
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHY-AIDED SPARSE ATTENTION FOR FAST
LLMS PREFILLING INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Pre-filling Large Language Models (LLMs) with long-context inputs is
computationally expensive due to the quadratic complexity of full attention.
While global attention is essential during decoding, its importance diminishes
during pre-filling, where the focus is on contextualizing tokens rather than
predicting the next one. Building on prior work, we apply diagonal block sparse
attention during the pre-filling phase, reducing attention-related FLOPs by over
90% without significant degradation in language modeling performance. To
address the remaining performance gap, we propose Hierarchy-Aided Sparse
Attention (HASA), which incorporates a specialized transformer branch. This
branch extracts global embeddings from each chunk and aligns local attention
with full-attention, facilitating cross-chunk interaction. HASA stabilizes sparse
attention computations, making the pre-filling phase highly efficient, particularly
in long-sequence scenarios. While HASA significantly accelerates the pre-filling
phase, we ensure robust language modeling performance by enabling interaction
between global embeddings across chunks, which prevents the performance
degradation typically observed in sparse attention mechanisms. Given that there
are limited methods specifically accelerating pre-filling, our baselines include
various open-source long-context models. Across multiple benchmarks, HASA
not only maintains performance but also outperforms baseline models in certain
scenarios. We will release the models upon acceptance.

1 INTRODUCTION

(a) Pre-filling phase. (b) Decoding phase.
Figure 1: Inference latency of LLaMA2-7B
on a machine with 8 RTX 3090 GPUs.

In recent years, there has been rapid progress
in long-context Large Language Models (LLMs),
with performance now on par with commercial
deployment standards. However, the conventional
causal attention mechanisms continue to drive up
inference costs, impeding their broader adoption.
Causal attention’s main challenges are the sharp
increases in maximum GPU memory allocation
and end-to-end latency, both of which scale
quadratically with the sequence length. In reality,
the memory allocation issue has been effectively
tackled by researchers such as Rabe & Staats
(2021); Dao (2024), who have shown that the
attention module can avoid quadratic memory scaling. Leveraging these insights, memory-efficient
CUDA kernels like Flash Attention 2 (Dao, 2024) and PyTorch’s SDPA (Guessous, 2024) have been
introduced, effectively alleviating memory bottlenecks. However, the challenge of quadratic latency
scaling remains unresolved, with no widely accepted solution currently on the horizon.

Given the unresolved challenge of quadratic latency scaling, we conduct an in-depth analysis to
investigate its potential impact and the practical value of addressing this issue. Our analysis takes
a user-centric perspective. From the user’s standpoint, latency comprises two main components.
The first is time to first token (TTFT), which indicates the pre-filling latency—the time needed
to process the prompt and produce the initial token. The second component is time per output
token (TPOT), representing the latency during the decoding phase—the time required to generate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Overview of our proposed hierarchical transformer architecture.

each token sequentially in an auto-regressive process. Based on these components, the total latency
experienced by the user can be expressed as the sum:

Latency = TTFT + C ∗ TPOT, (1)

where C represents the number of tokens generated by the chat assistant, assumed to be constant.

To better understand the impact of sequence length on latency, we analyze the scaling behavior of
TTFT and TPOT individually. As shown in Figure 1, TTFT exhibits quadratic growth with sequence
length, reaching up to 80 seconds for prompts with 128K tokens. This suggests that users may
experience delays exceeding one minute before receiving the initial token, potentially degrading
their interaction experience. Conversely, TPOT scales linearly with sequence length, reaching
approximately 0.15 seconds per token, even with a key-value (KV) cache of 128K tokens. Thus,
TTFT is the sole component in the latency equation that exhibits quadratic scaling. As sequence
lengths increase, this quadratic growth in TTFT poses a significant challenge to the deployment
of long-context LLMs, leading to substantial delays in generating the first token, which must be
addressed for scalability. Therefore, our work addresses the question: How can we accelerate the
pre-filling phase to mitigate TTFT’s quadratic scaling without compromising model performance?

