
Published in Transactions on Machine Learning Research (09/2022)

Exploring the Learning Mechanisms of
Neural Division Modules

Bhumika Mistry bm4g15@soton.ac.uk
Department of Vision Learning, and Control
Electronics and Computer Science
University of Southampton

Katayoun Farrahi k.farrahi@soton.ac.uk
Department of Vision Learning, and Control
Electronics and Computer Science
University of Southampton

Jonathon Hare jsh2@ecs.soton.ac.uk
Department of Vision Learning, and Control
Electronics and Computer Science
University of Southampton

Reviewed on OpenReview: https: // openreview. net/ forum? id= HjelcW6wio

Abstract

Of the four fundamental arithmetic operations (+, -, ×, ÷), division is considered the most
difficult for both humans and computers. In this paper, we show that robustly learning
division in a systematic manner remains a challenge even at the simplest level of dividing
two numbers. We propose two novel approaches for division which we call the Neural
Reciprocal Unit (NRU) and the Neural Multiplicative Reciprocal Unit (NMRU), and present
improvements for an existing division module, the Real Neural Power Unit (Real NPU). In
total we measure robustness over 475 different training sets for setups with and without
input redundancy. We discover robustness is greatly affected by the input sign for the Real
NPU and NRU, input magnitude for the NMRU and input distribution for every module.
Despite this issue, we show that the modules can learn as part of larger end-to-end networks.

1 Introduction

Division is one of the four fundamental arithmetic operations and is necessary for expressing real-world
dynamical systems (Sahoo et al., 2018a) or physics-based formulas (Udrescu & Tegmark, 2020). However,
the properties of division of values around zero leads to undesirable gradients for training Neural Networks
(NN) through backpropagation, making it the hardest operation to learn (Mistry et al., 2022). Networks
which try to learn division naively such as multilayer perceptrons (MLPs) are unable to deal with the fluctuant
gradients caused by the asymptotic nature and discontinuities in division (Trask et al., 2018). Furthermore,
if the network lacks an appropriate bias for learning division, it can also lead to poor generalisation on
out-of-distribution (OOD) data. For example, a network could learn to achieve a reasonable loss on a
training/validation range between [1, 2] but be unable to maintain a reasonable loss when tested outside of
[1, 2] such as range [3, 10].

In particular, imagine you must learn to divide 2 numbers from a list of 10 numbers, but are only given the
10 numbers and the expected result. This task requires finding the 2 relevant operands, the order to divide
the operands, and learning to divide. In machine learning, this is equivalent to a supervised regression task

1

https://openreview.net/forum?id=HjelcW6wio

Published in Transactions on Machine Learning Research (09/2022)

where the aim is to learn the underlying function between the inputs and output such that the solution is
generalisable to any input. For NNs, the main challenge of this task comes from learning the selection and
operation at the same time, which can lead to conflicting priorities when learning weights.

Selecting relevant inputs/features is a desirable property of neural networks useful for improved interpretabil-
ity, reduced pre-processing costs and greater generalisation (Chandrashekar & Sahin, 2014). In particular,
there exists a class of NNs called Neural Arithmetic Logic Modules (NALMs) which learn to select features
and learn arithmetic operations simultaneously (Trask et al., 2018; Mistry et al., 2022). NALMs are designed
to provide systematic generalisation for arithmetic operations such that if the appropriate parameters are
learnt once training ends the NALM can extrapolate to unseen OOD data. Furthermore, as differentiable spe-
cialist modules (such as those for arithmetic operations) can be integrated with overparametrized networks
as an intermediate module, being able to successfully select only the relevant inputs is important (Madsen &
Johansen, 2020). However, even recent models still struggle to learn division when there is input redundancy
(Schlör et al., 2020). Can we build models which can learn division in the presence of its undesirable, yet
valid, properties?1 We aim to address this question in this paper. Specifically, we contribute the following:2

• We show how additional biases improves learning of an existing division module, the Real NPU (Heim
et al., 2020), by including: clipping, discretisation and constrained initialisation.

• We develop two novel division modules, the NRU and the NMRU, by extending an existing multiplication
unit. Through rigorous experiments we find both modules outperform the Real NPU for the no input
redundancy tasks, with the NMRU also outperforming the Real NPU for the input redundancy tasks.

• We identify the types of data which hinders learning division for each module, including training on:
mixed-sign inputs, negative ranges, extremely small values and different distributions. These difficulties
can be sufficiently identified using synthetic division tasks.

• We show how NALMs can learn in a larger end-to-end network using an arithmetic MNIST task.

2 Related Work

Learning to robustly divide provides a stepping stone for NNs in achieving symbolic regression. Sym-
bolic regression searches the space of expressions to predict a mathematical expression from a given set of
input-output observations. Compared to black-box NN functions, expressing a mathematical function is
significantly easier to interpret. Symbolic regression can be implemented via Genetic Programming (GP)
using Evolutionary Algorithms (EA) which learn mathematical expressions (Koza, 1994; Schmidt & Lipson,
2009). EAs maintain a population of expressions where individuals of the population get selected based-off
a fitness function and modified via techniques such as crossover and mutation. This procedure is repeated
until a stopping criterion is met. Hybrid methods which combine GP with local search can also be used to
further boost generalisation results (Kommenda et al., 2020), however both the pure EA and hybrid methods
do not scale well due to the combinatorial nature of the method.

Alternatively, a fully differentiable NN approach can be taken by incorporating biases to improve the in-
terpretability of the network. Sahoo et al. (2018b) sets activation functions in a layer to different symbolic
operations rather than using a traditional non-linear activation like ReLU. They also encourage only using
relevant weights through a sparsity regularisation scheme which varies in strength depending on how much
training has occurred. However, to gain the best performance requires using selection strategies over many
trained modules which is costly and can be unreliable (Sahoo et al., 2018a). In contrast, Udrescu & Tegmark
(2020) exploits patterns in the data by designing physics related biases such as transnational symmetry or
multiplicative separability into their architecture. Due to the strong prior which assumes the dataset con-
tains an underlying physics representations, the model performs poorly when trained on datasets without
such representations (Cava et al., 2021).

1A desiderata for building a division module is provided in Appendix A.
2Code (MIT license) available at: https://github.com/bmistry4/nalm-division.

2

https://github.com/bmistry4/nalm-division

Published in Transactions on Machine Learning Research (09/2022)

Another type of differentiable NNs are NALMs which have specially designed architectures biased towards
learning arithmetic operations (Mistry et al., 2022). This work focuses on modelling division using NALMs.
The weights of NALMs are interpretable such that a discrete value represents a specific operation. For
example, ‘-1’ would represent division and ‘0’ for no selection. Trask et al. (2018) developed the Neural
Arithmetic Logic Unit (NALU), the first NALM, which can model all four arithmetic operations. The
NALU consists of two sub-units; one to model addition and subtraction and another to model multiplication
and division. For each input a corresponding weight value is learnt to represent the exact operation and a
gate value is learnt to select between sub-units. However, multiple studies show the NALU is unstable in
learning division (Schlör et al., 2020; Heim et al., 2020). In particular, their gating method responsible for
selecting an operation cannot learn consistently (Madsen & Johansen, 2020). To improve the NALU, Schlör
et al. (2020) developed the iNALU which applies weight and gradient clipping, sign retrieval, regularisation,
reinitialisation and separating shared parameters. Even with these modifications, they find consistently
learning division to a high precision to remain unattainable. Madsen & Johansen (2020) create the Neural
Multiplication Unit (NMU) which only models multiplication but has significant performance gains compared
to the NALU. Focusing on multiplication and division, Heim et al. (2020) developed a module which learns
in the real and complex parameter space. Their results showed their Real NPU to outperform the iNALU
for division. Until now, the Real NPU only has learned division on training ranges of either U [0.1,2] or
Sobol(0,0.5) (Heim et al., 2020). It remains unclear if this module is robust to other training ranges even
as a stand-alone unit. Robustness to training ranges is important as these module’s applicational use comes
from being part of larger end-to-end networks, where the input range into the module cannot be controlled.

3 Architectures

This section introduces the architectures for the (Real) NPU, NRU, and the NMRU. The (Real) NPU is
an existing module, which we improve in Section 5. The NRU and NMRU are novel contributions which
extend the existing NMU (see Appendix B) to do division. Since these architectures are NALMs they can be
viewed as regression modules trained via supervised learning. The inputs have some underlying mathematical
relation to the outputs which is modelled using division. An input is represented as a vector of features,
where only certain input features are relevant to the output.

3.1 Real Neural Power Unit

Heim et al. (2020) develop a module to multiply and divide using the intuition from Trask et al. (2018) that
multiplicative operations are additive operations in log space. For example, a × b = exp(ln(a) + ln(b)) and
a
b = exp(ln(a) − ln(b)). Heim et al. (2020) extends this idea into complex space. The NPU can be used
with its complex form (Equation 1) requiring both a complex and real weight matrix (W IM, W RE of shape
|Inputs|×|Outputs|), or only its real form the Real NPU (Equation 2). We focus on using the Real NPU over
the NPU as the solution of the tasks in this paper can be captured using only real values meaning that the
complex form is not required. For improved gradients, a relevance gate r (Equation 3) converts inputs close
to 0 (i.e. irrelevant features) to 1 to avoid the resulting output evaluating to 0. A gating vector g, learns to
select relevant input elements, where gate values are clipped between [0,1] during training (Equation 5).

