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ABSTRACT

Experimental (design) optimization is a key driver in designing and discovering
new products and processes. Bayesian Optimization (BO) is an effective tool
for optimizing expensive and black-box experimental design processes. While
Bayesian optimization is a principled data-driven approach to experimental op-
timization, it learns everything from scratch and could greatly benefit from the
expertise of its human (domain) experts who often reason about systems at dif-
ferent abstraction levels using physical properties that are not necessarily directly
measured (or measurable). In this paper, we propose a human-AI collaborative
Bayesian framework to incorporate expert preferences about unmeasured abstract
properties into the surrogate modeling to further boost the performance of BO.
We provide an efficient strategy that can also handle any incorrect/misleading ex-
pert bias in preferential judgments. We discuss the convergence behavior of our
proposed framework. Our experimental results involving synthetic functions and
real-world datasets show the superiority of our method against the baselines.

1 INTRODUCTION

Experimental design is the workhorse of scientific design and discovery. Bayesian Optimization
(BO) has emerged as a powerful methodology for experimental design tasks (Martinez-Cantin, 2014;
Greenhill et al., 2020) due to its sample-efficiency in optimizing expensive black-box functions. In
its basic form, BO starts with a set of randomly initialized designs and then sequentially suggests
the next design until the target objective is reached or the optimization budget is depleted. Theoret-
ical analyses (Srinivas et al., 2012; Chowdhury & Gopalan, 2017b) of BO methods have provided
mathematical guarantees of sample efficiency in the form of sub-linear regret bounds. While BO is
an efficient optimization method, it only uses data gathered during the design optimization process.
However, in real-world experimental design tasks, we also have access to human experts (Swersky,
2017) who have enormous knowledge about the underlying physical phenomena. Incorporating such
valuable knowledge can greatly accelerate the sample-efficiency of BO.

Previous efforts in BO literature have incorporated expert knowledge on the shape of functions
(Venkatesh et al., 2019), form of trends (Li et al., 2018), model selection (Venkatesh et al., 2022) and
priors over optima (Hvarfner et al., 2022), which require experts to provide very detailed knowledge
about the black-box function. However, most experts understand the process in an approximate or
qualitative way, and usually reason in terms of the intermediate abstract properties - the expert will
compare designs, and reason as to why one design is better than another using high level abstractions.
E.g, consider the design of a spacecraft shield (Whipple shield) consisting of 2 plates separated by
a gap to safeguard the spacecraft against micro-meteoroid and orbital debris particle impacts. The
design efficacy is measured by observing the penetration caused by hyper-velocity debris. An expert
would reason why one design is better than another and accordingly come up with a new design to try
out. As part of their domain knowledge, human experts often expect the first plate to shatter the space
debris while the second to absorb the fragments effect. Based on these abstract intuitions, the expert
will compare a pair of designs by examining the shield penetration images and ask: Does the first
plate shatter better (Shattering)? Does the second plate absorb the fragments better (Absorption)?
The use of such abstractions allows experts to predict the overall design objective thus resulting in
an efficient experimental design process. It is important to note that measuring such abstractions is
not usually feasible and only expert’s qualitative inputs are available. Incorporating such abstract
properties in BO for the acceleration of experimental design process is not well explored.
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In this paper, we propose a novel human-AI collaborative approach - Bayesian Optimization with
Abstract Properties (BOAP) - to accelerate BO by capturing expert inputs about the abstract, un-
measurable properties of the designs. Since expert inputs are usually qualitative (Nguyen et al.,
2021) and often available in the form of design preferences based on abstract properties, we model
each abstract property via a latent function using the qualitative pairwise rankings. We note that
eliciting such pairwise preferences about designs does not add significant cognitive overhead for
the expert, in contrast to asking for explicit knowledge about properties. We fit a separate rank
Gaussian process (Chu & Ghahramani, 2005) to model each property. Our framework allows
enormous flexibility for expert collaborations as it does not need the exact value of an abstract
property, just its ranking. A schematic of our proposed BOAP framework is shown in Figure 1.
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Figure 1: A schematic representation of Bayesian
Optimization with Abstract Properties (BOAP)

Although we anticipate that experts will pro-
vide accurate preferences on abstract prop-
erties, the expert preferential knowledge can
sometimes be misleading. Therefore to avoid
such undesired bias, we use two models for
the black-box function. The first model uses
a “main” Gaussian Process (GP) to model the
black-box function in an augmented input space
where the design variables are augmented with
the estimated abstract properties modeled via
their respective rank GPs. The second model
uses another “main” GP to model the black-box function using the original design space without
any expert inputs. At each iteration, we use predictive likelihood-based model selection to choose
the “best” model that has higher probability of finding the optima.