Building on this inquiry, we revisit pioneering research on efficient pre-filling (de Jong et al., 2023;
Ivgi et al., 2023), which suggests that while global attention is crucial for decoding, it is less
important during pre-filling. In this phase, the goal is to convert each token into its contextual
representation rather than predict the next token. This makes global attention less critical, especially
in long-context tasks like retrieval-augmented generation (RAG), where retrieved passages are
largely independent. Therefore, applying local attention during the pre-filling phase is highly
reasonable. Inspired by this, we conducted preliminary experiments on LLaMA2-7B (Touvron et al.,
2023a), applying diagonal block sparse attention during the pre-filling phase. We found that this
method did not result in significant degradation of language modeling performance, while reducing
attention-related FLOPs by over 90%. To further close the performance gap between this naive
method and full-attention pre-filling, we re-examined earlier hierarchical attention methods (Guo
et al., 2022; Zhu & Soricut, 2021). Building on these ideas, we introduce Hierarchy-Aided Sparse
Attention (HASA), which incorporates a specialized branch to recover the global information lost in
diagonal block sparse attention. Specifically, we extract a global embedding from each chunk and
process the sequence of global embeddings through this specialized branch, encouraging interaction
and fusion among them. These global embeddings are then prepended to their respective chunks
and used to modulate attention scores. By calibrating the attention scores for each chunk, we align
local attention with full-attention, stabilizing sparse attention computation and enabling the model
to maintain strong language modeling performance even when processing long sequences.

We implement HASA on LLaMA2-7B (Touvron et al., 2023a) and LLaMA2-7B-32K (Together.AI,
2023a), fine-tuning them using the LoRA method (Hu et al., 2022). Our approach is evaluated across

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

diverse benchmarks, encompassing language modeling, few-shot natural language understanding
(NLU) tasks, the Needle in a Haystack test (gkamradt, 2023), and LongBench (Bai et al., 2024).
The experimental results indicates that our method not only expedites pre-filling and substantially
decreases TTFT but also maintains, and in some cases, enhances model performance.

2 RELATED WORKS

Causal Attention. Causual attention is a parameterized module that takes in three inputs, Q,K,V ,
each of size N ×D, where N is the sequence length and D is the model’s dimension. It works as:

CausalAttention(Q,K,V) =
(
softmax(QWqW

⊤
k K⊤)⊙M

)
V Wv, (2)

where M is a matrix that only allows information to flow from earlier to later parts of the sequence
(like a one-way street). We skip some details for now, such as normalization after softmax, but in
the actual code, we do some extra steps to make sure everything works smoothly. In a typical setup,
if X is the input data, the output is calculated as CausalAttention(X,X,X). This process has a
complexity of O(N2D), which means it gets more demanding as the sequence gets longer.

There are special tools like Flash Attention (Dao, 2024) and PyTorch SDPA (Guessous, 2024) that
use powerful computing techniques to speed things up. These have helped a lot, but they don’t
change the basic problem that the complexity grows with the square of the sequence length.

Efficient LLMs. Before the advent of LLMs, there were efficient transformer models that used
sparse or linear attention (Wang et al., 2020; Zaheer et al., 2020) But now, training LLMs is very
expense, so it’s smarter to improve existing LLMs rather than building new ones from the start.
LM-Infinite (Han et al., 2024) and Streaming-LLM (Xiao et al., 2024) use a lambda-shaped attention
that deals with long texts by keeping the time and memory needed constant. But they might skip over
important words. Techniques such as H2O (Zhang et al., 2023b), Scissorhands (Liu et al., 2023),
and FastGen (Ge et al., 2024) make LLMs faster by reducing the size of KV cache. They do this by
making the attention less dense. Other innovations, such as Multi-Query Attention (Shazeer, 2019)
and Grouped-Query Attention (Ainslie et al., 2023), use fewer attention heads to save memory.
Methods like OmniQuant (Wenqi et al., 2024) and AffineQuant (Ma et al., 2024) make LLMs faster
by the quantization. While these methods speed up LLMs, they only reduce the complexity in certain
parts, not the overall problem of handling long sequence, which remains challenging.