NPU : yo = exp
(

I∑
i=1

(W RE
i,o · ln(ri)) −

I∑
i=1

(W IM
i,o · ki)

)

· cos
(

I∑
i=1

(W IM
i,o · ln(ri)) +

I∑
i=1

(W RE
i,o · ki)

)
,

(1)

RealNPU : y0 = exp
(

I∑
i=1

(W RE
i,o · ln(ri))

)
· cos

(
I∑

i=1
(W RE

i,o · ki)
)

, (2)

3

Published in Transactions on Machine Learning Research (09/2022)

where

ri = gi · (|xi| + ϵ) + (1 − gi), (3)

ki =
{

0 xi ≥ 0
πgi xi < 0

, (4)

and
gi = min(max(gi, 0), 1) . (5)

Following Heim et al. (2020), a L1 penalty scaled by a factor β is used when training. β grows between
predefined values βstart to βend and increases every βstep = 10, 000 iterations by a growth factor βgrowth = 10.

3.2 Neural Reciprocal Unit

We propose the NRU, which can model multiplication and division, by extending the NMU motivated by
the fact that division is the multiplication of reciprocals. The range which weight values can be is extended
from [0,1] to [-1,1], where -1 represents applying the reciprocal on the corresponding input element. A NRU
output element zo is defined as

NRU : zo =
I∏

i=1

(
sign(xi) · |xi|Wi,o · |Wi,o| + 1 − |Wi,o|

)
, (6)

where I is the number of inputs. Assuming weights are either 1 (multiply) or -1 (reciprocal), |xi|Wi,o will
apply the operation on an input element. The absolute value is used so that the module only operates in the
space of real numbers, as x

Wi,o

i for a negative input (xi) when −1 < Wi,o < 1 results in a complex number.
The use of absolute means the sign of the input must be reapplied. For the no-selection case Wi,o = 0, we
want the input element to convert to 1 (the identity value), resulting in applying ·|Wi,o| + 1 − |Wi,o|. The
derivative of the absolute function at 0 is undefined meaning the gradients of Equation 6 can contain points
of discontinuity. To alleviate this issue, we approximate the absolute function using a scaled tanh (inspired
by Faber & Wattenhofer (2020)). More formally,

|Wi,o| =
{

tanh(1000 · Wi,o)2 if training
|Wi,o| otherwise

.

The scale factor (1000) controls how close to the absolute function the approximation is, where larger values
give a more accurate approximation3. For clipping and regularisation, the same scheme as the Neural
Addition Unit (NAU) (see Appendix B) is used which forces weight elements to converge to -1, 0 or 1.

3.3 Neural Multiplicative Reciprocal Unit

An alternate extension of the NMU, also motivated by division being multiplication of reciprocals is the
NMRU (Equation 7). We concatenate the reciprocal of the input (plus a small ϵ) to the input resulting in a
module which only needs to learn selection. Hence, weights can be in the range [0,1].

NMRU : zo =
2I∏

i=1
(Wi,o · |xi| + 1 − Wi,o) · cos(

2I∑
i=1

(Wi,o · ki)) , where ki =
{

0 xi ≥ 0
π xi < 0

. (7)

The iteration over 2I represents the going through all inputs and their reciprocals. We calculate the magni-
tude and sign separately, joining the result at the end. The magnitude is calculated by passing the absolute
of the concatenated input through an NMU architecture and the sign is calculated by using a cosine mech-
anism similar to the Real NPU. However, unlike the Real NPU only the weight matrix is required. The
norm of the weight’s gradients are clipped to 1 prior to being updated by the optimiser. This is done to
alleviate the issue of exploding gradients caused by including the reciprocal to the inputs. For clipping and
regularisation, the same scheme as the NMU (see Appendix B) is used.

3See Appendix I for tanh scaling experiments.

4

Published in Transactions on Machine Learning Research (09/2022)

Table 1: Nine interpolation (train/validation) ranges with their corresponding extrapolation (test) range.
Data (as floats) is drawn from a Uniform distribution with the range values as the lower and upper bounds.

Interpolation [-20, -10) [-2, -1) [-1.2, -1.1) [-0.2, -0.1) [-2, 2) [0.1, 0.2) [1, 2) [1.1, 1.2) [10, 20)
Extrapolation [-40, -20) [-6, -2) [-6.1, -1.2) [-2, -0.2) [[-6, -2), [2, 6)] [0.2, 2) [2, 6) [1.2, 6) [20, 40)

4 Single Layer Arithmetic Experiment Setup

We introduce the two main experiments used to evaluate modules, including: default parameters, train and
test ranges, and evaluation metrics. The tasks evaluate the ability of a single module to divide two numbers
from an input vector in two settings: no redundancy (2 inputs) and with redundancy (10 inputs). During
training models will have discretisation regularisation applied to weights which enforces exact selection and
precise application of arithmetic operations.

Default parameters: A summary of all relevant parameters is found in Appendix C. All experiments use
a mean squared error (MSE) loss with an Adam optimiser (Kingma & Ba, 2015) and 10,000 samples for the
validation and test sets. Training uses batch sizes of 128 and the best model for evaluation is taken using
early stopping on the validation set. All runs are over 25 different seeds. All inputs are required in the
no redundancy setting, i.e., input size of 2. Training takes 50,000 iterations where each iteration consists
of a different batch. The Real NPU uses a learning rate of 5e-3 with sparsity regularisation scaling during
iterations 40,000 to 50,000. The NRU and NMRU use sparsity regularisation scaling during iterations 20,000
to 35,000 and a learning rate of 1 and 1e-2 respectively. In contrast, the redundancy setting uses an input size
of 10, where 8 input values are not required for the final output. The total training iterations are extended
to 100,000. The learning rates for the Real NPU, NRU and NMRU are 5e-3, 1e-3 and 1e-2 respectively.
Sparsity regularisation scaling occurs during iteration 50,000 to 75,000 for all modules.

Ranges: The ranges used for training, validation and testing is task dependant. For each task the train and
validation sets are sampled from an interpolation range, whilst the test set is sampled from an extrapolation
range. The interpolation ranges will not overlap with the extrapolation ranges meaning no data in the test
set will ever have been seen during training.

Evaluation metrics: We use the Madsen & Johansen (2019)’s evaluation scheme, consisting of three evalu-
ation metrics: the success on the extrapolation dataset against a near optimal solution (success rate), the first
iteration which the task is considered solved (speed of convergence), and the extent of discretisation towards
the weights’ inductive biases (sparsity error). Sparsity error is calculated by max

i,o
(min(|Wi,o|, 1 − |Wi,o|)),

measuring the weight element which is the furthest away from the acceptable discrete weights for the mod-
ule. A success means the MSE of the trained model is lower than a threshold value (i.e., the MSE of a near
optimal solution). We differ from Madsen & Johansen (2019) by using a fixed threshold value 1e-5 rather
than a simulated MSE. We choose this precision as it can be guaranteed when working with 32-bit PyTorch
Tensors. 95% confidence intervals (over the 25 seeds) are calculated from a specific family of distributions
dependant on the metric. The success rate uses a Binomial distribution because trials (for a single seed)
are either pass/fail situations. The convergence metric uses a Gamma distribution and sparsity error uses a
Beta distribution. Both Beta and Gamma can easily approximate the normal distribution and support its
corresponding metric.

5 Improving the Real NPU’s Robustness

We first improve the robustness of the Real NPU against different training ranges. We use the Single Module
Task with no redundancy (see Section 4) to investigate the following: (1) Is L1 regularisation required, and
if so, do the regularisation parameters require tuning? (2) Does clipping the learnable parameters aid
learning? (3) Does enforcing discretisation on parameters improve convergence? (4) Can the weight matrix
initialisation be improved?

5

Published in Transactions on Machine Learning Research (09/2022)

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●L1 off L1 on

(a) L1 regularisation

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●

● ● ●

(1e−11,1e−9) (1e−9,1e−7) (1e−8,1e−6) (1e−7,1e−5)

(1e−5,1e−3) (1e−3,1e−1) (1e−1,10)

(b) Sweep over L1 (start,end) beta parameters

Figure 1: Exploring the effect and sensitivity of L1 regularisation on the Real NPU

To address each question, we apply incremental modifications to the Real NPU. Modifications include an
ablation study on the L1 regularisation (including a sweep over the scaling range hyperparameters), clipping,
enforcing discretisation, and a more restrictive initialisation scheme. We assume that we are optimising the
Real NPU to perform multiplication or division. Therefore, we trade-off the flexibility of having non-
discretised weights, which enables the success of modelling the SIR data in Heim et al. (2020, Section 4.1),
in favour of sparse models with discrete weight values. All the modifications can also be generalised for the
NPU architecture. The ranges (Table 1) are influenced by the ranges from Madsen & Johansen (2020) as
they provide good coverage.

Is L1 regularisation required? (Yes.) L1 encourages sparsity (i.e., zero weights) in solutions. Zero-
valued weights means not to select an input and return the identity value 1. For the task, the optimal
weight values require selecting all inputs and therefore non-zero values, suggesting the application of L1
could be damaging. Therefore, we compare against a model which does not use L1 regularisation, shown
in Figure 1a. Removing L1 proves to be detrimental in five of the nine cases shown and only shows minor
improvements in two of the nine ranges (i.e., U [-1.2,-1.1) and U [1.1,1.2)). Hence, we keep L1 regularisation.4
The L1 regularisation scaling (see Section 3.1), requires setting the hyperparameters for the start (βstart)
and end (βend) scaling values. We run a sweep over six different start and end values, denoted (<start>,
<end>), displaying results in Figure 1b. We find the configuration (1e-9, 1e-7) is the most successful when
considering performance on all the ranges, and larger scaling values perform worse.

Does clipping the learnable parameters help? (Yes.) Division and multiplication are represented
by weight values of -1 and 1 respectively. The current architecture does not constrain the weights which
can result in large weight values. The gate weights do get clipped and saved to another variable during the
forward pass, meaning after an update step the gate values can also be out of the range [-1,1]. Hence, we
investigate applying clipping directly to the weight and gate values after every optimisation step. Figure 2a
shows clipping is beneficial, with clipping on both weight and gate (or just on the weights) to improve over
the baseline on all ranges (excluding U [1,2) where the baseline has already achieved full success).

