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Abstract

In this paper, we study and prove the non-asymptotic superlinear convergence rate of
the Broyden class of quasi-Newton algorithms which includes the Davidon—Fletcher—
Powell (DFP) method and the Broyden—Fletcher—Goldfarb—Shanno (BFGS) method.
The asymptotic superlinear convergence rate of these quasi-Newton methods has been
extensively studied in the literature, but their explicit finite—time local convergence
rate is not fully investigated. In this paper, we provide a finite-time (non-asymptotic)
convergence analysis for Broyden quasi-Newton algorithms under the assumptions
that the objective function is strongly convex, its gradient is Lipschitz continuous, and
its Hessian is Lipschitz continuous at the optimal solution. We show that in a local
neighborhood of the optimal solution, the iterates generated by both DFP and BFGS
converge to the optimal solution at a superlinear rate of (1/k)*/2, where k is the number
of iterations. We also prove a similar local superlinear convergence result holds for the
case that the objective function is self-concordant. Numerical experiments on several
datasets confirm our explicit convergence rate bounds. Our theoretical guarantee is
one of the first results that provide a non-asymptotic superlinear convergence rate for
quasi-Newton methods.
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1 Introduction

In this paper, we focus on the non-asymptotic convergence analysis of quasi-Newton
methods for the problem of minimizing a convex function f : R¢ — R, i.e.,

min f(x).

xeRd

Specifically, we focus on two different settings. In the first case, we assume that the
objective function f is strongly convex, smooth (its gradient is Lipschitz continuous),
and its Hessian is Lipschitz continuous at the optimal solution. In the second case,
we study the setting where the objective function f is self-concordant. We formally
define these settings in the following sections. In both considered cases, the optimal
solution is unique and denoted by x..

There is an extensive literature on the use of first-order methods for convex
optimization, and it is well-known that the best achievable convergence rate for
first-order methods, when the objective function is strongly convex and smooth, is
a linear convergence rate. Specifically, we say a sequence {x;} converges linearly if
Xk — x4]| < Cy¥|lxo — x4, where € (0, 1) is the constant of linear convergence,
and C is a constant possibly depending on problem parameters. Among first-order
methods, the accelerated gradient method proposed in [1] achieves a fast linear con-
vergence rate of (1 — \/;1/L)*/?, where y is the strong convexity parameter and L is
the smoothness parameter (the Lipschitz constant of the gradient) [2]. It is also known
that the convergence rate of the accelerated gradient method is optimal for first-order
methods in the setting that the problem dimension d is sufficiently larger than the
number of iterations [3].

Classical alternatives to improve the convergence rate of first-order methods are
second-order methods [4-7] and in particular Newton’s method. It has been shown
that if in addition to smoothness and strong convexity assumptions, the objective func-
tion f has a Lipschitz continuous Hessian, then the iterates generated by Newton’s
method converge to the optimal solution at a quadratic rate in a local neighborhood
of the optimal solution; see [8, Chapter 9]. A similar result has been established for
the case that the objective function is self-concordant [9]. Despite the fact that the
quadratic convergence rate of Newton’s method holds only in a local neighborhood of
the optimal solution, it could reduce the overall number of iterations significantly as it
is substantially faster than the linear rate of first-order methods. The fast quadratic con-
vergence rate of Newton’s method, however, does not come for free. Implementation
of Newton’s method requires solving a linear system at each iteration with the matrix
defined by the objective function Hessian V2 f (x). As a result, the computational cost
of implementing Newton’s method in high-dimensional problems is prohibitive, as it
could be O(d 3), unlike first-order methods that have a per iteration cost of O(d).

Quasi-Newton algorithms are quite popular since they serve as a middle ground
between first-order methods and Newton-type algorithms. They improve the linear
convergence rate of first-order methods and achieve a local superlinear rate, while
their computational cost per iteration is O(d?) instead of O(d?) of Newton’s method.
The main idea of quasi-Newton methods is to approximate the step of Newton’s method
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without computing the objective function Hessian V2 f(x) or its inverse V2 f(x)~!
at every iteration [10, Chapter 6]. To be more specific, quasi-Newton methods aim at
approximating the curvature of the objective function by using only first-order infor-
mation of the function, i.e., its gradients V f (x); see Sect. 2 for more details. There are
several different approaches for approximating the objective function Hessian and its
inverse using first-order information, which leads to different quasi-Newton updates,
but perhaps the most popular quasi-Newton algorithms are the Symmetric Rank-One
(SR1) method [11], the Broyden method [12—-14], the Davidon-Fletcher-Powell (DFP)
method [15, 16], the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [17-20], and
the limited-memory BFGS (L-BFGS) method [21, 22].

As mentioned earlier, a major advantage of quasi-Newton methods is their asymp-
totic local superlinear convergence rate. More precisely, we state that the sequence
{xx} converges to the optimal solution x, superlinearly when the ratio between the
distance to the optimal solution at time k + 1 and k approaches zero as k approaches
infinity, i.e.,

s — xall
k00 [xg — X

For various settings, this superlinear convergence result has been established for a
large class of quasi-Newton methods, including the Broyden method [13, 17, 23], the
DFP method [13, 24, 25], the BFGS method [13, 25-27], and several other variants of
these algorithms [28—34]. Although this result is promising and lies between the linear
rate of first-order methods and the quadratic rate of Newton’s method, it only holds
asymptotically and does not characterize an explicit upper bound on the error of quasi-
Newton methods after a finite number of iterations. As a result, the overall complexity
of quasi-Newton methods for achieving an e-accurate solution, i.e., ||xy — x«|| < €,
cannot be explicitly characterized. Hence, it is essential to establish a non-asymptotic
convergence rate for quasi-Newton methods, which is the main goal of this paper.

In this paper, we show that if the initial iterate is close to the optimal solution and the
initial Hessian approximation error is sufficiently small, then the iterates of the convex
Broyden class including both the DFP and BFGS methods converge to the optimal
solution at a superlinear rate of (1/k)*/2. We further show that our theoretical result
suggests a trade-off between the size of the superlinear convergence neighborhood and
the rate of superlinear convergence. In other words, one can improve the numerical
constant in the above rate at the cost of reducing the radius of the neighborhood in
which DFP and BFGS converge superlinearly. We believe that our theoretical guarantee
provides one of the first non-asymptotic results for the superlinear convergence rate
of BFGS and DFP.

Related work In a recent work [35], the authors studied the non-asymptotic analysis
of a class of greedy quasi-Newton methods that are based on the update rule of the
Broyden family and use a greedily selected basis vectors for updating Hessian approx-
imations. In particular, they show a superlinear convergence rate of (1 — ﬁ)kz/ 2(%)1‘
for this class of algorithms. However, greedy quasi-Newton methods are more com-
putationally costly than standard quasi-Newton methods, as they require computing a
greedily selected basis vector at each iteration. It is worth noting that such computation
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requires access to additional information beyond the objective function gradient, e.g.,
the diagonal components of the Hessian. Also, two recent concurrent papers study
the non-asymptotic superlinear convergence rate of the DFP and BFGS methods [36,
37]. In [36], the authors show that when the objective function is smooth, strongly
convex, and strongly self-concordant, the iterates of BFGS and DFP, in a local neigh-
borhood of the optimal solution, achieve the superlinear convergence rate of (Z—i)k/ 2

and (%)k/ 2, respectively. In their follow-up paper [37], they improve the superlinear

d L d L
convergence results to [e ¥ I _ 11¥/2 and [/% (e* i _ D12, respectively. We would

like to highlight that the proof techniques, assumptions, and final theoretical results of
[36, 37] and our paper are different and derived independently. The major difference
in the analysis is that in [36, 37], the authors use a potential function related to the
trace and the logarithm of the determinant of the Hessian approximation matrix, while
we use a Frobenius norm potential function. In addition, our convergence rates for
both DFP and BFGS are independent of the problem dimension d. Nevertheless, in
our results, the neighborhood of superlinear convergence depends on d. Moreover, to
derive our results we consider two settings where in the first case the objective function
is strongly convex, smooth, and has a Lipschitz continuous Hessain at the optimal solu-
tion, and in the second setting the function is self-concordant. Both of these settings
are more general than the setting in [36, 37], which requires the objective function to
be strongly convex, smooth, and strongly self-concordant.

Outline In Sect. 2, we discuss the Broyden class of quasi-Newton methods, DFP
and BFGS. In Sect. 3, we mention our assumptions, notations as well as some general
technical lemmas. Then, in Sect. 4, we present the main theoretical results of our paper
on the non-asymptotic superlinear convergence of DFP and BFGS for the setting
that the objective function is strongly convex, smooth, and its Hessian is Lipschitz
continuous at the optimal solution. In Sect. 5, we extend our theoretical results to the
class of self-concordant functions, by exploiting the proof techniques developed in
Sect. 4. In Sect. 6, we provide a detailed discussion on the advantages and drawbacks
of our theoretical results and compare them with some concurrent works. In Sect. 7,
we numerically evaluate the performance of DFP and BFGS on several datasets and
compare their convergence rates with our theoretical bounds. Finally, in Sect. 8, we
close the paper with some concluding remarks.

Notation For vector v € R?, its Euclidean norm (/-2 norm) is denoted by [lv]. We

denote the Frobenius norm of matrix A € R?*4 as ||A||f = ./ Zle 27:1 Al.zj and its

induced 2-norm is denoted by ||A|| = max, =1 [|Av||. The trace of matrix A, which
is the sum of its diagonal elements, is denoted by Tr (A). For any two symmetric
matrices A, B € R4*4_we denote that A < B if and only if B — A is a symmetric
positive semidefinite matrix.

2 Quasi-Newton methods

In this section, we review standard quasi-Newton methods, and, in particular, we
discuss the updates of the DFP and BFGS algorithms. Consider a time index k, a step
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size ng, and a positive-definite matrix By to define a generic descent algorithm through
the iteration

X1 = Xk — me BV f (). (1)

Note that if we simply replace By by the identity matrix /, we recover the update of
gradient descent, and if we replace it by the objective function Hessian V2 f (x;), we
obtain the update of Newton’s method. The main goal of quasi-Newton methods is to
find a symmetric positive-definite matrix By using only first-order information such
that By, is close to the Hessian V2 f (xx). Note that the step size ny is often computed
according to a line search routine for the global convergence of quasi-Newton methods.
Our focus in this paper, however, is on the local convergence of quasi-Newton methods,
which requires the unit step size n; = 1. Hence, in the rest of the paper, we assume
that the iterate x is sufficiently close to the optimal solution x, and the step size is
e = 1.

In most quasi-Newton methods, the function’s curvature is approximated in a way
that it satisfies the secant condition. To better explain this property, let us first define
the variable difference s; and gradient difference yy as

Sk = Xk1 — Xk, and  yx = V f(xxg1) — V f(xp). (2)

The goal is to find a matrix By that satisfies the secant condition Bjy1sy = yi. The
rationale for satisfying the secant condition is that the Hessian V? f (x) approximately
satisfies this condition when x4 and xj are close to each other, e.g., they are both
close to the optimal solution x,.. However, the secant condition alone is not sufficient
to specify By1. To resolve this indeterminacy, different quasi-Newton algorithms
consider different additional conditions. One common constraint is to enforce the
Hessian approximation (or its inverse) at time k + 1 to be close to the one computed
at time k. This is a reasonable extra condition as we expect the Hessian (or its inverse)
evaluated at x;1 to be close to the one computed at xy.

