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Abstract

Watermarking is a technical means to dissuade malfeasant usage of Large Language
Models. This paper proposes a novel watermarking scheme, so-called WaterMax,
that enjoys high detectability while sustaining the quality of the generated text
of the original LLM. Its new design leaves the LLM untouched (no modification
of the weights, logits, temperature, or sampling technique). WaterMax balances
robustness and complexity contrary to the watermarking techniques of the literature
inherently provoking a trade-off between quality and robustness. Its performance
is both theoretically proven and experimentally validated. It outperforms all the
SotA techniques under the most complete benchmark suite.

1 Introduction

The availability of powerful large-language models (LLMs) allows users to produce texts that look
like human writings. The risk for misuse of these models is critical, ranging from the impersonation
of individuals to the large-scale generation of fake news. Identifying the provenance of a given
piece of text is paramount to limit the impact of such ‘weaponization’ of LLMs. New initiatives or
regulations impose technical means for AI traceability [28, 9, 5].

Forensics passive methods generally leverage a priori knowledge about the statistics of texts generated
by a given class of LLMs [34, 27]. Despite their versatility, these methods offer low performance.
The reported probabilities of errors are only validated empirically on some datasets, and because of
this, they are never lower than 10−3 [14].

In contrast, active methods like watermarking are only limited by the fact the LLM owner must inte-
grate the watermarking within the generation processes. This is done by embedding an imperceptible
signal in the generated text, which can be retrieved by a detector sharing the secret key of the model
owner. Current watermarking methods for generative texts [22, 1, 23, 8] provide low and guaranteed
false positives rates. Yet, the trade-off between the detectability and the text quality crucially depends
on the entropy of the text to be generated, which in turn depends on the prompt and the LLM, as
illustrated in Fig. 1. This implies that the distortion-free property [1, 23, 8] ensures that watermarking
does not degrade text quality but inherently limits the detectability.

This paper presents WaterMax, a watermarking technique that trades off robustness not for quality,
but for complexity. It obeys the regular constraints found in the literature: it can be integrated into
any standard LLM without fine-tuning the weights, the detection does not need the original LLM,
and it can spot the watermark on a slice of generated text with some guarantee on the false positive
rate. Our contributions are the following:
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• WaterMax is based on a new design not relying on the usual mechanisms of the literature;
especially, it keeps the next token distribution and sampling (temperature and method)
intact. Moreover, it better utilizes the text entropy by working over sub-sequences of tokens,
so-called chunks hereafter, rather than token by token.

• This new design makes WaterMax almost distortion-free, as shown experimentally (Sect. 7.3)
and justified theoretically (App. H), and yet enjoys higher robustness than the state-of-the-art,
consistently over several LLMs. Figure 1 shows that the other methods need to boost the
watermark strength to be as detectable as WaterMax, inevitably degrading the quality.

• This new design facilitates building up a theoretical model of the watermark robustness
characterizing the true positive rates under attack (see Prop. 5.2).

2 Related Work

Watermarking texts generated by LLMs is mainly performed by changing either the distribution [21]
or the sampling [1, 23, 8] of the next token. Critically, the false-positive rate of these methods can be
reliably controlled [11]. Furthermore, the computational cost of most of these methods is negligible
relative to the text generation itself. On the other hand, they all suffer from similar weaknesses:

Text entropy limit Some theoretical works [8, 17, 21, 1] show that the watermark detectability is
highly dependent on the entropy of the text to be generated. In practice, this makes the text length
necessary for reliable watermark detectability dependent on the type of the text, and also the LLM.
One may increase the watermark strength or the temperature in the LLM to increase the entropy
artificially [19, 26]. Both solutions degrade text quality compared to the original LLM.

Distortion-freeness and quality Kuditipudi et al. [23] define that a watermark is distortion-free if
it does not modify the probability distribution of the next token on average over the keys. This is
guaranteed in schemes like [1, 23, 8]. Yet, these schemes rely heavily on the entropy of the token
distribution, leading to possibly low detectability without any means to increase it without losing
distortion-freeness. Appendix J illustrates the dependence of Aaronson’s scheme on the original
LLM. Moreover, a scheme that is not distortion-free does not necessarily lead to texts with lower
empirical quality, but foreseeing the impact of the watermark strength on the quality is an issue.

Watermark robustness characterization The watermark must resist text editing ranging from a
simple insertion of words to a complete paraphrasing of the text. At the time of writing, there are only
two watermarking schemes designed from the ground up to be robust [23, 35]. Yet, other state-of-
the-art methods have experimentally shown resiliency to attacks against long-form texts [29] under
a precise control of the false-positive rate [11]. However, none of these methods can theoretically
guarantee its robustness. Only bounds on the moments of the detection score are provided in [21]
and [1].
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Figure 1: Detectability as a function of text quality for different LLM architectures. WaterMax
always reaches a detectability close to 1 despite a negligible loss of quality. Probability of false-alarm
fixed at 10−6, nucleus sampling (topp = 0.95) at temperature 1.0. Text quality is measured as the
relative perplexity of the watermarked text over the non-watermarked text.

2



This work presents a scheme that empirically incurs a negligible loss while reaching an arbitrarily
high detectability even on small texts. The parameter tuning trades robustness for complexity but has
almost no impact on the text quality. Moreover, we characterize its performance under a large attack
range by expressing both false-alarm and true-positive rates. Its drawback is a large computational
cost, which we show how to limit throughout the paper.

3 Main Idea: Watermarking by generating multiple texts

This section first presents a simplified and inefficient version of the method for a pedagogical purpose.
The driving idea is that a LLM is a randomized algorithm. In its simplest implementation, the
LLM computes a probability distribution of the next token and randomly samples according to this
distribution. The chosen token is appended to the context, and the process iterates. Our main idea is
to let the LLM generate several texts for a given prompt and select the one that is the most suitable
from the watermarking point of view.

Initially, we select a sound watermark detection algorithm in the sense that it can output a p-value for
any piece of text under scrutiny. Usually, such detection computes a score and then ‘normalizes’ it
in a p-value defined as the probability that a non-watermarked text yields a score equal to or higher.
Appendix A lists some candidates from the literature and presents our own design.

Our watermarking embedding lets the LLM generate n texts for a given prompt. Since all pieces of
text are generated normally, i.e. without being degraded by a watermark, their qualities are likely
high. From the n generated texts, the LLM outputs the text with the lowest p-value.

The advantages are that the text quality is not degraded and that any sound detection may be used.
The price to pay is high complexity and long latency. Suppose that a text is deemed watermarked
if its p-value evaluated by the detector is lower than the required false alarm probability PFA. This
raises the question of the number n of generated texts for successfully embedding the watermark.
Proposition 3.1. The detectability measured by the power of the test, i.e. the probability PD of
detecting a watermarked text is the following increasing function w.r.t. n:

PD ≜ P(P < PFA|H1) = 1− (1− PFA)
n. (1)

Appendix B gives a sketch of the proof. We point the reader to two important advantages:

• The performance does not depend on the choice of score function used to obtain the p-value.
• The performance does not depend on the length of the text. Consequently, even an extremely

small text can be watermarked in theory.