3 PRUNING ATTENTION FOR EFFICIENT PRE-FILLING

Figure 3: Diagonal block
sparse attention with a
chunk size S = 3.

Is Full Attention Computation Essential for Pre-filling Tokens? In
early sparse attention models like Longformer (Beltagy et al., 2020)
and Big Bird (Zaheer et al., 2020), inputs are categorized into global
tokens and local tokens. Global tokens leverage full attention to access
the entire sequence, crucial for downstream tasks, while local tokens
apply local attention to generate context from their surroundings. This
methodology has proven effective for long-sequence modeling (Joshi
et al., 2017; Yang et al., 2018; Tu et al., 2019), maintaining model
capacity without inefficient attention. Drawing inspiration from this,
we question whether similar concepts could be applied to LLMs. For
example, during the pre-filling phase, token embeddings serve only as
context for later decoding, not for token generation. Might we then use
sparse local attention for these tokens exclusively for pre-filling tokens?
After pre-filling, we could revert to full attention during generation phase, as these tokens will
predict subsequent tokens. The success of sparse attention as a viable alternative to full attention
supports our preliminary investigation into applying it within LLMs.

One of the main challenges resulting from the sparse attention is that many implementations (Jiang
et al., 2024; Yao et al., 2024) require specialized kernel optimizations for efficient computation.
To simplify the deployment, we propose computing only the causal attention weights within the
diagonal block of attention matrices, as depicted in Figure 3. This method allows for straightforward
implementation by segmenting the pre-filling sequence to multiple chunks of equal size S and
applying casual attention only among tokens within each chunk.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 4: Language modeling performance of different models using a chunk size S = 128.

Chunk Pre-filling. This chunking strategy is a commonly utilized technique for accelerating
pre-filling processes. The Fusion-in-Decoder (FiD) (Izacard & Grave, 2021) is pioneering in
leveraging chunk pre-filling to expedite the pre-filling process, primarily for open-domain question
answering where unrelated articles could be naturally segmented into chunks of varying lengths for
individual encoding. SLED (Ivgi et al., 2023) expands the applicability of FiD by dividing the text
into uniformly-sized chunks, facilitating better parallelization. Nonetheless, SLED incurs additional
computational costs by appending a subset of tokens from the end of one chunk to the start of the
next, serving as historical context. Building on SLED, LongLoRA (Chen et al., 2023a) applies the
chunk pre-filling concept to the pre-training of long-text LLMs, using it to mitigate the exorbitant
computational expenses during the pre-training phase. Built on the success of chunk prefilling, we
investigate how well it works in practice.

More specifically, we divide X ∈ RN×D into M = N/S chunks, each of size S (assuming N
is divisible by S), resulting in X1, · · · ,XM . Subsequently, let T denote the index of the chunk
currently being processed. For full attention, the output OT (a submatrix of O corresponding to the
outputs of the T -th chunk) is calculated as follows:

OT = CausalAttention(XT ,XT ,XT) +

T−1∑
t=1

Attention(XT ,Xt,Xt). (3)

We break the computation of causal attention over input X into multiple attentions over different
input chunks. The Attention function in Eq. (3), similar to causal attention, is defined as

Attention(XT ,Xt,Xt) = softmax(XTWqW
⊤
k X⊤

t)XtWv, (4)

but without the causal masking.

For block sparse attention, we are exploring whether the approximated OT computed as

OT ≈ CausalAttention(XT ,XT ,XT), (5)

is sufficient. This approach clearly limits the receptive field of each token, but can be computed
efficiently with standard PyTorch implementation. We will investigate the extent to which
performance may be affected.

Figure 5: Fine-tuning
with/without LoRA (Hu
et al., 2022) on block sparse
attention.

As depicted in Figure 4, block diagonal attention for pre-filling
effectively preserves model performance without further
fine-tuning, despite not computing full attention. However,
as context length increases, its effectiveness diminishes, and the
gap with full attention widens. This discrepancy is due to missing
entries in our sparse attention matrices, but what should we focus
on to compensate for the missing attention weights?