Our contributions are: (i) we propose a novel human-AI collaborative BO algorithm (BOAP) for
incorporating the expert pairwise preferences on abstract properties via rank GPs (Section 3), (ii)
we provide a theoretical discussion on the convergence behavior of our proposed BOAP method
(Section 3.4), (iii) we provide empirical results on both synthetic optimization problems and real-
world design optimization problems to prove the usefulness of BOAP framework (Section 4).

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) (Brochu et al., 2010; Frazier, 2018) provides an elegant framework for
finding the global optima of an expensive black-box function f(x), given as x⋆ ∈ argmaxx∈X f(x),
where X is a compact search space. BO is comprised of two main components: (i) a surrogate model
(usually a Gaussian Process (Williams & Rasmussen, 2006)) of the unknown objective function
f(x), and (ii) an Acquisition Function u(x) (Kushner, 1964) to guide the search for optima.

2.1.1 GAUSSIAN PROCESS

A GP (Williams & Rasmussen, 2006) is a flexible, non-parametric distribution over functions. It is
a preferred surrogate model because of its simplicity and tractability, in contrast to other surrogate
models such as Student-t process (Shah et al., 2014) and Wiener process (Zhang et al., 2018). A
GP is defined by a prior mean function µ(x) and a kernel k : X × X→R. The function f(x) is
modeled using a GP as f(x) ∼ GP(0, k(x,x′)). If D1:t = {x1:t,y1:t} denotes a set of observations,
where y = f(x) + η is the observation corrupted with noise η ∈ N (0, σ2

η) then, according to the
properties of GP, the observed samples D1:t and a new observation (x⋆, f(x⋆)) are jointly Gaussian.
Thus, the posterior distribution f(x⋆) is N (µ(x⋆), σ

2(x⋆)), where µ(x⋆) = k⊺[K + σ2
ηI]

−1y1:t,
σ2(x⋆) = k(x⋆,x⋆)−k⊺[K+σ2

ηI]
−1k, k =[k(x⋆,x1) · · · k(x⋆,xt)]

⊺, and K = [k(xi,xj)]i,j∈Nt
.

2.1.2 ACQUISITION FUNCTIONS

The acquisition function selects the next point for evaluation by balancing the exploitation vs explo-
ration (i.e searching in high value regions vs highly uncertain regions). Some popular acquisition
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functions include Expected Improvement (Mockus et al., 1978), GP-UCB (Srinivas et al., 2012) and
Thompson sampling (Thompson, 1933). A standard BO algorithm is provided in Appendix § A.2.

2.2 RANK GP DISTRIBUTIONS

Kahneman & Tversky (2013) demonstrated that humans are better at providing qualitative compar-
isons than absolute magnitudes. Thus modeling latent human preferences is crucial for optimization
objectives in domains such as A/B testing of web design (Siroker & Koomen, 2015), recommender
systems (Brusilovski et al., 2007), players skill rating (Herbrich et al., 2006) and many more. Chu
& Ghahramani (2005) proposed a non-parametric Bayesian method for learning instance or label
preferences. We now discuss modeling pairwise preference relations using rank GPs.

Consider a set of n distinct training instances denoted by X = {xi ∀i ∈ Nn | Nn = {1, 2, · · · , n}}
based on which pairwise preference relations are observed. Let P = {(x ≻ x′) | x,x′ ∈ X}
be a set of pairwise preference relations, where the notation x ≻ x′ expresses the preference of
instance x over x′. E.g., the pair {x,x′} can be two different spacecraft shield designs and x ≻ x′

implies that spacecraft design x is preferred over x′. Chu & Ghahramani (2005) assume that each
training instance is associated with an unobservable latent function value {f̄(x)} measured from
an underlying hidden preference function f̄ : Rd → R, where x ≻ x′, implies f̄(x) > f̄(x′).
Employing an appropriate GP prior and likelihood, user preference can be modeled via rank GPs.