Does enforcing discretisation help? (Yes.) Modelling division in a generalisable manner requires
all learnable parameters to be discrete i.e., a value from {-1, 0, 1}. Using Madsen & Johansen (2020)’s
regularisation scaling scheme (see Appendix B), we penalise weights for not being discrete. We modify
the scaling factor to be λ̂ = 1 and the regularisation to go from ‘off’ to ‘on’ between iterations 40,000 to
50,000. Figure 2b shows discretising the gate improves over the baseline but also discretising the weights

4We also experimented with using L2 regularisation but found L1 to perform better (see Appendix E).

6

Published in Transactions on Machine Learning Research (09/2022)

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●None G W GW

(a) Clipping

●

● ●

●

●

● ● ●

●
●

● ●

●

●

● ● ●

●

●

●

●

●
●

● ● ● ●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●None G GW

(b) Discretisation regularisation

●
● ●

●

●

● ● ●
●

● ● ●

●

● ● ● ● ●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

●

●

Xavier−Uniform

Xavier−Uniform Constrained

(c) W RE initialisation schemes

Figure 2: Effect of clipping, discretisation, and the NAU initialisation scheme on the Real NPU.

is additionally beneficial (especially for range U [-0.2,-0.1)). U [10,20) is the only range where the baseline
outperforms using discretisation, succeeding on two additional seeds.

Does using a more constrained initialisation help? (Yes.) W RE uses a Xavier-Uniform initialisa-
tion (Glorot & Bengio, 2010), meaning weights can be initialised out of the range [-1,1]. Therefore, we use the
initialisation for the Neural Addition Unit which is a constrained form of the Xavier-Uniform that does not
allow the fan values of the uniform distribution to go beyond 0.5, meaning that no weight value will be out
of the range [-1,1] (Madsen & Johansen, 2020). Figure 2c shows using the constrained initialisation provides
improvements. For this Real NPU configuration a learning rate of 5e-3 works best (see Appendix E).

6 Uniform Range Datasets

We now compare learning Table 1’s Uniform ranges on all modules including the NRU and NMRU for the no
redundancy and redundancy setups. On the no redundancy setup (Figure 3) the NRU and NMRU achieve
full success while solving the problem consistently fast and with low sparsity error, while the baseline Real
NPU without modifications struggles with success on all ranges and with sparsity on the larger ranges.
Applying the Real NPU modifications described in Section 5 deals with the sparsity issue and improves the
robustness such that only range U [-2,2) struggles (with a success rate of 0.64).

Introducing redundancy (Figure 4) causes failure modes to arise on all modules. The baseline Real NPU
produces high sparsity errors relative to the other modules suggesting struggle with discretisation. The
modified Real NPU improves over all ranges of the baseline (which were not already at full success) in terms
of success, speed and sparsity (except for the sparsity in U [10,20)). To ensure that complex weights do not
fix the issue, we test the NPU module with all the modifications used on the real weight matrix but find
no significant improvements (see Appendix F). The redundancy affects the NRU the most, resulting in full
failures on all the negative ranges. The NMRU is the only module with success on range U [-2,2) due to its
sign mechanism (see Appendix G). It performs well over all ranges but can be outperformed by the modified
Real NPU for negative ranges.

7 Mixed-Sign Input Datasets

The Uniform ranges results showed that the Real NPU (modified) and NRU have difficulty in learning when
inputs can consist of arbitrary signed values (e.g. all positives, all negatives, or a mixture of positive and
negative values) such as U [-2,2). We question if the failure is due to the input samples in a batch having
different signs from each other, or if the problem is due to the fact data samples can be close to 0 (leading

7

Published in Transactions on Machine Learning Research (09/2022)

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ●

●
●

● ● ● ● ● ● ●
● ●

● ●
● ●

● ●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ●

●

● ● ● ● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.02

0.04

0.06

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

Figure 3: Division without redundancy (input size 2) on Uniform ranges.

●

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

●

●

●

●

● ●
● ●

● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

Figure 4: Division with redundancy (input size 10) on Uniform ranges.

to singularity issues). Five mixed-sign datasets which can control the range for each element in the input
are used. The interpolation and extrapolation ranges can be found in Appendix C. Datasets 1, 2, 4 and 5
sample a positive value for one input element and a negative value for the other element. Dataset 3 samples
the signs randomly. Datasets 2 and 5 avoid sampling close to 0 values to mitigate the singularity issue.

Figure 5 shows the Real NPU struggles on all these ranges while the NMU and NMRU do not. This implies
that the core issue for the Real NPU is not from different input samples having different signs or due to
input values being close to 0. The underlying issue is most likely correlated to each element in an input
having different signs. When the denominator of the output is positive (dataset 1 or 2), the solution is found
faster than when the denominator is a negative value (dataset 4 or 5). When the signs for an input element
are controlled, discretisation is no problem, in contrast when the signs are arbitrary the sparsity error are
slightly (though not significantly) higher. Learning with input redundancy (Figure 6), causes the Real NPU
and NRU to swap in performance. The Real NPU performs significantly better than the no redundancy task
on all ranges except U [-2,2), while the NRU no longer works on any range.

8

Published in Transactions on Machine Learning Research (09/2022)

● ● ● ● ●● ● ● ● ●

● ●

●

●
●

● ● ● ● ●● ● ● ● ●●

●

●
●

●

● ● ● ● ●● ● ● ● ●● ●

●

● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

0.00000

0.00025

0.00050

0.00075

0

2500

5000

7500

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

Figure 5: Division without redundancy on the mixed-sign datasets that control the sign of the input elements.
The ranges are in order of the datasets (i.e. dataset 1 to 5).

● ● ● ● ●

● ● ● ● ●

● ●

●

● ●

●
●

●

●
●

● ● ● ●
● ● ● ● ●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

0.00

0.02

0.04

0.06

0
10000
20000
30000
40000
50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

Figure 6: Division with redundancy on the mixed-sign datasets that control the sign of the input elements.
The ranges are in order of the datasets (i.e. dataset 1 to 5).

8 More Challenging Distributions: Larger Magnitudes and Mixed-Signs

To further stress test the modules, we explore the effect of larger Uniform ranges and different distributions
(i.e., Benford and Truncated Normal). The ranges are found in Table 25. The Uniform ranges tests how a
mixed-sign dataset is influenced by larger ranges (with magnitudes of 50 and 100). The Benford distribution
also tests learning on large magnitude values. It follows a more natural distribution compared to the
Uniform, known to underlie real world data such as accounting data (Hill, 1995). The Truncated Normal
(TN) distributions also investigate mixed-sign datasets. A Normal distribution allows to set biases via the
mean value (and is set to either -1, 0 or 1), while the truncation allows the extrapolation range not to overlap
with the interpolation range. Results for the 2-input and 10-input setting are shown in Figures 7 and 8.

Uniform distributions: Larger ranges are found to be challenging when redundant inputs exist. On the
2-input setup, both NRU and NMRU have full success, while the Real NPU (modified) has failure cases
for both Uniform distributions (with success rates of 0.72 on U [-100,100) and 0.76 on U [-50,50)). On the
10-input size setup, all modules fail for all runs for both ranges.

5Additional discussion and experiments for learning on small numbers is found in Appendix K

9

Published in Transactions on Machine Learning Research (09/2022)

Table 2: Interpolation (train/validation) and extrapolation (test) ranges for different distributions. Data is
drawn with the lower and upper bound ranges. TN = Truncated Normal in the form TN(mean, sd)[lower
bound, upper bound). B = Benford. U = Uniform.

Interpolation TN(-1, 3)[-5, 10) TN(0,1)[-5, 5) TN(1, 3)[-10, 5)
Extrapolation TN(-10, 3)[-15, -5) TN(10,1)[5, 15) TN(10, 3)[5, 15)
Interpolation B[10, 100) U[-100, 100) U[-50, 50)
Extrapolation B[100, 1000) U[-200, -100) ∪ [100, 200)] U[[-100, -50) ∪ [50, 100)]

● ● ● ● ● ●● ● ● ● ● ●●

●

●
●

●
●

● ● ● ● ● ●

●

●
● ● ● ●

●

●

●

●

●
●

● ● ● ● ● ●● ● ● ● ● ●

●

● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

0.00

0.05

0.10

0.15

0.20

0

5000

10000

15000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

Figure 7: Division without redundancy on the Benford, Truncated Normal and Uniform distribution.

●

●

●

●

● ●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ●●

●

Extrapolation range success rate Solved at iteration step Sparsity error

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

B:[1
0,

10
0)

TN(−
1,

3)
:[−

5,
10

)

TN(0
,1

):[
−5

,5
)

TN(1
,3

):[
−1

0,
5)

U:[−
10

0,
10

0)

U:[−
50

,5
0)

0.00

0.05

0.10

0.15

0.20

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NRU NMRU

Figure 8: Division with redundancy on the Benford, Truncated Normal and Uniform distribution.

Benford distribution: On the 10-input setting, the NRU and modified Real NPU have full success implying
the Uniform distributions failures are due to using mixed-signed inputs rather than the large ranges. The
NMRU shows majority failures (failure rate 0.84) suggesting that large ranges are also an area of struggle.

Truncated Normal distributions: On the 2-input setup, both NRU and NMRU have full success but
the Real NPU (modified) has failure cases for all three distributions (with success rates 0.48, 0.6, 0.64
respectively). When trained using the 10-input setup, both the NRU and Real NPU (modified) have no
success. The NMRU’s success rate greatly varies depending on the range (being 0.48, 0.04 and 0.92 for
TN(-1, 3)[-5, 10), TN(0,1)[-5, 5) and TN(1, 3)[-10, 5) respectively). This suggests the NMRU works better
when a majority of the inputs are likely to have the same sign and struggles with values around zero.