Can We Recover Performance Loss Through Fine-tuning?
Since we are not computing the original full attention, the output
will inevitably deviate from what would be produced using full
attention. For example, due to the normalizing effect of the
softmax function, the nonzero attention weights many be amplified
compared to their original values. Additionally, some information
from the off-diagonal block will be forfeited due to the imposed sparsity. We are exploring whether
fine-tuning the model weights could counteract these alterations? In this scenario, there are two

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

distinct phases: pre-filling and decoding, each employing different attention strategies for the tokens
involved. This divergence from standard LLM pretraining introduces unique challenges. To avoid
a surge in cost and complexity, we adhere to the standard LLM pretraining protocol. However,
for each training input, we segment it to multiple chunks, and designating only the final chunk
as generation tokens, while retaining all preceding chunks as pre-filling context tokens. The
loss is calculated solely for the last chunk. Our observations indicate that fine-tuning marginally
enhances performance, as illustrated in Figure 5. This suggests that while fine-tuning can offer some
improvement, it may not fully compensate for the loss from not utilizing full attention.

4 HIERARCHY-AIDED SPARSE ATTENTION

In Sec. 3, we observe that fine-tuning with or without LoRA does not entirely mitigate the
performance degradation resulting from the transition from full attention to block sparse attention.
We recognize that the reduced computational complexity in Eq. (5), relative to Eq.(3), is attributed
to the attention mechanism across separate blocks, as illustrated:

RT =

T−1∑
t=1

Attention(XT ,Xt,Xt). (6)

Thus, the primary challenge lies in how to compensate for the loss of information without reverting
to the full computation outlined in Eq. (3). In this section, we initially scrutinize a simplistic
hard-coded hierarchical attention approximation to Eq. (6). Following this analysis, we introduce
a specialized branch designed to reintegrate the omitted information.

4.1 HIERARCHICAL ATTENTION APPROXIMATION

In recent years, the advent of sparse attention mechanisms has spurred the development of innovative
approaches to restore lost information via low-resolution or low-rank approximations. For instance,
the H-Transformer-1D model (Zhu & Soricut, 2021) downsamples tokens based on their proximity
to the sequence head, representing distant tokens at a lower resolution. Similarly, LongT5 (Guo
et al., 2022) pools tokens beyond the immediate local window into global tokens using average
pooling, then attends to these global tokens to recover omitted details.

Inspired by these methods, a straightforward strategy to approximate full attention is to maintain
high fidelity for local interactions with higher-resolution representations, while using less precise
approximations for distant interactions with lower-resolution representations. Specifically, for each
segment Xt, a summarized, low-resolution representation can be computed as follows:

xt = AvgPool(Xt). (7)

Subsequently, the missing component could be approximated by

RT ≈
T−1∑
t=1

Attention(XT ,xt,xt) (8)

that captures the essence of integrating global information through a low-resolution approximation.
We exploit a hierarchy of resolutions in attention approximation, and the final hierarchical
approximation can be formulated as:

OT ≈ CausalAttention(XT ,XT ,XT) +

T−1∑
t=1

Attention(XT ,xt,xt), (9)

which enhances the model’s ability to manage long-term dependencies without excessive overheads.

Empirical evidence, as demonstrated in Table 1, suggests that incorporating global information
through Eq. (9) does indeed partially restore model performance. However, there remains a
performance gap compared to models utilizing full attention. Upon further analysis, it becomes
evident that the potential cause of this discrepancy lies in the hard-coded operation where the chunk
XT is attended to xt with equal weight, contradicting the general consensus that strong attention
scores are typically focused on specific tokens (Zhang et al., 2023b; Xiao et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Results for Different Modifications Applied to LLaMA2-7B-32K. We compare three
modifications: diagonal sparse attention (Diag. Sparse), hierarchical attention (Hie. Attn.), and
hierarchical transformer (Hie. Tran.).

Sequence Length Diag.
Sparse

Hie.
Attn.