Preference learning has been used in BO literature (González et al., 2017; Mikkola et al., 2020).
González et al. (2017) proposed Preferential BO (PBO) to model the unobserved objective function
using a binary design preferential feedback. Benavoli et al. (2021) modified PBO to compute poste-
riors via skew GPs. Astudillo & Frazier (2020) proposed a preference learning based BO to model
preferences in a multi-objective setup using multi-output GPs. All these works incorporate prefer-
ences about an unobserved objective function. However, in this paper, we use preference learning
to model expert preferences about the intermediate abstract (auxiliary) properties. Our latent model
learnt using such preferential data is then used as an input to model the main objective function.

3 FRAMEWORK

This paper addresses the global optimization of an expensive, black-box function, i.e we aim to find:
x⋆ ∈ argmax f(x)

x∈X
(1)

where f : X → R is a noisy and expensive objective function. For example, f could be a metric
signifying the strength of the spacecraft design. The motivation of this research work is to model
f by capturing the cognitive knowledge of experts in making preferential decisions based on the
inherent non-measurable abstract properties of the possible designs. The objective here is same
as that of standard BO i.e., to find the optimal design (x⋆) that maximizes the unknown function
f , but in the light of expert preferential knowledge on abstract properties. The central idea is to
use preferential feedback to model and utilize the underlying higher-order properties that underpin
preferential decisions about designs. We propose Bayesian Optimization with Abstract Properties
(BOAP) for the optimization of f in the light of expert preferential inputs. First, we discuss expert
knowledge about abstract properties. Next, we discuss GP modeling of f with preferential inputs,
followed by a model-selection step that is capable of overcoming a futile expert bias in preferential
knowledge. A complete algorithm for BOAP is presented in Algorithm 1 at the end of this section.

3.1 EXPERT PREFERENTIAL INPUTS ON ABSTRACT PROPERTIES

In numerous scenarios, domain experts reason the output of a system in terms of higher order prop-
erties ω1(x), ω2(x), . . . of a design x ∈ X . However, these abstract properties are rarely measured,
only being accessible via expert preferential inputs. E.g., a material scientist designing spacecraft
shield can easily provide her pairwise preferences on the properties such as shattering, shock ab-
sorption, i.e., “this design absorbs shock better than that design”, in contrast to specifying the exact
measurements of shock absorption. These properties can be simple physical properties or abstract
combinations of multiple physical properties which an expert uses to reason about the output of a
system. We propose to incorporate such qualitative properties accessible to the expert in the surro-
gate modeling of the given objective function to further accelerate the sample-efficiency of BO.
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Let ω1:m(x) be a set of m abstract properties derived from the design x ∈ X . For property ωi,
design x is preferred over design x′ if ωi(x) > ωi(x

′). We denote the set of preferences provided
on ωi as Pωi = {(x ≻ x′) if ωi(x) > ωi(x

′) | x ∈ X}.

3.1.1 RANK GPS FOR ABSTRACT PROPERTIES

We capture the aforementioned expert preferential data for each of the abstract properties ω1:m

individually using m separate rank Gaussian process distributions (Chu & Ghahramani, 2005). In
conventional GPs the observation model consists of a map of input-output pairs. In contrast, the
observation model of rank (preferential) Gaussian Process (GP) consists of a set of instances and a
set of pairwise preferences between those instances. The central idea here is to capture the ordering
over instances X = {xi | ∀i ∈ Nn} by learning latent preference functions {ωi | ∀i ∈ Nm}. We
denote such a rank GP modeling abstract property ωi by the notation GPωi

.

Let X ∈ Rd be a d−dimensional compact search space and X = {xi |∀i ∈ Nn} be a set of n training
instances. Let ω = {ω(x)} be the unobservable latent preference function values associated with
each of the instances x ∈ X . Let P be the set of p pairwise preferences between instances in X ,
defined as P = {(x ≻ x′)j if ω(x) > ω(x′) | x ∈ X,∀j ∈ Np}. The observation model for the
rank GP distribution GPω modeling the latent preference function ω is given as D̄ = {x1:n, P =
{(x ≻ x′)j ∀x,x′ ∈ X, j ∈ Np}}.

