WMarkGPT: Watermarked Image Understanding via Multimodal Large
Language Models
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Query: Please provide a detailed description of the
watermark interms of its direction, its placement relative
to objects, its appearance, and its visibility.
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l _ . The watermark visibility
is: <level>.
WMarkGPT: The watermark in the image is
centrally oriented, covering a significant portion of
the scene. It partially overlaps with the vase and
the potted plant, extending across their surfaces
and coming close to their edges. The watermark
appears as a circular or patterned texture with a
moderately visible presence, blending somewhat

level | weight
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Moderate | 7.61e-1 | ®3.00
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Obvious | 5.22e2 |®1.00

with the image's elements without being overly Weight avg.
intrusive. The watermark visibility is: moderate. - ----*
Score: 2.71
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Figure 1. (a) Our WMarkGPT is the first multimodal large language model specifically designed for watermarked image content
understanding without requiring access to the original images, which are often unavailable in text-driven generative watermarking
scenarios. It excels in accurately localizing watermarks, generating detailed semantic descriptions of their characteristics and their impact
on image content, and evaluating visibility levels—capabilities that surpass conventional statistical metrics, which depend on original
images and are limited to measuring low-level differences. (b) Compared to existing state-of-the-art MLLMs, WMarkGPT demonstrates
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significantly improved performance across various evaluation metrics.

Abstract

Invisible watermarking is widely used to protect
digital images from unauthorized use. Accurate
assessment of watermarking efficacy is crucial
for advancing algorithmic development. How-
ever, existing statistical metrics, such as PSNR,
rely on access to original images, which are of-
ten unavailable in text-driven generative water-
marking and fail to capture critical aspects of
watermarking, particularly visibility. More im-
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portantly, these metrics fail to account for po-
tential corruption of image content. To address
these limitations, we propose WMarkGPT, the
first multimodal large language model (MLLM)
specifically designed for comprehensive water-
marked image understanding, without accessing
original images. WMarkGPT not only predicts
watermark visibility but also generates detailed
textual descriptions of its location, content, and
impact on image semantics, enabling a more
nuanced interpretation of watermarked images.
Tackling the challenge of precise location descrip-
tion and understanding images with vastly differ-
ent content, we construct three visual question-
answering (VQA) datasets: an object location-
aware dataset, a synthetic watermarking dataset,
and a real watermarking dataset. We intro-
duce a meticulously designed three-stage learning
pipeline to progressively equip WMarkGPT with
the necessary abilities. Extensive experiments
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on synthetic and real watermarking QA datasets
demonstrate that WMarkGPT outperforms exist-
ing MLLMs, achieving significant improvements
in visibility prediction and content description.
The datasets and code are released at https:
//github.com/TanSongBai/WMarkGPT.

1. Introduction

Invisible watermarking has been extensively utilized in digi-
tal images to prevent unauthorized use by embedding dis-
cernible information, such as 2D logos, which can later be
retrieved by specific extractors to provide verifiable proof
for various applications (Hosny et al., 2024; Rezaei et al.,
2025; Sharma et al., 2024). This is particularly significant
in text-to-image generation domains, which hold immense
potential for commercial applications (Ma et al., 2024; Fer-
nandez et al., 2023). The primary challenge in watermarking
lies in achieving a delicate balance between minimizing its
impact on image quality and maintaining robust detectabil-
ity under various conditions (Guo et al., 2024; Fernandez
et al., 2022). As a result, there has been growing interest in
the research community toward evaluating the visual and
structural effects of watermarking on digital images (Sharma
et al., 2024).

Conventional assessments primarily rely on pixel-wise sta-
tistical metrics, such as peak signal-to-noise ratio (PSNR)
(Korhonen & You, 2012), structural similarity index (SSIM)
(Wang et al., 2004), and learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018a), to quantify low-
level differences between original and watermarked images
(Rachmawanto et al., 2024). However, accessing original
images as references is often impractical for text-driven
generative watermarking (Ma et al., 2024; Fernandez et al.,
2023). Moreover, they often fail to accurately reflect water-
marking efficacy, particularly in terms of watermark visi-
bility. As shown in Fig. 2, these metrics often fail to align
with human perception. Even for clearly visible watermarks,
the metric values are unexpectedly favorable, highlighting
their limitations in accurately assessing watermark visibil-
ity. To quantify the degree of misalignment, we calculate
the Spearman’s rank correlation coefficient (SRCC) (Sedg-
wick, 2014), Pearson linear correlation coefficient (PLCC)
(Sedgwick, 2012), and Kendall’s rank correlation coefficient
(KRCC) (Abdi, 2007) between these metrics and human
annotations for watermarking efficacy. As shown in Fig.
3, the comparisons reveal that traditional metrics signifi-
cantly deviate from human perception. More importantly,
these metrics fail to offer a comprehensive evaluation of the
broader impact of watermarking on image content.

Recently, multimodal large language models (MLLMs) have
achieved significant breakthroughs in image understanding

Invisible Faint Moderate

SSIM: 0.97 < SSIM:098 > SSIM:0.92 < SSIM:0.93 < SSIM:0.95
PSNR: 3246 < PSNR:35.11 > PSNR:21.7 < PSNR:2343 < PSNR:32.11
LIPIPS: 0.11 > LIPIPS:0.04 < LIPIPS:0.41 > LIPIPS:028 > LIPIPS:0.26

Figure 2. Examples of original and watermarked image pairs with
varying levels of watermarking efficacy, as annotated by humans.
Traditional similarity metrics, including SSIM (1), PSNR (1), and
LPIPS ({), are computed for each pair. The greater and less signs
between two samples indicate the relative magnitude of the metric
values. Red signs indicate inconsistencies with human percep-
tion, while black signs represent consistent relations. The results
demonstrate that traditional metrics often fail to accurately reflect
watermarking efficacy, particularly in alignment with human eval-
uations.

and question answering tasks, effectively addressing conven-
tional vision and language challenges with unprecedented
capabilities (Liu et al., 2024b; Zhu et al., 2023; Xue et al.,
2024; Liu et al., 2024a). Notably, pioneering efforts such as
the large language and vision assistant (LLaVA) integrate a
vision encoder with a LLM and leverage GPT-4-generated
multimodal data to build robust systems excelling in visual
understanding, instruction-following, and complex ques-
tion answering tasks (Liu et al., 2024b). However, none
of these MLLMs can be directly applied to watermarked
image understanding, even with nuanced prompting, as they
are trained on natural images whose data distribution and
semantic content remain unaltered by the integration of
distinctly different logo images.