Hie.
Tran. LoRA PG19 ProofPile CodeParrot

8192

7.97 3.45 2.23
✓ 9.21+1.24 4.05+0.60 2.60+0.37

✓ ✓ ✓ 8.33+0.36 3.78+0.33 2.37+0.14

✓ ✓ ✓ 7.22−0.75 3.33−0.12 2.11−0.12

4.2 HIERARCHICAL TRANSFORMER

To integrate hierarchical attention into a conventional attention mechanism, we developed a method
adhering to the original computational framework. This introduces a specialized branch to process
global information, forming the foundation of our hierarchical transformer.

Specifically, the specialized branch computes a global embedding representation X̃ =
[x̃1, · · · , x̃M] ∈ RM×D that encapsulates the global interactions of the input sequence. Here, we
assume that each embedding representation x̃t captures the interactions between the t-th chunk and
other chunks. The computation of X̃ will be detailed shortly. For the T -th chunk, the component
RT is recalculated, providing an alternative to Eq. (9), as follows:

RT ≈ Attention(XT , x̃T , x̃T). (10)

Then, the precise attention computation is defined as:

OT ≈ CausalAttention(XT ,XT ,XT) + Attention(XT , x̃T , x̃T). (11)

This approach incorporates global information X̃ into each chunk while utilizing local attention,
and facilitates information exchange among tokens within each chunk. Subsequently, OT is fed into
the transformer’s following modules in the standard manner.

To ensure the dedicated branch outputs a representation X̃ that accurately captures global
interactions and is easily interpretable by the model, we proceed as follows. We take the embedding
X−1 from the previous layer Transformer−1 and compute its pooled representation X−1 as:

X−1 = [x−1,1 · · · x−1,M] . (12)

Then, we directly utilize the pre-trained layer of the same transformer to compute X̃:

X̃ = Transformer−1(X−1), (13)

To prevent lookahead, which refers to the leakage of information within a chunk through
low-resolution tokens as depicted in Figure 2, the causal attention mechanism has been subtly
modified. This modification is achieved by introducing a shifted causal mask, which is created
by removing the main diagonal from the original causal mask. We analyze that, in contrast to
the hard-coded attention from Eq. (9), Eq. (10) also guides XT to attend to xt with more adaptive
weights, since x̃T ∈ X̃ attends to xt in a manner akin to regular causal attention.

Following these enhancements, we conducted LoRA fine-tuning on all projection matrices within the
self-attention and MLP modules, ensuring the model’s performance is optimized without extensive
retraining. Empirical findings in Table 1 indicate that when the pretrained LLMs are augmented with
our method, they exhibit exceptional performance and efficiency across various tasks.

The extensive preliminary research (Shen et al., 2018; Ye et al., 2019; Guo et al., 2019; Sukhbaatar
et al., 2019) into hierarchical attention has confirmed its effectiveness. As the importance of
long-context LLMs grows, the need for sub-quadratic hierarchical attention mechanisms has become
more critical. However, a significant limitation of these hierarchical attentions is that they are
not designed for LLMs, often requiring training from scratch, which is impractical in LLM
environments. Our research builds upon the successes of previous methods while addressing their
limitations, developing an innovative hierarchical attention mechanism that enables full performance
recovery of pretrained LLMs through a few steps of LoRA fine-tuning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Perplexity of different pre-trained models on PG19, Proof-Pile, and CodeParrot datasets.
Notably, LinPrefill-4K successfully reduces perplexity under 4K context length.

Model PG19↓ ProofPile↓ CodeParrot↓
1K 2K 4K 1K 2K 4K 1K 2K 4K

LLaMA2-7B 6.323 6.641 6.879 5.065 4.672 4.277 4.109 3.843 3.679
Positive Control 6.474 6.613 6.769 5.069 4.607 4.228 4.177 3.783 3.527