10

Published in Transactions on Machine Learning Research (09/2022)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

TN(1,3):[−10,5) U:[−100,100) U:[−50,50)

B:[10,100) TN(−1,3):[−5,10) TN(0,1):[−5,5)

1e−5 1e−1 25e−2 1e−5 1e−1 25e−2 1e−5 1e−1 25e−2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Epsilon

S
pa

rs
ity

 fa
ilu

re
 r

at
e

● ● ●Real NPU (modified) NRU NMRU

Figure 9: The sparsity failure rates (with 95% confidence intervals) for the division with redundancy task
on the Benford, Truncated Normal and Uniform distributions.

8.1 Sparsity Failure Rates

For more insight as to how the failures are occurring, Figure 9 shows the rate of non-discrete parameters
which lie more than a given epsilon away from the nearest discrete value (-1, 0 or 1) for the redundancy setup.
The rates are calculated for model’s best validation epoch (because of early stopping) and are averaged over
all seeds and not just the successful seeds like in Figure 8. The high sparsity failure rates at the most forgiving
epsilon threshold (0.25) suggests that there was high uncertainty in the learnt parameters resulting in them
being unable to discretise. This is evident for the NMRU on the Benford and largest Uniform distributions.
Distributions with high extrapolation success rates in Figure 8 is reflected by the low failure rate on all the
epsilons. In contrast, a high reduction in failure over the epsilons occurs, then it suggests the discretisation
is working but the values which parameters were converging to we not correct.

9 Traits of Modules when Learning on the Redundancy Setting

Gradient difficulties with the NRU. For insight to why the NRU performs poorly with input redundancy,
we look at the gradients with respect to the weights. The partial derivative for the weights is,

∂ŷ

∂wi
= tanh(1000wi)(sign(xi)|xi|(tanh(1000wi) log(|xi|)+

2000 sech(1000wi)2) − 2000 sech(1000wi)2) × NRUx̃∈x\{xi}(x̃).
(8)

The NRUx̃∈x\{xi}(x̃) term applies the NRU to all inputs excluding xi influencing the gradient values between
subsequent update steps. Factoring out this term, the following observations are made: If xi ≈ 0 and wi ≈ 0
then gradients become increasingly large; if xi ≈ 0 and −1 ≤ wi < 0 then as wi → −1 all gradients for xi

where |xi| >> 1 become increasingly small; the gradients for xi = −1 and xi = 1 are 0 regardless of the
value of wi; if wi = 0 then the gradient is 0 for all xi, a result of using the tanh approximation; and, even
if the sign and magnitude are calculated separately and then combined (see Appendix J) to try to control
the gradient better, the problem remains. Therefore, we conclude that extending the NMU to divide using
a weight of -1 is a poor choice when there are redundant inputs.

The Real NPU’s and NMRU’s exploitation of multiplicative rules. In the redundancy setting,
modules with extrapolative solutions learn to exploit rules for multiplication. The NMRU exploits the inverse
rule of division i.e., ai · 1

ai
= 1. Since the module’s input contains the reciprocals numerous extrapolative

solutions exist, however this comes at the cost of finding a ‘simple’ solution containing non-zero weights only
for relevant inputs. The Real NPU exploits the rules ai · 0 = 0 and 1ai = 1 enabling non-zero weights if the

11

Published in Transactions on Machine Learning Research (09/2022)

Table 3: Test accuracies of the output label for the MNIST task. The predictions and targets are rounded to
5 d.p. before the accuracy is calculated. The mean accuracy over 10-folds is given with the standard error.

DIV MLP Real NPU (mod.) NRU NMRU
Test Acc. (5 d.p.) 97.497±0.183 0.004±0.004 97.147±0.242 94.215±3.627 44.69±13.841

DIV

Real NPU (mod)

NRU

NMRU

0 25 50 75 100
accuracy (%)

m
od

el

Figure 10: Test accuracies on the 5 d.p. output values.

corresponding gate value is 0. However, this can be avoided by allowing 0 to not be penalised during sparsity
regularisation stage (see Appendix F); this alleviates the exploitation issue with no cost to performance.

10 MNIST Arithmetic

To determine if NALMs can learn in larger end-to-end networks we investigate learning to divide the labels
of an image composed of two MNIST digits. Summaries of parameters can be found in Appendix D.

10.1 Setup and Network Architecture

Following Bloice et al. (2021), the dataset contains permutation pairs of MNIST digits side-by-side with the
target label being the product of the digits, e.g. input with output 4(= 4 ÷ 1). Importantly, although
there is no overlap between the permutation pairs in the train and test set, all individual digits (between 1-9)
are seen during training. E.g., the pair ‘54’ would exist in the test set and not the train set but the digits ‘5’
and ‘4’ would exist in other pairs of the train set such as ‘15’ or ‘47’. All instances of zero are removed from
the datasets to avoid a division by zero case from occurring. The network learns a map from the input image
to the labels of the two digits (digit classifier), followed by a map from the two labels to their divided value
(division layer). The digit classifier is a convolutional network6. We separate the two digits to single digits,
classify per digit and the recombine the two labels. There are three possibilities for the division layer: (1) a
solved division baseline model (DIV), (2) a MLP made of 2 hidden layers with 256 hidden units and ReLU
activations and L2 regularisation, and (3) a NALM being either the Real NPU (modified), NRU, or NMRU.
As the DIV baseline only requires learning to classify the images to their respective labels, it is considered a
strong baseline. A NALM should perform similar to the DIV baseline; if a NALM outperforms the baseline
it implies the NALM can also aid learning of downstream layers aswell as learn division.

10.2 Metrics and Results

The output accuracy is given based on the predicted and target values rounded to 5 decimal places (d.p.)
to avoid issues caused by floating point rounding. Results are taken over a 10-fold cross validation setting

6Taken from the PyTorch MNIST example https://github.com/pytorch/examples/blob/master/mnist/main.py

12

https://github.com/pytorch/examples/blob/master/mnist/main.py

Published in Transactions on Machine Learning Research (09/2022)

Table 4: Summary of the types division tasks the models can/cannot solve. Using redundancy means there
are irrelevant inputs (10-input setup). The values are the mean success rate (out of 1) for the specific input
task, bold values are the best model for the respective row.

Redun-
dancy?

Input type Distribution Real NPU
(modified)

NRU NMRU Figure

No

Mixed-signs Uniform 0.56 1 1 5
Mixed-signs Truncated Normal 0.57 1 1 7
Negative Uniform 1 1 1 3
Positive Uniform 1 1 1 3
Large magnitude Uniform 0.74 1 1 7
Large magnitude Benford 1 1 1 7
Close to 0 Truncated Normal 0.6 1 1 7; see TN(0,1)[-5, 5)
Close to 0 Uniform 0 0.17 0.4 24

Yes

Mixed-signs Uniform 0.77 0 0.99 6
Mixed-signs Truncated Normal 0 0 0.48 8
Negative Uniform 0.92 0 0.82 4
Positive Uniform 1 1 1 4
Large magnitude Uniform 0 0 0 8
Large magnitude Benford 1 1 0.16 8
Close to 0 Truncated Normal 0 0 0.04 8; see TN(0,1)[-5, 5)

and the NALM’s initialisation is the same for each fold. Table 3 and Figure 10 displays the results. The
MLP is not used in the violin plot so the distributions of the other modules can be better seen. The DIV
baseline performs the best as expected since only the classification network requires to be learnt. The Real
NPU (modified) has consistent accuracy on par with the DIV results. The NRU is less robust than the Real
NPU (modified) but the better fold can outperform even the DIV. The NMRU performs the worst out of
all NALMs struggling with robustness and the MLP is the worst division layer showing nearly no success
across all seeds. More extensive experiments are subject to future work.

11 Discussion

Single layer division robustness. We summarise the key challenges for learning independent modules in
Table 4 and give the ranges used to generate the values in Table 10. In the no redundancy setting (2-inputs),
the Real NPU is challenged when the training data consists of mixed-signed inputs even with our applied
improvements. Increasing the difficulty to have an input redundancy (with 8 redundant and 2 relevant input
values) improves performance when the Uniform distribution is used but magnifies the issue when ranges
are samples from a Truncated Normal distribution. The NRU and NMRU have strong performance across
the no redundancy tasks but show failures when redundancy is included. In particular, the NRU loses its
ability to learn successfully on most of the input settings. Negative ranges also becomes an issue for the
NRU, in which we conclude it is not wise to use with MSE. Alternate losses can improve certain failure
cases though sometimes at the cost of performance on other ranges. See Appendix M which displays results
on a correlation and scale-invariant based loss. The NMRU drops most in performance on large magnitude
datasets regardless the distribution. In the redundancy setup, the NMRU’s robustness comes at the cost of
the simplicity of the solution due to its exploitation of the identity rule; an issue the Real NPU does not have.
The Truncated Normal distribution causes the greatest learning difficulties to all the modules. Learning to
divide values around zero remains challenging for all modules, even on the no redundancy setup, implying
an alternate method for dealing with zero denominators should be open for exploration.