Figure 2 plots the power of the test as a function of n for various probabilities of false alarm. Whatever
the choice of PFA, one can clearly observe that a huge number of generated texts (≫ 50) is required
to obtain a power greater than 0.5, which is unacceptable in practice. Section 4 shows how to improve
this base algorithm to reach arbitrarily high power with a smaller computational power.

Another weakness is the assumption that the LLM can create n texts whose p-values are independent.
For some prompts, the diversity (i.e. entropy) is indeed small, which implies that the LLM creates
similar texts or even duplicates of text among the n outputs. Section 6 investigates how self-
synchronization mitigates this issue.

4 Watermarking chunks of text

This section devises ways to efficiently explore the space of possible texts to find a low p-value. The
idea is to split the generation into N iterations, each iteration creating a chunk of the text. The aim is
to reduce the computational burden by generating small chunks while exploring many possible texts.

4.1 Exploring the text space

For each chunk, a batch of n text drafts is generated independently based on the text candidates of
the previous iteration. Ideally, one would generate n drafts at each chunk for each previous candidate,
resulting in a tree of nN texts from which to choose the lowest p-value. Obviously, this is not
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tractable. We reduce the complexity by keeping only the m best candidates at each step, akin to
a Viterbi algorithm [33]. The pseudo-code is summarized in Alg. 1 in App. F. This is suboptimal
because the candidates minimizing the p-value at a given step may not be the best once completed at
iteration N . Other exploration strategies range from greedy search to Monte Carlo Tree Search [6].
The pseudo-code is summarized in Alg. 1 within Appendix F.

4.2 Cumulative scores

This paper considers detection schemes that share the following process. The vocabulary V is a list
of |V| admissible tokens, and a text is decomposed into a sequence of L tokens. Depending on the
secret key k, the detection associates to the i-th token a variable ui. The score is computed as the
sum over the tokens s =

∑L
i=1 ui. This is translated into a p-value assuming that, under H0, i) the

scores of the tokens are independent and identically distributed random variables (Ui)
L
i=1, giving

birth to a random score S, ii) whose c.d.f. FS(·;L) is known so that the p-value is simply:

p = P(S > s) = 1− FS(s;L). (2)

Appendix A lists some detection schemes of the literature following this procedure. Our choice is
simply Ui

iid∼ N (0; 1) so that FS(s;L) = Φ(s/
√
L).

For the sake of clarity, suppose that the chunks are composed of ℓ tokens. At iteration i, the j-th
candidate has a score denoted si,j and n drafts for its following chunk are proposed. This produces n
incremented scores per candidate, thus mn variables: si,j + δsi,j,k, 1 ≤ j ≤ m, 1 ≤ k ≤ n. Since
these scores are converted into p-values by the same function, i.e. p = 1− FS(s; ℓ(i+ 1)), selecting
the m lowest p-values amounts to keep the m maximal cumulative scores, hence the name WaterMax.

4.3 Low latency

One issue is the latency: the final text cannot be issued until all candidates reach an end of sequence.
This problem is fixed with the drastic choice m = 1. It amounts to a greedy search appending to the
text at iteration i the chunk draft yielding the biggest incremental score δsi,1,k. This choice enables
the output of a chunk of text at the end of each iteration, hence reducing latency. Of note, this also
corresponds to the draft with the lowest local p-value 1− FS(δsi,1,k; ℓ).

4.4 Optimal detection without attack

This section introduces a simple detector to reveal the advantage of our watermark embedding.
The idea is that the received text is composed of chunks whose local p-values are distributed as
beta distributions B(1, 1) (i.e. U[0,1]) under H0 or B(1, n) under H1 (see Appendix. B). This is a
generalization of the algorithm of the previous section, the only difference being that the likelihood
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ratio (12) now aggregates a vector p of N observed local p-values:

Λopt(p) = −
N∑
i=1

log(1− pi) ≶
H0

H1
τ. (3)

Proposition 4.1. The optimal detector Λopt has the following performances when there is no attack:

PFA = γN,1 (τ) , PD = γN, 1
n

(
γ−1
N,1 (PFA)

)
, (4)

where γx,y is the lower incomplete gamma function with shape parameter x and scale parameter y.

Appendix C gives a sketch of the proof. The power of the test PD is an increasing function of n.
Again, note that neither the token variables distribution nor the chunk length s affects the detectability.

Figure 3 illustrates the efficiency of our exploration strategy of the text space. Contrary to Sect. 3,
we can easily reach a power close to 1 even at PFA = 10−6. For example, using N = 9 chunks of
n = 15 drafts, assuming a medium-size text of L = 512 tokens and chunks of equal length, one only
needs to generate Nn = 135 chunk drafts of ℓ = ⌈L/N⌉ = 57 tokens to obtain a power of 0.96.
This is equivalent to generating 15 texts of size 512. This is to compare to Sect. 3 where more than 3
million texts of 512 tokens are necessary to reach this power at PFA = 10−6.

5 Robust watermark detection

Until this point, our detector assumed that the text it receives is the generated text. Yet, before
reaching the detector, a text might have been modified for legitimate or malicious reasons: it may be
translated, curated, locally modified etc. This section assumes that the scores of individual tokens are
distributed as standard Gaussian random variables to allow the derivation of closed-form solutions.

5.1 Robust detection

Detector (3) is neither optimal nor robust under attack because the insertion or the removal of tokens
provokes a desynchronization: The detector no longer knows where each chunk starts and ends,
which is necessary for computing the local p-value of individual chunks. More robustness comes
with a global score simply summing up over all the tokens:

Λrob(u) =

N∑
i=1

ℓ∑
j=1

u(i−1)ℓ+j =

L∑
i=1

ui. (5)

Proposition 5.1. The robust detector has the following test performance when there is no attack:

PFA = Φ(−τ/
√
L), PD ≈ Φ

(
Φ−1(PFA) +

√
Ne(n)√

v(n)

)
. (6)

where e(n) (resp. v(n)) is an increasing (resp. decreasing) quantity computed in Tab. 1.

Appendix D gives a sketch of the proof. Figure 3 shows that the robust test (5) is slightly less powerful
than the optimal test (3) when there is no attack. On the other hand, the next section shows that its
power degrades smoothly under attacks contrary to (3).