To overcome these limitations, we introduce a new MLLM
for watermarked image understanding, termed WMarkGPT.
This model generates textual descriptions of watermark con-
tent, locations, detailed interactions with the main image
content, and visibility prediction with only a watermarked
image, making it particularly suitable for text-to-image gen-
erative watermarking, as illustrated in Fig. 1. To achieve
it, the model must possess the ability to precisely describe
object locations, identify a watermark from desirable fore-
ground contents, and assess its visibility in a watermarked
image. To support this learning, we construct three custom
visual question-answering (VQA) datasets. The first is an
object location-aware dataset, built upon the COCO dataset,
which includes image captions and object bounding boxes.
GPT-4 is used to generate 100k QA pairs that capture both
absolute and relative object positions within a natural image.
The second is a watermarking QA dataset, created with 50k
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synthetic watermarked images using a semi-automatic an-
notation pipeline. The final dataset is a real watermarking
QA dataset, consisting of 2.5k watermarked images gen-
erated by several state-of-the-art watermarking algorithms,
along with human annotations including watermark visibil-
ity and overall scores. The scores are used exclusively for
evaluation purposes.
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Figure 3. Comparison of various methods for assessing water-
marking efficacy, measured by their consistency with human anno-
tations. Higher SRCC, PLCC, and KRCC values indicate better
alignment with human perception. Traditional statistical metrics,
such as SSIM, PSNR, and LPIPS, show significantly lower con-
sistency and fail to accurately reflect watermarking efficacy. In
contrast, our proposed WMarkGPT achieves substantially higher
consistency with human annotated scores, demonstrating its supe-
rior performance. Notably, WMarkGPT is trained only with coarse
visibility level descriptions rather than precise scores.

To train our WMarkGPT, we propose a meticulously de-
vised three-stage learning pipeline to progressively endow
the model with robust capabilities for understanding wa-
termarked images. Our model architecture comprises a
visual encoder, learnable queries, a visual abstractor, and
an LLM. In the first stage, we primarily train the visual en-
coder, learnable queries, and visual abstractor on the object
location-aware natural image dataset, enabling the model
to precisely recognize object positions. In the second stage,
we optimize the entire model on the synthetic watermarking
dataset, adapting it to handle images with corrupted data
distributions and vastly different semantic contents. Finally,
in the third stage, we fine-tune the visual encoder and visual
abstractor on the real watermarking dataset, refining the
model’s performance and familiarizing it with target data
distribution. Experimental results on the real watermarking
QA dataset demonstrate that our WMarkGPT outperforms
existing mainstream MLLMs by approximately 29%, 45%,
150%, and 217% across four metrics, respectively (see Sec.
4.1), highlighting its powerful capabilities in understand-
ing both watermarks and their interactions with relevant
semantics.

To summarize, our contributions in this work are three-fold:

* We propose WMarkGPT, the first multimodal large
language model tailored for watermarked image un-
derstanding. It demonstrates superior performance in
generating comprehensive textual descriptions and pre-
dicting watermark visibility without requiring access
to the original images, effectively addressing the sig-
nificant limitations of existing evaluation methods.

* We construct three visual question-answering bench-
mark datasets, especially the synthetic and real wa-
termarking datasets, to facilitate research on object
location-aware MLLMs and watermarking assess-
ments. These datasets will be publicly released to
advance future research.

* We propose a systematic learning paradigm to progres-
sively endow a model with the capability to understand
object positioning relationships and corrupted image
semantics. To the best of our knowledge, this repre-
sents the first attempt to train MLLMs on unnatural
images, each composed of a fusion of two significantly
different images.

2. Watermarking Question-Answering
Datasets

Image watermarking techniques have been extensively ex-
plored within the field of computer vision. However, large-
scale watermark QA datasets tailored for the fine-tuning of
MLLMs (e.g., our WMarkGPT) remain scarce, which hence
significantly limits the development of MLLMs capable of
comprehensive watermarked image understanding. Prior
research has shown the promise of leveraging large-scale
generative models like GPT, to synthesize data for multi-
modal applications, driving substantial progress in model
capabilities (Jiao et al., 2024; Liu et al., 2024c; Wu et al.,
2023b). Inspired by this, we introduce WQA-Synthetic,
the first synthetic watermark QA dataset constructed via
a semi-automated pipeline augmented with human over-
sight on large-scale generative models for comprehensive
watermarked image understanding. This dataset comprises
artificially generated watermarked images, corresponding
questions, detailed watermark descriptions, and associated
visibility levels. Furthermore, to capture real-world water-
marking scenarios, we conduct subjective experiments and
create WQA-Real, the first dataset derived from authentic
watermarking cases for improved watermarked image un-
derstanding. The distributions of visibility levels in both
datasets are illustrated in Fig. 4.

2.1. WQA-Synthetic Dataset

To enhance the capability of MLLMs to understand the
details of watermarked images comprehensively, we con-
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Figure 4. Data distribution of the collected WQA-Synthetic and
WQA-Real datasets.

struct a synthetic watermark QA dataset, WQA-Synthetic,
through a cost-effective and efficient semi-automatic an-
notation pipeline introduced below. The dataset consists
of 50K data pairs in the format of {I, Q, T, V}, where I
represents the watermarked image, Q denotes the related
question, T is the watermark description, and V indicates
the degree of watermark visibility. To ensure a compre-
hensive coverage of watermark characteristics, we utilize
GPT-4 to generate 30 diverse question templates focusing
on different aspects of watermark analysis. For each water-
marked image, one question template is randomly selected
as Q. The watermark descriptions in the dataset include the
position of watermark, its relationship with the main object
in the image, watermark-specific features, and the visibility
level of watermark, as illustrated in the part 4 of Fig. 5. This
structured approach aligns with human perception, where
watermark evaluation is not limited to overall visibility but
also considers spatial position and feature attributes. Such
detailed annotations provide a more comprehensive under-
standing of watermark content, enabling MLLMs to bridge
the gap between perceptual and analytical insights.

The semi-automatic annotation pipeline of WQA-Synthetic
is shown in Fig. 5. We randomly select 50K images from
the COCO dataset (Lin et al., 2014) and 50K watermark
logos from the LOGO-2K dataset (Wang et al., 2020), and
then synthesize watermarked images while generating corre-
sponding watermark descriptions using a four-step process:
(1) Step-1: watermark segmentation; (2) Step-2: main
object bounding box detection; (3) Step-3: watermarked
image synthesis; and (4) Step-4: question-answering gener-
ation. Each stage is outlined in detail below.