NALM can be used as part of larger networks. The MNIST experiment shows NALMs can act
as downstream layers in a non-trivial regression experiment which requires an intermediary classification
network without a direct classification loss. This is promising as it implies uses of NALMs in more complex

13

Published in Transactions on Machine Learning Research (09/2022)

tasks, however two points of caution should be considered. Firstly, the results show that there is not a direct
correlation between the performance of a NALM in the single layer tasks to their performance if embedded in
larger networks. For example, the NRU and NMRU which outperform the Real NPU on the single layer tasks
perform worse in the MNIST task. Secondly, if such units are to be utilised in larger embedded networks, we
encourage performing tests in the target domain before employing NALMs in the wild. Therefore, a future
direction for this work and NALMs in general includes developing more challenging experimental tasks with
rigorous evaluations.

Number of learnable parameters. The NRU requires I ×O parameters, the Real NPU requires I(O +1)
parameters and the NMRU requires 2I × O parameters. Although the NRU has the lowest parameter count,
it performs the worst when redundancy is involved. The doubling of the input dimensionality in the NMRU
results in more parameters, especially if the output dimension is high. Additionally, as half the inputs of the
modules require being inverted (which includes the irrelevant elements), scaling difficulties can arise.

Two-layer learning. Once robust modules are attainable in a single layer setting, the next step would be
to question performance when learning stacked modules, e.g. learning a stacked additive and multiplicative
module. Madsen & Johansen (2020, Figure 2) illustrates the troubles for multiplicative models with the
capacity for division. They show how a stacked summative-multiplicative module can lead to an exploding
loss when the output of the summative module is close to 0 and the multiplicative model tries to divide.
We recreate their setup (in Appendix N) to produce loss surfaces for the NAU-Real NPU7, NAU-NRU and
NAU-NMRU respectively. A similar issue exists with the Real NPU and NRU which use a weight range of
[-1,1], whereas the NMRU whose weight’s range is limited to [0,1] does not have exploding losses.

Exploring alternate discretisation methods. We focus on using existing discretisation techniques for
NALMs to enforce weights toward values such as -1, 0 and 1. In future work, it would also be interesting
to explore the effects of other types of regularisation influenced by the works from the network compression
literature such as binary/ternary networks (Hubara et al., 2016; Zhu et al., 2017).

In conclusion, division remains a challenge to learn using interpretable neural networks, even for the simplest
tasks. Nevertheless, by identifying the specific areas causing difficulty (e.g., training ranges), and useful
architecture properties (e.g., using a sign retrieval mechanism), we hope the community has better intuition
for dealing with division and developing more robust specialist modules.

Acknowledgments

We would like to thank the anonymous reviewers who have help improve the manuscript. B.M. is sup-
ported by the EPSRC Doctoral Training Partnership (EP/R513325/1). J.H. received funding from the
EPSRC Centre for Spatial Computational Learning (EP/S030069/1). The authors acknowledge the use of
the IRIDIS High-Performance Computing Facility, the ECS Alpha Cluster, and associated support services
at the University of Southampton in the completion of this work.

References
Marcus Bloice, Peter M. Roth, and Andreas Holzinger. Performing arithmetic using a neural network trained

on images of digit permutation pairs. Journal of Intelligent Information Systems, 08 2021. doi: 10.1007/
s10844-021-00662-9. URL https://link.springer.com/article/10.1007/s10844-021-00662-9.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression methods and their
relative performance. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021. URL https://openreview.net/forum?id=xVQMrDLyGst.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers & Electrical En-
gineering, 40(1):16–28, 2014. ISSN 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2013.11.024.
URL https://www.sciencedirect.com/science/article/pii/S0045790613003066. 40th-year com-
memorative issue.

7The NAU is a summative module (Madsen & Johansen, 2020).

14

https://link.springer.com/article/10.1007/s10844-021-00662-9
https://openreview.net/forum?id=xVQMrDLyGst
https://www.sciencedirect.com/science/article/pii/S0045790613003066

Published in Transactions on Machine Learning Research (09/2022)

Lukas Faber and Roger Wattenhofer. Neural status registers. CoRR, abs/2004.07085, 2020. URL https:
//arxiv.org/abs/2004.07085.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–
256. JMLR Workshop and Conference Proceedings, 2010. URL http://proceedings.mlr.press/v9/
glorot10a/glorot10a.pdf.

Niklas Heim, Tomáš Pevnỳ, and Václav Šmídl. Neural power units. Advances in Neu-
ral Information Processing Systems, 33, 2020. URL https://papers.nips.cc/paper/2020/file/
48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf.

Theodore P Hill. A statistical derivation of the significant-digit law. Statistical science, pp. 354–363, 1995.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks. In NIPS, pp. 4107–4115, 2016. URL http://papers.nips.cc/paper/
6573-binarized-neural-networks.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2015. URL https://arxiv.org/pdf/1412.6980.pdf.

Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. Parameter identification
for symbolic regression using nonlinear least squares. Genetic Programming and Evolvable Machines, 21
(3):471–501, 2020. URL https://doi.org/10.1007/s10710-019-09371-3.

John R Koza. Genetic programming as a means for programming computers by natural selection. Statistics
and computing, 4(2), 1994.

Andreas Madsen and Alexander Rosenberg Johansen. Measuring arithmetic extrapolation performance. In
Science meets Engineering of Deep Learning at 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), volume abs/1910.01888, Vancouver, Canada, October 2019. URL https://arxiv.org/
pdf/1910.01888.pdf.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=H1gNOeHKPS.

Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. A primer for neural arithmetic logic modules. Jour-
nal of Machine Learning Research, 23(185):1–58, 2022. URL http://jmlr.org/papers/v23/21-0211.
html.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and control.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4442–4450. PMLR, 10–15 Jul 2018a.
URL https://proceedings.mlr.press/v80/sahoo18a.html.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and control.
In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018b.

Daniel Schlör, Markus Ring, and Andreas Hotho. inalu: Improved neural arithmetic logic unit. Frontiers
in Artificial Intelligence, 3:71, 2020. ISSN 2624-8212. doi: 10.3389/frai.2020.00071. URL https://www.
frontiersin.org/article/10.3389/frai.2020.00071.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science, 324
(5923):81–85, 2009.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. In Advances in Neural Information Processing Systems, pp. 8035–8044, 2018. URL https:
//openreview.net/pdf?id=H1gNOeHKPS.

15

https://arxiv.org/abs/2004.07085
https://arxiv.org/abs/2004.07085
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks
http://papers.nips.cc/paper/6573-binarized-neural-networks
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1007/s10710-019-09371-3
https://arxiv.org/pdf/1910.01888.pdf
https://arxiv.org/pdf/1910.01888.pdf
https://openreview.net/forum?id=H1gNOeHKPS
http://jmlr.org/papers/v23/21-0211.html
http://jmlr.org/papers/v23/21-0211.html
https://proceedings.mlr.press/v80/sahoo18a.html
https://www.frontiersin.org/article/10.3389/frai.2020.00071
https://www.frontiersin.org/article/10.3389/frai.2020.00071
https://openreview.net/pdf?id=H1gNOeHKPS
https://openreview.net/pdf?id=H1gNOeHKPS

Published in Transactions on Machine Learning Research (09/2022)

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic regression.
Science Advances, 6(16), 2020. doi: 10.1126/sciadv.aay2631. URL https://advances.sciencemag.org/
content/6/16/eaay2631.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=S1_pAu9xl.

16

https://advances.sciencemag.org/content/6/16/eaay2631
https://advances.sciencemag.org/content/6/16/eaay2631
https://openreview.net/forum?id=S1_pAu9xl

Published in Transactions on Machine Learning Research (09/2022)

Appendix

Table of Contents
A Properties of a Division Module 18

B Neural Addition and Neural Multiplication Units’ (NAU & NMU) 20

C Experiment Parameters 21
C.1 Parameter Initialisation . 22

D Hardware and Time to Run Experiments 23

E Real NPU; Single Module Task (without Redundancy): Additional Experiments 24

F Real NPU; Single Module Task (with Redundancy): Additional Experiments 25

G NMRU; Single Module Task with Redundancy: Additional Experiments 26

H NRU; the Single Module Task (no Redundancy): Effect of Learning Rate 28

I NRU; Single Module Task (no Redundancy); Tanh Scale Factor 29

J NRU; Single Module Task (with Redundancy): Calculating the Sign Separately 30

K Division by Small Values: 31
K.1 Impact of the Singularity Issue on Gold Solutions . 31
K.2 Experimental Results . 31

L Ranges Used for the Single Layer Task Summary Table 33

M Effect of Different Losses on the Single Module Task (with Redundancy) 34

N RMSE Loss Landscapes 37

17

Published in Transactions on Machine Learning Research (09/2022)

A Properties of a Division Module

When building a division module, the following properties should be included:

Ability to multiply: Without multiplication the module is limited to expressing reciprocals.

Interpretable weights: A good division module should produce generalisable solutions to out-of-bounds
data. Using interpretable weights to represent exact operations is one way of doing so, e.g., -1 to divide, 1
to multiply, 0 to not select. For the scope of this paper, we focus on discrete weights, however fractional
weights can also be considered interpretable. For example, the Real NPU can express 1√

xi
using a weight

value of -0.5.

Calculating the output: This can be decomposed into three tasks: magnitude calculation, sign calculation
and input selection.

Magnitude calculation: Refers to calculating the output value for a calculation. This is achieved using
discrete weight parameters. For example, the Real NPU and NRU use a weight value of -1 for calculating
reciprocals of selected input and 1 for multiplication, while the NMRU uses 1 for selecting an input element
resulting in either a multiplication or reciprocal depending on the weight’s position index.

Sign of the output: Calculating the sign value (1/-1) of the output can occur at an element level in which
the sign is calculated for each intermediary value as each input element is being processed, or at the higher
input level in which the sign is calculated separately from the magnitude and then applied once the final
output magnitude is calculated. The NRU uses the prior method while the Real NPU and NMRU use the
latter method. If an input is 0 or considered irrelevant then the output sign will be 1. (Ablation studies on
the NMRU, Figure 15, suggest the latter option which separately calculates the sign to be more beneficial).