5.2 A model of the robustness against attack

Despite the variety of modifications that can be performed on a watermarked text, all attacks have
the same end effect: modifying the tokens and potentially the number of tokens. This amounts to
modifying a proportion of scores to be distributed following H0 instead of H1 in the global score.
Formally, the score Λrob(U) for a text of L tokens becomes: (assuming αL is an integer)

Λrob(U) =

αL∑
i=1

Uπ0(i) +

(1−α)L∑
i=1

Ūπ1(i), (7)

where 1− α is the proportion of scores impacted by the attack whose variables are denoted {Ūi},
and π0 (resp. π1) is mapping to the indices of the untouched scores (resp. modified tokens). It is
important to note that it does not matter if the size of the attacked text differs from the generated text.
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Proposition 5.2. The robust detector has the following test performance under attack:

PFA = Φ(−τ/
√
L), PD ≈ Φ

(
Φ−1(PFA) + α

√
Ne(n)√

1 + α2(v(n)− 1)

)
. (8)

Appendix E gives a sketch of the proof. In the end, the power of the test decreases smoothly with the
strength (1− α) of the attack. Once again, the power of the test does not depend on the text size.

6 Independence

This section discusses the assumptions made so far on the independence of the token and draft scores.

6.1 Token scores independence

All random variables (Ui) associated with tokens must be independent and identically distributed
within a text. This assumption has an impact on the power of the test and especially on the probability
of false alarm. It must hold for non-watermarked text. Otherwise, the score of a chunk (or of a full
text) is not properly normalized into a p-value.

We use the same technique as in [11] to enforce the token variable independence: the variable Ui of
the i-th token of a text depends not only on the secret key but also on the hashing of the current token
and the h− 1 previous tokens in the text (a window of size h). Furthermore, this h-gram is appended
to a list. If the h-gram is already stored in that list, the variable of the current token is discarded.
By doing so, we ensure that for a given text, the (Ui) are always different. Contrary to [11], this
mechanism is enforced at the generation and the detection stages to ensure that both sides compute
the same score.

6.2 Draft score independence

At the embedding, the scores of the n drafts of a chunk are assumed to be independent. Yet, some
correlations occur when parts of texts repeat across different drafts. For example, in a prompt
asking "Who are you?", many drafts of the first chunk of the response likely start with "I am." This
assumption only plays a role in the power of the detector, not its false-positive rate.

Causal hashing window At first sight, hashing the whole chunk draft for seeding each token
variable brings draft score independence if the drafts differ at least by one token. Sadly, this creates a
watermark that breaks even for a single modified token. This forces us to use a causal window: the
score of each token depends only on itself and the previous tokens. The longer the hash window, the
more likely a h-gram is new and the more diverse the scores. Yet, this diversity is obtained at the cost
of robustness. Indeed, changing a single token in a text removes the watermark of h tokens because
their variables depend on the modification. Another weakness: at a given iteration, the j-th token
(j < h) of every draft always refers to the same h− j tokens since the previous chunk is identical for
all these drafts. This means that the effective window size for this token is always smaller than h.

Beam-searched enforced diversity This weakness can be tackled by modifying the sampling
procedure. It is important to guarantee a high diversity at the beginning of the chunk since this is
where the effective window size is the smallest. We propose to generate the first b tokens using a
standard beam-search procedure, which deterministically returns n different beginnings of the chunk.
The rest of the draft is sampled normally. However, there is a trade-off. The smaller b, the more
diversity between the chunks and the closer to the independence assumption we get, the more likely
the beam-search procedure selects tokens in the tail of the distribution (for a large enough number of
drafts n), the poorer the text quality.

6.3 Experimental validation

For the independence of the score variables, the experiment runs the detector on 100k Wikipedia
entries from 2018 for ten different keys. Since the text of Wikipedia is free of any watermark, one
should observe the p-values to be uniformly distributed, i.e. the empirical false alarm rate should

6



match the theoretical probability of false alarm. Figure 4a demonstrates that this assumption holds
for any window size h. On the other hand, the robustness highly depends on the hashing window
size, with h = 6 being a good trade-off between performance and robustness.

The second experiment measures how much we deviate from the draft score independence assumption.
It generates 296 texts of 256 tokens on the three tasks from [29]. The entropy of the generated texts
may be low for a given chunk so that some parts of a text may be redundant among the drafts.
Figure 4b reports how much our scores under H1 deviate from the theoretical distribution.

This experiment demonstrates that the closer to 1 the number of tokens generated by beam search
b, the closer the scores match the theoretical distribution. Notice that even for a large b, such as
b = 6, there is a large improvement compared to a baseline WaterMax with b = 0. In Appendix I, we
provide a more thorough experimental study of the parameters h and b. In particular we show the
trade-off between quality and detectability. In the rest of the paper, we select b = 4 where a small
loss of quality is acceptable and b = 6 if a virtually lossless scheme is warranted.

7 Experiments

7.1 Experimental protocol

The evaluation is performed on the three long-form creative writing tasks of the ‘Mark My Words’
benchmark [29]: news article generation, summarization of existing books, and writing of an invented
story. This leads to the generation of 296 texts. We fix the maximum text size L to 256 tokens for all
tasks (see App. K for larger text sizes). The length of a chunk ℓ is fixed a priori to L/N where L is
the maximum number of tokens allowed in the benchmark and N the number of chunks.

All the evaluations in this section use the model Llama3-8b-Instruct [32, 3] (more models are tested
in App. J). Its temperature θ varies to measure the impact of the text entropy on the watermark
detectability. The watermarking scheme is not allowed to modify θ compared to the original LLM.

The evaluation of a watermarking scheme is based on three quantities: 1) the quality of the water-
marked text relative to the non-watermarked text, 2) the detectability, and 3) the robustness.

For KGW and Aaronson’s scheme, we use the implementation provided by [11] at https:
//github.com/facebookresearch/three_bricks. For the attack suite, we use the imple-
mentation of the ‘Mark My Words’ benchmark found at https://github.com/wagner-group/
MarkMyWords.

Text quality A number of metrics have been proposed to evaluate the quality of generated water-
marked texts empirically. We tested the vast majority of these metrics: rating by LLM [29], similarity
between BERT’s embeddings [11], MAUVE [30], ROUGE [25] and perplexity measured by an
oracle [21]. We arrived at the conclusion that perplexity and ROUGE-L are currently the only reliable
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measures of watermarked text quality – in the sense that they are the only ones that consistently vary
alongside watermark strength. This section reports the relative perplexity as measured by opt-2.7b
as an oracle, computed as the average ratio between the perplexity of a watermarked text and the
corresponding non-watermarked text. The text quality is evaluated by comparing the text generation
with and without watermarking at the same LLM temperature θ.

Detectability The increasing use of LLM necessitates the use of small false-positive rates. In this
section, we settled on reporting the true-positive rate at a conservative false-positive rate of 10−6. For
a more complete picture, Appendix K also reports the median false-positive rate of each watermark
algorithm at different text lengths, akin to the measure of “watermark size" recently proposed in [29].

Robustness We use the attack suite of the ‘Mark My Words’ (MMW) benchmark [29]. We report
robustness by measuring the detectability PD of the watermark at PFA = 10−6 for each attack.