Step 1: Watermark Segmentation (Part 1 in Fig. 5). Dur-
ing this stage, we aim to minimize background noise by
carefully isolating the area where the watermark is located.
Specifically, we use the Segment Anything Model (SAM)
(Kirillov et al., 2023) to generate a binary mask that pre-
cisely delineates the watermark region. To further refine the
segmentation, a background filtering step is applied to elim-
inate extraneous pixels. The filtered mask is then mapped
back onto the original watermarked image, yielding the

segmented watermark and its boundary frame coordinates
{bz,, by, , b, by }.

Tro) Y1

Step-2: Main Object Bounding Box Detection (Part 2
in Fig. 5). To determine the watermark’s relative position
within the image, we extract bounding box information for
the primary objects. With the object bounding box data
from the COCO dataset, we employ GPT-4 to identify the
main objects by analyzing their dimensions and spatial co-
ordinates. The selected bounding boxes for these objects,
denoted as {b;,b;,,b; ,bj, }, are then collected for fur-
ther processing.

Step-3: Watermarked Image Synthesis (Part 3 in Fig. 5).
In this stage, we focus on integrating the selected watermark
into the original image while maintaining the visual integrity
and coherence. Firstly, the watermark is resized to fit within
a predefined bounding box. Subsequently, the watermark
is embedded at a random position within the image using
a weighted average fusion method. The blending process
is governed by a transparency factor «, which controls the
visibility and prominence of the watermark. The integration
procedure for each pixel within the target region can be
mathematically expressed as:

Ig(l',y):(1—06)'13($,y)+06'1w(33,y)‘M(l‘,y), (1

where I, I, I, and M represent the watermarked image,

the original image, the watermark, and the filtered mask,

respectively. To maintain visual consistency, a brightness

adjustment is applied to the watermarked image I. through
Ie(‘r7 y) = 1 i 7

a linear transformation: '
1 1

Y ZNT, 2

SR ?

The value of « ranges from 0 to 0.25, with each increment
of 0.05 corresponding to a one-level increase in watermark
visibility. The visibility is categorized into five distinct lev-
els:“invisible”,“faint”, “moderate”, “visible”, and “obvious”,
correspondingly. The visibility level V of the watermark is
determined by the chosen value of «, allowing for precise

control over its perceptual appearance.

I (z,y)

Step-4: Question-Answering Generation (Part 4 in Fig.
5). After the aforementioned stages, we obtain the water-
marked image, the bounding box coordinates for both the
watermark and the main object, as well as the watermark’s
visibility level. These information is then integrated into
a QA template, which is fed into GPT-40 to generate a
watermark description T. This watermark description in-
cludes information about the watermark’s location and other
specific features. The data collection for WQA-Synthetic,
consisting of {I,, Q, T, V}, is then completed.

2.2. WQA-Real Dataset

In addition to the synthetic watermark QA dataset, we also
build a real-world dataset, WQA-Real, to further improve
the capability of MLLMs to understand watermarked images
comprehensively. Different from WQA-Synthetic dataset,
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The watermark is centrally oriented in the image, spanning a
significant portion of the visible content. It partially overlaps with
various objects, including the people, dining table, knife, and
cake, and extends near the edges of some objects while being fully
within the image frame. The watermark appears as a translucent
text or pattern, with a textured or slightly opague quality that makes
it noticeable against the backgroundand obiects. The watermark
visibility is: obvious.

Figure 5. Illustration of WQA-Synthetic semi-automatic annotation pipeline. The watermark description and quality score of watermark
information are constructed from a given watermarked image through a four-step process.

the data consists of 2.5K data pairs of {I, Q, T, V}. Here,
the generation of the related question Q is the same as the
one detailed in Sec. 2.1.

Collection of Real Watermarked Images. To generate
watermarked images that closely mirror real-world scenar-
ios, we select a range of representative image watermarking
models, including Hidden (Zhu, 2018), BalujaNet (Baluja,
2019), WengNet (Weng et al., 2019), HiNet (Jing et al.,
2021), and Safe-SD (Ma et al., 2024). The first four mod-
els are post-processing techniques, while the latter is an
in-generation approach. Using all five models, we synthe-
size 10K watermarked images. A real-world watermarked
image dataset is then created by randomly selecting 2.5K
of these images, ensuring they reflected the distribution of
watermark visibility levels. This dataset provides our source
of watermarked images I.

Question-Answering and Watermark Visibility Anno-
tating. To obtain watermark descriptions and assess the
visibility of watermarked images in real-world scenarios,
we conduct a subjective experiment with human participants
who are trained to master relevant background knowledge.
The participants are trained to describe the watermark by
considering factors such as its position, distribution, con-
tent, relationship with the main object, features (e.g., trans-
parency, texture), and visibility. These descriptions then
form the source for the watermark description T. After
completing the description, participants assess the visibility

Stage 1 Stage 2 Stage 3
Object Positioning Synthetic Watermarking Real Watermarking
Pre-training Question-answering Question-answering
Large Language Model Large Language Model éy Large Language Model

Abstractor Abstractor Abstractor
Vision Vision Vision
Encoder i Encoder 4 Encoder o
CECEE & CROEE & CECEE
COCO Learnable WQA-Synthetic Learnable WQA-Real  Learnable
Image Queries Image Queries Image Queries

Figure 6. Model architecture and the progressive learning
paradigm of WMarkGPT. We employ a meticulously designed
three-stage training pipeline to sequentially optimize different
model components, progressively enhancing performance and
achieving optimal final results.

of each watermarked image based on predefined criteria,
which forms the watermark visibility V.

3. WMarkGPT
3.1. Model Architecture

WMarkGPT is a specialized multimodal large language
model explicitly designed for watermarked image com-
prehension. By seamlessly integrating visual representa-
tions with linguistic embeddings, WMarkGPT enables the
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recognition and detailed articulation of watermarked image
content without requiring original reference images. It ad-
dresses key limitations of traditional evaluation methods,
including the reliance on reference images, the absence of
watermark information and localization, lack of descriptions
about semantic corruption, and insufficient visibility assess-
ment. Notably, our visibility prediction logits yield scores
highly consistent with human ratings, despite these ratings
not being used to supervise the model training.

To facilitate these challenging functions, inspired by
mPLUG-owl-2 (Ye et al., 2024), our WMarkGPT incor-
porates an LLM as its core component, complemented by
a vision encoder, a visual abstractor, and learnable queries
as depicted in Fig. 6. Specifically, WMarkGPT processes
a 448 x 448 watermarked image as input, which is first
handled by the vision encoder to produce 64 image tokens,
each with a dimension of 1024. These tokens are combined
with a set of learnable queries of the same shape and passed
through the visual abstractor, where information exchange
occurs via multi-head self-attention mechanisms, distill-
ing task-specific semantic representations into the learnable
queries. Finally, the refined learnable queries are concate-
nated with the encoded textual embeddings of a question
and jointly processed by the LLM to generate the textual
response.