In the DFP method, we enforce the proximity condition on Hessian approximations
By and Bjy1. Basically, we aim to find the closest positive-definite matrix to By (in
some weighted matrix norm) that satisfies the secant condition; see Chapter 6 of [10]
for more details. The update of the Hessian approximation matrices of DFP is given
by

DFP ykslj Sk)’/;r )’ky];r
Bk+1 ={7- yTs B |1 — sTy yTs . 3)
k Ok k Yk k Sk

Since implementation of the update in (1) requires access to the inverse of the Hessian
approximation, it is essential to derive an explicit update for the Hessian inverse
approximation to avoid the cost of inverting a matrix at each iteration. If we define Hj
as the inverse of By, i.e., Hy = B ! , using the Sherman-Morrison-Woodbury formula,
one can write
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Hiyey, He  sksy)

. 4)
v Hieyx sy VK

The BFGS method can be considered as the dual of DFP. In BFGS, we also seek
a positive-definite matrix that satisfies the secant condition, but instead of forcing the
proximity condition on the Hessian approximation B, we enforce it on the Hessian
inverse approximation H . To be more precise, we aim to find a positive-definite matrix
Hj+1 that satisfies the secant condition sy = Hj41yx and is the closest matrix (in some
weighted norm) to the previous Hessian inverse approximation Hy. The update of the
Hessian inverse approximation matrices of BFGS is given by,

T T T

S N SkS

H,?fgsz(I_ykTy;c )Hk (1—:§y">+y’;’;. )
k Sk k Yk k Sk

Similarly, by the Sherman-Morrison-Woodbury formula, the update of BFGS method
for the Hessian approximation matrices is given by,

T T
BBFGS _ _ Bksksk By Yk Yy
k+1 = Pk

6)

T T,
s, Bisk S Yk

Note that both DFP and BFGS belong to a more general class of quasi-Newton methods
called the Broyden class. The Hessian approximation By of the Broyden class is
defined as

Biy1 = i BYTT + (1 — o) BEETS, @)
and the Hessian inverse approximation is defined as
Hipr = (1= y) HOT + v HEPS, ®)

where ¢, ¥ € R. In this paper, we only focus on the convex class of Broyden
quasi-Newton methods, where ¢y, ¥ € [0, 1]. The steps of this class of methods are
summarized in Algorithm 1. In fact, in Algorithm 1, if we set Y, = 0, we recover DFP,
and if we set {; = 1, we recover BFGS. It is worth noting that the cost of computing
the descent direction H; V f (xi) for this class of quasi-Newton methods is of O(d?),
which improves O(d>) per iteration cost of Newton’s method.

Remark 1 Note that when s; = 0, we have V f(xx) = 0 from (1) and thus x; = x,.
Hence, in our implementation and analysis we assume s; # 0. Moreover, in both
considered settings, the objective function is at least strictly convex. As a result, if
sk # 0, then it follows that y; # 0 and skT yr > 0. This observation shows that the
updates of BFGS and DFP are well-defined. Finally, it is well-known that for the
convex class of Broyden methods if By is symmetric positive-definite and s,;r Yk >
0, then By, is also symmetric positive-definite [10]. In Algorithm 1, we assume
that the initial Hessian approximation By is symmetric positive-definite, and, hence,
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Algorithm 1 The convex Broyden class of quasi-Newton methods

Require: Initial iterate xo and initial Hessian inverse approximation Hy.

1: fork=0,1,2,...do

2:  Update the variable: xg1 = xx — HiV f(xg);

Compute the variable difference sy = xg41 — xx;

if s = 0 then
Terminate the algorithm

else
Compute the gradient difference yy = V f (xg1) — Vf(xx);
Update the Hessian inverse approximation Hyyj = (1 — wk)H,?f]P + Yr
(4 and (5);

9: endif

10: end for

R RNk

HBFGS

iy according to

all Hessian approximation matrices By and their inverse matrices Hy are symmetric
positive-definite.

3 Preliminaries

In this section, we first specify the required assumptions for our results in Sect. 4
and introduce some notations to simplify our expressions. Moreover, we present some
intermediate lemmas that will be use later in Sect. 4 to prove our main theoretical results
for the setting that the objective function is strongly convex, smooth, and its Hessian
is Lipschitz continuous at the optimal solution. In Sect. 5, we will use a subset of these
intermediate results to extend our analysis to the class of self-concordant functions.

3.1 Assumptions

We next state the required assumptions for establishing our theoretical results in Sect. 4.

Assumption 3.1 The objective function f(x) is twice-differentiable. Moreover, the
function f(x) is strongly convex with parameter u > 0, i.e.,

IV = VW= pllx—yll, ¥x,y e RE (C))

Assumption 3.2 The gradient of the objective function f(x) is Lipschitz continuous
with parameter L > 0, i.e.,

IVFfx) = VFO)I < Llx —yll, ¥x,yeR (10)

As f is twice-differentiable, Assumption 3.1 and 3.2 imply that the eigenvalues of
the Hessian are larger than p and smaller than L, i.e., ul < sz(x) < LI,Vx €
R?. Note that for our main theoretical results, we only require Assumption 3.1, but
to compare our results with other theoretical bounds we will use the condition in
Assumption 3.2 in our discussions.
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Assumption 3.3 The Hessian V? f (x) satisfies the following condition for some con-
stant M > 0,

IV2f(x) = V2 F(x)ll < M|lx — x|, ¥x € RY. (11)

The condition in Assumption 3.3 is common for analyzing second-order methods as
we require a regularity condition on the objective function Hessian. In fact, Assump-
tion 3.3 is one of the least strict conditions required for the analysis of second-order
type methods as it requires Lipschitz continuity of the Hessian only at (near) the
optimal solution. This condition is, indeed, weaker than assuming that the Hessian
is Lipschitz continuous everywhere. Note that for the class of strongly convex and
smooth functions, the strongly self-concordance assumption required in [36, 37] is
equivalent to assuming that the Hessian is Lipschitz continuous everywhere. Hence,
the condition in Assumption 3.3 is also weaker than the one in [36, 37]. Assumption 3.3
leads to the following corollary.

Corollary 1 If the condition in Assumption 3.3 holds, then for all x, y € R?, we have

M
IVf) = V) =V )=yl < 7 e =yl = x4+ 1y = %l
12)

Proof Check Appendix A. O

Remark 2 Our analysis can be extended to the case that Assumptions 3.1, 3.2 and 3.3
only hold in a local neighborhood of the optimal solution x,. Here, we assume they
hold in R¢ to simplify our proofs.

3.2 Notations

Next, we briefly mention some of the definitions and notations that will be used in
following theorems and proofs. We consider V2f (x*)% and V2 f (x*)_% as the square
root of the matrices V2 f (x,) and V2 £ (x,) !, i.e., V2 £ (xx) = V2 £ (x2)2 V2 f ()2
and V2 £ (x,) "' = V2 f(x,) "2 V2 f(x,)"2. By Assumption 3.1, both V2 £ (x)? and
V2 f (x*)’% are symmetric positive-definite. Throughout the paper, we analyze and
study weighted version of the Hessian approximation By defined as

B = V2 f(x) T BV2f(x)7 2. (13)

A . .. . . _1 .
By is symmetric positive-definite, since By and V2 f(x,)~2 are both symmetric
positive-definite. We also use || By — I||r as the measure of closeness between By
and V2 f (x,), which can be written as
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1B =1l = IV2F @)™ (B = V2 () V2P "2l (14)

We further define the weighted gradient difference yy, the weighted variable difference
Sk, and the weighted gradient V f (x;) as

Be= VAL Iy, Bk =VEfG) s V) = V2 F(x) IV f(xp).
(15)

To measure closeness to the optimal solution for iterate xi, we use r; € R4, or € R,
and 7 € R which are formally defined as

1 M
re=Vi @) —x),  or=—zlnl,  w=maxfor, ok} (16)

M?
In (16), w is the strong convexity parameter defined in Assumption 3.1 and M is
the Lipschitz continuity parameter of the Hessian at the optimal solution defined in

Assumption 3.3. In our analysis, we also use the average Hessian J; and its weighted
version Jj that are formally defined as

1
Ji = / V2 (s 4l — x)da, Ji = V2F() TRV 2. (17)
0

3.3 Intermediate Lemmas

Next, we present some lemmas that we will later use to establish the non-asymptotic

superlinear convergence of DFP and BFGS. Proofs of these lemmas are relegated to

the appendix.

Lemma 1 For any matrix A € R*? and vector u € R with ||u| = 1, we have
IAN: = I — uuDYAT —uu™) |7 = [|Au]®. (18)

Proof Check Appendix B. O

Lemma 2 For any matrices A, B € R9%4 ype have

IABIlF < [AllIBllF,  IBTABIr < IAIIBIIBI . 19)

Proof Check Appendix C. O

The results in Lemma 1 and Lemma 2 hold for arbitrary matrices. The next lemma
focuses on some properties of the weighted average Hessian J under Assumptions 3.1
and 3.3.
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Lemma 3 Recall the definition of oy in (16) and fk in (17). Suppose oy € [0, 1] and
define the matrix H, = sz(x* + o (X — x4)) andl-}k = sz(x*)*% HkVZf(x*)*%.
If Assumptions 3.1 and 3.3 hold, then the following inequalities hold for all k > 0,

1 A Ok A
I < Jk <+ )1, I < Hy <(1 I. 20
% _k_(+2) To ! = Kk < (1+0%) (20)
Proof Check Appendix D. O

In the following lemma, we establish some bounds that depend on the weighted
gradient difference ¥ and the weighted variable difference §y.

Lemma 4 Recall the definitions in (13—16). If Assumptions 3.1 and 3.3 hold, then the
following inequalities hold for all k > 0,

19k — Skl < wllSell, (21)
(1= )lISkl? < 8¢ Fx < (1 + w15kl (22)
(1= ) ISkll < 19l < (4 + TlISel, (23)
— O'k
IV G0 = rell < 2l (24)
Proof Check Appendix E. O

4 Main theoretical results

In this section, we characterize the non-asymptotic superlinear convergence of the
Broyden class of quasi-Newton methods, when Assumptions 3.1, 3.2 and 3.3 hold.
In Sect. 4.1, we first establish a crucial proposition which characterizes the error of
Hessian approximation for this class of quasi-Newton methods. Then, in Sect. 4.2,
we leverage this result to show that the iterates of this class of algorithms converge at
least linearly to the optimal solution, if the initial distance to the optimal solution and
the initial Hessian approximation error are sufficiently small. Finally, we use these
intermediate results in Sect. 4.3 to prove that the iterates of the convex Broyden class,
including both DFP and BFGS, converge to the optimal solution at a superlinear rate
of (1/k)*/?. Note that in Algorithm 1 we use the Hessian inverse approximation matrix
Hj. to describe the algorithm, but in our analysis we will study the behavior of the
Hessian approximation matrix By.

4.1 Hessian approximation error: Frobenius norm potential function

Next, we use the Frobenius norm of the Hessian approximation error || ék — I||F as
the potential function in our analysis. Specifically, we will use the results of Lemma 1,
Lemma 2, and Lemma 4 to study the dynamic of the Hessian approximation error
I By —1 || r for both DFP and BFGS. First, start with the DFP method.
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Lemma5 Consider the update of DFP in (3) and recall the definition of Ty in (16).

Suppose that for some § > 0and some k > 0, we have that vy, < land ||By—1I||F < 4.

