. Similar to AlphaTensor Fawzi et al., we compose our dataset of random transitions,
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as well as synthetic transitions generated at different steps of the jacobi eigenvalue algorithm to
aid in the discovery of shorter rotation sequences. We train the GIN on a mixture of of synthetic
demonstrations, and standard reinforcement learning loss i.e transitions where the agent is learning
how to diagonalize a matrix. This mixed training strategy—training on the target rotations and
random rotations— seems to substantially outperform each training strategy separately for larger
matrices.

Figure 8: Visualization of our proposed GIN capable of being incorporated in the AlphaZero frame-
work. We first construct a graph using the upper diagonal of the current state. Then we pass the
constructed graph into the GIN convolution layer to obtain the hidden state h1. With each consec-
utive layer, we pass the previous ht−1 hidden state into the previous as well as a pooling layer of the
current batch. We then concatenate the hidden states and feed into a fully connected layer to get a
final hidden state. The final hidden state is then passed into two separate fully connected layers, one
responsible for producing the scalar value V of the current graph after applying a Tanh gate, and
one responsible for producing the policy vector p after applying a softmax. We then utilize these
values in the MCTS algorithm as part of the AlphaZero Framework.

Figure 9: A visualization of the mapping scheme used for the policy vector P̂ for multiple ma-
trices M i. In this example, the colors correspond to the three different sizes that the GIN was
trained/inferenced on. Blue corresponds to the largest possible matrix, red corresponds to the sec-
ond largest, and green corresponds to the smallest matrix. All white elements are marked as illegal
automatically using zero padding s.t the policy vector reaches the maximum size of the Blue matrix
policy vector.

A.2 Jacobi Heavy Rollouts

To explore other possible heuristics for Givens rotations other than the max upper diagonal element,
we perform a mixture of heavy roll-outs and based on the positioning of the matrix cells. To be
exact, we consider the total cardinality of the action space of a given Graph Gi to be: |AGi | =
N(N−1)

2 − |{V (G) : vi = 0}| for any N × N Matrix. To reduce the cardinality we first experiment
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with constraining the action space to the N closest elements away from the diagonal, that is the
action space AGi is now defined to be:

AGi = V (G) :

vi = 0 ∀vi ∈ arg max
V (G)′⊂V (G),|V (G)′|=N

 ∑
v∈V (G)′

Man(v, vi)


Where we define Man(v) to be the Manhattan distance of the vertex v from the diagonal of the
original matrix. Note that we effectively constrain the action space at each step to at most N with
this method.

In addition, since our work focuses on finding a reduction of rotations from the original Ja-
cobi eigenvalue algorithm, we reduce the maximum depth D of the MCTS search tree. This is done
by setting a depth cutoff for the MCTS search which is the amount of rotations the the Jacobi
eigenvalue algorithm is expected to take. This allows another dramatic reduction the extensive
state space.

Lastly, despite the reduction to the action space and state space maximal depth, there is still an
intractable width of paths to explore. To alleviate this issue, we decrease the width of the mcts
exploration tree by initially prioritizing search around the original max element heuristic paths,
which generates partially synthetic winning sampled paths utilizing both heuristics for the model
to learn from. During each ith iteration of self-play, to decide the period of t rotations/timesteps
of when the max element heuristic is explored, we generate two random variables Tstart, Tend where
Tstart, Tend ∼ Uniform(1, D). We then set the MCTS search to explore the max elem heuristic for
rotations that occur for timesteps Tstart < t < Tend where t ∈ [0, D]. After self play has concluded,
the max element heuristic is no longer used. The action space AGi returns to N closest elements
away from the diagonal and the learned policy of the MCTS search is used to test the currently
learned policy. Note that during an iteration of self-play, if Y ≤ X then the max element heuristic
will not used for the MCTS search. All adjustments to the AlphaZero self-play are illustrated in
algorithm (1).
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Figure 10: An overview of the GIN training process. We begin with (TOP) the self play game
generation process, which allows us to simulate rotations from a starting matrix, in the form of
a game. The current GIN provides the policy for the MCTS search to begin, and the game is
simulated for N time steps, where N is the number of timesteps that the best current algorithm
is expected to take. Failure to reach an diagonalized state, results in the search returning value
v = −1, and a reduction of the probability of returning to the path via policy p̃. After a set amount
of games, we then train the GIN (Bottom) to learn the values of the states visited, and update
the policy vector. We randomly sample data from two different sources, the randomly generated
self-play games, and synthetic simulations. Upon training, we then update the model and return to
the self-play environment with the updated GIN model. We continue this process of self-play and
model update for a number of iterations.