3.2. Training Paradigm

Watermarked images are generated by embedding water-
mark patterns into original images, resulting in significant
domain differences compared to naturally captured images.
Addressing the task of describing watermarked images us-
ing MLLMs requires overcoming two major challenges.
First, the model must accurately describe the spatial rela-
tionships between watermark distributions and primary ob-
jects within the image. Second, watermarked images differ
fundamentally from natural images, as they are the fusion or
combination of natural image content and watermark logos,
containing two highly distinct visual components. To tackle
these challenges, we design a three-stage vision-language
training strategy, as illustrated in Fig. 6, to systematically
endow the model with these capabilities. In the first stage,
the model is trained on an object location-aware QA dataset
based on natural images. In the second stage, it is further op-
timized on a synthetic watermarking QA dataset, and in the
final stage, fine-tuned on a real watermarking QA dataset.
Throughout all stages, cross-entropy loss is employed to
measure the discrepancy between the predicted outputs and
ground-truth labels.

Stage-1: Object Positioning Pre-training. This stage aims
to enhance WMarkGPT’s ability to perceive and understand
object positioning within images. To achieve this, we con-
struct the object location-aware QA dataset using the COCO

dataset and GPT-4. The COCO dataset provides bounding
box annotations for primary objects alongside image cap-
tions, forming the foundation for generating two types of
question-answer pairs with GPT-4. For absolute positioning,
GPT-4 generates questions about objects located in specific
regions of the image, such as the top, bottom, left, or right.
For relative positioning, GPT-4 creates questions regarding
the spatial relationships between objects, such as identify-
ing which objects are above, below, to the left, or to the
right of a given object. Using this dataset, we train the
vision encoder, visual abstractor, and learnable queries of
WMarkGPT, enabling the model to effectively extract and
process object positional features.

Stage-2: Synthetic Watermarking Question-answering.
In this stage, all trainable parameters are unfrozen for super-
vised fine-tuning. The model is trained on our high-quality
synthetic dataset, WQA-Synthetic, which consists of a large
number of watermarked images. This dataset is designed
to familiarize the model with the unnatural data distribu-
tion and question-answering tasks specific to watermarked
images. Through this stage, the model’s ability to gener-
ate detailed textual descriptions is significantly enhanced,
including precise watermark positioning, relevant features,
and visibility assessment.

Stage-3: Real Watermarking Question-answering. To
further enhance the model’s ability to process real water-
marked images, we conduct additional fine-tuning using a
small but high-quality dataset, WQA-Real, featuring metic-
ulously annotated watermarked images. By this stage, the
model has already developed a strong understanding of wa-
termarked images through the earlier training phases. There-
fore, we freeze the LLM and learnable queries, focusing
fine-tuning exclusively on the vision encoder and visual
abstractor components. This targeted fine-tuning ensures
alignment with the real data distribution, enabling the model
to generate accurate and detailed descriptions, thereby im-
proving its performance.

4. Experiments
4.1. Main Results

Quantitative Comparison. To demonstrate the effective-
ness of WMarkGPT, we conduct a comprehensive quan-
titative comparison against several state-of-the-art multi-
modal large language models (MLLMs) on both the WQA-
Synthetic and WQA-Real datasets, including Qwen2-VL-
7B-Instruct (Wang et al., 2024), Qwen-VL-Chat (Bai et al.,
2023), LLaVA-1.5-7B (Liu et al., 2024a), LLaVA-1.5-13B
(Liu et al., 2024a), VILA-8B (Lin et al., 2024), and mPLUG-
owl-7B (Ye et al., 2024). The details of the evaluation met-
rics are available in Appx. G. To ensure a fair comparison,
we standardize the input format for each model. The quan-
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Table 1. Performance comparison between WMarkGPT and six state-of-the-art MLLMs on the WQA-Synthetic and WQA-Real datasets
across four evaluation metrics. It shows that WMarkGPT consistently demonstrates superior performance on these two datasets.

Models Backbone WQA-Synthetic WQA-Real

BLEU-1 ROUGE-L LLM-Score = ACC  BLEU-1 ROUGE-L LLM-Score = ACC
Qwen2-VL-7B-Instruct Qwen-7B 0.211 0.326 38.645 0.209 0.328 0.289 24.450 0.156
Qwen-VL-Chat Qwen-7B 0.315 0.289 37.078 0.211 0.255 0.253 25.450 0.166
LLaVA-1.5-7B Vicuna-1.5-7B  0.311 0.308 26.778 0.210 0.237 0.270 15.600 0.118
LLaVA-1.5-13B Vicuna-1.5-13B  0.285 0.289 40.220 0.217 0.228 0.256 25.650 0.134
VILA-8B LLaMA-2-7B 0.251 0.328 49.961 0.236 0.190 0.253 28.800 0.172

mPLUG-owl2-7B  LLaMA-2-7B 0351 0318 36229 0201 0279 0277  17.150  0.110
0488 0446 87751  0.645 0424 0418 71950  0.546
WMarkGPT LLaMA-2-TB (30 0%) (436.0%) (+75.6%) (+173.3%) (+29.3%) (+44.6%) (+149.8%) (+217.4%)

##Prompt: Please provide a detailed description of the watermark in terms of its direction, its placement relative to objects, its appearance, and its visibility.

##LLaVA-1.5-7B: The watermark is placed in the lower left corner of the image. It is partially overlapping the train tracks and is visible but not obtrusive. The watermark has a textured appearance,
which adds a layer of detail to the image. The watermark visibility is moderate.

##mPLUG-0ow12-7B: The watermark is placed in the upper right corner of the image, with its orientation being vertical. It is partially overlapping the red train on the right side of the image,
partially covering the front of the train. The watermark appears to be a simple, solid, and white line. The visibility of the watermark is moderate, as it is not completely obstructing the image but is
still noticeable.

##WMarkGPT: The watermark is horizontally oriented and positioned near the lower central region of the image. It partially overlaps with the trains depicted in the scene, covering portions of

their lower bodies while leaving other parts unaffected. The watermark has a translucent and slightly textured appearance, blending moderately with the background elements while remaining
discernible. The watermark visibility is: moderate.

##Prompt: Can you describe the watermark in the image, focusing on its orientation, position relative to objects, appearance, and visibility?