Then, the matrix BkD f f) generated by the DFP update satisfies the following inequality

(B — D)3k |2

IBPEF — I|p < 1By — I|F — "
kvl 268115112

+ Wi, (25)

where Wy = ||ék||ﬁ + ?J_r?;
Proof The proof and conclusion of this lemma are similar to the ones in Lemma 3.2
in [33], except the value of parameter W. This difference comes from the fact that
[33] analyzed the modified DFP update, while we consider the standard DFP method.
Recall the DFP update in (3) and multiply both sides of that expression by the matrix

V2 f (x*)_% from left and right to obtain

s oT & T 8 8T

- S\ 4 Sk P /%)

B,Pff:(]—yT;‘)Bk(I—fT;‘)+5)T;, (26)
k Sk k Yk Kk Ok

where we used the fact that s, y, = s,szf(x*)%sz(x*)’% Yk = 8] 9x. To simplify
the proof, we use the following notations:

A ADFP a N ss '
B:Bk’ B+=Bk+17 § = Sk, y=)’k, T = Tk, P= _W7
s
T T
ss sy
Q=5 - 27)
s> sTy
Hence, (26) is equivalent to
T T T
ys sy yy
By=|\I——|B|(Il——=— _
* ( sTy) < STy) R
Moreover, we can express By — I as
yy'
By —I=P+Q)B(P+0Q)—1+=—
sy
yy'
=PBP+ Q"BP+PBQ+Q'BQ— 1+ =
sy
yy'
=PB-DP+P —1+=—+Q'BP+PBQ+Q'BQ. (28
sy

Notice that P2 = P and P = P T. Thus, (28) can be simplified as

B, —I=D+E+G'+G+H,
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where

T T
o _yy SS _ _ T
D=PB-I)P, E_?—W, G=PBQ, H=Q' BQ.
sty K

Next, we proceed to upper bound || B4 — I || r. To do so, we derive upper bounds on the
Frobenius norm of matrices D, E, G and H. We start by || D| r. If we setu = s/||s||
and A = B — [ in Lemma 1, we obtain that

(B — Ds|?
S 1B — Il — IIDII%, (29)
whichimplies || B—1%—||D||3 > 0.Moreover, using the fact thata>—b> < 2a(a—b)
we can write

1B —=11% = IDIF <21B = I1r(IB —Ilr = DIr) <28(1B = Ilr — | D]F),
(30)

where the second inequality follows from the fact that ||B — ||% — ||D||% > 0 and
the assumption that | B — I||r < §. Next, if we replace the right hand side of (29) by
its upper bound in (30) and massage the resulted expression, we obtain that

B = DslP

D|p <|IB—1 :
IDIlF < | I e

€19

which provides an upper bound on || D|| . To derive upper bounds for | E||r, |G| F
and | H || r, we first need to find an upper bound for || Q|| 7, where Q is defined in (27).
Note that

B ssT syl B ssT syl syt syl
10 =z =5 = s s T s ST,
ssT syl syl syT
ol I P el

where the first equality holds by the definition of Q, the second equality is obtained
T

by adding and subtracting l‘ﬁT, and the inequality holds due to the triangle inequality.

We can further simplify the right hand side as

Ists = lle , IsTs—»llsy"lIr Ay =silly = sty
lls |12 lIs|2s Ty sl sTy
t(1+0)s|?> 2t

ST A olsE T -t

1QllF =

, (32)
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where the second inequality holds using the Cauchy—Schwarz inequality and the fact
that [|ab " || = ||a||||b]| for a, b € R¥, and the last inequality holds due to the results
in (21), (22), and (23).

Next using the upper bound in (32) on || Q|| r we derive an upper bound on || E|| r.
Note that

Ty EAARECAN e PR A Al A
sty AslPlly sty sTy sTy sl?|p
St st syl st
“lsTy  sTyle AsTy  AsI?lF’

where we used the triangle inequality in the last step. Using the definition of Q we
can show that

Iy =)y llF ly = syl 2t
IEIF < =22 20 o), < 2200
sty sty 1—1
2
_ (1 +1)|s] 2t 3+rt’ (33)

“d-Ds)Z 1-1t 1-1

where for the second inequality we use (32) and ||ab " || = |la||||b]|, and for the third
inequality we use the results in (21), (22), and (23).

We proceed to derive an upper bound for |G|/ . Note that 0 < P < [ and thus
I[Pl < 1. Using this observation, (32) and the first inequality in (19), we can show
that ||G|| r is bounded above by

IGllF =1PBQIr < IPBIIQIF = IPIIBIICIF = IBIIQIF = B T.

1—1
(34

Finally, we provide an upper bound for || H || r. By leveraging the second inequality in
(19) and the fact that ||A|| < ||A||r for any matrix A € R?*4  we can show that

IHIF =10 BQIF < IBIIQIICIF < IBINQIF < Bl ——, (35)

472
(1—10)?

where for the last inequality we used the result in (32).
If we replace | Dl r, |Ellr, |Gl F, and || H| r with their upper bounds in (31),

(33), (34) and (35), respectively, we obtain that

By —IllF < IDIlF + |EllF +2IGllF + I1H|IF

1B _pjp MB=DsIP 34T g 4 gy A
= e [ [ (1—1)
B —I|p— (B — Ds|? we

HHE
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where W = [|Bllt% + |IB] 1 3 Hr — = 1Bl + 3 34T Considering the
notations introduced in (27), the result in (25) follows from the above inequality and
the proof is complete. O

The result in Lemma 5 shows how the error of Hessian approximation in DFP
evolves as we run the updates. Next, we establish a similar result for the BEFGS method.

Lemma 6 Consider the update of BFGS in (6) and recall the definition of ty in (16).
Suppose that for some § > 0 and some k > 0, we have that Ty < 1 and ||By — I ||r <
8. Then, the matrix B,ff?s generated by the BFGS update satisfies the following
inequality

§ (Bx — D Bi(B — Dy
28§1jl§k§k

IBEESS — Ip < 11Be —IllF — Vi, (36)

3t

where Vi = 1~ =

Proof The proof of this lemma is adapted from the proof of Lemma 3.6 in [32]. We
should also add that our upper bound in (36) improves the bound in [32] as it contains

an additional negative term, i.e., AL 251)32(3" D . Recall the BFGS update in (6)
Ak kSk

and multiply both sides of that expression with V2 f (x*)_f from left and right to
obtain
R < BSiS] B iyl
BRFOS =y — —oik Tk Tk (37
Sy BrSk Sg Yk

1
Where we used the fact that s, L Bysi = Sy sz(x*)z V2 f(xs)~ BkV2f(x*)_7V2f

(x4) 7 Sk = sk Bk Sk. To simplify the proof, we use the following notations:

B =By, Bi= BE:?S, S=58k, Y=k T=Tk. (38)
Considering these notations, the expression in (37) can be written as

Bss'B  yy!

B, =B — .
* s'TBs sTy

Moreover, we can show that By — [ is given by

B I—B—] Bss'B L ssT + yy ssT D+ E
+ =01 = 55" Ty = ’
sTBs sl sTy sl
where
D_B_1 Bss'B n ssT _ yy' st
- sTBs — Is|*’ STy I
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To establish an upper bound on || By — I || r, we find upper bounds on || D ||%, and || E ||%.
Note that using the fact that || D||%F =Tr [DDT] and properties of the trace operator
we can show that

Bss'B ssT Bss'B ssT T
DR=Tr|(B-1-22 22 V(p_y 2222 2
1Pl [( STBs ||s||2)< sTBs ||s||2>

2 Bss'B(B—I1)+(B—1I1)Bss'B ss'Bss' B+ Bss' Bss'
=Tr|(B-1?*- — -
s Bs sT Bs|s|?
Tip_ _ T T T TooT
T |:ss (B—=1) +2(B D)ss Bss BBSZ B ss'ss ] . (39)
sl (sTBs) lls]4
P P Bss' B(B — 1)T+ (B—1)Bss'B B ss" B+ Bss |
s'Bs lIs)1?
ssT(B—=1)+ (B—1I)ss" |Bs|*Bss"B  ss'
+Tr 2 TR2 A
Is|l (s' Bs) [Isl

Using the fact that Tr (ab") = a'b for any a, b € R? we can write the following
simplifications:

- )

sTBs
Bss' +ss' B _ sTBs ssT _
Tk ] BT [W] o
[ssT(B -1+ (B - I)ssT] _ sT(B—1I)s - |:||Bs||zBssTB:| _lIBs|*
lls1? sz~ (sTBs)?

Bss"B(B— 1)+ (B—1)Bss'B sTB(B —1)Bs
Tr =2
sT Bs

Tr[(B—D?] = |IB - I3, Tr[

T (sTBs)?

Substituting the above simplifications into (39), we obtain that

s'B(B—1)Bs 5" Bs 2sT(B —Ds | Bs|*

DI2 =B —I2 -2 - 1
IDllF = | 2 sTBs lIs]12 lIs]|% (sTBs)? +
2
in i | (MBE) s B (B DB = D (40)
F T Bs sTBs sT Bs '

Next, we proceed to show that the second term on the right hand side of (40), i.e.,
(%)2 - % ,is non-positive. Note that by using the Cauchy—Schwarz inequality,
we have

IBs|?=sTB% = s B3B3s < |B3s|||B?s|.

Now by computing the squared of both sides we obtain [|Bs||* < | B s|2|Bs|> =
s B3ss T Bs, which implies that

Bsl2\> TR3
(” S”) ~12 % <o (A1)

sTBs sTBs
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By combining (40) and (41), we obtain that

s (B—1B(B—1D)s

2 2
T Bs <IB = 1lF = DIl (42)

The above inequality implies that ||B — 1 ||% —ID ||2F > (. Moreover, using the fact
that a® — b% < 2a(a — b),Va, b € R, we can show that

IB—11% = IDIF < 2B —Ilr(I1B = IllF — | Dillr)
=28(IB = 1Illr = IDIF)- (43)

where the second inequality follows from ||B — ||% — ID)|% > 0 and the fact that
|IB — I||r < 6. Now if combine the results in (42) and (43), we obtain that

sT(B=DB(B —I)s

D|lp <|IB—1I|lf — :
IDllF < | I 25T Bs

(44)

which provides an upper bound on | D| . Moreover, according to (33), || E||F is
bounded above by

3
IE|F < 2 °
1—1

T. (45)

If we replace | D| F and || E||r with their upper bounds in (44) and (45), we obtain
that

T(B — —_
s' (B—1)B(B I)s+

B, —I|r<|DlF+E|lF <|IB—-1I|F— Vr,
B+ = Illr < IDIlF +IEIF < | 7 2557 Bs
where V = % Considering the notations in (38), the claim follows from the above
inequality. O

Now we can combine Lemma 5 and Lemma 6 to derive a bound on the error of
Hessian approximation for the (convex) Broyden class of quasi-Newton methods.

Lemma 7 Consider the update of the (convex) Broyden family in (7) and recall the
definition of t in (16). Suppose that for some § > 0 and some k > 0, we have that
7. < 1 and ||l§k — I|\|F < 6. Then, the matrix Br4 generated by (7) satisfies the
following inequality

; ; I(Be — DSl
1Bt = IF < 1B = 1llF = $e—— s —

288k11?
e
8 (B — D) By (Bx — I)Sk
—(1— ¢+ — + Zkt,  (46)
285, BrSk
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?t;’; We also have that

where Zi = ¢y || Bell g=sz +

IBis1 — IllF < Bk — Il F + Zi. 47)

Proof Notice that By, = ¢ B,?ff + (1 — ¢k)B,]?flGS. Using this expression and the

convexity of the norm, we can show that

IBis1 — IF = Igx BPTY + (1 — ) BEFSS — 111 < il BPFY
~IllFr + (1 — @IIBEESS — 1.

By replacing || B — I and | BBFGS _ 1| p with their upper bounds in Lemma

k+1 k+1
5 and Lemma 6, the claim in (46) follows. Moreover, since ¢ € [0,1], § > O,
A~ n N B R _T\e
WBDIIP > ) gpg S BDEBDE - e result in (46) implies (47). o
ISk [l S BiSk

4.2 Linear convergence

In this section, we leverage the results from the previous section on the error of
Hessian approximation to show that if the initial iterate is sufficiently close to the
optimal solution and the initial Hessian approximation matrix is close to the Hessian
at the optimal solution, the iterates of BEGS and DFP converge at least linearly to the
optimal solution. Moreover, the Hessian approximation matrices always stay close to
the Hessian at the optimal solution and the norms of Hessian approximation matrix
and its inverse are always bounded above. These results are essential in proving our
non-asymptotic superlinear convergence results.