Error bars are reported using one standard error for perplexity, using the standard methodology, and
detectability, computed using 5000 bootstrap samples for power at PFA = 10−6.

7.2 State-of-the-art methods

The recent MMW benchmark considers four techniques names as ‘binary’ [8], KGW [21], Aaron-
son [1] and ‘inverse transform’ [23]. It concludes that today’s best methods are KGW and Aaronson,
we thus restrict our comparisons to them. Except when specified otherwise, the watermark schemes
all use a window size of h = 6 for hashing.

A fair comparison considers watermarking schemes at an equivalent level of text quality. Aaronson’s
scheme is theoretically distortion-free and experimentally almost lossless with respect to empirical
relative perplexity and the ROUGE-L score. We should ideally tune WaterMax and KGW such that
they are also almost lossless. This is not a problem for WaterMax as long as the number of tokens
generated by a beam-search b is small enough. We choose the setting (N,n) = (16, 10), which
provides a good compromise between robustness and complexity. As for KGW [21], we fix δ = 2.0
for an acceptable loss of quality, or δ = 3.0 for a tangible loss of quality. This gives a clear advantage
to KGW. We set its green-list ratio γ = 0.5 following the recommendation of Piet et al. [29].

7.3 Results

Quality vs detectability Figure 5 summarizes the benchmark outcomes. They confirm that Water-
Max achieves a detectability close to the theoretical prediction – in our case close to 1 at PFA = 10−6

– while, at the same time, incurring a minimal loss in text quality. In particular, for a number of
tokens generated by beam-search b = 6, there is virtually no observed loss in terms of perplexity.
Furthermore, its performance is independent of the temperature of the LLM, demonstrating the
efficient use of the entropy by working on chunks instead of individual tokens. On the other hand,
Aaronson’s scheme achieves high detectability only for high temperatures (seldom used in practice),
whereas KGW achieves high detectability at the price of a text quality loss: at δ = 3.0 despite a
relative perplexity significantly larger than WaterMax, KGW is still far less detectable.

Robustness Figure 6 summarizes the results for the attack suite of the MMW benchmark. The
watermark parameters are fixed to ensure the most negligible quality loss possible: b = 6 for
WaterMax and δ = 2.0 for KGW. Without many surprises, no algorithm can resist the powerful
re-translation attacks at this PFA regime since most words, as well as their order, are modified. The
‘typos’ attacks can safely be disregarded as they modify every token and make the text barely legible
in practice. This leaves the attacks that modify only parts of the text. For low temperatures, WaterMax
is by far the most robust. Notably, the robust detector (5) can resist far more attacks, with significantly
higher detectability against ‘synonym’, ‘misspelling’ and ‘swap’ attacks.

Interestingly, for temperatures starting at 1.0, Aaronson’s scheme is more robust than WaterMax
for specific attacks. This is explained by the high reliance of this method on entropy as we show in
Appendix J as well as the high variance of its p-values. Given enough entropy, some portions of the
watermarked text present unusually low p-values, statistically leading to more robustness. On the
other hand, WaterMax produces texts with p-values that are more concentrated around their mean.
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Figure 5: Detectability against quality of watermarking schemes using Llama-3-8b-Instruct with
nucleus sampling (topp = 0.95) and hashing window h = 6.
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Figure 6: Robustness against the attacks of MMW benchmark. Llama-3-8b-Instruct with nucleus
sampling (topp = 0.95). WaterMax parameters (N,n, b) = (16, 10, 6). The hashing window size is
fixed to h = 6 for all schemes.

7.4 Computational complexity

At face value, the computational cost of our scheme is nothing more than Nn text generations, the
computation of the scores being negligible. However, the cost of adding one more chunk is higher
than the cost of generating one more draft. Indeed, the n drafts of a chunk are sampled independently
(or by a beam search), making their computation highly parallelizable on modern GPUs. On the other
hand, we cannot parallelize the computations over the chunk. Since N has the highest impact on the
power of WaterMax, it is the main limiting factor for its performance.

See Figure 7 for experimental running times. As a rule of thumb, we advise to use parameters fixed
as (n,N, b) = (10, 16, 6) as good trade-off between computational complexity and detectability.
This still incurs a high cost compared to classic watermarking schemes. Under these settings, a text
generated with WaterMax takes on average five times longer to generate than KGW or Aaronson’s
scheme.

However, despite a higher total computational cost, the latency can be kept relatively low since the
text is generated chunk by chunk. Each chunk can be delivered to the user gradually (e.g. using a
buffer) in order to make the method practical in a real-life setting. Note that more chunks lead to
lower latency and better detectability with a negligible cost to text quality. We report, under the same
settings, the generation time for one chunk as a measure of latency in Figure 7. In particular, we
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Figure 7: (left) Total generation time in seconds of WaterMax as a function of the number of chunks
N and the number of drafts/chunk n for texts of 256 tokens using sampling on a Nvidia A100 with
Llama-2-chat-hf. (right) Generation latency defined as the average generation time between two
chunks compared to the generation time of the same number of tokens with a baseline LLM. Note
that the baseline time between two tokens is 0.021s.

show that under the advised parameters, the latency of WaterMax is only twice as long as that of the
original LLM.

8 Conclusion

Contrary to previous art, the design of WaterMax starts from a detector and then constructs the
generator to maximize the detection power. As a result, our watermark scheme offers a host of
compelling benefits. It achieves high quality and robustness even on short texts, and importantly, it
does not modify any component of the LLM, preserving its integrity and functionality. This design
also complies with common add-ons in the literature, like adapting the sampling temperature [19] or
embedding short messages [11].

These advantages come at the cost of computational complexity, which stays limited thanks to the
exploration strategy and the parallelization possibilities of modern GPUs. Another idea left for future
work is the distillation of WaterMax, a process that involves fine-tuning an LLM to natively produce
watermarked text. This would definitively get rid of the only drawback of WaterMax.
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A Possible detection schemes

A.1 Baseline schemes

This section describes the detection of the three main LLM watermarking schemes. They share the
same process:

• The received text is decomposed into a sequence of, say L, tokens

• A sliding window of size h forwards the selected tokens to a cryptographic function which
computes a hash that is xored with the secret key to compose the seed of a Pseudo Random
Number Generator

• The variable ui is computed for the i-th token, i > h based on the output of the PRNG
seeded by the h previous tokens

• The score is the sum of the variable: s =
∑L

i=h+1 ui

• The score is converted into a p-value: p = 1− FS(s;L).

The watermark embedding methods are not detailed because our scheme does not use them. This
summary is inspired by the work of Fernandez et al. [11].