##LLaVA-1.5-7B: The watermark is placed in the lower left corner of the image, with a visible and moderate level of visibility. It is positioned near the edge of the table, and its appearance is a
combination of a text and a logo. The watermark is not obstructing the view of the man using the laptop, but it is still noticeable.

##mPLUG-0w12-7B: The watermark in the image is placed in the lower right corner of the photo, covering a significant portion of the bottom right side. It is partially overlapping the laptop and
bottle, partially obscuring their details. The watermark has a white appearance and is visible to the naked eye.

###WMarkGPT: The watermark is oriented across a significant portion of the image, spanning the right area and extending towards the edges. It overlaps with multiple objects, including the

person, chair, laptop, and dining table, covering them either partially or entirely. The watermark appears faint and blends subtly into the image, with a soft texture that does not disrupt the visual
clarity of the objects significantly. The watermark visibility is: faint.

##Prompt: Could you summarize the watermark’s orientation, its location relative to objects, its appearance, and how clearly it is visible?

##LLaVA-1.5-7B: The watermark is placed in the lower left corner of the image. It is partially overlapping the dog. with the dog's head and mouth partially covering the watermark. The watermark
appears to be a small, white, textured object. The watermark visibility is moderate, as it is partially covered by the dog's head and mouth.

##mPLUG-ow12-7B: The watermark in the image is oriented vertically and is partially overlapping the puppy on the bed. It is placed near the edge of the puppy, partially covering its face. The
watermark has a white color and a smooth texture. The watermark visibility is moderate, as it is not completely obscuring the puppy but still noticeable.

##WMarkGPT: The watermark in the image is completely invisible to the naked eye. It integrates seamlessly into the background and objects, including the dog's panting and the surrounding

mattress, without significant transparency, color contrast or visual interference. The watermark blends perfectly with the image's texture and color palette to ensure that it does not overlap or
interfere with any details, maintaining the natural appearance of the image. The watermark visibility is: invisible.

Figure 7. Qualitative comparison of watermark descriptions between WMarkGPT and other open-sourced MLLMs on watermarked
images with varying visibility, which demonstrates the ability of WMarkGPT to accurately identify watermark location and features, even
when the watermark is not visible to the human eyes.

titative results, detailed in Tab. 1, show that WMarkGPT
significantly outperforms the other models in terms of wa-
termark description relevance, achieving higher BLEU-1,
ROUGE-L, and LLM-Score values. Moreover, WMarkGPT
demonstrates superior visibility prediction accuracy, achiev-

Table 2. The BLEU-1 results for watermark descriptions of the
five different visibility levels in WQA-Real. Here, L1, L2, L3,
L4, and L5 represent the visibility levels of “invisible”, “faint”,

LLIY3

“moderate”, “visible”, and “obvious”, respectively.

ing a 217.4% higher ACC than the second-best model, WQA-Real
VILA-8B. To further investigate watermark description qual- Models I Lo Ls s Ls
ity across different visibility levels, we evaluate these mod- Qwen2-VL-7B-Instruct 031 033 033 037 036
le 0}‘11 the WQTAI')RgaIV‘;T/Ia“’IE é‘g;ss five ‘;IS“t’llhty }le‘tegortlﬁs' Qwen-VL-Chat 024 027 027 026 027
'S STOWR AN 1aD. =, WA CONSISIenty asieves e [ Lava-1.5-78 024 023 023 026 023
highest BLEU-1 scores for watermarked image descriptions
N e e g LLaVA-1.5-13B 023 021 023 025 023
across all visibility levels, highlighting its robustness.
VILA-8B 0.19 0.16 0.19 021 0.21
Qualitative Evaluation. In addition to quantitative com- mPLUG-ow12-7B 027 028 029 029 027
parisons, we perform a qualitative evaluation using water- WMarkGPT 044 038 041 044 043

marked images from diverse scenes in the test set, particu-
larly those with subtle or absent watermarks (Fig. 7). This
analysis reveals that WMarkGPT accurately identifies wa-
termark position and features, even in challenging cases.
In contrast, models like LLaVA-1.5-7B and mPLUG-owl-

7B often provided less accurate descriptions, and, notably,
misidentified background patterns as watermarks when the
watermark is visually imperceptible. WMarkGPT, however,
correctly recognizes the absence of a visible watermark,
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Table 3. The visibility prediction probability distributions and
quantification method for watermarked images with varying vis-
ibility levels. In the table, the watermark in (A) is more visible
compared to (B), as indicated by its smaller weighted score. Here,
T; denotes the watermark description.

Watermarked
Image
T; The watermark is oriented horizon-
tally across the central portion of the
image. ... The watermark visibility
is: visible.
Level L1 L2 L3 L4 L5

Probability  9.39 6.24 12.84 18.92 17.27

Table 4. The impact of using varying size of WQA-Synthetic data
for fine-tuning. As the training proportion increases, the model’s
ability to understand watermarks improves, resulting in more accu-
rate watermark descriptions.

WQA-Synthetic

Size BLEU-1 ROUGE-L LLM-Score ACC
0K 0.351 0.318 36.229 0.201
10K 0.450 0.405 77.706 0.493
30K 0.448 0.407 79.267 0.555
50K 0.488 0f446 87.751 0.645
(+8.9%) (+9.6%) (+10.7%) (+16.2%)

Table 5. The performance of the model on WQA-Real after three
different training stages. Si, Se, and S3 represent the Stage-1,
Stage-2, and Stage-3, respectively.

Softmax 0.000 0.000 0.002 0.837 0.161
Weight avg. 1.84 (Range:[1:5]) Stages WQA-Real
Watermarked (B) BLEU-1 ROUGE-L LLM-Score ACC
Image P Baseline 0.279 0.277 17.150 0.110
St 0.281 0.280 30.324 0.235
Sy + So 0.290 0.283 40.400 0.320
S 45 48 0.424 0.418 71.950 0.546
THROZTO3 (446.2%) (+47.7%)  (+78.1%) (+70.6%)
T; The watermark is oriented horizon-
tally across the lower portion of the
image. ... The watermark visibility . i . .
is: faint. formance, we train WMarkGPT using three different sizes
Level L. Lo Ls La Ls of the training data: 0K, 10K, 30K, and 50K images, respec-
Probability 1318 17.63 143 1165 9.04 tively. The experimental results, detailed in Tab. 4, demon-
Softmax 0011 0952 0.034 0.002 0.000 strate that model performance improves as the amount of
Weight ave. 3.97 (Range[1:5]) synthetic training data increases. Specifically, using 10K im-

demonstrating its robust performance. To further analyze
watermark visibility quantitatively, we visualize the predic-
tion results for two different visibility levels in Tab. 3. The
descriptions from WMarkGPT conclude with the phrase
“The watermark visibility is <level>", and we observed
a strong correlation between the probability distribution
of the <level> output and the actual watermark visibility.
Following the approach in (Wu et al., 2023a), we assign
numerical values (1-5) to the visibility levels and calculated
a weighted score based on the probability of each level. This
score objectively reflects watermark visibility, with lower
values indicating more visible watermarks. As illustrated in
Fig. 3, this quantitative method proves to be a more accu-
rate measure of watermark visibility compared to traditional
metrics like PSNR.