We follow the probabilistic kernel approach for preference learning (Chu & Ghahramani, 2005) to
formulate the likelihood function and Bayesian probabilities. Imposing non-parametric GP priors
on the latent function values ω, we arrive at the prior probability of ω given by:

P(ω) = (2π)−
n
2 |K|− 1

2 exp
(
− 1

2ω
⊺K−1ω

)
(2)

With suitable noise assumptions N (0, σ̃2
η) on inputs and the preference relations (x,x′)1:m in P ,

the Gaussian likelihood function based on Thurstone (2017) is:

P((x ≻ x′)i|ω(x), ω(x
′)) = Φ

(
zi(x,x

′)
)

(3)

where Φ is the c.d.f of standard normal distribution N (0, 1) and z(x,x′) = ω(x)−ω(x′)√
2σ̃2

η

. Based on

Bayes theorem, the posterior distribution of the latent function given the data is given by:

P(ω|D̄) =
P(ω)

P(D̄)
P(D̄|ω)

where P(ω) is the prior distribution (Eq. (2)), P(D̄|ω) is the probability of observing the pairwise
preferences given the latent function values ω, which can be computed as a product of the likelihood
(Eq. (3)) i.e., P(D̄|ω) =

∏
p P((x ≻ x′)p|ω(x), ω(x′)) and P(D̄) =

∫
P(D̄|ω)P(ω) dω is the

evidence of model parameters including kernel hyperparameters. We find the posterior distribution
using Laplace approximation and the Maximum A Posteriori estimate (MAP) ωMAP as the mode of
posterior distribution. We can find the MAP using Newton-Raphson descent given by:

ωnew = ωold −H−1g|ω=ωold (4)

where the Hessian H = [K + σ̃2
ηI]

−1 + C, and the gradient g = ∇ω log P(ω|D̄) = −[K +

σ̃2
ηI]

−1ω + b, given bj = ∂
∂ω(xj)

∑
p

lnΦ(zp) and Cij = ∂
∂ω(xi)∂ω(xj)

∑
p

lnΦ(zp).

3.1.2 HYPERPARAMETER OPTIMIZATION

Kernel hyperparameter (θ⋆) selection is crucial to optimize the generalization performance of the GP.
We perform the model selection for our rank-GPs by maximizing the corresponding log-likelihood
in the light of latent values ωMAP. In contrast to the evidence maximization mentioned in Chu &
Ghahramani (2005) i.e., θ⋆ = argmaxθ P(D̄|θ), we find the optimal kernel hyperparameters by
maximizing the log-likelihood (L̄) of rank GPs i.e., θ⋆ = argmaxθ L̄. The closed-form of log-
likelihood of the rank GP is given as:

L̄=−1

2
ω⊺

MAP[K+ σ̃2
ηI]

−1ωMAP −
1

2
log|K+ σ̃2

ηI |−
n

2
log(2π) (5)
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3.2 AUGMENTED GP WITH ABSTRACT PROPERTY PREFERENCES

To account for property preferences in modeling f , we augment the input x of a conventional GP
modeling f with the mean predictions obtained from m rank GPs (GPω1:m ) as auxiliary inputs
capturing the property preferences ω1:m, i.e., instead of modeling GP directly on x we model on
x̃ = [x, µω1(x), · · · , µωm(x)], where µωi is the predictive mean computed using:

µωi(x) = k⊺[K+σ̃2
ηI]

−1ωMAP

where k = [k(x,x1), · · · , k(x,xn)]
⊺, K = [k(xi,xj)]i,j∈Nn

and xi ∈ X . To handle different
scaling levels in rank GPs, we normalize its output in the interval [0, 1], such that µωi

(x) ∈ [0, 1].

The objective function is modeled on the concatenated inputs x̃ ∈ Rd+m and we denote this function
with augmented inputs x̃ as human-inspired objective function h(x̃). The GP (GPh) constructed in
the light of expert preferential data is then used in BO to find the global optima of h(x̃), given as:

x⋆ ∈ argmax
x∈X

h(x̃) (6)

The observation model is D = {(x, y = h(x̃) ≈ f(x))} i.e., the human-inspired objective function
h(x̃) is a simpler form compared to f(x) due to auxiliary features in the input, and we observe the
h(x̃) via f(x). We update GPh whenever the rank GPs (GPωi

) are updated with new expert data.