For the detection of [22], the output of the PRNG is used to create a ‘green’ list which is a subset of V
of size γ|V|. Variable Ui is set to 1 if the i-th token belongs to this list, otherwise Ui = 0. Therefore,
under H0, Ui

iid∼ B(γ) and S follows a binomial distribution B(L− h, γ). This makes

p = Iγ(s, L− h− s+ 1), (9)

where I is the regularized incomplete Beta function.

For the detection of [1], the output of the PRNG is used to draw Ui
iid∼ E(1) so that S is Gamma

distributed under H0. This makes:

p =
Γ(L− h, s)

Γ(L− h)
, (10)

where Γ is the upper incomplete gamma function. This formulation also holds for [8] with the
reduction to binary alphabet |V| = 2.

For the detection of [23], the output of the PRNG is used to draw Ui whose distribution matches the
distribution of the product of two independent r.v. U([−1/2, 1/2]), i.e. FU (u) = 2u(1− log(4|u|))+
1/2. There is no closed form to turn the global score into a p-value. The authors use either a bound
(see their Lemma 2.4) or an empirical p-value computed by a costly Monte Carlo simulation with
random seeds. This is the reason why this studies [23] fixes the probability of false alarm to a
relatively large value, i.e. 10−2.

Since Sect. 4.4 shows that the distribution of Ui has no impact, we opt for the simple choice
Ui

iid∼ N (0; 1) and the p-value reads as:

p = Φ

(
− s√

L− h

)
. (11)

A.2 Variants

Numerous works have proposed improvements of the KGW and Aaronson’s scheme. We herein
describe some relevant works and their applicability to the WaterMax framework.

KGW Variants Improvements to KGW can be broadly categorized into two classes: modification
to the sampling mechanism and improvements to the bias assignment. Some recent works modifying
the sampling mechanism are: [36] which propose to complement baseline KGW with contrastive
search to improve text quality as well as inserting a second watermark, [18] uses a multi-objective
optimization procedure to conserve the semantic coherence of the watermarked text Works on better
bias assignments include: [15] which propose to cluster tokens which are semantically related and
assign similar biases to them in order to resist re-translation attacks, [7] builds the green and red
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list using a similar clustering method, [26] adapt the bias depending on the entropy of the current
completions in order to improve detectability and text quality. Note that any watermarking methods
relying on modifying the biases could directly be used by WaterMax as a score function as long as a
p-value can be computed from them. Similarly any modified sampling method could also be applied
as long as they can output different texts from the same prompt.

Aaronson’s scheme variants Most work dealing with improving on the Gumbel-trick of Aaronson’s
scheme are not explicitly variants but other algorithms with the distortion-free property, or methods
to improve on the ad-hoc detector of the original work. Noteworthy distortion-free algorithms include
the ‘binary’ [8] ‘inverse transform’ [23] methods, the latter which actually includes a variant of
Aaronson. The work in [10] is notable for being an asymmetric (somewhat fragile) watermark.Though
technically presented as a variant of KGW, one of the proposed method in [16] can be interpreted as
variant of Aaronson working on group of tokens. Finally, [24] proposes an improved score function
for Aaronson through the design of a general statistical framework.

Extensions to multi-bit watermarking Even though this work is solely concerned with zero-bit
watermarks, we note that some works have proposed mechanisms to extend current text watermark
methods to multi-bit versions, allowing for example the identification of specific users. Of note, [11]
have proposed a general mechanism applicable to every current zero-bit method by associating a key
to every possible message and designing an efficient detector through a circular shift of the keys, [31]
extends KGW to multi-bit using BCH and error-correcting codes.

Watermark distillation To this we add an important work from Gu et al. [13], especially relevant
for WaterMax, showing the possibility to directly train a LLM to generate watermarked text using
either watermarked samples or directly the token distribution. Since the only real cost of WaterMax is
the computational complexity of sampling chunk of texts, distilling WaterMax would allow to bypass
the sampling cost entirely.

B Proof of proposition 3.1

The main ingredient of our scheme is a watermark detection that outputs a p-value for any text input,
whatever its length. This is the case for the main works in the literature, like [1, 21, 8] and to some
extent [23] (see App. A). Of note,

• In theory, for a continuous score S, the p-value P computed from a random non-watermarked
text is uniformly distributed over [0, 1] with p.d.f. f(p|H0) = 1[0,1](p).

• In practice, the computation of the p-value can be hazardous on texts with repetitions of
token sub-sequences and Fernandez et al. [11] indicate how to fix this issue.

For a given prompt, the generator creates n independent texts, each with possibly a different number
of tokens, computes their p-values Pj

iid∼ U[0,1], and outputs the text with the minimum p-value. Note
that in order for the p-value to follow a uniform distribution under H0, we assume the c.d.f of the
scores to be continuous. A well-known results in statistics states that the minimum of n independent
p-values follow a beta distribution B(1, n) whose p.d.f. is f(p|H1) = n(1− p)n−1.

The detector receives an unknown text and decides between two hypotheses:

• H0: The text is not watermarked. The p-value has not been ‘minimized’ and follows the
uniform distribution.

• H1: The text is watermarked. Assuming no attack was performed, the p-value is distributed
as a minimum of n independent uniform variables. We assume the detector knows the value
of n.

Since the distributions under both hypotheses are known, the detector performs a simple test, and the
Neyman-Pearson lemma states that the most powerful test under a given probability of false-alarm
PFA is the (log) likelihood-ratio test:

Λ (p) ≜ log

(
f (p|H1)

f (p|H0)

)
≶H0

H1
τ, (12)
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where τ is a threshold which depends on PFA. In our setting, Λ (p) = (n− 1) log(1− p) + log(n),
which is a monotonic function of p. In other words, comparing p ≶H1

H0
PFA is equivalent to the

Neyman-Pearson test. The power of the test is defined as the probability of detecting a watermarked
text and turns out to be an increasing function w.r.t. n:

PD ≜ P(P < PFA|H1) =

∫ PFA

0

f(p|H1)dp = 1− (1− PFA)
n. (13)

C Proof of proposition 4.1

The optimal detector (3) aggregates a vector p of N observed local p-values:

Λopt(p) = −
N∑
i=1

log(1− pi) ≶
H0

H1
τ. (14)

The received text is composed of chunks whose local p-values are distributed as beta distributions
B(1, 1) (i.e. U[0,1]) under H0 or B(1, n) under H1 when there is no attack (see Sect. B). Knowing
that if X ∼ B(1, β) then − log(1 −X) ∼ E(β), Λ(P) is the sum of independent exponential r.v.
and thus follows a Gamma distribution under both hypothesis but with different parameters:{

Λopt(P) ∼ Γ (N, 1) under H0,

Λopt(P) ∼ Γ
(
N, 1

n

)
under H1.

(15)

This leads to the characterization of the test’s performance:

PFA = γN,1 (τ) , (16)

PD = γN, 1
n

(
γ−1
N,1 (PFA)

)
. (17)

where γx,y is the lower incomplete gamma function with shape parameter x and scale parameter y.