The Real NPU and NMRU use the cosine function to calculate the final sign of the module’s output neuron.
Below shows the state diagram of how the sign value (i.e., the state) of the output would change depending on
the inputs and relevant parameters being processed. We only consider the discrete parameters for simplicity.
Both the Real NPU and NMRU use the same state diagram but have different conditions for a state transition
to occur.

s = −1 s = 1b(s) b(s)
a(s)

The conditions for the Real NPU transition functions a(s) = −s and b(s) = s, where s is the state value -1,
or 1, are defined as follows:

a(s) :xi < 0 ∧ wi,o ∈ {−1, 1} ∧ gi = 1 ,

b(s) :xi ≥ 0 ∨ wi,o = 0 ∨ gi = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative and is considered
relevant i.e. the gate (gi) and weight value (wi,o) is non-0. In contrast, to remain at a state requires either
the input element to be ≥ 0 or not be considered relevant.

The conditions for the NMRU transition functions a(s) = −s and b(s) = s, where s is the state value -1, or
1, are defined as follows:

a(s) :xi < 0 ∧ wi,o = 1 ,

b(s) :xi ≥ 0 ∨ wi,o = 0 .

Transitioning from one sign to another only occurs if the input element (xi) is negative and is considered
relevant i.e. the weight value (wi,o) is 1. To remain at a state requires either the input element to be ≥ 0 or
the weight value to not select the input.

Selection: Not all inputs are relevant for the output value. To process any irrelevant input elements can be
interpreted as converting to the identity value of multiplication/division (=1). The identity property means

18

Published in Transactions on Machine Learning Research (09/2022)

that any value multiplied/divided by the identity value remains at the original number. Hence, irrelevant
inputs are converted into 1 (rather than being masked out to 0). For the multiplication case, this stops the
output becoming 0, and for division it avoids the divide by 0 case. For all the explored modules, a weight
value of 0 will deal with the irrelevant input case. However, the Real NPU goes a step further by also having
an additional gate vector with the purpose of learning to select relevant inputs. Such gating has been proven
to be helpful for an NPU based module (Heim et al., 2020), but may not be necessary when dealing with
weights between [0,1] like in the NRMU (see Appendix G).

19

Published in Transactions on Machine Learning Research (09/2022)

B Neural Addition and Neural Multiplication Units’ (NAU & NMU)

Madsen & Johansen (2020) develop two modules: one for dealing with addition and subtraction (the NAU)
and the other for multiplication (the NMU). NAU output element ao is defined as

NAU : ao =
I∑

i=1
(Wi,o · xi) (9)

where I is the number of inputs. The NMU output element mo is defined as

NMU : mo =
I∏

i=1
(Wi,o · xi + 1 − Wi,o) . (10)

Before passing an input through a module, the weight matrix is clamped to [-1,1] for the NAU or [0,1]
for the NMU. Weights are ideally discrete values, where the NAU is 0, 1, or -1, representing no selection,
addition and subtraction, and the NMU is 0 or 1, representing no selection and multiplication. To enforce
discretisation of weights both units have a regularisation penalty for a given period of training. The penalty
is

λ · 1
I · O

O∑
o=1

I∑
i=1

min (|Wi,o|, 1 − |Wi,o|) , (11)

where O is the number of outputs and λ is defined as

λ = λ̂ · max
(

min
(

iterationi − λstart

λend − λstart
, 1
)

, 0
)

. (12)

Regularisation strength is scaled by a predefined λ̂. The regularisation will grow from 0 to λ̂ between
iterations λstart and λend, after which it plateaus and remains at λ̂.

The iterations for switching on and scaling the discretisation regularisation are chosen to allow weights
to have the opportunity to explore and begin to move far enough to the ideal discrete value (within 0.5),
therefore the earliest regularisation is only switched on after 50% of the epochs have occurred. From our
results, we have shown this works empirically. As the warmup scaling used for the regularisation occurs over
many epochs, there is some leniency in the epochs to start and end the scaling without significantly impact
success. In some cases, it could be possible to tune the start and end epoch for faster convergence but this
was out of the scope for this study.

20

Published in Transactions on Machine Learning Research (09/2022)

C Experiment Parameters

Tables 5 and 6 for the breakdown of parameters used in the Single Module Tasks. The parameters of Table 6
are taken from Heim et al. (2020, Section 4.1) which we confirm work empirically in Figure 1b.

Table 7 gives the interpolation and extrapolation ranges used in the mixed-sign datasets tasks.

Table 8 shows the breakdown of parameters used in the MNIST experiments. All experiments for the MNIST
Tasks were trained using a single GeForce GTX 1080 GPU.

Table 5: Parameters which are applied to all modules. Parameters have been split based on the experiment.
∗Validation and test datasets generate one batch of samples at the start which gets used for evaluation for
all iterations. † the Real NPU modules use a value of 1.

Parameter Without redundancy With redundancy
Layers 1 1
Input size 2 10
Total iterations 50,000 100,000
Train samples 128 per batch 128 per batch
Validation
samples∗

10000 10000

Test samples∗ 10000 10000
Seeds 25 25
Optimiser Adam (with default parame-

ters)
Adam (with default parame-
ters)

λ̂† 10 10

Table 6: Parameters specific to the Real NPU modules for the Single Module Tasks.

Parameter Value
(βstart,βend) (1e-9,1e-7)
βgrowth 10
βstep 10000
λ̂ 1

Table 7: Mixed-Sign Datasets: The interpolation and extrapolation ranges to sample the two input elements
for a single data sample. The target expression to learn is: input 1 ÷ input 2.

Interpolation Extrapolation

Dataset Input 1 Input 2 Input 1 Input 2

1 U[-2, -0.1) U[0.1, 2) U[-6, -2) U[2, 6)
2 U[-2, -1) U[1, 2) U[-6, -2) U[2, 6)
3 U[-2, 2) U[-2, 2) U[-6, -2) U[2, 6)
4 U[0.1, 2) U[-2, -0.1) U[2, 6) U[-6, -2)
5 U[1, -2) U[-2, -1) U[2, 6) U[-6, -2)

21

Published in Transactions on Machine Learning Research (09/2022)

Table 8: MNIST experiment parameters.

Parameter Two digit MNIST
Epochs 1000
Samples per permuta-
tion

1000

Train:Test 90:10
Batch Size 128
Train samples 72,000 (1 fold)/73,000 (9 folds)
Test samples 9,000 (1 fold)/8,000 (9 folds)
Folds/Seeds 10
Optimiser Adam (with default parameters)
Criterion MSE
Learning rate 1e-3
λstart − λend epochs 30-40
λ̂ 2
grad norm clip MLP = None; Real NPU = None; NRU = 1; NMRU = None

C.1 Parameter Initialisation

We give the initialisations used on the different module parameters:

Real NPU: The real weight matrix uses the Pytorch’s Xavier Uniform initialisation. The gate vector
initialises all values to 0.5. (This is the same initialisation used in Heim et al. (2020).)

NPU: The imaginary weight matrix is initialised to 0. The rest of the parameters are initialised same as
the Real NPU. (This is the same initialisation used in Heim et al. (2020).)

NRU: The weight matrix uses a Xavier Uniform initialisation which can have a maximum range between
-0.5 to 0.5 (depending on the network sizes). (This is the same initialisation the Neural Addition Unit uses
(Madsen & Johansen, 2020).)

NMRU: The weight matrix uses a Uniform initialisation which can have a maximum range between 0.25 to
0.75 (depending on the network sizes). (This is the same initialisation the Neural Multiplication unit uses
(Madsen & Johansen, 2020).)

22

Published in Transactions on Machine Learning Research (09/2022)

D Hardware and Time to Run Experiments

All experiments were trained on the CPU, as training on GPUs takes considerably longer. All Real NPU
experiments were run on Iridis 5 (the University of Southampton ’s supercomputer), where a compute node
has 40 CPUs with 192 GB of DDR4 memory which uses dual 2.0 GHz Intel Skylake processors. All NRU
and NMRU experiments were run on a 16 core CPU server with 125 GB memory 1.2 GHz processors.

Table 9 displays time taken for each experiment to run a single seed for a single range. Timings are based on
a single run rather than the runtime of a script execution because the queuing time from jobs when executing
scripts is not relevant to the experiment timings. For a single model, a single experiment would have 225
runs (for 9 training ranges and 25 seeds).

Table 9: Timings of experiments.

Experiment Model Approximate time for completing 1 seed (mm:ss)

No redundancy (size 2)
Real NPU 03:20
NRU 02:00
NMRU 03:00

With redundancy (size 10)
Real NPU 05:30
NRU 05:00
NMRU 05:15

23

Published in Transactions on Machine Learning Research (09/2022)

E Real NPU; Single Module Task (without Redundancy): Additional Experiments

Figure 11 shows results of using the NPU for the 2-input task. Of the 9 tested ranges, L2 has a lower success
rate than L1 for 5 ranges and has the same success rate for the remaining 4 ranges. If L2 regularisation is
used instead of no regularisation, it performs worse in 3 (of the 9) ranges, better on 3 ranges and the same
on the remaining 3 ranges.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

Extrapolation range success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●No reg L1 L2

Figure 11: Applying no regularisation, L1 regularisation and L2 regularisation to enforce sparsity in weights.

Figure 12 displays the effect of different learning rates for the modified Real NPU. A learning rate of 5e-3
has the best performance over all ranges.

●

●
●

●

● ●

●

●

●●

●

●
●

●

● ●
●

●● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

● ● ●● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●● ● ●

●

● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00000

0.00025

0.00050

0.00075

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●5e−1 5e−2 5e−3 5e−4

Figure 12: Different learning rates on the Real NPU (mod) for the Single Module Task (no redundancy).