4.2. Ablation Study

Effects of Varying Size of WQA-Synthetic. To investigate
the impact of the WQA-Synthetic dataset size on model per-

ages results in a 61.3% and 46.2% improvement in BLEU-1
and ROUGE-L scores, respectively, compared to the 0K
results. Furthermore, increasing the training data from OK
to 50K images led to a 319.5% and 396.4% enhancement in
LLM-Score and ACC metrics, respectively.

Effects of Progressive Training Pipeline. To assess the
impact of our three-stage training pipeline, we evaluated
the performance of WMarkGPT after each stage on the
WQA-Real dataset. The results, detailed in Tab. 5, show a
clear progression of improvement. After the Stage-1, the
model achieved a 76.81% increase in LLM-Score and a
113.64% increase in visibility prediction accuracy (ACC)
compared to the baseline. Following the Stage-2, all four
evaluation metrics showed further improvement, with the
LLM-Score increasing by 33.23%. Finally, the complete
three-stage training resulted in significant enhancements
over the second stage, with BLEU-1, ROUGE-L, LLM-
Score, and ACC increasing by 46.20%, 47.70%, 78.09%,
and 70.63%, respectively. These results demonstrate that
our stepwise three-stage training effectively enhances the
model ability to perceive watermark content.
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5. Conclusion

This paper presents WMarkGPT, the first MLLM specif-
ically designed for watermark content understanding. To
train the model for watermark content perception, we de-
veloped three visual question-answering datasets: an object
location-aware dataset, a synthetic watermarking dataset,
and a real watermarking dataset. Furthermore, the model
employs a three-stage training pipeline that progressively
bridges the gap between natural images and watermarked
images, achieving superior results in watermark understand-
ing. Future work will explore the application of watermark
understanding in other modalities, such as watermarked
videos and 3D-generated watermarked content, to further
advance watermarking technology.

Acknowledgements

This research was supported by the National Natural Sci-
ence Foundation of China (62306117 and 62302385), the
Guangzhou Basic and Applied Basic Research Founda-
tion (2024A04J3681), and GJYC program of Guangzhou
(2024D03J0005).

Impact Statement

This study introduces WMarkGPT, the first multimodal
large language model (MLLM) designed for watermarked
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Appendix

In this appendix, we provide additional technical details, dataset construction methods, and supplementary experiments.
Sec. A provides a detailed summary of related works. Sec. B details how our model computes the visibility score for
watermarked images. Sec. C presents the text templates used in the production of the object location-aware dataset. Sec. D
presents the text templates used in the semi-automatic annotation process of WQA-Synthetic and showcases intermediate
results. Sec. E explains the details and standards of the subjective experiments conducted for WQA-Real. Sec. F describes
the implementation details. Sec. G elaborates on the evaluation metrics, particularly the LLM-Score and ACC metrics.
Sec. H compares our model’s visibility score predictions with other score-based methods, highlighting the advantages of our
approach.

A. Related Works

Multimodal Large Language Models. Early works like BLIP (Li et al., 2022) and Flamingo (Alayrac et al., 2022)
have demonstrated strong cross-modal understanding capabilities through large-scale image-text alignment pre-training.
Further advancements, such as MiniGPT-4 (Zhu et al., 2023) and Next-GPT (Wu et al., 2023b), enable transformations
between arbitrary modes, while models like BLIP-2 (Li et al., 2023) and DRESS (Chen et al., 2024) incorporate human
feedback to improve the alignment with human intentions. Improved datasets, as seen in LLaVA-1.5 (Liu et al., 2024a),
and optimizations in attention mechanisms, such as in mPLUG (Ye et al., 2024), have further boosted performance and
efficiency. However, most existing MLLMs focus on natural image understanding for tasks like text-image matching or
dialogue generation, lacking optimization for watermarked image comprehension. Our work addresses this gap by training
MLLMs to analyze unnatural images formed through the fusion of distinct contents, enabling the understanding of object
positioning, watermark influence, and visibility assessment.

Watermarking Efficacy Evaluation. Traditional methods for evaluating watermarking primarily rely on pixel-based
metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean squared error (MSE),
which quantify pixel-level differences between original and watermarked images. Recent learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018a) is a perceptual similarity metric that measures differences between images based on
deep features extracted from a pre-trained neural network, capturing perceptual differences beyond pixel-level distortions.
While these metrics effectively capture low-level distortions or feature-level shifts, they fail to accurately assess watermark
visibility and influence on semantics. Moreover, existing evaluation methods rely on access to both original and watermarked
images. In contrast, our work trains an MLLM to evaluate watermarked images without requiring original references. It
provides detailed textual descriptions, including the watermark’s location, content, its impact on the image’s semantics, and
visibility assessment, addressing the limitations of conventional approaches.

B. Visibility Score Prediction

After training, the model demonstrates strong capabilities in summarizing the content of watermarked images and accurately
judging the visibility of the watermark. Its output is a plain text description, with the final sentence following a fixed format:
“The watermark visibility is: < level >.” To convert the rating levels back into scores, we define a reverse mapping G from
text-defined rating levels to numeric scores, as follows:

G:L;—i, ey

Where {L; | i = 1,..., 5}represents the five levels from obvious to invisible. Considering that the predicted < level >
token by the LMM represents a probability distribution over all possible tokens in the vocabulary, we perform a restricted
softmax operation to obtain the probability Pr,, of each level L;, ensuring the sum of Py, equals 1. The final predicted score
of the LMM is computed as follows:

5 5 X;
Q:ZPLiG(Li):Zi';ixv (@)
i=1 D€

i=1 =1

Here, X; represents the logits corresponding to each level L;, ensuring a normalized and interpretable visibility score
prediction.
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C. Templates of Object Location-aware Dataset

This dataset is primarily designed to enhance the model’s ability to perceive the spatial positions of objects. Specifically, we
approached the data design from two perspectives: absolute position descriptions and relative position descriptions. For the
former, we aim to obtain the absolute positional description of an object in the image. For the latter, we focus on describing
the position of one object relative to another. To construct this dataset, we utilized the original bounding box annotations
from the COCO dataset. Object boundary information was used to create question templates, and with the help of GPT-4,
we generated descriptive information regarding the objects’ positions. The details of the question templates and relevant
examples are provided in Fig. 1.