D Proof of proposition 5.1

Assume the received text is composed of N chunks of ℓ tokens each so that its total number of
tokens L = Nℓ. Under H0, the token variables are independent and normal distributed so that
Λrob(U) ∼ N (0;L). It is thus easy to find the threshold τ ensuring a probability of false alarm PFA:
τ = −

√
LΦ−1(PFA).

Under H1, Λrob(U) can be written as the sum of N independent chunk scores: Λrob(U) =∑N
i=1 M

(n)
i . These chunk scores are distributed as the maximum of n Gaussian variables N (0; ℓ), cor-

responding to the score of the drafts. Those maxima have the c.d.f. FM(n)(x) = Φ
(
x/

√
ℓ
)n

and one

can compute numerically the expectation E(M (n)) =
√
ℓe(n) and the variance V(M (n)) = ℓv(n),

see Tab. 1. As far as we know, there is no closed-form for these quantities, but classical results in con-
centration inequalities for the maximum show that e(n) scales as

√
log(n) and v(n) as 1/ log(n) [4].

An approximation for N large enough is Λrob(U) ∼ N (µ1;σ
2
1) with

µ1 = N
√
ℓe(n) =

√
NLe(n), (18)

σ2
1 = Nℓv(n) = Lv(n). (19)

This gives the following power of the test:

PD = Φ

(
Φ−1(PFA) +

√
Ne(n)√

v(n)

)
. (20)
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Table 1: Expectation and variance of the maximum of n independent normal random variables.

n 1 2 3 4 5 6 7 8 9 10

e(n) 0 0.56 0.84 1.03 1.16 1.26 1.35 1.42 1.48 1.54
v(n) 1 0.68 0.56 0.49 0.45 0.42 0.40 0.37 0.36 0.34

E Proof of proposition 5.2

This section derives the distribution of variables of individual tokens under H1.

We first express the distribution of a vector of L i.i.d. normal variables, given that their sum equals a
given value S: (

U |
L∑

i=0

Ui = s

)
∼ N

(
s1L/L, IL − 1L1

⊤
L/L

)
(21)

with 1L the vector of all ones in RL and IL the identity matrix of dimension L× L.

The attacks leaves αL variables untouched (assuming 0 ≤ α ≤ 1 and αL ∈ N). This is encoded in
a matrix A ∈ {0, 1}αL×L which selects these variables. This means that A has exactly one single
entry equal to 1 in each row, AA⊤ = IαL, and A1L = 1αL.

The sum of these αL variables can be written as 1⊤
αLAU. This makes:(

1⊤
αLAU |

L∑
i=0

Ui = s

)
∼ N (αs;Lα(1− α)) . (22)

This distribution is independent of A: It does not matter which tokens are left unchanged. For α = 1,
there is no attack and the variance is null because 1⊤

αLAU = 1⊤
LU = s. For α = 0, the attack has

modified all the token variables and the variance is null because 1⊤
αLAU = 0.

According to App. D, an approximation for N large enough is S ∼ N (µ1;σ
2
1). The law of total

variance gives
1⊤
αLAU ∼ N

(
αµ1;Lα(1− α) + α2σ2

1

)
. (23)

On top of this, the attack adds (1− α)L tokens distributed under H0, which amounts to add a noise
distributed as N (0, (1− α)L) to the above score. In the end, the global score is distributed as

Λrob(U) ∼ N
(
α
√
NLe(n);L(1 + α2(v(n)− 1))

)
. (24)

We thus obtain an approximate expression of the power of the robust test:

PD = Φ

(
Φ−1(PFA) + α

√
Ne(n)√

1 + α2(v(n)− 1)

)
. (25)

Observe that, once again, the power of the test does not depend on the size of the text. More precisely,
it does depend indirectly on it given that α can only take a finite number of values, the number
of which decreases with the size of the text. For example, if the text is composed of L tokens,
α ∈ {0, 1/L, . . . , 1− 1/L, 1}.

Note that this analysis is general in the sense that it does not depend on the existence of an attack at a
given α resulting in an acceptable quality. We believe the role of the watermark designer is to ensure
the highest possible detectability whatever the strength of the attack; the design of attacks preserving
text quality is the burden of the attacker. An analysis of the robustness of a watermark should thus
be comprehensive, providing the performance of the watermark under any possible type of attacks,
existing or not, and independent of text quality.
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F Pseudo-code of the watermark embedding

Algorithm 1 Iterative watermarking of generated texts

Input: prompt pr, parameters (N,n,m, ℓ), p-value computation Detect, LLM Generate
Initialize: xj = [],∀1 ≤ j ≤ m
for i = 1 to N do

for j = 1 to m do
context = [pr∥xj ]
for k = 1 to n do
ν = n(j − 1) + k
yν = Generate(context, ℓ)
pν = Detect([xj∥yν ])

end for
end for
(ν1, · · · , νm) = argmin1≤ν≤mn pν
for j = 1 to m do

xj = [x⌊νj/n⌋+1∥yνj
]

end for
end for
l = argmin1≤j≤m Detect(xj)
Output: xl
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Figure 8: (left) Total generation time in seconds of WaterMax as a function of the number of chunks
N and the number of drafts/chunk n for texts of 256 tokens using sampling on a Nvidia A100. (right)
Generation latency defined as the average generation time between two chunks compared to the
generation time of the same number of tokens with a baseline LLM. Note that the baseline time
between two tokens is 0.021s.

We report the running time averaged on 5 texts of 256 tokens generated using Llama-2-chat-hf at
temperature 1.0 and nucleus sampling (topp = 0.95) for different parameters in Figure 8.

Overall, generating the 296 texts of the ’Mark My Words’ benchmark on a single A100, with
maximum batch-size, takes approximately 6min for Aaronson and KGW. For WaterMax at
(n,N, b) = (10, 16, 6), it takes approximately 30min. The resource usage report of the cluster
used to run the experiments, taking into account both CPU and GPU cores, indicates a total use of
5024 core hours.
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H WaterMax is almost distortion-free

This appendix elaborates a theoretical model to justify why WaterMax is close to distortion-freeness.

Consider a given iteration of WaterMax where one particular draft among n is selected as the output
chunk. Denote the set of possible chunks by C. If the chunks are all composed of ℓ tokens, then
|C| = |V|ℓ. Each chunk ci ∈ C has a probability pi to be sampled by the LLM. We denote by p̃i the
probability that WaterMax selects this chunk. This probability is computed on expectation over the
set of secret keys.

A watermarking scheme is distortion-free if p̃i = pi, ∀pi ∈ [0, 1]. This appendix shows this is
not the case for WaterMax. Yet, since we operate on chunks, i.e. sequences of tokens, and not
individual tokens, their probabilities are small in practice. In this regime, we show that p̃i ≈ pi,
which theoretically justifies the high text quality.