Incorporating Rank GP Uncertainties: The inputs that are significantly different from the ones
for which we have human preferential feedback, rank GP predictions may be inaccurate, which
can adversely affect the overall optimization performance. To avoid this, we incorporate the rank
GP uncertainties (which are high for such inputs). To do this, we utilize an Automatic Relevance
Determination (ARD) kernel where we set the lengthscales of the augmented input dimensions in
proportion to the rank GP uncertainties. Since the rank GP uncertainties are dependent on input
location x, we use a non-stationary spatially-varying kernel (kh) (Venkatesh et al., 2019) that allows
the lengthscale to be a parametric function of the input x. In particular, the lengthscale function
for each of the augmented input dimension (corresponding to property ωi) is set to be lωi(x) =
ασωi

(x), where α is the scale parameter and σωi
(x) is the normalized standard deviation predicted

using the rank GP (GPωi
). We set the lengthscales of the original input dimensions to a constant

value l. We use these lengthscales in the following spatially-varying kernel function:

kh(x̃, x̃
′) =

i=d+m∏
i=1

√
2l(x̃i)l(x̃′

i)

l2(x̃i) + l2(x̃′
i)

exp

(
−

i=d+m∑
i=1

(x̃i − x̃′
i)

2

l2(x̃i) + l2(x̃′
i)

)
(7)

where l(·) is the lengthscale function. This choice of lengthscale ensures that data points x̃ with
high model uncertainty have higher lengthscale on the augmented dimensions and thus are treated
as less important.1 The kernel hyperparameter set θh includes the constant lengthscales from the
original dimensions and the α parameter from the augmented input dimensions i.e., θh = [l1:D,α].
We maximize the GP log-marginal likelihood to find the optimal hyperparameter set θ⋆h.

3.3 THE BOAP ALGORITHM

Overcoming Inaccurate Expert Inputs: Up to this point we have assumed that expert input is
accurate and thus likely to accelerate BO. However, in some cases this feedback may be inaccurate,
and potentially slow down optimization. To overcome such issues and encourage exploration we
maintain 2 models, one of which is augmented by expert abstract properties (we refer to this as
Human arm i.e. Arm-h) and an un-augmented model (we refer to this as Control arm i.e. Arm-f),
and use maximum predictive likelihood to select the arm at each iteration.

The Control arm models f directly by observing the function values at suggested candidate points.
Here, we fit a standard GP (GPf ) based on the data collected i.e., D = {(x, y = f(x) + η)} where
η ∼ N (0, σ2

η) is the Gaussian noise. The GP distribution (GPf ) may be used to optimize f using a
BO algorithm with Thompson Sampling (TS) (Thompson, 1933) strategy.

1This makes the acquisition function less sensitive to uncertain augmentation features by reducing the rate
of change/gradient with respect to that input.
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At each iteration t, we compare the predictive likelihoods (Lt) of both the human augmented arm
and Control arm to select the model to use for suggesting the next promising candidate for the
function evaluation. Then, we use Thompson sampling to draw a sample St from the GP posterior
distribution of the chosen arm and find its corresponding maxima:

xh
t = argmax

x∈X
(Sh(x̃)) or xf

t = argmax
x∈X

(Sf(x))

Next, f is observed at the suggested location i.e., (xh
t , f(x

h
t )) or (xf

t, f(x
f
t)) and the rank GPs are

updated to capture the preferences with respect to the new suggestion xh
t or xf

t. Then, the main GPs
modelling f (both GPf and GPh) are also updated accordingly. This process continues until the
budget T depletes. Additional details of BOAP framework is provided in the Appendix (§ A.3).