Lemma 8 Consider the convex Broyden class of quasi-Newton methods described in
Algorithm 1, and recall the definitions in (13—16). Suppose Assumptions 3.1 and 3.3
hold. Moreover; suppose the initial point xo and initial Hessian approximation matrix
By satisfy

oo<e IBo—1Illr <34, (48)

where €, 6 € (0, %) such that for some p € (0, 1), they satisfy

425+ 1)  34e€\ € _ 5
T l—e? T 1—€)1=—p ="
€
5 +28<(1-28)p,  Pmax =supPi . (49)
2 k>0

Then, the sequence of iterates {xk},j:og converges to the optimal solution x, with
ok+1 < pox, Vk=>0. (50)
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Furthermore, the matrices {Bk},'::og stay in a neighborhood of V? f (x) defined as
1By — IllF <28, Vk=0. (51)

Moreover, the norms {|| ék I }2’ and {|| B_1 ||} o are all uniformly bounded above by

1Bl <1428, 1B < Vk > 0. (52)

1—28’ -

Proof The proof of this lemma is adapted from the proof of Theorem 3.1 in [33]. In

[33], the authors prove the results for the modified DFP method, while we consider the

more general class of Broyden methods. We will use induction to prove (50), (51) and

(52). First consider the base case of k = 0. By the initial condition (48), it’s obvious

that (51) holds for k = 0. From (51) we know that all the eigenvalues of éo are in the

1nterva1 [1 — 26, 1 + 268]. Suppose that kmax(Bo) is the largest eigenvalue of Bo and
mm(Bo) is the smallest eigenvalue of Bo, we have

1

IBoll = hmax(Bo) < 1+28, [By'l =
mm(BO) 1 - 28

Hence, (52) holds for k = 0. Based on Assumptions 3.1 and 3.3 and the definitions in
(13-16), we have

M 2 ! M 1 -1
o1 ==V ()21 —x)ll = —5 IV f ()2 (xo — By "V f(x0) — x4

w2 2
M 2 L 2 2

= IV 00 By IV (o) = V2 £ (i) (0 — ) — (Bo — V2 (e (o — )|
MZ
Mo .

= jHBo [V f(x0) —ro — (Bo — Drol|l
,u

< 0y 1 (197 o) — roll + 180 — Lol (53)
’[,LZ

Now using the result in (24), and the bounds in (48), (49), (51) and (52) for k = 0, we
can write

g5 ||<—||ro|| +11Bo — IlllIrol) = 1By ||(— +11Bo — I1hoo
Mz

= L( + 28)00 < poy.

—1-282
This indicates that the condition in (50) holds for k = 0. Hence, all the conditions in
(50), (51) and (52) hold for k£ = 0, and the base of induction is complete. Now we
assume that the conditions in (50), (51) and (52) hold for all 0 < k < ¢, where t > 0.
Our goal is to show that these conditions are also satisfied for the case of k = ¢ + 1.
Since (50) holds for all 0 < k < t, we have tx = max{oy, ox+1} = o <€ < 1 for
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0 = k < t. Moreover, since the condition in (51) holds for 0 < k < ¢, we know that
|Bx — IllF <26 for 0 <k <t.Hence, by (47) in Lemma 7, we obtain that

IBiy1 — IF < |Bx — Il + Zyor, O<k<t, (54)

where Z; = ¢ || Br |
that

a- Uk)z + 3+”" . Using (52) and oy < € for 0 < k < ¢, we obtain

425+1) 3+e

, 0<k<rt.
Fa—e? T1—¢ =t =

Further if (48) and (50) hold for O < k < t, we have that

t t
No<d pogs < (55)
l—p
k=0 k=0

1—p

Considering these results we can show that

4254+1) 3+¢€]«
ZZkak = sup |:¢k ( ) + :|ZUI<

—€)2 —
k=0 (1—e I—e k=0

426+1) 34€\ e
(%m( _QQ+1_E)1_psa, (56)

where we use the definition ¢max = sup;>o @« and the last inequality holds due to
the first inequality in (49). By leveraging (56) and (48) and computing the sum of the
terms in the left and right hand side of (54) from k = 0 to ¢, we obtain

t
1Biyr = Ilr < 1Bo—1IllF + ) Zeox <8+ 68 =26,
k=0

which implies that (51) holds for k = ¢ + 1. Applying the same techniques we used
in the base case, we can prove that (50) and (52) hold for k = ¢ 4 1. Hence, all the
claims in (50), (51) and (52) hold for k = ¢ 4 1, and our induction step is complete. O

4.3 Explicit non-asymptotic superlinear rate

In the previous section, we established local linear convergence of iterates generated by
the convex Broyden class including DFP and BFGS. Indeed, these local linear results
are not our ultimate goal, as first-order methods are also linearly convergent under the
same assumptions. However, the linear convergence is required to establish a local
non-asymptotic superlinear convergence result, which is our main contribution. Next,
we state the main results of this paper on the non-asymptotic superlinear convergence
rate of the convex Broyden class of quasi-Newton methods. To prove this claim, we
use the results in Lemma 7 and Lemma 8.
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Theorem 1 Consider the convex Broyden class of quasi-Newton methods described in
Algorithm 1. Suppose the objective function f satisfies the conditions in Assump-
tions 3.1 and 3.3. Moreover, suppose the initial point xo and initial Hessian
approximation matrix By satisfy

M
LIV £ ()2 (o — 3l < e,
IL2
IV2 £ (e ™2 (Bo — V2 F ) V2 (e) 2 17 < 6, (57)

where €, § € (0, %) such that for some p € (0, 1), they satisfy

4 3+
(¢max<28+1) + 6) € <,

1—e)? 1—€e)1—p~
€
E +28 < (1-=28)p, Pmax = Sup ¢ . (58)
k>0

Then the iterates {xk}:ig generated by the convex Broyden class of quasi-Newton
methods converge to x at a superlinear rate of

2 1 ‘
IV2F G2 (o = X0l _ (Clq“/%"i_Cz) . Vk>1, (59)

IV2 £ (22 (x0 — x)ll k
2k
FOx) — fxs) <d+e? Cigvk + C» vk, 60)
f(XO) - f(x*) k

~ e 14+ e

bl

(61)

S |-

14268 .
where g = — € [1, ,/ﬁ_‘w] and ¢pmin = infi>0 ¢r.
V Dmin 125 + 1528

Proof When both conditions (57) and (58) hold, by Lemma 8, the results in (50), (51)
and (52) hold. This indicates that for any ¢ > 0, we have

1 =max{o;, 041} =0, <op<e<1, |B —1I|p <26
Hence, using Lemma 7 for any ¢ > 0, we can show that

(B, — D5 1?
48115112

§7 (B — DB,(B, — D)3,

485, B;§;

IBis1 — IlF < 1B — IF — ¢

—(1—¢) + Z;01, (62)
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where Z, = ¢,||l},|| ﬁ + ?fz . Using (55) and (56), for k > 0 we have

k k
€
Yo < — > Zioy <. (63)
t=0 t=0
Now compute the sum of both sides of (62) from # = 0 to k — 1 to obtain
k—1 A A2 AT/ D Ao N
- - I(B: — D3| S, (By — )B(B; — I)$;
By —1I|lF <||Bo—1I|F — — s+ (1 =) =
1Be = IllF < 11Bo—IlF ; [d» IR ¢ T B }

k—1
+ Z Z[U[.
t=0

Regroup the terms and use the results in (57) and (63) to show that

k—1 A A AT A A A A
| ||<Bt—1>s,||2+(1 ¢)sI<Bt—I>Bf<Bz—I)st
T T onA~A o - @t ~
prt 485112 4857 B,5;
k—1 k—1
<IBo—1IllFr— 1B —Ilr+ Y Zioy < |Bo—Illr + ) _ Zioy <546 =25,
t=0 =0
which leads to
k—1 A A2 AT/ D AA ~
B; — D)s s (B — 1)B;(B; — I)s
¢,”( ‘- 2>z|| +<1—¢t)’(’ T)( Bl g en)
=0 ||sl|| Sy Btst

Moreover, using the bounds in (52) we can show that

§ (B — DBi(B; — D)3, = ﬁn(& = D&|? = (1 =28)1(B; — D&%,
13

§TBs < 1BANS? < (14 28) 1511

Hence, we have

5" (B — DB(B, — DS, _ 1-28||(B, — D3|°
5 Bis: 1428 502

(65)

By combining the bounds in (64) and (65), we obtain

k—1 A A2

1-287 1B — D& _
E +(1 - - = 8.
pare [¢’ ( ¢’)1+28] 1512
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Now by computing the minimum value of the term ¢; + (1 — ¢;) %jr—ig, we can show

1+26

B, —1
:| | (B; 2)St” <88,
[15¢

1nf[¢k+( —¢)—

”“M

48 1—28\ 2 1B, = D32 )
— < 867,
(¢m‘“1 T 1+28> e 01 S

t
where ¢min = infy>0 ¢« and by regrouping the terms, we obtain that
k=10 n a2 2
LA O
t

1511

T2
Pmin To35 1+25 + 1555

[

Considering the definition g := , we can simplify our upper bound as

5 l
$min 1375 m

k—

—_

1B, = D3|

2.2
”2 < 8§°g~.

=0 150
By using the Cauchy-Schwarz inequality, we obtain that

-1

Z (B, — D3|l < 2V/28q k. (66)

o CL

Note that since ¢ € [0, 1], we have g € [1, </ 1+25] The result in (66) provides

k=1 J|(Bi= D3|

an upper bound on ), B

proof.
Now, note that V f (x;) = J;(x; — x,), where J; is defined in (17). This implies that
X; — Xy = J,_1 V f(x;) and hence we have

, which is a crucial term in the remaining of our

Xl — X = X — Xy + 5t = J;_lvf(xt) +s5 = —J;_lBtSt +s5 = J,_l(-]t — By)s;.

where the third equality holds since —B;s; = V f(x;). Pre-multiply both sides of the
above expression by V2 f (x*)% to obtain

r'e+1 = jt_l(ft - ét)§t = ft_l[(jt - 1)§t - (ét - I)ft]-

Therefore, we obtain that

S S . 1B =D&l
el < 1710 (0 = DS+ 1B = D3l < 17 <||J, — 1+ == | il
t
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From Lemma 3 we know that ||ft_1|| <1+ %’ and ||f, —1I| < % Therefore, we
have

o o (B, — )$ .
it < (14 %) (% MEZ D0 g (67
2 \2

Also, since 01+1 < po; and oy = %Hrt I, we obtain that ||7;4+1] < p||r:]|. Hence, we
2

. M
can write

A 1
Isell = IV f ()2 (Kt — X + X — x| < Ml + Ml = A+ p)lIrell. - (68)

Using the expressions in (67) and (68), we can show that ”T\ll I'is bounded above by

lri41 or\ (or  II(B = D3|
1 —+ ). 69
g =00 (1 2)<2+ B ) ©

Compute the sum of both sides of (69) from r = 0 to k — 1 and use o; < €, (63), and
(66) to obtain

k—1 k—1 k—1
r € o B, — D)§
Z” 11l S(l—l—p)(l—i——) _t+ ||( t )¢l
[l 2 2

=0 = =0 ”st ||

€ €

By leveraging the arithmetic-geometric inequality, we obtain that

k—1
lrell 1—[ i1l
|

ol el
k=1 )\ * ¢ (+p)(1+5e \ K
- =0 ||tr,|\ - 23V/28(1 + p)(1 + 2)qﬁ+ 00)
s\— ) = 3
(70)

Using condition (61), the proof of (59) is complete. Next, we proceed to prove
(60). Based on the Taylor’s Theorem, there exists «; € [0, 1] and the matrix
H; = V2 f (x4 + a; (x; — x)) such that

1 1 a
FO) = fOr) = VFOr) @ = x) + S0 = x) T H (X — xy) = Er? Hry,
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where we used V f(x) = 0 and B, = V2 f(x,)~2 H,V2 f(x,)"2. By Lemma 3 and
o; < €, we have

1
= — P L — 2 71
fxo) — fxs) = Horo > 2+ )Ilroll Z 30t o lroll”, (71)
and
1 + 4 1+ oy 1+¢
) = [ = o Hir < Il < ——lrel. (72)
By combining (70), (71) and (72), we obtain that
Fo) = Fa) _ e n? , (228004 )1 + gk + RS
< — <(+e)
Fao) = ) ~ gk ol k
and the claim in (60) holds. O

The above theorem establishes the non-asymptotic superlinear convergence of the
Broyden class of quasi-Newton methods. Notice that we use the weighted norm in (59)
to characterize the convergence rate. If in addition to the strong convexity condition
in Assumption 3.1, we also assume that the gradient is Lipschitz continuous as in
Assumption 3.2, then we have that /zellx; — x4l < [Ir¢]] < VL|x; — x|, Vi > 0.
Hence, the result in (59) implies that

L (Cigvk+ G\
[k — x| < [E(Ca 2} owes 1 (73)
llxo — xsll 2 k
where C1 and C, are defined in (61). Next, we use the above theorem to report the

results for DFP and BFGS, which are two special cases of the convex Broyden class
of quasi-Newton methods.