24

Published in Transactions on Machine Learning Research (09/2022)

F Real NPU; Single Module Task (with Redundancy): Additional Experiments

We test the NPU module with all the modifications used on the real weight matrix. Also, assuming the
global solution only uses the real weights, we enforce the complex weights to be clipped between [-1,1] and to
go to 0 during the regularisation stage using a L1 penalty. Figure 13 shows the complex weights without any
constraints hinders success and convergence speeds of negative ranges. Applying clipping and regularisation
constraints does not result in any significant improvements against the Real NPU results.

●

●
●

●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●
● ● ● ● ● ●

●●

● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0.20

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●Real NPU (modified) NPU (no constraints) NPU (clip & reg)

Figure 13: Adapting the Real NPU to use complex weights (NPU) on the Single Module Task with re-
dundancy. Compares the NPU architecture with the Real NPU modifications (i.e. NPU (no constraints))
and the same model but with the imaginary weights clipped to [-1,1] and L1 sparsity regularisation on the
complex weights (i.e. NPU (clip & reg)).

Figure 14 shows how modifying the Real NPU’s weight discretisation to not penalise weights at 0 does not
affect success.

● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

● ● ●● ●
●

●
●

● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.000

0.025

0.050

0.075

0.100

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●{−1,1} {−1,0,1}

Figure 14: Comparing weight discretisation on the NPU weights which penalises not having weight of {−1, 1}
vs {−1, 0, 1}.

25

Published in Transactions on Machine Learning Research (09/2022)

● ● ●

●

●

● ● ● ●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●
●

● ● ●

●

● ● ● ● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●
●

●● ● ● ● ● ●

●
●

●● ● ● ● ● ●

●

●

●

● ● ● ● ●

●
●

●●

●
●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

2.5e−08

5.0e−08

7.5e−08

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ● ●vanilla gnc sign gnc+sign gnc+sign+gating

Figure 15: Ablation study for the NMRU.

G NMRU; Single Module Task with Redundancy: Additional Experiments

This section further explores the NMRU architecture.

Figure 15 shows an ablation study on different components of the NMRU architecture. Removing both
the sign retrieval and grad norm clipping performs poorly over a majority of ranges (including positive
ranges). Gradient norm clipping alone is unable to solve the issue in learning negative ranges, however fully
succeeds on the U [-2,2) range. Using the sign retrieval without the gradient clipping gains successes for the
negative ranges, though performance on U [2,-2) is affected. However, including both gradient clipping and
sign retrieval results in separating the calculation of the magnitude of the output and its sign while having
reasonable gradients, gaining the most improvement over the vanilla NMRU. Further including a learnable
gate vector (like the Real NPU), which is applied to the input vector, hinders performance. The largest
solved at iteration step seems to be bounded at approximately 50,000 iterations which correlates to the
point at which the sparsity regularisation begins, which highlights the importance of discretisation. Even
with the different ablations, the sparsity errors of the successful seeds remain extremely low (which is not
always the case for the Real NPU (see Figure 4)).

Figure 16 shows the effect of using different learning rates on the NMRU (with grad norm clipping and sign
retrieval) using an Adam optimiser. Too low a learning rate struggles on the mixed-sign range U [-2,2). Too
high a learning leads to no success on multiple ranges.

●

●

●

●

● ●

● ●

●

●

●

●
●

●

● ● ● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−04

4e−04

6e−04

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●1e−3 1e−2 1e−1

Figure 16: Effect of different learning rates on the NMRU

26

Published in Transactions on Machine Learning Research (09/2022)

Figure 17 compares training the NMRU with either an Adam and SGD optimiser. As expected, Adam
outperforms SGD in all ranges (except two, where both perform equally). This difference in performance
can be accounted for by Adam’s ability to scale the step size of each weight, which can complement the
clipped gradient norm of the NMRU, in contrast to the SGD’s global step size.

●

●

●
●

●

● ● ● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●● ● ●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ●● ● ●

●

●

● ● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

6e−05

8e−05

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●sgd adam

Figure 17: Effect of optimiser on the NMRU. SGD = Stochastic Gradient Descent.

27

Published in Transactions on Machine Learning Research (09/2022)

H NRU; the Single Module Task (no Redundancy): Effect of Learning Rate

Figure 18 displays the effect of different learning rates for the NRU. A learning rate of 1 gets full success on
all ranges with performance deteriorating as the learning rate reduces.

● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ●

● ● ●
●

●

●

● ●
●

● ●
● ●

● ●
● ●

●●
●

● ●

●

● ● ● ●

● ●
● ●

●

●
● ●

●
●

●
●

●

● ●

●
●

●

● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0

10000

20000

30000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●1e−3 1e−2 1e−1 1

Figure 18: Different learning rates on the NRU for the Single Module Task (no redundancy)

28

Published in Transactions on Machine Learning Research (09/2022)

I NRU; Single Module Task (no Redundancy); Tanh Scale Factor

Figure 19 shows the impact of changing the tanh scale factor. We find lager scale factors work better with
a factor of 1000 being the best. This correlates to the findings in Faber & Wattenhofer (2020, Figure 5).

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●

●

● ●

●

●
● ●

●● ●

● ●

●
●

● ●

●

● ● ● ● ●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●● ● ● ● ● ● ●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−08

4e−08

6e−08

8e−08

0

5000

10000

15000

20000

25000

0.00

0.25

0.50

0.75

1.00

Interpolation range

tanh scale ● ● ● ●1 10 100 1000

Figure 19: Effect of the tanh scale factor for the NRU on the 2-input setting.

29

Published in Transactions on Machine Learning Research (09/2022)

J NRU; Single Module Task (with Redundancy): Calculating the Sign Separately

The ‘separate NRU’ module calculates the magnitude and sign separately and then combines them using
multiplication together once all input elements are accounted for. The following definition is used to calculate
a NRU with separate magnitude and sign calculation,

zo =
I∏

i=1

(
|xi|Wi,o · |Wi,o| + 1 − |Wi,o|

)
·

I∏
i=1

sign(xi)round(Wi,o) . (13)

Figure 20 shows results, where the separate sign method shows no difference in success to the original NRU
architecture.

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0e+00

2e−05

4e−05

6e−05

8e−05

0

5000

10000

15000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●together separate

Figure 20: NRU on the redundancy experiment comparing a module which calculates the magnitude and
sign together vs calculating the magnitude and sign separately and then combining them.

30

Published in Transactions on Machine Learning Research (09/2022)

K Division by Small Values:

The discontinuous nature of division at zero results in the inability to provide a computational value for the
output/gradient and causes neighbouring values to have large gradients. To understand the extent of this
issue when learning, we explore learning to divide by values close to zero using three tasks with increasing
difficulty: 1) learning to take the reciprocal of a single input, 2) taking the reciprocal of the first input given
two inputs, and 3) dividing the first input by the second given two inputs.

K.1 Impact of the Singularity Issue on Gold Solutions

Figure 21 plots the test error assuming the module weights are set to the ‘gold’ solution for the three tasks.
As the range values become closer to zero, the test error thresholds become increasingly large. Therefore,
even with the correct weights, relying on the test errors alone as an indicator become increasingly deceptive
with values close to zero. The Real NPU has larger test errors for all tasks and ranges, caused by adding
ϵ to the input (see Equation 3). Setting ϵ = 0 reduces the test error at the cost of the ability to deal
with zero-valued inputs. Appendix K.2 provides the corresponding experimental results finding that only
modelling reciprocals can be learnt with extremely small values.

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

●
●

●

Input: [a]; Output: 1/a Input: [a,b]; Output: 1/a Input: [a,b]; Output: a/b

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

Data sample range

lo
g(

Te
st

 e
rr

or
)

● ● ● ●RealNPU RealNPU (eps=0) NRU NMRU

Figure 21: Effect of the singularity issue on the Real NPU, NRU and NMRU over increasing input ranges.
Left: Reciprocal for an input size of 1 (no redundancy). Middle: Reciprocal for an input size of 2 (with
redundancy). Right: Division for an input size of 2 (no redundancy).

K.2 Experimental Results

This section shows the results on trying to learn the reciprocal/division of values close to zero using the
Real NPU, NRU and NMRU. We train and test on the ranges where the lowest bound is 0 and the upper
bounds are: 1e-4, 1e-3, 1e-2, 1e-1 and 1. Unless stated otherwise, the hyperparameters of a model are set to
what is used for the Single Layer Task without redundancy. The first task runs for 5,000 iterations with no
regularisation for any module. The second and third tasks both run for 50,000 iterations.

Due to precision errors, a solution with the ideal parameters will not evaluate to a MSE of 0. Therefore, we
calculate thresholds which the test MSE should be within. A threshold value for a task is calculated from
evaluating the MSE of each range’s test dataset for each module, using the ‘golden’ weight values and adding
an epsilon term8 to the resulting error which takes into account precision errors. All experiments are run
using 32-bit precision.

8The term is the Pytorch default eps value, torch.finfo().eps

31

Published in Transactions on Machine Learning Research (09/2022)

In general, successful runs take longer to solve as the input ranges become smaller. The simplest task, of
taking the reciprocal when the input size is 1 (Figure 22) is achieved with ease for all modules, though for
U [0,1e-4), we find the NRU begins to start struggling.

● ● ● ● ●
●

● ● ● ●● ● ● ● ●

● ● ● ● ●● ● ● ● ●● ● ● ●
●

● ● ● ● ●● ● ● ● ●● ● ● ● ●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)
−5.00e−18

2.25e−17

5.00e−17

7.75e−17

1.05e−16

0

300

600

900

1200

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

Figure 22: Input: [a], output 1
a . Learns reciprocal when there is no input redundancy.