Absolute position description

##Template: Given the following information:

- Image size: [w, h|

- Object bounding box: [x;, vy, X3 ¥l

Please output only one of the object’s position in the image. Positions can be: "Top-left", "Top-right", "Bottom-left",
"Bottom-right", "Center", "Middle-top", "Middle-bottom", "Middle-left", "Middle-right"

Relative position description

##Template: Given the following information:

- Image size: |w, h)

- <Object 1> bounding box: [x;;, Y11, X125 V12

- <Object 2> bounding box: [X;5, V215 X229 V23]

Where is <Object 1> in relation to <Object 2>? Please output only one of the following: "Top-left", "Top-right", "Bottom-
left", "Bottom-right", "Center", "Middle-top", "Middle-bottom", "Middle-left", "Middle-right"

Absolute position description examples: Relative position description examples:
20 [object name] = “bottle’ 62! <object 1> = ‘spoon’  <object 2> = ‘bottle’
[ 7 X 32] = [0.0, 29.6, 36.6, 92.6] g [X2 Vi X1 ¥12] = [181.1, 85.0, 204.2, 220.6]
(X1 Y15 X120 ¥12] = [0.0, 29.6, 36.6, 92.6]

GPT-4: Top-left .
B, w=224, 224 GPT-4: Bottom-right

B

<object 1> = ‘book’ <object 2> = ‘tv’
(x5 Y1 X1 ¥12] = [181.1, 85.0, 204.2, 220.6]
(X1 Y1 X1 ¥12] = [40.4, 102.8, 75.1, 127.0]

[object name] = ‘tv
[xp ¥ X2 5] = [64.9, 19.5, 107.8, 84.1]

GPT-4: Top-left
hyw=224,224 hyw=224,224

GPT-4: Bottom-right

Figure 1. Text template and examples for object location-aware dataset.

D. Templates for WQA-Synthetic

We introduce a cost-effective and efficient semi-automatic annotation pipeline to construct the WQA-Synthetic. This pipeline
is divided into four steps, with the second and fourth stages utilizing external LLMs, such as GPT-4 and GPT-4o0, to assist in
data annotation. In the following, we provide a detailed explanation of the question templates used in these two steps, along
with the corresponding intermediate results.

Main Object Box Detection. In this step, we use GPT-4 to judge the main object of the original image. We design a question
template by combining the object category related to the original image and the bounding box coordinate information in the
image, as shown in Fig. 2.

Question-Answering Generation. After obtaining the main object bounding box coordinates in the original image,
watermark bounding box coordinates, and the watermark visibility, we utilize GPT-40 to generate detailed descriptions of
the watermarked images. To ensure accurate descriptions, we designed a question template that comprehensively considers
both the watermark and original image bounding boxes. This template is used to input the watermark image into GPT-40
for summarization. The specific question template and relevant response examples are shown in Fig. 3. In addition, we
designed 30 relevant questions, with each generated text description being randomly matched to one of these questions. An
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##Template: Given an image with a size of |h, w]| and an object named [object name), located at the bounding box
coordinates [x;, y;, X3 ¥l Is the obiect in the boundany box area the main object in this image? Please respond with "Yes"
or "No" only.

Examples:
[object name] = ‘person’ [object name] = ‘cup’ [object name] = ‘chair’
[xp i x5 ¥,] =[2.3, 11.0, 84.0, 170.3] [xp 1 X5 ¥,] = [37.8, 160.4, 65.6, 181.8] [x5 ¥1 X2 y2] = [49.6, 133.4, 134.0, 155.6]
GPT-4: Yes. GPT-4: No. GPT-4: No.
[object name] = ‘toilet’ [object name] = “'bottle” |object name] = “'bottle”
(x5 i X2 ¥5] = [24.1, 116.3, 72.1, 219.0] [ Vi X ¥5] = [152.5, 81.1, 161.6, 106.8] [xp ¥ X y5] = [142.5, 83.0, 151.8, 108.2]
g GPT-4: Yes. GPT-4: No. GPT-4: No.
h,w=224,224
Figure 2. Main object box detection question template and related examples.
Table 1. Classification and scoring criteria for WQA-Real
Level Score Range Standard
Invisible [0,1] The watermark almost completely disappears, cannot be recognized in the image, and cannot be detected
no matter from which angle or condition it is viewed.
Faint [1,2] The watermark is not obvious, only under specific conditions or careful observation can barely be seen,
usually integrated with the background, the recognition is very low.
Moderate [2,3] The watermark is clearly visible in most cases, but not overly prominent, at a relatively unobtrusive level
in the middle of the image where an observer can see the watermark without special effort.
Visible [3.4] The watermark is clearly visible, the contrast with the background is high, and it is easy to detect, which
may slightly affect the overall visual effect of the image, but it does not attract too much attention.
Obvious [4,5] The watermark is very prominent, obviously affect the visual effect of the image, easy to attract the

attention of observers, may block or interfere with the main content of the image.

example of such a question is: “Please describe the watermark’s direction, its placement relative to objects, its texture or
appearance, and its visibility.”

E. Details of The WQA-Real Production

To construct textual descriptions and visibility scores for real-watermarked images, we conducted a series of subjective
experiments. Ten experienced annotators were selected and rigorously trained for the task. The annotators were instructed to
provide comprehensive descriptions of the watermark content in the images, including the special location, its relationship
with the main objects in the image, its texture and shape characteristics, and its visibility. Finally, the annotators classified
the watermark images according to a predefined visibility standard and assigned a visibility score. The specific criteria are
outlined in Tab. 1.

F. Implementation Details

In our experimental setup, we randomly select 5K and 0.5K watermarked images from the WQA-Synthetic and WQA-Real
dataset correspondingly to construct a diverse test set, and use the remaining images as the training set. As mentioned above,
the training process is structured into three stages: In Stage-1, we generate 100K position question-answer pairs to train the
vision encoder and visual abstractor, with a batch size of 32, a learning rate of 1 x 10~%, and for a duration of 3 epochs.
This larger learning rate is chosen because only the visual components are trained in this stage. In Stage-2 and Stage-3,
following the configuration in the mPLUG-owl2, we apply fine-tuning with a batch size of 16, a learning rate of 2 x 10~°,
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## System: You are a helpful watermark discriminator.