Corollary 2 Consider the DFP and BFGS methods. Suppose Assumptions 3.1 and 3.3
hold and for some €, § € (0, %) and p € (0, 1), the initial point xo and initial Hessian
approximation By satisfy

M 2 1 2 _1 2 ) _1
IV f ()20 —x)ll =€, [V f () 2(Bo — V7 f(x)) VI f(xi) 2 llF < 8.
I,LZ

(74)
— For the DFP method, if the tuple (€, §, p) satisfies
4284+1) 3+4¢€ € €
<46, =—4+28=<(1-=28p, 75
[(1_6)2 1_6]1_p_ 5t =( )p (75)
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then the iterates {xk},'zg generated by the DF P method converge to x, at a super-
linear rate of

”sz(x*)%(xk_x*)” < (Cl\/%-’_Cz)k’ Vk > 1,

1 = (76)
IV2 £ ()2 (¥ — x| k

) = £ cvE+ e\
E S 1 === , Vk > 1. 77
Foo = fam =9 ( k ) = an

— For the BFGS method, if the tuple (¢, 8, p) satisfies
B+ e)e €

mi& §+26§(1_28)p5 (78)

then the iterates {xk}ljzog generated by the BFGS method converge to x, at a
superlinear rate of

1428
IV Feb e — ol _ (O EBVEHC
k

; = ., Ykx>1, (79
IV2 f (x4)2 (x0 — )l
14245
S = [ Ox) 2 Cl\/g\/%'f' G
R p L Vk=1, (80)

where C1 and C; are defined in (61).

Proof In Theorem 1, set ¢ = 1 for all k > 0 to obtain the results for DFP and set
¢r = 0 for all k > 0 to obtain the results for BFGS. O

The results in Corollary 2 indicate that, in a local neighborhood of the optimal
solution, the iterates generated by DFP and BFGS converge to the optimal solution
at a superlinear rate of ((Cy Vk + ) /k)k , where the constants C| and C; are deter-

mined by p, € and §. Indeed, as time progresses, the rate behaves as O ((1 / ﬁ)k).

The tuple (p, €, §) is independent of the problem parameters (i, L, M, d), and the
only required condition for the tuple (p, €, §) is that they should satisfy (75) or (78).
Note that the superlinear rate in (76) and (79) is faster than linear rate of first-order
methods as the contraction coefficient approaches zero at a sublinear rate of O(1/+/k).
Similarly, in terms of the function value, the superlinear rate shown in (77) and (80)
behaves as O ((l / k)k). The result in Corollary 2 also shows the existence of a trade-off
between the rate of convergence and the neighborhood of superlinear convergence.
We highlight this point in the following remark.

Remark 3 There exists a trade-off between the size of the local neighborhood in which
DFP or BFGS converges superlinearly and their rate of convergence. To be more
precise, by choosing larger values for € and § (as long as they satisfy (75) or (78)), we
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can increase the size of the region in which quasi-Newton method has a fast superlinear
convergence rate, but on the other hand, it will lead to a slower superlinear convergence
rate according to the bounds in (76), (77), (79) and (80). Conversely, by choosing small
values for € and §, the rate of convergence becomes faster, but the local neighborhood
defined in (74) becomes smaller.

The final convergence results of Corollary 2 depend on the choice of parameters
(p, €, 8), and it may not be easy to quantify the exact convergence rate at first glance.
To better quantify the superlinear convergence rate of DFP and BFGS, in the following
corollary, we state the results of Corollary 2 for specific choices of p, € and § which
simplifies our expressions. Indeed, one can choose another set of values for these
parameters to control the neighborhood and rate of superlinear convergence, as long
as they satisfy the conditions in (75) for DFP and (78) for BFGS.

Corollary 3 Consider the DFP and BFGS methods and suppose Assumptions 3.1
and 3.3 hold. Moreover, suppose the initial point xo and initial Hessian approximation
matrix By of DFP satisfy

M 1
IV (o = ¥l < g IVAF (0072 (Bo = V2f (50) V2 (62 I <
’[,LZ

)

| -

(81)

and the initial point xo and initial Hessian approximation matrix By of BFGS satisfy

-

M 2 1 1 2 _1 2 2 _1
— IV f(x)2 (o — x|l = 50’ IVZf ()2 (Bo = VI f () VI f () 2l P <
l,(/z

(82)

Then, the iterates {xk},j'ig generated by the DFP and BFGS methods satisfy

192 (62 (o = x| _ (1>5’ f@ =G <1>k,

IV2f(x0)2 (xo — x,)| ~ \K FGo) — fe) —  \k

Proof The results for DFP can be shown by setting p = %, € = ﬁ and § = % in
Corollary 2. We can check that for those values, the conditions in (75) are all satisfied.
Moreover, the expressions in (76) and (77) can be simplified as

2V28(1 + p)(1+ vk + e
k
1+ 1)1+ 235) g
22014+ D01+ v+ SRR
= < —,
k Jk

and (1 +€)? = (14 35)* < 1.1. So the claims in (83) follow. The results for BFGS
can be shown similarly by setting p = %, €= 51—0 and § = % in (78), (79) and (80). O
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The results in Corollary 3 show that for some specific choices of (e, §, p), the con-
vergence rate of DFP and BFGS is (1/k)*/?, which is asymptotically faster than any
linear convergence rate of first-order methods. Moreover, we observe that the neigh-
borhood in which this fast superlinear rate holds is slightly larger for BFGS compared
to DFP, i.e., compare the first conditions in (81) and (82). This is in consistence with
the fact that in practice, BEGS often outperforms DFP.

A major shortcoming of the results in Corollary 2 and Corollary 3 is that, in addition
to assuming that the initial iterate xg is sufficiently close to the optimal solution, we also
require the initial Hessian approximation error to be sufficiently small. In the following
theorem, we resolve this issue by suggesting a practical choice for By such that the
second assumption in (81) and (82) can be satisfied under some conditions. To be
more precise, we show that if | V2 f (x*)% (x0 — x4)|| is sufficiently small (we formally
describe this condition), then by setting By = V? f (x), the second condition in (81)
and (82) for Hessian approximation is satisfied, and we can achieve the convergence
rate in (83).

Theorem 2 Consider the DFP and BFGS methods and suppose Assumptions 3.1
and 3.3 hold. Moreover, for DFP, suppose the initial point xo and initial Hessian
approximation By satisfy

M 5 1 . 1 1 2
_3”V S ()2 (x0 — x4)|| < min 120° ﬁ , By = V~© f(x0), (84)
/1,2

and for BFGS, they satisfy

M 2 1 . 2
— V7 f(x) 2 (x0 — x)[| < min By =V=f(xo). (85

Bl
'u,i 50’7\/3 ’

Then, the iterates {xk}ki'g generated by the DFP and BFGS methods satisfy

1V2f ()2 (i = xl (1)’2" fa = f@ (1){

IV2F (o) (o — x|~ \K FG0) — fr) —

Proof First we consider the case of the DFP method. Notice that by (84), we obtain

Mo, | |
— IV f(x) 2 (x0 — x|l < 0
7% 0
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Hence, the first part of (81) is satisfied. Moreover, using Assumptions 3.1 and 3.3, we
have

IV2 £ (e H (V2 £ (x0) = V2 F )V F ()™ F
< VAV )72V (o) — V2 () V2 f ()72 |
] M
< VAV f(x) T2 PIVE f(x0) = V2 f (x|l < \/c_l'ﬁllxo — x|

M 1 1
= ﬁ;||v2f<x*>—fv2f<x*)f<xo — x|l

M 1
< ﬁ;llwf(x*)‘f 11V £ ()2 (x0 — x|

~| =

< VaZL IV f e o — vl <
/J,Z

The first inequality holds as ||A||r < Vd| A| for any matrix A € R?*4 and the last
inequality is due to the first part of (84). The above bound shows that the second part
of the (81) is also satisfied, and by Corollary 3 the claim follows. The proof for BFGS
is similar to the proof for DFP. It can be derived by following the steps of proof of
DFP and exploiting the BFGS results in Corollary 3. O

According to Theorem 2, if the initial weighted error || V2 f (x*)% (x0 — x4)|| 1s suffi-
ciently small, then by setting the initial Hessian approximation B as the Hessian at the
initial point V? f (xo), the iterates will converge superlinearly at arate of (1/k)*/2. More
specifically, based on the result in (24), it suffices to have ||V f (x*)_%V fxo)l <
O3 /(M) to ensure V2 £(x*)2 (xo — x*) || < O3 /(M /) as stated in (84)
and (85). Hence, this condition is satisfied when ||V f(xp)| < O(/,Lz/(M\/E)). This
observation implies that, in practice, we can exploit any optimization algorithm to find
an initial point xo such that |V f (xp)|| < O(u?/(M~/d)), and once this condition is
satisfied, by setting By = V2 f (xo) we obtain the guaranteed superlinear convergence
result. The suggested procedure requires only one evaluation of the Hessian inverse for
the initial iterate, and in the rest of the algorithm, the Hessian inverse approximations
are updated according to the convex Broyden update in (8).

5 Analysis of self-concordant functions

The results that we have presented so far require three assumptions: (i) the objective
function is strongly convex, (ii) its gradient is Lipschitz continuous (iii) and its Hessian
is Lipschitz continuous only at the optimal solution. In this section, we extend our
theoretical results to a different setting where the objective function is self-concordant.

Assumption 5.1 The objective function f is standard self-concordant. In other words,
it satisfies the following conditions: (i) f is closed with open domain dom ( f). (ii) it
is three times continuously differentiable, (iii) v? f(x) > Oforall x € dom(f), and
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(iv) the Hessian satisfies

d 2
—V2f(x +1y)

1
= <2 (yTvzf(x)y)2 V2f(x), ¥xedom(f), VyeRd.

=0
87)

Notice that the constant 2 in the above condition corresponds to standard self-
concordant functions, but, in principle, there can be any arbitrary constant instead of 2.
The analysis of Newton-type methods for self-concordant functions (see, e.g., [38, 39])
expands the theory of second-order algorithms beyond the classic setting considered in
the previous section. This family of functions are of interest as it includes a large set of
loss functions that are widely used in machine learning, such as linear functions, convex
quadratic functions, and negative logarithm functions. In this section, we extend our
results to this class of functions.

We should mention that the setup considered in this section is neither more gen-
eral nor more strict than the setup in the previous section. For instance, the function
f(x) = —logx is self-concordant and satisfies Assumption 5.1, but it does not satisfy
Assumption 3.1, 3.2 or 3.3 for any x > 0. Conversely, the self-concordance assump-
tion is not a necessary condition for the assumption that the Hessian is Lipschitz
continuous only at the optimal solution. For instance, the objective function

Tx2+8x+3 if x e (—o0, —1)
fx) = {x*+x2 if xel[-1,1] (88)
Tx2 —8x+3 if x € (1,+00)

satisfies the conditions in Assumptions 3.1, 3.2 and 3.3. However, it is not self-
concordant, as its third derivative is not continuous.

Based on these points, the analysis in this section extends our convergence analysis
of quasi-Newton methods to a new setting that is not covered by the setup in the
previous section.

We should also mention that in [35-37] for the finite-time analysis of quasi-Newton
methods, the authors assume that the objective function is strongly self-concordant
which forms a subclass of self-concordant functions, formally defined in [35]. Note
that a function f is strongly self-concordant when there exists a constant K > 0 such
that for any x, y, z, w € dom(f), we have

VD) = V0 2K (=0 V@0 - 0)  VErw). (89)

In addition, in [35-37] the authors require the objective function to be strongly convex
and smooth. Indeed, our considered setting in this section is more general than the
setup in these works as we only require the function to be self-concordant.

Note that the condition V2 f(x) > 0 guarantees that the inner product s,j Yk in
quasi-Newton updates is always positive in all iterations, as stated in Sect. 2. Also
by the definition of self-concordance, the function f(x) is always strictly convex. We
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start our analysis by stating the following lemma which plays an important role in our
analysis for self-concordant functions.