Algorithm 1 Bayesian Optimization with Preferences on Abstract Properties (BOAP)
Input: Initial Observations: D1:t′ = {x1:t′ ,y1:t′}, Preferences: Pωi = {(x ≻ x′)1:p | ∀i ∈ Nm}

1. for t = t′ + 1, · · · , T iterations do
2. optimize hyperparameters Θ⋆

t = {θ⋆ω1:m
, θ⋆h, θ

⋆
f} and update GPω1:m

,GPh,GPf

3. compute predictive likelihoods Lh
t and Lf

t for Arm-h and Arm-f

4. if Lh
t > Lf

t, then

5. draw a random sample Sh
t from Arm-h using Thompson Sampling

6. maximize Sh
t to find xh

t = argmax
x∈X

(Sh
t (x̃))

7. xt = xh
t

8. else,

9. draw a random sample Sf
t Arm-f using Thompson Sampling

10. maximize Sf
t to find xf

t = argmax
x∈X

(Sf
t(x))

11. xt = xf
t

12. evaluate f at xt to obtain yt = f(xt) + ηt

13. Augment data D = D ∪ (xt, yt) and update expert preferences Pω1:m with respect to xt

14. x⋆ = argmax y
(x,y)∈D

15. end for
16. return x⋆

3.4 CONVERGENCE REMARKS

In this section we discuss the convergence properties of BOAP algorithm. The essence of BOAP
is the combination of Thompson-Sampling Bayesian Optimization (TS-BO) with likelihood-based
model-selection from multiple models of the same objective. To understand the convergence prop-
erties, we begin with special cases and then generalize to the real case.

Purely Un-Augmented Case: Let us suppose that the non-augmented (Control arm) model is used
for all iterations of BOAP. In this mode of operation BOAP will operate precisely like standard
Thompson-sampling BO (TS-BO), and thus regret is bounded as per TS-BO (Russo & Van Roy,
2014; Kandasamy et al., 2018; Chowdhury & Gopalan, 2017a) - i.e., in this simplified case the
(cumulative) regret is bounded as RT ∼ O(

√
T (B

√
γT +γT )) if we assume f ∈ Hk and ∥B∥Hk

≤
B, where γT is the maximum information gain (which is controlled by the covariance prior k).

Alternatively, assuming f ∈ F , the Bayes regret is bounded as BRT ∼ O(
√

dimE(F , 1
T )T log T )

6



(Russo & Van Roy, 2014), where dimE(F , 1
T ) is the eluder dimension of F (Russo & Van Roy,

2014; Li et al., 2021) as defined below (see Definition 3.2).

Definition 3.1 (ϵ-independence) (Russo & Van Roy, 2014) Let F ⊂ RX , ϵ ∈ R+. Then x ∈ X is
ϵ-dependent of {x1,x2, . . . ,xn} ⊂ X if, ∀f, f ′ ∈ F such that

∑
i(f(xi) − f ′(xi))

2 ≤ ϵ2, then
|f(x)− f ′(x)| < ϵ. We say that x ∈ X is ϵ-independent if it is not ϵ-dependent.

Definition 3.2 (Eluder dimension) (Russo & Van Roy, 2014) Let F ⊂ RX , ϵ ∈ R+. The eluder
dimension dimE(F , ϵ) of F is the length of the longest sequence {x1,x2, . . . ,xn} ⊂ X such that
∀i, ∃ϵ′ ≥ ϵ such that xi is ϵ′-independent of {x1,x2, . . . ,xi−1}.

In a nutshell, eluder dimension is a measure of effective dimension, being the number of observations
required to model any function in the set to within a given accuracy.

Purely Augmented Case: Next, suppose that the augmented model (Human arm) is used for all
iterations of BOAP. In this case the overall objective model is not a GP (due to the involvement of
rank GP as an input to the main GP), so we cannot naively apply information-gain based TS-BO
regret bounds as we may for the Control arm case. However we can apply the eluder dimension
bounds. Whether this provides better convergence depends entirely on the relevance and accuracy
of the user expert feedback used to construct the model augmentation: accurate feedback of relevant
abstract properties should, we postulate, reduce the eluder dimension of the model (with the limiting
case where the augmentation models f ), while inaccurate or irrelevant feedback may mislead the
model and increase eluder dimension, impeding convergence.