LLaMA2-7B w/ HASA 6.508 6.495 6.232 5.09 4.562 4.033 4.136 3.637 3.149

5 EXPERIMENTS

5.1 EVALUATIONS AND SETUPS

Evaluations. We conducted an extensive evaluation of HASA across several critical
dimensions. 1) Language Modeling: Evaluated using datasets PG19 (Rae et al., 2019),
Proof-Pile (Zhangir Azerbayev, 2022), and CodeParrot (L. et al., 2022), which collectively
measure the model’s ability to model language sequences. 2) Few-shot Natural Language
Understanding: Our assessment utilized diverse benchmarks, including GLUE (Wang et al., 2018),
SuperGLUE (Wang et al., 2019), OpenbookQA (Mihaylov et al., 2018), HellaSwag (Zellers et al.,
2019), PiQA (Bisk et al., 2020), Winogrande (Sakaguchi et al., 2021), ARC-C, ARC-E (Clark et al.,
2018), and MathQA (Amini et al., 2019). 3) Long-Context Downstream Tasks: We employed
benchmarks including Needle in a Haystack (gkamradt, 2023), and LongBench (Bai et al., 2024)
to assess the model’s proficiency in understanding and generating content within extended-context
scenarios. This multidimensional evaluation strategy ensures a thorough examination of our
method’s strengths and weaknesses across a range of complex and challenging environments.

Setups. We adapted two base models: LLaMA2-7B (Touvron et al., 2023b) with a chunk size of
S = 128 and LLaMA2-7B-32K (Together.AI, 2023a) with a chunk size of S = 1024. We applied
LoRA (Hu et al., 2022) to all projection matrices within the self-attention and MLP modules, using
hyperparameters r = 16, α = 32. 1) For LLaMA2-7B with HASA, we utilized 100,000 samples
from the SlimPajama dataset (Soboleva et al., 2023) for training. Concurrently, we fine-tuned the
original LLaMA2-7B model on the same dataset with identical LoRA parameters to serve as a
positive control. Both LLaMA2-7B with HASA and the positive control models were trained with
a learning rate of 1e-4, a batch size of 8, the Adam optimizer without weight decay, and a cosine
scheduler. 2) For LLaMA2-7B-32K with HASA, to facilitate comparison with other chat assistants,
we implemented a two-stage training recipe. After an initial training phase with 100,000 samples
from the SlimPajama dataset (Soboleva et al., 2023), we conducted a second-stage instruction
fine-tuning. This stage incorporated a mixed dataset, comprising LongAlpaca (Chen et al., 2023b)
(55.5%), Single-Detail QA (Zhang et al., 2024b)1 (30%), BookSum (Kryściński et al., 2021) (12%),
and Needle (2.5%). These datasets were formatted into conversational formats for fine-tuning using
the Vicuna chat template (Zheng et al., 2023). The optimizer settings for LLaMA2-7B-32K with
HASA mirrored those for LLaMA2-7B, except for a reduced learning rate of 2e-5.

5.2 PERFORMANCE COMPARISON

Language Modeling. We evaluated the language modeling capabilities of LLaMA2-7B with
HASA on three datasets: PG19, ProofPile, and CodeParrot. These datasets cover three distinct
domains—books, mathematics, and code—offering a comprehensive assessment. For PG19,
we used 100 samples from the test set, while for ProofPile, we utilized 79 samples randomly
selected according to the method described by Zhang et al. (2024a). For the CodeParrot
dataset, we concatenated code from the same repository and then sampled 100 examples for
evaluation, following the RPT (Rubin & Berant, 2023) and LLM-Embedder (Zhang et al., 2023a)
methodologies. The results are shown in Table 2. It is evident that LLaMA2-7B with HASA
significantly outperforms the LLaMA2-7B on input text lengths of 2K and 4K, with a large margin.
Remarkablly, it even surpasses the positive control, which is a full-attention baseline.

1Single-Detail QA involves using GPT-4 to generate question-answer pairs from long contexts, e.g., a book
or a lengthy paragraph, for dataset construction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Few-Shot Natural Language Understanding. We evaluated the model using the GLUE,
SuperGLUE, OpenBookQA, HellaSwag, PiQA, Winogrande, ARC-C, ARC-E, and MathQA
benchmarks, all under a 5-shot configuration. As shown in Table 3, LLaMA2-7B with HASA
generally maintains the natural language understanding capabilities compared to the baselines.

Table 3: Natural language understanding results. LLaMA2-7B w/ HASA maintains its performance
using a chunk size of S = 128. The symbol † denotes the mismatched version of MNLI.