Lemma 9 Suppose function f satisfies Assumption 5.1 and x,y € dom(f). Further,
consider the definition G = fol V2 f(x +a(y —x))da. If x and y are such that

F=V2f()2(y —x)|| < 1, then

1
(1 =r)’V2f(x) 2 V2 f(y) < = sz(x), (90)
r? 2 1 2
(I—r+ ?)V fx) 26 = :V S x). on
Proof Check Theorem 4.1.6 and Corollary 4.1.4 of [9]. O

The next two lemmas are based on Lemma 9 and are similar to the results in Lemma 3
and 4, except here we prove them for the case that the conditions in Assumption 5.1
are satisfied.

Lemma 10 Recall the definition of ry in (16) and Jk in (17). Suppose that there
exists oy e [0, 1] and deﬁne the matrix Hy = sz(x* + otk(xk — X4)) and Hk =
V2 f(xy) "2 HkV2f(x*) 2. If Assumption 5.1 holds and ||ry|| < 5, then for allk > 0
we have

<= A+20ndbI, (A —=lnd)I <

— I < < <——I. (92)
1+ 20l i (A — [z l?

Proof Check Appendix F O

Lemma 11 Recall the definitions in (13) - (16) and consider the definition 0y =
max{||rkll, [[rk+11}. Suppose that for some k > 0, we have 6y < % If Assumption 5.1
holds, we have

9% — Skl < 661k I, (93)

(1 = 601511 < 8¢ 9 < (1 + 66011511, (94)

(1= 6015kl < I1Fxll < (1 + 660151l (95)

IV f (k) = rell < 20l (96)

Proof Check Appendix G. O

By comparing Lemma 10 and Lemma 11 with Lemma 3 and Lemma 4, respectively,
we observe that the only difference between these results is that we replaced oy /2 =
(M /23 llrll by 2[irell and = max{ox. o1} by 66 = 6 max{lirll, lIre1)-
Due to this similarity, our results for the self-concordant setting are very similar to
the previous case considered in Sect. 4. As a result, the superlinear convergence proof
in this section is also similar to the one in Sect. 4. Next, we directly present the final
superlinear convergence rate results for self-concordant functions.
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Theorem 3 Consider the convex Broyden class of quasi-Newton methods described
in Algorithm 1. Suppose the objective function f satisfies the conditions in Assump-
tion 5.1. Moreover, suppose the initial point xo and initial Hessian approximation
matrix By satisfy

1 € _1 _1
IV2f @200 —xll < ¢ IVAf()72 (Bo = V2 () V2 f () T2l <6,
97)
where €, 6 € (0, %) such that for some p € (0, 1), they satisfy
4 3+4€ € €
25 + 1 <34, - 4+258 < (1 —=28)p,
(zbmax( +)(1_6)2+1_6)1_p_ 2= (1-20)p
¢max = sup ¢k . (98)

k=0

Then the iterates {xk},j:o(o) generated by the convex Broyden class of quasi-Newton
methods converge to x at a superlinear rate of

2 L en k
IV2 £ (r) 2 O — x| _ <C3qﬁ+c4> .

< 99)
IV2 £ ()2 (o — ) k
fe-f@) 1 (Cevkea\t o
fGo) — fo ~ -\ & e

1 14+ €
C=wnatp(1+5). = UEOUERE

’

3(1—p)
(101)
where g = ———— e [1. |13} | and guin = infiz0 6.
¢minm+m
Proof Check Appendix H. O

Similarly, we can set ¢ = 1 or ¢ = 0 for all £ > 0 to obtain the results for DFP
and BFGS, respectively, as stated in Corollary 2. We can also select specific values
for (e, 8, p) to simplify our bounds.

Corollary 4 Consider the DFP and BFGS methods and suppose Assumption 5.1 holds.

Moreover, suppose for the DFP method, the initial point xo and initial Hessian approx-
imation matrix By satisfy

2 Lo RS 2 ) 2 -1 1
V2 ()2 (xo — X))l < 730" IV 2 (Bo = Vo f () Vo f () 2 llp < =
(102)
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and for the BFGS method, the initial point xo and initial Hessian approximation matrix
By satisfy

2 1o ne 2 L 2 2 -4 !
IV f ()2 (o — x|l < 300 IV2f(x)™2 (Bo = V7 f(x:) VI f(xi) "2 Ml F < =
(103)

Then, the iterates {xk},j'ig generated by these methods satisfy

||V2f(x*)%(xk—x*)||§<l)é f(xk)—f(x*)§1.1<l)k7 et
IV2f ()2 (xo —xe)||  \K f(xo) = f(x4) k

(104)

Proof As in the proof of Corollary 3, we set ¢y = 1, p = %, € = 11%, s = % for the
DFP method and ¢ = 0, p = %, € = %, § = % for the BFGS method in Theorem 3.
Then, the claims follow. O

We can also set the initial Hessian approximation matrix to be V2 f(xo) as in

Theorem 2 to achieve the same superlinear convergence rate as long as the distance
between the initial point x¢ and the optimal point x, is sufficiently small.

Theorem 4 Consider the DFP and BFGS methods and suppose Assumption 5.1 holds.
Moreover, suppose for the DFP method, the initial point xo and initial Hessian approx-
imation matrix By satisfy

1 1
V2 % _ < 1 — —— By = Vz , 105
IV f ()2 (x0 — x| < mm{720 21\/3} 0 f(xo0),  (105)
and for the BFGS method, they satisfy
I1V2 £ ()2 (x0 — x| < min Lo By = V? £ (x0) (106)
’ U 300" 21/d | '

Then, the iterates {xk}lz’g generated by these methods satisfy

||V2f(x*)%(xk—x*)||S(l)? f(xk)—f(x*)§1.1<l>k’ .
IV2f ()2 (xo —x0)l ~ \K f(x0) = f(x) k

(107)

Proof Check Appendix I. O

In summary, we established the local convergence rate of the convex Broyden class
of quasi-Newton methods for self-concordant functions. We showed that if the initial

distance to the optimal solution is ||V2f(x*)% (xo — x4)|| = O(1) and the initial Hes-
1
sian approximation error is ||V2f(x*)_% (Bo — V2 f(x) V2 f(x5) "2 ||F = O(1), the
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1
fIV2F o2 ol
V2 £ () 2 (xo—x)l
L

k X
O(«/_E) and % = O(%)k. Moreover, we can achieve the same superlinear

iterations converge to the optimal solution at a superlinear rate o

rate if the initial error is ||V2f(x*)%(x0 — x| = (’)(\/LE) and the initial Hessian

approximation matrix is By = V2 f (xo).

6 Discussion

In this section, we discuss the strengths and shortcomings of our theoretical results
and compare them with concurrent papers [36, 37] on the non-asymptotic superlinear
convergence of DFP and BFGS.

Initial Hessian approximation condition Note that in our main theoretical results, in
addition to the fact that the initial iterate xo has to be close to the optimal solution x,
which is a common condition for local convergence results, we also need the initial
Hessian approximation By to be close to the Hessian at the optimal solution V2 f (x).
At first glance, this might seem restrictive, but as we have shown in Theorem 2 and
Theorem 4, if we set the initial Hessian approximation to the Hessian at the initial
point V2 f(xp), this condition is automatically satisfied as long as the initial iterate
error ||xg — x4|| is sufficiently small. From a complexity point of view, this approach
is reasonable as quasi-Newton methods and Newton’s method outperform first-order
methods in a local neighborhood of the optimal solution, and their global linear conver-
gence rate may not be faster than the linear convergence rate of first-order methods.
Hence, as suggested in [2], to optimize the overall iteration complexity according
to theoretical bounds, one might use first-order methods such as Nesterov’s acceler-
ated gradient method to reach a local neighborhood of the optimal solution, and then
switch to locally fast methods such as quasi-Newton methods. If this procedure is
used, our theoretical results show that by setting By = V2 f(xo) (and equivalently
Hy = V2 f(x0)~ 1) for the convex Broyden class of quasi-Newton, the fast superlinear
convergence rate of (1/k)*/? can be obtained.

It is worth noting that, however, in practice algorithms that do not require switching
between algorithms or knowledge of problem parameters are more favorable. Due to
these reasons, quasi-Newton methods with an Armijo-Wolfe line search are more
practical, as they offer an adaptive choice of the steplength with global convergence
and avoid specifying typically unknown constants such as the Lipschitz constant of
the gradient, Lipschitz constant of the Hessian, and strong convexity parameter.

It is worth noting that, in practice, algorithms that do not switch between different
methods or require knowledge of the problem parameters are more favorable. Because
of these reasons, quasi-Newton methods with an Armijo-Wolfe line search are more
practical as they offer an adaptive choice of the stepsize with global convergence
guarantees without knowledge of unknown constants such as the Lipschitz constant of
the gradient, Lipschitz constant of the Hessian, and strong convexity parameter. Indeed,
both this framework and the framework in [36, 37] requires re-initializing the Hessian
approximation when one is sufficiently close to the solution. An ideal theoretical
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guarantee would follow a line-search approach that guarantees that, once the iterates
reach alocal neighborhood of the optimal solution, the Hessian approximation for DFP
or BFGS automatically satisfies the required conditions for superlinear convergence
without any modification to the Hessian approximation.

Convergence rate-neighborhood trade-off As mentioned earlier, we observe a trade-
off between the radius of the neighborhood in which BFGS and DFP converge
superlinearly to the optimal solution and the rate (speed) of superlinear convergence.
One important observation here is that for specific choices of €, § and p, the rate of con-
vergence could be independent of the problem dimension d, while the neighborhood
of the convergence would depend on d. Note that by selecting different parameters
we could improve the dependency of the neighborhood on d, at the cost of achieving
a contraction factor that depends on d. In this case, the contraction factor may not
be always smaller than 1, and we can only guarantee that after a few iterations it
becomes smaller than 1 and eventually behaves as 1/k. The results in [36, 37] have a
similar structure. For instanci, in [36], the authors show that when the initial Newton

decrement is smaller than I’Q—ZL, which is independent of the problem dimension, the
convergence rate would be of the form (d—i)k/ 2. Hence, to observe the superlinear
convergence rate one need to run the BFGS method at least for dL/u iterations to
ensure the contraction factor is smaller than 1. A similar conclusion could be made
using our results, if we adjust the neighborhood. In our main result, we only report the
case that the neighborhood depends on d and the rate is independent of that, since in
this case the contraction factor is always smaller than 1 and the superlinear behavior
starts from the first iteration.

7 Numerical experiments

In this section, we present our numerical experiments and compare the non-asymptotic
performance of quasi-Newton methods with Newton’s method and the gradient descent
algorithm. We further investigate if the convergence rates of quasi-Newton methods
are consistent with our theoretical guarantees. In particular, we solve the following
logistic regression problem with /; regularization

N
1 T 7
1 = — —YiZ; X 2
;Ieur}] f(x) = N E In(1+e )+ 5 lx|=. (108)

i=1

We assume that {zi}lN: | are the data points and {y; }1N= | are their corresponding labels
where z; € R and y; € {—1,1} for 1 < i < N. Note that the function f(x)
in (108) is strongly convex with parameter © > 0. We normalize all data points
such that ||z;]] = 1 for all 1 < i < N. Therefore, the gradient of the function
f(x) is Lipschitz continuous with parameter L = 1/4 + p. It is also known that the
logistic regression objective function is self-concordant after a suitable scaling, i.e.,
it is self-concordant but not standard self-concordant (with constant 2). Moreover,
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Table 1 Sample size N,

dimension d, initial point Dataset N d ¢ -
parameter ¢ and regularization & qlon-cancer 62 2000 0.1 0.01
of each dataset
Covertype 581,012 54 1 0.001
GISETTE 6000 5000 0.1 0.01
MNIST 11774 784 0.1 0.01

its Hessian is Lipschitz continuous. In summary, the objective function f in (108)
satisfies Assumptions 3.1, 3.2, 3.3 and Assumption 5.1.