H.1 n draws with replacement

This version of WaterMax samples n drafts in C. This corresponds to draws with replacement because
a draft can be sampled several times.

Denote by Xi the number of times the i− th chunk is drawn over n samples. It follows the binomial
distribution Xi ∼ B(n, pi), ∀i ∈ {1, . . . , |C|}.

Denote by Yi the binary random variable s.t. Yi = 1 if Xi > 0. It follows the Bernoulli distribution
Yi ∼ B(1− (1− pi)

n), ∀i ∈ {1, . . . , |C|}.

Denote by S the subset of chunks which have been sampled, i.e. S = {ci : Yi = 1} ⊂ C. The size
of this set is a random variable ranging from 1 to n and whose expectation is E(|S|) =∑|C|

i=1 Yi =

|C| −∑|C|
i=1(1− pi)

n.

For a given watermark secret key, i.e. a given instance of the token variables {Uj}|V|
j=1, WaterMax

computes the score of each draft in S, and it chooses the one with the maximum score. Over the
ensemble of secret keys, there is no reason why a given draft is more likely to be chosen due to the
symmetry of the random token variables. Therefore, a draft in a given subset S has a probability
1/|S| to be chosen on expectation over the secret keys. This yields the following global probability:

p̃i =
∑

S:ci∈S

1

|S|P(S). (26)

Upper bound The above summation includes the subset S = {ci} which happens with probability
pni . For all the other subsets, which include ci, |S| ≥ 2. This gives an upper bound:

p̃i ≤ UB(pi) = pni +
1

2
(1− (1− pi)

n − pni ) =
1

2
(1− (1− pi)

n + pni ) . (27)

Lower bound The above summation can be written as p̃i =
∑n

k=1

∑
S:Xi=k

1
|S|P(S). When

Xi = k, there are at most n − k other unique sampled chunks: |S| ≤ n − k + 1. This makes the
following lower bound:

p̃i ≥ LB(pi) =

n∑
k=1

1

n− k + 1

(
n

k

)
pki (1− pi)

n−k =
1− (1− pi)

n+1 − pn+1
i

(n+ 1)(1− pi)
. (28)

Remarks Note that p̃i = pi, ∀pi ∈ [0, 1] when n ∈ {1, 2} because the lower and upper bounds
correspond to the identity. The choice n = 1 is not an option since it corresponds to the regular
use of the original LLM without watermarking. The choice n = 2 allows watermarking with the
distortion-free property. The price to pay is a low robustness.

For n > 2, WaterMax is not distortion-free. Indeed the upper bound (27) is lower than pi for pi > 1/2
showing that p̃i does not equal pi on the interval (1/2, 1). However, note that

lim
pi→0

LB(pi)

pi
= 1. (29)

19



This property explains why WaterMax reaches text quality as good as other distortion-free watermark-
ing schemes. WaterMax works with chunks of text whose probabilities are all very small, contrary to
other schemes working on tokens which sometimes have a picky distribution (one token gets almost
all the probability mass). Therefore, missing the distortion-free property for large pi is irrelevant
because this case never happens in practice when dealing with chunks. On the contrary, having
p̃i ≈ pi locally for pi → 0 is key.

H.2 n draws without replacement

This version of WaterMax samples n drafts in C making sure that they are all different thanks to the
beam-search suggested in Sec. 6.2. This corresponds to draws without replacement because a draft
cannot be sampled twice. In other words, |S| = n. Equation (26) simplifies to:

p̃i =
1

n
P(ci ∈ S). (30)

However, the probability P(ci ∈ S) is cumbersome to calculate as it relates to the multinomial
Wallenius noncentral hypergeometric distribution. When all the chunk probabilities are very small,
one can show that [12]:

p̃i ≈
pi
n

n−1∑
k=0

(1− pi)
k =

1− (1− pi)
n

n

pi→0−→ pi. (31)

The same rationale as above applies: WaterMax is not distortion-free but tends to this property when
all the chunks have small probabilities. This is what happens in practice when working with long
chunks.

I Impact of hashing window size and beam-search tokens

Section 6 discusses how the window hashing size h as well the number of tokens generated by
beam-search b can help to increase detectability. Both parameters, however, lead to a trade-off.
First, a higher h provides better detectability when no attack is performed on the text but makes the
watermark less robust since modifying one token leads to at most h scores, which become unusable.
Secondly, a lower b > 0 leads to better detectability by enforcing diversity between chunk drafts,
at no cost to robustness, but at the cost of text quality since the beam-search has more chance of
selecting tokens in the tail of the distribution. Note that b = 0 corresponds to the baseline WaterMax,
which is empirically lossless.

To select the best trade-off, we generate 296 texts of 256 tokens following the same protocol described
in Sect. 6: we use Llama-3-8b-Instruct with temperature θ = 1.0, nucleus sampling (topp = 0.95),
and WaterMax at (n,N) = (8, 16). We report the results in Fig. 9-11.

From Figure 9-10, we see that the most significant improvement in the trade-off detectability vs.
quality is by going from b = 0 to b = 6. This is done at almost no cost to the text quality. A larger
gain in detectability is obtained for 1 ≤ b < 6 but with a significant loss of quality.

Regarding the window size, h = 2 leads to a weak scheme. An acceptable performance, close to
PD = 1.0 at PFA = 10−6 without attack, requires h ≥ 4. However, Figure 11 reveals that a close
match to the theoretical score distribution under H1 is only reached for h = 6.
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θ = 1.0 using nucleus sampling (topp = 0.95).

J Impact of the LLM and its entropy

This appendix studies the impact of the LLM on the watermark performance. As we alluded to
numerous times, the performance of the watermark of KGW and Aaronson is highly dependent on
the entropy of the completion of individual tokens. This dependence is well-illustrated by the impact
of temperature on their performance. However, this also means that we can expect vastly different
behaviors of these schemes depending on the LLM used since, depending on how the LLM was
trained and fine-tuned, the average entropy of the completions varies wildly.

To demonstrate this point, we repeated the experiments in Sect. 7 for two other models: the older
Llama-2-7b-chat [32] and the smaller Phi-3-mini-4k-Instruct [2] (3.8 billion parameters). We report
the results, along with those of Llama-3-8b-Instruct in Figures 13-15.

The performances of both KGW and Aaronson are abysmal on Llama-2-7b-chat, with extremely
low detectability, even for a high δ for KGW. At the opposite end, every algorithm performs well on
Phi-3-mini-4k-Instruct. However, once again, KGW still incurs a high cost in terms of text quality,
whereas WaterMax b = 6 and Aaronson are both virtually lossless at this regime. Llama-3-8b-Instruct
sits in between these two extremes.

To understand these results and verify our claim with regard to entropy, we generated 64 × 100
completions using each model. Fig. 12 reports the distribution of their entropy. Very clearly, the
entropy follows our observation, with Phi-3-mini-4k-Instruct having the highest average entropy
whereas Llama-2-7b-chat has the lowest with a lot more tokens which are close to being deterministic.