BenchMark Metric LLaMA2-7B Positive Control LLaMA2-7B w/ HASA
CoLA mcc 0.243 0.168 0.17
MNLI acc 0.376 0.356 0.478
†MNLI acc 0.424 0.376 0.502
MRPC acc 0.681 0.683 0.674

RTE acc 0.657 0.638 0.599
QNLI acc 0.483 0.472 0.483
QQP f1 0.582 0.458 0.466

GLUE
@5-shot

AVERAGE - 0.492 0.450 0.481
BoolQ acc 0.769 0.746 0.746

CB acc 0.571 0.482 0.563
COPA acc 0.9 0.88 0.88

MultiRC acc 0.435 0.433 0.445
ReCoRD f1 0.916 0.91 0.905

WiC acc 0.562 0.517 0.51
WSC acc 0.365 0.365 0.394

SuperGLUE
@5-shot

AVERAGE - 0.645 0.619 0.634
OpenbookQA acc 0.342 0.34 0.35

HellaSwag acc 0.604 0.592 0.581
PiQA acc 0.775 0.779 0.768

Winogrande acc 0.728 0.727 0.722
ARC-C acc 0.477 0.462 0.469
ARC-E acc 0.793 0.789 0.788

@5-shot

MathQA acc 0.26 0.258 0.267

AVERAGE - 0.568 0.563 0.564

LongBench. To evaluate generalization ability on downstream tasks, we utilized five sub-tasks
from the LongBench (Bai et al., 2024): SingleDoc QA, MultiDoc QA, Summarization,
Few-shot, and Code Completion. For this benchmark, the model first needs to understand
a long context and then generate a response based on the given instruction. The evaluation
is conducted by directly comparing the overlap between the model’s response and the
ground truth. As such, this task provides a comprehensive assessment of the model’s
understanding and generation capabilities. For LLaMA2-7B with HASA, we selected
LLaMA2-7B (Touvron et al., 2023b) and the positive control model fine-tuned using the same
recipe as baselines. For LLaMA2-7B-32K with HASA, we chose several popular models
based on LLaMA2-7B or LLaMA2-7B-chat as baselines, namely LLaMA2-7B-32K (Together.AI,
2023a), LLaMA2-7B-32K-Instruct (Together.AI, 2023b), LongChat-7B-v1.5-32K (Li et al.,
2023), LongAlpaca-7B-16K (Chen et al., 2023a), Vicuna-v1.5-7B-16K (Zheng et al., 2024),
YaRN-7B-128K (Peng et al., 2024), and Activation Beacon (Zhang et al., 2024a). In addition, we
used GPT-3.5-Turbo-16K (Achiam et al., 2023) as a reference model.

For all models with a context window smaller than 16K, we applied left-side truncation whenever
the token sequence exceeded the maximum allowable length. Table 4 presents the average scores
across five sub-tasks and the end-to-end pre-filling latency on the initial dataset for the first sub-task.

Figure 6: Results of Needle In A
Haystack test.

As shown in the table, both LLaMA2-7B with HASA
and LLaMA2-7B-32K with HASA achieve performance
comparable to or better than other baseline models.
Notably, LLaMA2-7B-32K with HASA excels in
both SingleDoc QA and MultiDoc QA, significantly
outperforming other LLaMA2-7B based chat assistants.
These downstream experimental results indicate that
using sparse attention during the pre-filling stage does
not compromise the model’s ability to understand context
or generate responses. Additionally, compared to other
32K models, LLaMA2-7B-32K with HASA achieves

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The performance of various models on the five sub-tasks of LongBench. † denotes the
results as reported by Zhang et al. (2024a).