We conduct our experiments on four different datasets: (i) colon-cancer dataset [40],
(i) Covertype dataset [41], (iii) GISETTE handwritten digits classification dataset
from the NIPS 2003 feature selection challenge [42] and (iv) MNIST dataset of hand-
written digits [43].} We compare the performance of DFP, BFGS, Newton’s method,
and gradient descent. We initialize all the algorithms with the same initial point
xo = ¢ * 1 where ¢ > 0 is a tuned parameter and 1 € R is the one vector. We
set the initial Hessian inverse approximation matrix as V2 f (x0)~! for the DFP and
BFGS methods. The step size is 1 for DFP, BFGS, and Newton’s method. The step
size of the gradient descent method is tuned by hand to achieve the best performance
on each dataset.

All the parameters (sample size N, dimension d, initial point parameter ¢ and
regularization p) of these different datasets are provided in Table 1. Notice that the
initial point parameter c¢ is selected from the set A = {0.001,0.01,0.1, 1, 10} to
guarantee that the initial point x¢ is close enough to the optimal solution x, so that
we can achieve the superlinear convergence rate of DFP and BFGS on each dataset.
The regularization parameter u is also chosen from the same set .4 to obtain the best
performance on each dataset.

From the theoretical results of Sects. 4.3 and 5, we expect the iterates {x;}2
generated by the DFP method and the BFGS method to satisfy the following superlinear
convergence rate

1 k %
llvzf(x*)?(xk—mn - (L) fow) = f) _ <1> Cwee1
IV2f(x0)2(x0 — xa)|  \Wk f(x0) — f(xs) k

Hence, in our numerical experiments, we compare the convergence rate of
2 1/2
m% with (\/l];)k and the convergence rate of % with (%)k to
check the tightness of our theoretical bounds. Our numerical experiments are shown
in Figs. 1, 2, 3 and 4 for different datasets. Note that for each problem, we present two
V2 f )2 G x|
192 £ ()2 ro—x)
well as our theoretical bound which is (\/LE)" . In the right plot (plot (b)), we compare

S )= f(xs)
S (x0)—f (xx)

plots. The left plot (plot (a)) showcases for different algorithms as

for different methods with our theoretical bound which is (%)k .

' We use LIBSVM [44] with license: https://www.csie.ntu.edu.tw/~cjlin/libsvm/COPYRIGHT.
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(b) Results o
Fig.3 Convergence rates of logistic regression on the GISETTE dataset

@ Springer

107
0

Q. Jin, A. Mokhtari
NS ‘ as
Ny g —e-BF
N ET == Dpp —-BFGS
1N, . r —=-DFP
LN .. —+-Newton
o, \\ Gradi b —+-Newton
10 \ \\ \.\ —=-Gradient Descent —e-Gradient Descent
K Weon [ L 1\k s
TN ~ (%) ~(3)
| N N
, \\ \ “
2
=10°10 | “‘ \\ ]
\ ‘o\ s,
. o o
\‘ N ~ "\
\ hS \
\ N\, .
107® y LS 3 N )
0 0 15 20 101° - " . >
Number of iterations k 5 Number of ?terations & 5 0
V2 f (@) 2 (@p—as)| F@r)=f (@)
(a) Results of I . b Results of k *L,
172 (2s)1/2 (wo—au) | (b) fl@o)—f(zs)
Fig. 1 Convergence rates of logistic regression on the Colon-cancer dataset
10°0g5g 0
T e T e 10 S, T ) -
t\‘;\\ —-BFGS e eeee o eam e ou| - BFGS B
A —-DFP o\ —-DFP
L Ve ‘~\ —eo-Newton IS TN
\ . RN —«-Newton
\ S N —e-Gradient Descent Y ‘ .
_ 105} \ e el Y OON —e-Gradient Descent
y N, (L r RN S
\ Ve, 7 N \ —-(1)
\ N, S \ S \
\ o ~ \ . \\
! N e H W
\ DN N \ S
=90k s "N ~ ] s N
0 | AN . r | W 1
\ WY, . 3 AN
\ \N ~ 1 Y N,
‘.\ \\\. ~ ‘.\ \ \.
\ X, \ \‘\ \
10718 - s ’ \ kY N
0 5 10 15 20 107 : 10 "
Number of iterations k ° Number of iterations k °
2 1/2
Vof(zs) " (zp—zs)l
(a) Results of I .
V2 f ()12 (wo—a) |

(b) Results of
Fig.2 Convergence rates of logistic regression on the Covertype dataset
==

F(zp)—f(zx)
flxo)—f(zx)"
10 e ' s 10° =X T T T
ST e en [ BEGS R —-BFGS
Ny —-DFP S
. - SN [ DFP
\N\ —-Newton \‘ \\ “eea . Newton
Y . Y
[ \ b,\ \‘\.\ —e-Gradient Descent \\\‘ N —e-Gradient Descent
VN, e (L r N Iy 0
N e € \ ~-(})
v N, . Y N
| 3 ~ Y y
i ‘% e, o \\
i RN N | AN X
i Y ™~ [ N \\ 1
v \e\\ \\ \ “ “
1 1 \
i \\~“\ ™ | ‘§“ \\
\ 3 \ N .
N ‘ AN 4 AN \
5 1 15 20 1078 s . - -
Number of iterations k Number of iterations &
V2 i (e 2 (@h )|
a) Results of I .
(@) V2 f(xe) /2 (zo—2) |

20
¢ L) = F ()
F@o)—F@)”

20



Non-asymptotic superlinear convergence of standard...

10 b Sl . - 0 - T T
g e TT=em e [ BFGS O~ —_BFGS
‘: % —-DFP M D -, S~
2N ~ NN ~e|—=-DFP
N . —+-Newton Y \ —e-Newton
\ .
[N SeQ —=-Gradient Descent Y N, Gradient D
10 N . Py Y ~, —e-Gradient Descent
LNy \_..(;) AN \ —- (L) i
\‘ N Sk Y \ k
1 Ay
\ g\ \\' \ \_ \,
Y N, Y hY
S0 ! 3 ~ s A
' W, ~ 10| ' Y
| Y N 10 Py \
' o, ., LY \
\ A\Y N, . LY
. . \ £y \
i 3 ™ (B § \
W ' \ \
\ . \ Y \
1015 H R L L N N
0 0 15 20 10"50 =
Number of iterations k&

10 15 20
Number of iterations &

172 £ ()2 (g =) flor)—f(zs)
(a) Results of e LI TR (b) Results of f(zlg)ff(z*) .

Fig.4 Convergence rates of logistic regression on the MNIST dataset

1200
We observe that W for the DFP and BFGS methods are bounded
IV2f e P o—ra)|
above by (\/le)k and % for the DFP and BFGS methods are bounded above

by (%)k. Therefore, these experimental results confirm our theoretical superlinear
convergence rates of quasi-Newton methods.

8 Conclusion

In this paper, we studied the local convergence rate of the convex Broyden class
of quasi-Newton methods which includes the DFP and BFGS methods. We focused
on two settings: (i) the objective function is pu-strongly convex, its gradient is L-
Lipschitz continuous, and its Hessian is Lipschitz continuous at the optimal solution
with parameter M, (ii) the objective function is self-concordant. For these two settings
we characterized the explicit non-asymptotic superlinear convergence rate of Broyden
class of quasi-Newton methods. In particular, for the first setting, we showed that if

3
the initial distance to the optimal solution is || V2 f (x*)% (xo —x0)|l = (’)(%) and the

initial Hessian approximation error is ||V2f(x*)7% (Bg — sz(x*))sz(x*)*% lF =
O(1), the iterations generated by the DFP and BFGS methods converge to the optimal

1
; : 2f )2 (=)l LY g Lo0= ()
solution at a superlinear rate of w = (’)(—) and LS —r =
K 192 £06) 2 (o= vk Jeo= /0
O(%) . We further showed that we can achieve the same superlinear convergence
3

. I . 1 2 L .
rate if the initial error is || V2 f (x4)2 (xo — x5)|| = O( 11%/2) and the initial Hessian
approximation matrix is By = V? f (xo). We proved similar convergence rate results
for the second setting where the objective function is self-concordant.
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Appendix
A Proof of corollary 1

According to the definition J = fol V2 f(x 4+ 1(y — x))dt,wehave V f (x) =V f(y) =
J(x — y). Hence, we can write

I(J = V2 f ) — )
17— V2 feolllx =yl (109)

IVf(x) = V) =V fx)x =yl

IA

Moreover, we can show that

17— V2 £l

1
” / [V2f(x +1(y — x)) — V2 f(x,)]dt
0

IA

1
/O V2 £ (x +1(y — x)) — V2 f(x0)lldt.

By Assumption 3.3, we can replace the upper bound in the above expression by the
following

1
I = V2 f )l SM/O llx +2(y — x) — x«||dt

1 1
MU (1—t)||x—x*||dt+/ l||}’—x*||dti| (110)
0 0

M
= 5 (lx =%l 4 lly = %)

IA

By combining (109) and (110), the result in (12) follows.
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B Proof of Lemma 1

Define P := I —uu'. Since |lu|| = 1, wehave P = P', P2 =P, and0 < P < I.
These properties imply that

IPAP|% = Tr(PAPPATP) = Tr(PAPAT P)
=Tr(PPAPA") =Tr(PAPA"). 111)

Moreover, for symmetric matrices X | and X thatsatisfy X| < Xo wehave Tr(XY) <
Tr(X,2Y) when Y is positive-semidefinite. This result and 0 < P < [ imply that

Tr(PAPAT) < Tr(APAT) = Tr(AAT — AuuT AT) = ||A||3 — |Au|®. (112)
By combining the results in (111) and (112), and considering the definition P :=
I —uu'", the claim in (18) follows.
C Proof of Lemma 2

Notice that Tr(X1Y) < Tr(X»Y) for any symmetric matrices X; < X, and symmetric
positive-semidefinite matrix Y. Since AT A < ||A||>, we obtain that

|AB||% =Tr(B"ATAB) =Tr(ATABBT) < |A|*Te(BBT) = ||A|*| B,

which leads to the first inequality in (19). The second inequality in (19) follows from
the first one, since

IBTAB|lF < |BTAllIBIF < lAIIB]IBIlF.

D Proof of Lemma 3

By Assumption 3.3, we have that

1
I = V2 f (el = H /O (V2 £ e + i = %) = V2 (x,) ] der
! M
< [ Malv— xlde = 3 e =l
0

Hence, we have J; — V2 f (x,) < % |lxx — x|/ . Considering this bound and Assump-
tion 3.1, we obtain

2, M 2 M R 1 2
Je =V flxe) =2 7||xk =XV f () = o= IV f ()72 V7 () 2 (e — ) V7 f ()
i 2u
M

M
ﬁﬂllvz.f(x*)_%||||rkHV2f(x*)ﬁ ||Vk||V2f(X*)=%V2f(x*)~ (113)

3
2u2
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Similarly, we have that

2 2 M M O%
Vo) = I 2k = V)] = —lxk — xelld = =k — x4l e < — k.
2 2 2
(114)

Combining (113) and (114), we obtain that

2 Ok 2
gV ) S ks (1 +7)v Fx).

Multiplying both side of the above expression by V2 f (x.) =2 from left and right leads
to the first result in (20). By Assumption 3.3 and o4 € [0, 1], we have that

IHy — V2 F )l = V2 f (e + (g — x0)) — V2 F ()|l < Mogl|xx — x|
< Mxp — x|

Hence, we have Hy — sz(x*) < M||x; —x«||I. Considering this bound and Assump-
tion 3.1, we obtain

2 M 2 M 2 ~1g2 i 2
Hi = V2f () = - lloe = 5l V2 S () = VA 072V £ 002 (ot = 20 [V £ ()
M 1 M
=< ;uvzf(x*)*f|||\rk||v2f(x*> = =V ) =V fx).  (115)
'U,Z

Similarly, we have that

M
V2f(x) — Hi < I1He = V2 F )l = Ml — x| T < ;”xk — Xl Hx < ox Hi.
(116)

Combining (115) and (116), we obtain that

V2 f(xe) < Hy < (14 05) V2 f(xs).

1+ ox

Multiplying both side of the above expression by V? f (x*)_% from left and right leads
to the second result in (20).
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E Proof of Lemma 4
By Assumption 3.1 and Corollary 1, we have

155 — 8kll = IV2FGe) ™23k — V2 £ () 2stll < 1IV2 £ ()™ 2 iy — V2 £ Gea)sel

= V2 @) 2V (i) — Vo () = V2 f () Cetert — x|

M 1 M
< skl 5 Uit — xll + ok — 2D < — sl max {llxeet — xell, e — xsl1)-
pr 2 n?
(117)

Notice that

1 | . 1 .
Iskll = 1V f (o) "2 V2 F ) 256l < IV £ ) 2 ISkl < — ISkl (118)
M?