##Template: <watermarked image> The image I provided has a watermark embedded in it. The image contains the
following objects with their bounding box coordinates:

{object 1: [x;y11X12) 1], - Object iz [X;1,pi1,Xi2Y 2]}

The watermark is embedded in the following areas:

X, V01X 2 V,2] (The visibility of watermark is <level>)

In the input:

- [x1, y1, x2, y2] represents the bounding box coordinates for detected objects in the image.

- The watermark visibility is described with the following terms: invisible, faint, moderate, visible and obvious. The more
obvious the watermark, the worse the watermark embedding effect.

First, describe the specific orientation of the watermark in the image. Next, explain the relative position of the watermark to
the objects in the image, indicating whether the watermark is inside, partially overlapping, or near the edge of the objects.
Avoid mentioning any bounding box or coordinate information in your response. Then, briefly describe the watermark's
characteristics, such as appearance or texture. Finally, assess the watermark visibility using the format: 'The watermark
visibility is: [invisible/faint/moderate/visible/obvious).

Present all this information in a cohesive and concise paragraph..

Examples:

##GPT-40: The watermark in the image is centrally oriented and extends across a significant portion of
the scene. It partially overlaps with all the objects, including the bottle, wine glass, dining table, and chair,
but it does not fully obscure them. The watermark has a layered and translucent appearance, with
discernible text or patterns that give it a textured effect. The presence of the watermark is prominent and
easily noticeable. The watermark visibility is: visible.

##GPT-40: The watermark in the image is situated along one side of the image, spanning vertically. It is
positioned near the edge of the bed object and partially overlaps with the teddy bear object. The
watermark has a faint, blended appearance, making it integrate subtly with the background. The texture
appears smooth and does not significantly disrupt the overall image quality. The watermark visibility is:
faint.

##GPT-40: The watermark is horizontally oriented and located near the lower center of the image. It
partially overlaps with some objects, such as the individuals in the foreground, but does not interfere with
peripheral elements like kites in the sky. The watermark features a text-based design with a translucent
appearance, blending into the background but still discernible. The watermark visibility is: moderate.

Figure 3. Text template and examples for Question-answering generation.

and a duration of 5 epochs. Across all three stages, the Adam optimizer and cosine annealing learning rate schedule are
used to dynamically adjust the learning rate. The reported performance of WMarkGPT is evaluated using the final weights
obtained after fine-tuning and all experiments were conducted on 8 NVIDIA RTX 6000 Ada GPUs.

G. Evaluation Metrics

To comprehensively evaluate the watermark understanding capabilities of WMarkGPT and other MLLMs. Traditional
metrics like PSNR are not included in this experimental section because they fail to provide textual descriptions and visibility,
which are the core of evaluation. Instead, we refer the reader to Fig. 3 for a comparison of WMarkGPT with these metrics in
other aspects. we compare their performance in two major aspects: (1) the relevance of their watermark descriptions, and (2)
the accuracy of their visibility predictions.

(1) Relevance of Watermark Description. To evaluate the quality of generated watermark descriptions, i.e., their relevance
to the reference text, we employ established natural language processing metrics. Specifically, we calculate BLEU-1 and
ROUGE-L scores to measure word-level similarity between the generated description and the reference text. We also
employ the LLM-Score, as described in (Lu et al., 2024), to assess semantic relevance. This score ranges from O to 4,
with higher scores indicating better relevance. For ease of interpretation, the final scores are normalized to a scale of 0 to
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Table 2. Classification and scoring criteria for WQ-Real

WQA-Synthetic WQA-Real

SRCC PLCC KRCC SRCC PLCC KRCC
DBCNN 0.91 0.91 0.75 0.63 0.70 0.46
HyperlQA 0.91 0.91 0.75 0.62 0.65 0.44
TReS 0.90 0.90 0.75 0.46 0.48 0.33
CLIP-IQA 0.89 0.86 0.71 0.43 0.46 0.31
WMarkGPT ~ 0.93 0.93 0.78 0.71 0.74 0.54

Models

100. Specifically, we designed a text template to evaluate the correlation between the generated content and the reference
description with the help of GPT-4. The detailed text template is as follows:

“Evaluate the relevance between the following description and ground truth on a scale from 0 to 4. Higher scores indicate
better relevance. Return only the numeric score. - Description: < candidates > - Ground Truth: < references >"

(2) Accuracy of Visibility Prediction. A crucial part of evaluating the ability to understand watermarks from a multimodal
large language model is assessing the accuracy of its visibility predictions. In our dataset, each watermarked image has
a corresponding visibility label, ranging from “invisible” to “obvious” (i.e., “invisible”, “faint”, “moderate”, “visible”,
“obvious”). Unlike WMarkGPT, which directly outputs visibility predictions, other MLLM baselines describe visibility
in various textual formats, often embedding the information within their generated text. To standardize the visibility
classification, we use a question template and leverage GPT-4 to categorize the visibility level in the generated text from
other MLLM baselines. Finally, we calculate the accuracy (ACC) of these visibility predictions in all images. The question

template designed to summarize the visibility of the watermark is as follows:

“You are an expert in image watermark analysis, specializing in assessing the visibility of watermarks. 1 will provide a textual
description of an image watermark, and your task is to evaluate its visibility based on the description. Choose the most
appropriate visibility level from the following options: invisible, faint, moderate, visible, or obvious. Provide only the
selected visibility level as your output. -Input: < candidates >"

H. Comparison with Other Score-based Methods

Our model calculates the watermark visibility score by computing the probability of the final level word, providing a
more accurate representation of watermark visibility and the degree of image content degradation compared to traditional
pixel-wise metrics. To further highlight the advantages of our model, we selected several score-based deep neural network
models, including DBCNN (Zhang et al., 2018b), HyperIQA (Su et al., 2020), TReS (Golestaneh et al., 2022), and CLIP-IQA
(Wang et al., 2023), and trained and tested them on score prediction tasks using the WQA-Synthetic and WQA-Real datasets
according to the configurations from their respective original papers. We then compared the SRCC, PLCC, and KRCC
metrics of our model against these score-based methods. The experimental results, shown in Table 2, demonstrate that
our method outperforms these score-based approaches in predicting watermark visibility scores, achieving results that are
more consistent with subjective ratings. This superiority may be attributed to the fact that most score-based methods are
designed to assess image distortion, which does not capture the watermark’s semantic content effectively, leading to poorer
performance in watermark visibility score prediction tasks.
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