Introducing a redundant input (Figure 23) greatly impacts performance with only the NMRU able to achieve
reasonable success for the larger ranges. The successes shown for the Real NPU at range U [0, 1e-4) are false
positives caused by the ϵ in the architecture used for stability. Test false positives can also be indicated by
the high sparsity error of the weights.

● ●

●
●

●

● ● ● ●

●

●

● ● ● ●

●

● ●

●

●

● ● ●●

●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

0.00

0.03

0.06

0.09

0

5000

10000

15000

20000

25000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

Figure 23: Input: [a,b], output 1
a . Learns reciprocal of the first input when there is redundancy.

Modifying the task to division (Figure 24), meaning the redundant input is now relevant, shows improvement
for the NMRU and NRU for the larger ranges.

32

Published in Transactions on Machine Learning Research (09/2022)

● ● ●

● ●

● ● ● ●

●

● ● ● ● ●

●

●

●

● ●

●

Success rate Solved at iteration step Sparsity error

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

U[0
,0

.0
00

1)

U[0
,0

.0
01

)

U[0
,0

.0
1)

U[0
,0

.1
)

U[0
,1

)

0e+00

1e−08

2e−08

3e−08

4e−08

5e−08

0

2500

5000

7500

10000

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ●Real NPU NRU NMRU

Figure 24: Input: [a,b], output a
b . Learns division of the first and second value when there is no redundancy.

L Ranges Used for the Single Layer Task Summary Table

Table 10 shows the ranges used to generate the summary statistics. Note that even though the interpolation
ranges are given (to make it easier to compare against the relevant Figures), it is the success rate on the
extrapolation range which is used in the table summary.

33

Published in Transactions on Machine Learning Research (09/2022)

Table 10: The relevant ranges used to calculate the summary statistics in Table 4.

Redun-
dancy?

Input type Distribution Figure Interpolation Ranges

No

Mixed-signs Uniform 5 All 5 ranges: U[-2,-0.1) & U[0.1,2), U[-2,-
1) & U[1,2), U[-2,2), U[0.1,2) & U[-2,-0.1)
and U[1,2) & U[-2,-1)

Mixed-signs Truncated Normal 7 All 3 TN ranges: TN(-1,3): [-5,10),
TN(0,1):[-5,5) and TN(1,3):[-10,5)

Negative Uniform 3 Only pure negative ranges: U[-0.2,-0.1),
U[-1.2,-1.1), U[-2,-1) and U[-20,-10)

Positive Uniform 3 Only pure positive ranges: U[0.1,0.2),
U[1,2), U[1.1,1.2) and U[10,20)

Large magnitude Uniform 7 U[-100,100) and U[-50,50)

Large magnitude Benford 7 B[10,100)

Close to 0 Uniform 24 All 5 ranges: U[0,0.0001), U[0,0.001),
U[0,0.01), U[0,0.1) and U[0,1)

Close to 0 Truncated Normal 7 TN(0,1)[-5, 5)

Yes

Mixed-signs Uniform 6 All 5 ranges: U[-2,-0.1) & U[0.1,2), U[-2,-
1) & U[1,2), U[-2,2), U[0.1,2) & U[-2,-0.1)
and U[1,2) & U[-2,-1)

Mixed-signs Truncated Normal 8 All 3 TN ranges: TN(-1,3): [-5,10),
TN(0,1):[-5,5) and TN(1,3):[-10,5)

Negative Uniform 4 Only pure negative ranges: U[-0.2,-0.1),
U[-1.2,-1.1), U[-2,-1) and U[-20,-10)

Positive Uniform 4 Only pure positive ranges: U[0.1,0.2),
U[1,2), U[1.1,1.2) and U[10,20)

Large magnitude Uniform 8 U[-100,100) and U[-50,50)

Large magnitude Benford 8 B[10,100)

Close to 0 Truncated Normal 8 TN(0,1)[-5, 5)

M Effect of Different Losses on the Single Module Task (with Redundancy)

Different losses induce different loss landscapes impacting the areas of success for a module. We explore the
effects of three different losses including the MSE, Pearson’s Correlation Coefficient (Equation 15), and the
Mean Absolute Precision Error (Equation 16). We use the division task with 10 inputs. The properties of
each loss is summarised in Table 11. All experiment parameters match the original MSE runs in the main
experiments. The only difference is the loss used.

34

Published in Transactions on Machine Learning Research (09/2022)

Table 11: The properties of different loss functions.

MSE PCC MAPE
Batch mean ✓ ✓ ✓
Standardisation ✓ ✓
Difference of prediction from target ✓ ✓
Projection ✓
Mean centering ✓

●

●

●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●
●

●

● ● ●

●

●
●

●

●

●
●

●
●

●

● ●

●

● ●

●
●

● ● ●

●

● ● ● ●
●● ●

●
●

●
● ●

●

● ● ●

●

●
●

● ●
●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.000

0.025

0.050

0.075

0.100

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●MSE PCC MAPE

Figure 25: Single Module Task with redundancy on the Real NPU, comparing different loss functions.

vx,i = (ŷi − ¯̂y), sx =

√√√√clamp(1
N

N∑
i

v2
x,i, ϵ)

vy,i = (yi − ȳ), sy =

√√√√clamp(1
N

N∑
i

v2
y,i, ϵ)

r = 1
N

N∑
i

(vx,i

sx + ϵ
· vy,i

sy + ϵ
)

(14)

pcc loss :=1 − r (15)

where N is the batch size, and the means (¯̂y and ȳ) are taken over the batch. ϵ is used to provide better
numerical stability. The clamping refers to setting the minimum of the values to ϵ.

mape loss := 1
N

N∑
i

(|yi − ŷi|
yi

) (16)

Real NPU (Figure 25) Both the Real NPU and MAPE are able to get success on the U [-2,2) range,
which the MSE completely fails on, implying that having a loss with standardisation is useful. However,
to gain successes in the mixed-sign range, the other negative ranges have reduced in success for both PCC
and MAPE. Both speed and sparsity retain similar performance to MSE in a majority of cases, with PCC
solving especially fast for all tested ranges.

35

Published in Transactions on Machine Learning Research (09/2022)

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

● ● ●

●

● ● ● ●

●
● ●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00000

0.00005

0.00010

0.00015

0

25000

50000

75000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●MSE PCC MAPE

Figure 26: Single Module Task with redundancy on the NRU, comparing different loss functions.

NRU (Figure 26) Different losses have little effect on the NRU. All three losses perform well on the
positive ranges. Compared to the Real NPU, the PCC loss on the NRU takes longer to converge to a success
for negative ranges.

NMRU (Figure 27) All three loses perform reasonably well, with the PCC struggling the most. Unlike
the other units, U [-20,-10) causes the most trouble, whereas U [-2,2) gains near to full success on two of the
three losses.

●

●

●

●
●

● ● ●

●●

●

●
●

●

● ● ● ●

●

●
●

●

●

● ● ● ●

● ● ●

●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●● ● ● ● ● ●

● ●

●●

●
●

●

● ●

● ●

●

Extrapolation range success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

0

20000

40000

60000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●MSE PCC MAPE

Figure 27: Single Module Task with redundancy on the NMRU, comparing different loss functions.

36

Published in Transactions on Machine Learning Research (09/2022)

N RMSE Loss Landscapes

The following shows the Root Mean Squared loss curvature for the NAU stacked with either a RealNPU,
NRU, or NMRU. "The weight matrices are constrained to W1 =

[
w1 w1 0 0
w1 w1 w1 w1

]
, W2 = [w2 w2]. The problem

is (x1 + x2) · (x1 + x2 + x3 + x4) for x = (1, 1.2, 1.8, 2)" (Madsen & Johansen, 2020). The ideal solution is
w1 = w2 = 1, though other valid solutions do exist e.g., w1 = −1, w2 = 1. The NMRU’s weight matrix
would be W2 = [w2 w2 0 0], and the Real NPU’s g = [1 1].

(a) NAU-Real NPU (where ϵ = 1e − 5)

37

Published in Transactions on Machine Learning Research (09/2022)

(b) NAU-NRU

(c) NAU-NMRU

Figure 28: Enlarged loss landscapes of different stacked summative-multiplicative units.
38

	
	Introduction
	Related Work
	Architectures
	Real Neural Power Unit
	Neural Reciprocal Unit
	Neural Multiplicative Reciprocal Unit

	Single Layer Arithmetic Experiment Setup
	Improving the Real NPU's Robustness
	Uniform Range Datasets
	Mixed-Sign Input Datasets
	More Challenging Distributions: Larger Magnitudes and Mixed-Signs
	Sparsity Failure Rates

	Traits of Modules when Learning on the Redundancy Setting
	MNIST Arithmetic
	Setup and Network Architecture
	Metrics and Results

	Discussion
	Appendix

	 Appendix
	Properties of a Division Module
	Neural Addition and Neural Multiplication Units' (NAU & NMU)
	Experiment Parameters
	Parameter Initialisation

	Hardware and Time to Run Experiments
	Real NPU; Single Module Task (without Redundancy): Additional Experiments
	Real NPU; Single Module Task (with Redundancy): Additional Experiments
	NMRU; Single Module Task with Redundancy: Additional Experiments
	NRU; the Single Module Task (no Redundancy): Effect of Learning Rate
	NRU; Single Module Task (no Redundancy); Tanh Scale Factor
	NRU; Single Module Task (with Redundancy): Calculating the Sign Separately
	Division by Small Values:
	Impact of the Singularity Issue on Gold Solutions
	Experimental Results

	Ranges Used for the Single Layer Task Summary Table
	Effect of Different Losses on the Single Module Task (with Redundancy)
	RMSE Loss Landscapes