General Case: More generally, BOAP may select between the Control and Human Arms, which
can be modeled stochastically. If neither model has a consistently higher likelihood (either initially
or asymptotically) then the convergence behaviour will follow the worst-case convergence of TS-BO
using either the un-augmented or augmented model alone - that is:

BRT ∼ O(
√
max{dimE(Ff,

1
T ),dimE(Fh,

1
T )}T log T )

Under the reasonable assumptions that the predictive likelihood is (a) an accurate measure of model
fit, and that asymptotically (b) Lh

t > Lf
t if dimE(Fh,

1
T ) < dimE(Ff,

1
T ) (and vice-versa) then:

BRT ∼ O(
√

min{dimE(Ff,
1
T ),dimE(Fh,

1
T )}T log T )

So, provided that the expert provides accurate and relevant preference feedback we would have that
(a) the augmented model will (asymptotically) be selected and thus dominate the regret bound, and
(b) due to its lower eluder dimension the regret bound will be tighter, leading to a faster convergence.

4 EXPERIMENTS

We evaluate the performance of BOAP method using synthetic benchmark function optimization
problems and real-world optimization problems arising in advanced battery manufacturing pro-
cesses. We have considered the following experimental settings for BOAP. We use the popular
Automatic Relevance Determination (ARD) kernel (Neal, 2012) for the construction of both the
rank GPs and the conventional (un-augmented) GPs. For rank GPs, we tune ARD kernel hyperpa-
rameters θd = {ld} using max-likelihood estimation (Eq. (5)). For the augmented GP modeling
x̃, we use a modified ARD kernel that uses spatially varying kernel with a parametric lengthscale
function (See discussion in § 3.2). As we normalize the bounds, we tune ld (the lengthscale for the
un-augmented features) in the interval [0.1, 1] and the scale parameter α (for the auxiliary features)
in the interval (0, 2]. Further, we set signal variance σ2

f = 1 as we standardize the outputs.

We compare the performance of BOAP algorithm with the following state-of-the-art baselines. (i)
BO-TS: a standard Bayesian Optimization (BO) with Thompson Sampling (TS) strategy, (ii) BO-
EI: BO with Expected Improvement (EI) acquisition function, and (iii) BOAP - Only Augmentation
(BOAP-OA): In this baseline, we run our algorithm without the 2-arm scheme and we only use
augmented input for GP modeling. This baseline shows the effectiveness of expert’s inputs. We
do not consider any preference based BO methods González et al. (2017); Benavoli et al. (2021)
as baselines, because the preferences are provided directly on the objective function, as opposed to
abstract properties that are not measured directly. The additional details of our experimental setup
are provided in the Appendix (§ A.4.1).
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Table 1: Details of the synthetic optimization benchmark functions. Analytical forms are provided
in the 2nd column and the last column depicts the high level features used by a simulated expert.

Functions f(x) High Level Features

Benchmark-1d exp(2−x)2 +exp
(6−x)2

10 + 1
x2+1 ω1 = exp(2−x)2 , ω2 = 1

x2

Rosenbrock-3d
d−1∑
i=1

[100× (xi+1 − x2
i )

2 + (xi − 1)2]
ω1 = (x3 − x2

2)
2 + (x2 − x2

1)
2

ω2 = (x2 − 1)2 + (x1 − 1)2
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Figure 2: Simple regret vs iterations for the synthetic multi-dimensional benchmark functions. We
plot the average regret along with its standard error obtained after 10 random repeated runs.

4.1 SYNTHETIC EXPERIMENTS

We evaluate BOAP framework in the global optimization of synthetic optimization benchmark func-
tions (Surjanovic & Bingham, 2017). The list of synthetic functions used are provided in Table 1.

Emulating Expert’s Preferential Inputs: As discussed in §3.1, we fit a rank GP using the expert
preferences provided on designs based on their cognitive knowledge. In all our synthetic experi-
ments we set m = 2, i.e., we model two abstract properties {ω1, ω2} for the considered synthetic
function. We expect the expert to know the higher order abstract features of each design x ∈ X .
We construct rank GPs by emulating the expert preferences based on such high-level features of
the given synthetic function. The possible set of high-level features of the synthetic functions are
mentioned in Table 1. We generate preference list Pω1:2 for each high-level feature of the designs
by comparing its utility. We start with p =

(
t′

2

)
preferences in P , that gets updated in every iteration

of the optimization process. We construct rank GP surrogates {GPω1 ,GPω2} using Pω1 and Pω2 .