Based on the definition r; = sz(x*)% (xr — x4), we have x; — x, = sz(x*)’%rk
and hence

2 _1
max {[|xg+1 = Xell, Xk = xll} < IV7F o) ™2 | max {{[riell, rx+1 1}

<
1

< — max {[[rgll, lIrx41ll}- (119)
n2

Substitute (118) and (119) into (117) and recall the definition in (16) to obtain

A M A .
1Yk = Skl = —5 max {[Irll, llre1 ISkl = rllSell-
n2

Hence, the proof of the first claim in (21) is complete. By using the Cauchy-Schwarz
inequality and (21), we can write

N ANTa N Ana A2
[k — 8 Skl < 1Yk — Sellllsell < e llsell”.
Therefore, we obtain that
A2 _ aTa A2
(I =) ISkll™ < 5 Y < (A +T)lIsell”,

and the second claim in (22) holds. Using the reverse triangle inequality and (21),
we have |||Vl — ISkl < 19k — Skl < t«|ISk]l. Hence, the third claim in (23) holds.
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Finally, to prove the last claim in (24), we use Assumption 3.1 and Corollary 1 to show
that

IVFCer) — rell = IV2F (o) ™2V () — V2 £ ()2 (i — x|
192 £ ) 2 IV £ (i) — V£ () — V2 £ () (k= x|

=<
M 2 M -1y2 5 2
< 1l —xillP = — IV () 7TV F () 2 O — x|l
21z 22
M 1 1 M Ok
< IV F) 2PNV £ () 2 (i — 20l < —5 llrcll® = —lIrxll.
2uz 212 2

F Proof of Lemma 10

Set x = x, and y = x; in (91) of Lemma 9 and note that || || < % < 1. By (91), we
have

I\ <o 1 )
1 — [lrll + V2 f(x) < Jp < ———— V2 f(xy).
3 1 — ||7el

Multiply the above expressions form left and right by V? f (x*)’% to obtain

eI . 1

L —lrell + I << —1. (120)
1 —lrgll
Using the fact that ||r¢|| < %, we have

1 — [Irell + Il > (121)

3 142l

1
— <1+ 2]l (122)
1 — |lrg]]

Replace the lower and upper bounds in (120) with the ones in (121) and (122), respec-
tively, to obtain the first result in (92). Set x = x, and y = x, + ag (xx — x4) in (90)
of Lemma 9 and notice that since «; € [0, 1], we obtain that

F=IV2F) (0 — 1) = IVEF ()2 (s + ok (g — X5) — x|

1
arlrell = lnll = 5 < 1.

By (90), we have that

(1 —r)2V2 f(xy) < Hy < V2 f(xs).

1
(1—r)?
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Using that r < ||r¢]| < 1, we get that

(1= D>V f(xe) < (1 =r)2V2f(xy) < Hy < V2 £ (x)

1
(1—r)?

< Ve
= (1= [Iel)? o

Multiply the above expressions form left and right by V? f (x*)_% to obtain the second
result in (92).

G Proof of Lemma 11

We first show that for x = x, and y = x; + & (xx4+1 — Xr), where o € [0, 1], the value
of r = ||V2f(x)% (y — x)|| defined in Lemma 9 is less than 1. To do so, note that

1
r= V2 (@) O+ abirn — x) — x| < ellrll + (=)

1
< max{lirgll Ire1 1} = 6k < 5 < 1,

where ||r¢|| = ||V2f(x*)% (xx — x4)||. Note that in the above simplification we used
the assumption that & < 1/2. Now using the result in (90) we have

(1= r)?V2f(xe) < V2 F O+ o — xp) < V2 £ (x,).

1
(1—r)2

Moreover, since r < 6 € [0, 1), we can write
292 2 1 2
(I =0)" V7 fxs) 2 V7 fxx + alxgsr —xp) =2 mv fx).

By computing the integral for o from O to 1 in the above inequality, we get that

(1 = 0)*V2 f(xs) < Gi < q V2 f(x),

1
— Qk)2

where we used the definition G := fol V2 f(xx + o(xg+1 — xx))do. Multiplying the

above expression from left and right by V2 f (x*)_% leads to

1

1-60)%1 <G < ——1,
(I =671 =< Ny

where ék = V2 f (x*)_% Gy V? f (x*)_%. The above inequality is equivalent to

) . I
((1—9k) —1>1§Gk—15<m—1>1,
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which indicates that

. 1
Ge—1I| < — 1,1 —=(1—-6)%}. 123
I1Gk ||_Ina>i{(1_0k)2 ( k)} (123)
Since 6 € [0, 1), we have that
1 a0
-6 (-2 = Y

Hence, (123) can be simplified as

I PP A Chul. PR 2-3)
T (I =06k

Ok = 606, 124
TS e Tt

where the second inequality holds due to 6; < %

Considering the definition Gy := fol sz(xk 4+ a(xg+1 — Xxx))do, we have y, =
Gsi. Using this observation, we have

196 — Sell = V2 £ () ™2y — V2 £ (x) 2t
= V2 £ (6) "2 G V2 (1) I V2 (1) 25t — V2 £ () s |

= [IGiSk — Skl < 1Gk — TSkl < 66%lISkll,

where the last inequality holds due to (124). Hence, the proof of the first claim in (93)
is complete.
By using the Cauchy-Schwarz inequality and (93), we can write

|Gx — 80 TSkl < 19k — Sl ISell < 66k 115 1I>.
Therefore, we obtain that
(1 — 600115 1> < § 9 < (1 + 66) 1511,

and the second claim in (94) holds. Using the reverse triangle inequality and (93), we
have ||kl — ISkl < 19k — Skll < 66k ||Sk|l. Hence, the third claim in (95) holds.
Finally, using Lemma 10 we know that

A 1
Jo = Il < max{2||r¢|l, 1 = —————} =2||r]],
V& — 11l = max{2[[r|| 1+2||r,||} 72
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and

IVF () — rell = IV2FGe) "2V £ () — V2 £ () 2 (i — )|
= V2 £ () 2 Tk — x0) — V2 £ ()2 (i — x|
= | Jere — el < e = Tl < 20>

Thus, the last claim in (96) holds.

H Proof of Theorem 3

From the assumption on the initial point, it follows that x; € dom f for all k > O,
so that Algorithm 1 is well-defined. The proof of this Theorem 3 is very similar to
the proof of Theorem 1. The only difference is that we utilize the Lemma 10 and
Lemma 11 instead of Lemma 3 and Lemma 4. Hence, we need to replace all the terms
Z = 2%”'%” by 2|lri|l and 7 = max{oy, ox+1} by 66 = 6max{llrell, [lrx+1ll}-
Here, wg only stated the outline of the proof and omit the details to avoid redundancy.

First we present the potential function similar to the (46) from Lemma 7. Suppose
that for some 6 > 0 and some k > 0, we have 6y = max{||r¢|l, lrk+11l} < % and

| By — I < 8. Then, the matrix Bj+1 generated by the convex Broyden class update
(7) satisfies

N . I(Bx — D>
IBis1 —IF < 1Bk — IF — pp—— sy —

28115112
L
S, (B — I)Bx(Bx — I)s
(1 - g BT DB I s (125)
285, BiSk

where Z; = ¢ || Bl m + ?fggﬁ. We also have that

IBis1 — IF < Bk — Il + 6Zibk. (126)

The proof of the above conclusion is the same as the proof we presented in Lemmas 5, 6,
and 7 except that we use the results of Lemma 11 instead of Lemma 4. Then, we
present the similar linear convergence results like Lemma 8. Suppose that the objective
function f satisfies the conditions in Assumption 5.1. Moreover, suppose the initial
point x¢ and initial Hessian approximation matrix By satisfy

IV2£(x) "2 (Bo — V2 F(x,)) V2 f (x) 2| < 8,
(127)

V2 ()2 (0 — x3) || < 2
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where €, § € (0, %) such that for some p € (0, 1), they satisfy

o (26 + 1)y STEY € s
ax 1-€2 1—€)1—p "

§+235(1—28)p,

Pmax = Sup ¢ - (128)
k>0

Then, the sequence of iterates {xx }Z‘;’g converges to the optimal solution x, with
Ire+1ll < pllrell, Yk = 0. (129)
Furthermore, the matrices { By }2’;’8 stay in a neighborhood of V2 f(x,) defined as
I|Byi1 —Illp <28, Vk=>0. (130)

Moreover, the norms {|| ék [I }Z‘;’g and {|| ék_ ! I },';08 are all uniformly bounded above by

IBell <1425, 1B <

. Vk>0. (131)
1—-25

We apply the same induction technique used in the proof of Lemma 8 to prove the above
linear convergence results and utilize the potential function in (126) and Lemma 11.
Finally we can prove the superlinear convergence results of

2 3 (xp — ¢
1V2 £ () G = x| _ (csqﬁ+c4> ke

< (132)
V2 £ (x2)2 (x0 — 1) | k
fe-fe) 1 (CevRea\t L
Fao) — fle) — (1= 97 k ’ =

14 o)1+ €
C3=2«/§6(1+p)(1+§), C4=(+3f1)(_:)3)6’

(134)

where g = + € [1, \/ %] and @min = infx>0 ¢x. This proof is based
¢min%+%

on the linear convergence results of (129), (130), (131) and is the same as the proof
in Theorem 1, except that here we replace the results of Lemma 3 by the results of
Lemma 10, substitute the results of Lemma 4 with the results of Lemma 11 and utilize
the intermediate inequality (125) instead of (46). Notice that all the term % has been
replaced with the term % since in this setting, we use the term 2||r;|| instead of the
term % and 2||r,|| < 2||roll < 2§ = §.
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| Proof of Theorem 4

First we focus on the DFP method. Notice that by (105) we have

IV2 £ (et (o — xo)ll < %

Hence, the first condition in (102) is satisfied. Set x = x, and y = xp in Lemma 9.
1

Notice that |[ro|| = ||V f(x)2 (xo — x5) || < ﬁ < 1. Hence, using (90) we obtain

that

(1= lrol)*V? f(xs) < V2 f(x0) < V2 f(xs).

_
= (L= llrol)?

Multiply the above expression by V2 f (x*)_% from left and right to obtain

1

2 2 2 2 3
(1= o)1 = V2 £ ()" 2V2 F(x0) V2 f () 2 TP

which implies that

2 -1 o2 2 2
Vo (x) 2(V7 f(x0) = VT f () V7 f (X))~ 2 ( 5 1) 1,
(I = lrolD
>

V2 () TR (VR (o) = VAL VS (e = (= Dol = 1) 1.

The above two inequalities indicate that

IV £V F x0) = V2 F ) V2 ()
11 = 2] 135)

<m

1
<max{——— —
{(1 — lrol?
Since ||rg]| € [0, 1), we have that

1 1= (1 —|rol)?

— - 1= > 1= (1= |rol)’.
(1 = lIrol)? (I = lIrolD?
Hence, (135) can be simplified as

V2 £ ()2 (V2 f (x0) = V2 £ (eI V2 f (x|

1 L 2—lnb ol < 2 — 75)

< 1= I Iroll < 3llroll,
(1= lIrol? (1= fIrol)? (1— )2
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where the second inequality holds due to ||rp|| < %. Therefore, we can show that

V2 £ ()2 (P2 (x0) = V2 F o) V2 £ ()2 7

<VAIIV? £ (x) "2 (VA (x0) — V2 F ()Y (r0) "2 < 3/dllroll <

’

| =

where the first inequality is true since ||A||F < Vd| A| for any matrix A € R4
and the last inequality is due to the first part of (105). Hence, the second condition in
(102) is also satisfied. By Corollary 4, we can conclude that (107) holds. The proof
for BFGS is similar to the proof for DFP. It can be derived by following the steps of
proof of DFP and exploiting the BFGS results in Corollary 4.
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