This is an essential observation for watermark evaluation since different schemes are better suited to
different LLMs. However, WaterMax is currently the only scheme that consistently attains almost
perfect detectability at PFA = 10−6 irrespective of the LLM, of the temperature, and at almost no
cost to text quality.
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Figure 13: Detectability against quality with Llama-2-7b-chat-hf, nucleus sampling (topp = 0.95),
and hashing window h = 6.
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Figure 14: Detectability against quality with Llama-3-8b-Instruct, nucleus sampling (topp = 0.95),
and hashing window h = 6.
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Figure 15: Detectability against quality with Phi-3-mini-4k-instruct, nucleus sampling (topp =
0.95), and hashing window h = 6.
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K Further experimental results

This section reports more results of interest to the practitioner to tune their watermark of choice. In
particular, we report different quality metrics by varying the watermarking parameters. We also study
the impact of text size on the detectability of watermarks.

In this appendix, the experiments are based on three MMW tasks defined in [29], namely:

• generating 100 fictional news articles,

• generating 100 reports on well-known books,

• generating 96 stories given a synopsis.

All texts are generated using Llama-2-chat-hf with nucleus sampling (topp = 0.95). The hashing
window is fixed to h = 4 for all algorithms. WaterMax is used with b = 0 (no beam-search), which
entails a virtually lossless scheme. Every watermarking scheme, except for Aaronson’s, is applied on
a LLM working at temperature θ = 1.0.

K.1 Quality

Figures 16a-17c report the relative perplexity using opt-2.7b as an oracle as well as the ROUGE-L
score for Aaronson, KGW, and WaterMax as a function of their respective parameter.
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(d) Focus on Figure 16c. Note here that the relative
perplexity of WaterMax does not exceed 1.2.

Figure 16: Relative perplexity of watermarked text over non-watermarked text measured using
opt-2.7b as an oracle.
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Figure 17: ROUGE-L

K.2 LLM judges

Recent works have proposed using LLM judges to evaluate the quality of watermarked texts. Some
examples include the Mark My Words benchmark [29] which directly uses Llama2 as a judge for
evaluating watermark quality. Several open-source proxies fine-tuned for this task have been recently
proposed in the literature such as Prometheus [20].

Yet, our use of these models for evaluating the quality of watermark texts has not proven fruitful. We
provide the results of using Llama-2-7b-chat, Mistral-7b-instruct-v0.2 and Prometheus-7b-v2.0 as
LLM judges of the text quality in Fig. 18 of the global response. We asked each of these LLM to
grade out of 5 the texts of the "Invented Stories" task of the Mark My Words benchmark following
the methodology of [20], using the code provided in the official Github’s implementation.

• The grading is inconsistent between LLMs, with Prometheus-7b biased towards higher
grades and Llama-2-7b-chat towards lower. Note that the ranking of each watermark is
different for each LLM judge. Furthermore, grading can be inconsistent even for non-
watermarked texts, with Mistral-7b-instruct-v0.2 highly biased in favor of non-watermarked
texts generated with temperature 1.0.

• The average grade does not fluctuate significantly for different watermark strengths, whatever
the choice of LLM judge. Interestingly, Fig. 18 shows that increasing δ can slightly increase
the LLM grading, which should not be the case.

• This prompted us to study the grading of barely legible texts, by randomly replacing a
percentage of the characters within texts: LLM judges still provide similar average grades
despite this attack. More precisely, the grade starts to degrade when the texts starts to look
like random strings (around 15% of modified letters). However, there is no impact to the
grading for, i.e a percentage of 10%. Here is an example of text with a maximum grade of
5/5: “sir edward, a chivWlrous knight, had always been driGen by a sense of duty and a
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thiFst foD SdventuFe. as a yLung man, hW had heard tales of the legendary holy graiP, said
to grant the deepest desJreD of FhoWe who posseZsed it. convinced tUat thS grail helX the
keT to bringing pFace and prosperity tK hiD kingdLK, sir Wdward set out on a perilLus
quesY to find it. he bSgaJ his jouTnFy in the miDty mountaiMs of wales, where he souFht
[...]”

Our conclusion is that, as of writing, these LLM judges don’t seem suited to the evaluation of
watermarked texts quality. As explained in the paper, we prefer the relative perplexity and ROUGE
which fluctuate as expected with watermark strength.
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Figure 18: Average grade out of 5 for texts generated by Meta-Llama-3-8B-Instruct for the task
"Invented story" of the Mark My Words benchmark. Texts are watermarked with KGW with different
values of δ and γ = 0.5. The grade is computed using the Prometheus-eval framework for different
LLM models as judges and for different temperatures. The corresponding non-watermarked text is
provided to the judge as the reference text.

K.3 Impact of the text size

We generate texts of a maximum size of L = 1024 tokens. For such long texts, the detectability easily
reaches PD ≈ 1.0 if fixing PFA = 10−6. Instead, we fix a detectability of PD = 0.5 and compute
the corresponding p-values. This metric is close to the definition of ‘watermark size’ defined by Piet
et al. [29]. The advantage of this metric is that we can report an increase in watermark performance
even for long texts as p-svalues tend to decrease substantially with text size.
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(c) Watermax (b = 0) with chunk size fixed to
l = 16 tokens. Due to text size not always reaching
1024 tokens, the effective N is closer to 41.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and main claims accurately reflect that our watermark reaches
SOTA performance on the detectability, robustness and quality metric, which is amply
demonstrated through many experiments both in the body of the paper and in the appendices.
All theoretical claims, notably regarding the power of the detectors, are dully proved.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The paper emphasizes the main limitations of the method namely: its com-
putational cost compared to standard method as well as the difficulty of reaching fully
independent draft scores in order to reach theoretical performances in terms of detector
power. Finally, the cases where another algorithm might have an edge in a specific setting
– i.e the robustness of Aaronson can be higher for high enough LLM temperatures – are
pointed out.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results in the body of the paper have a corresponding proof in
the appendices. The assumptions about the continuity of the c.d.f and the independence of
the scores are also stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The settings of the LLM and watermark parameters are provided in full in
Section 7 as well as in appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A full repository of the code used for the experiments is provided as well as
the exact commands to replicate them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The settings of the LLM and watermark parameters are provided in full in
Section 7 as well as in appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The standard error is systematically reported as error bars in the main figures
of the paper, though it is extremely small for most results. As reported, they were calculated
in the standard way for text quality and using bootstrap for detectability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see Section G for a breakdown of the cost of running our methods as well as
the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential positive impact of watermarking methods is touched upon in the
introdutcion of the paper. No negative impact is apparent to us.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research do not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors of the benchmark is clearly credited, as well as the authors of the
watermarking algorithms and metric packages.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not Applicable
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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