For a given d−dimensional problem, we have considered t′ = d+3 initial observations and allocate
the overall budget T = 10×d+5. We repeat all our synthetic experiments 10 times with random ini-
tialization and report the average simple regret (Brochu et al., 2010) as a function of iterations. The
convergence plots obtained for the global optimization experiments using synthetic functions after
10 runs are shown in Figure 2. It is evident from the convergence results that our proposed BOAP
method has outperformed the standard baselines by a huge margin, thereby proving its superiority.

To demonstrate the effectiveness of BOAP we have conducted additional experiments by accounting
for the inaccuracy or poor choices in expert preferential knowledge. Due to the space constraints the
ablation results and the additional experimental results are provided in the Appendix (§ A.4).

4.2 REAL-WORLD EXPERIMENTS

We compare the performance of BOAP in two real-world optimization use-cases in Lithium-ion
battery manufacturing that are proven to be very complex and expensive in nature, thus providing
a wide scope for the optimization. Further, battery scientists often reveal additional knowledge
about the abstract properties in the battery design space and thus providing a rich playground for the
evaluation of our framework. We refer to the appendix (§ A.4.3) for the detailed experimental setup.
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Figure 3: Simple regret vs iterations for battery manufacturing optimization experiments: (a) Opti-
mization of electrode calendering process, and (b) Optimization of battery endurance.

4.2.1 OPTIMIZATION OF ELECTRODE CALENDERING

In this experiment, we consider a case study on the calendering process proposed by Duquesnoy
et al. (2020). The authors analyzed the effect of parameters such as calendering pressure (εcal), elec-
trode porosity and electrode composition on the electrode properties such as electrolyte conductivity,
tortuosity (both in solid phase (τsol) and liquid phase (τliq)), Current Collector (CC), Active Surface
(AS), etc. We define an optimization paradigm using the data published by Duquesnoy et al. (2020).

We use our proposed BOAP framework to optimize the electrode calendering process by maximizing
the Active Surface of electrodes by modeling two abstract properties: (i) Property 1 (ω1): Tortuosity
in liquid phase τliq, and (ii) Property 2 (ω2): Output Porosity (OP). We simulate the expert pairwise
preferential inputs {Pωτliq , PωOP} by comparing the actual measurements reported in the dataset
published by Duquesnoy et al. (2020). We consider 4 initial observations and maximize the active
surface of the electrodes for 50 iterations. We compare the performance of our proposed BOAP
framework by plotting the average simple regret after 10 repeated runs with random initializations.
The convergence results obtained for the electrode calendering optimization is shown in Figure 3a.

4.2.2 ELECTRODE MANUFACTURING OPTIMIZATION

The best battery formulation and the optimal selection of process parameters is crucial for manufac-
turing long-life and energy-dense batteries. Drakopoulos et al. (2021) analyzed the manufacturing of
Lithium-ion graphite based electrodes and reported the process parameters in manufacturing a bat-
tery along with the output charge capacities of the battery measured after certain charge-discharge
cycles. In our experiment, we use BOAP to optimally select the manufacturing process parameters
to design a battery with maximum endurance i.e, a battery that can retain the maximum charge after
certain charge-discharge cycles. We consider Anode Thickness (AT) and Active Mass (AM) as ab-
stract properties {ωAT, ωAM} to maximize the battery endurance E = D50

D5
, where D50 and D5 are

the discharge capacities of the cell at 50th and 5th cycle, respectively. We consider 4 initial obser-
vations and maximize the endurance of the cell for 50 iterations. We compare the performance by
plotting the average simple regret versus iterations after 10 random repeated runs. The convergence
results obtained for maximizing the battery endurance is shown in Figure 3b.

It is evident from Figure 3 that BOAP is superior to the baselines due to its ability to model the
abstract properties of the battery designs that can be beneficial in accelerating BO performance.

5 CONCLUSION

We present a novel approach for human-AI collaborative BO for modeling the expert inputs on
abstract properties to further accelerate the sample-efficiency of BO. Experts provide preferential
inputs about the abstract and unmeasurable properties. We model such preferential inputs using
rank GPs. We augment the inputs of a standard GP with the output of such auxiliary rank GPs to
learn the underlying preferences in the instance space. We use a 2-arm strategy to overcome any
futile expert bias and encourage exploration. We discuss the convergence of our proposed BOAP
framework. The experimental results show the superiority of our proposed BOAP algorithm.
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