Model SQA MQA SUM FEW CODE End-to-End Latency
Context Length = 4K

LLaMA2-7B 14.54 8.73 7.7 48.94 58.75 4m20s 1.15×

Positive Control 13.56 7.94 19.56 48.54 56.62 4m21s 1.15×

LLaMA2-7B w/ HASA 14.34 9.98 19.24 48.3 57.22 3m46s 1.00×

Context Length ⩾ 16K

LLaMA2-7B-32K 2.88 8.14 4.95 58.06 61.00 33m12s 1.56×

LLaMA2-7B-32K-Inst 12.48 14.12 22.44 58.19 54.51 33m57s 1.60×

LongChat-7B-32K 31.63 23.35 21.77 49.32 54.92 34m21s 1.62×

LongAlpaca-7B-16K 26.66 28.01 24.57 52.99 52.48 18m51s 0.88×

GPT-3.5-Turbo-16K 45.10 36.23 23.90 52.99 54.15 -
Vicuna-v1.5-7B-16K 31.75 18.80 23.25 57.58 47.25 18m46s 0.88×

†YaRN-7B-128K 24.03 24.11 19.82 56.83 62.73 33m51s 1.59×

†Activation Beacon 28.27 28.44 25.15 61.00 57.75 33m48s 1.59×

LLaMA2-7B-32K w/ HASA 39.74 30.17 22.15 57.18 54.83 21m12s 1.00×

approximately 1.5x faster pre-filling on the initial dataset, which has an average length of 18,409
tokens. More detailed scores can be found in Appendix B.

Needle In A Haystack. This test works by embedding specific, targeted information (the “needle”)
within a large, more compleix body of text (the “haystack”). The goal is to assess an LLM’s ability
to identify and utilize this specific piece of information amidst a vast amount of data. As illustrated
in Figure 6, our method effectively retains the ability to process information at different positions
across various context windows, ranging from 1K to 32K tokens.

5.3 EFFICIENCY ANALYSIS

(a) (b) (c)

Figure 7: (a) Pre-filling latency comparison between HASA and others. (b) and (c) Impact of
different attention implementations on latency.

The comprehensive benchmark results demonstrate the strong performance of HASA. In this
subsection, we focus on its efficiency, specifically assessing whether it achieves our goal of
significantly reducing pre-filling latency and addressing the quadratic scalability of TTFT.

Theoretically, HASA Should Exhibit Nearly Linear Pre-filling Latency. The low-resolution
branch handles fewer tokens, reducing its quadratic term by a factor of S2 compared to the full
attention baseline. Consequently, the main latency arises from the high-resolution branch, where
latency grows linearly with sequence length.

HASA Demonstrates Near-Linear Pre-filling Latency in Practice. We conducted experiments
with an 8×RTX3090 machine to evaluate the pre-filling latency scaling behavior. For
comparison, we included YaRN-7B (Peng et al., 2024), a full attention model without any
acceleration techniques, and Activation Beacon (Zhang et al., 2024a), an efficient model based
on LLaMA2-7B (Touvron et al., 2023a). To ensure a fair comparison, we evaluated YaRN-7B
and LLaMA2-7B with HASA using different attention implementations, including Flash Attention
2 (Dao, 2024) (Flash), PyTorch SDPA (Guessous, 2024) (SDPA), and the default attention

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

implementation from HuggingFace Transformers (Wolf et al., 2020) (HF). As shown in Figure 7(a),
compared to the full attention baseline, our method reduces pre-filling latency by 1.55× for a
sequence length of 32K and by 2.7× for a sequence length of 96K. Since the latency of full attention
grows quadratically, the speedup becomes more pronounced as the sequence length increases. On
the other hand, even when compared to Activation Beacon, which exhibits near-linear latency
growth, our method still demonstrates a significant reduction.

5.4 ABLATIONS

Table 5: Ablation on chunk size.

Chunk Size SQA MQA SUM FEW CODE
S = 64 28.58 22.15 18.56 46.14 49.75
S = 256 36.96 26.47 21.65 57.41 54.58
S = 2048 40.23 28.82 24.91 58.73 54.83
S = 1024 39.74 30.17 22.15 57.18 55.65

Ablation on Chunk Size. We selected three different
chunk sizes—64, 256, and 2048—to investigate whether
HASA’s performance differs under smaller or larger local
windows. We applied the same training recipe and
evaluated the resulting models on LongBench (Bai et al.,
2024). The results are shown in Table 5. As shown, when
the local information is too limited, HASA’s performance
drops significantly across all sub-tasks. Additionally, we observe that 1024 serves as a sweet
spot—chunk sizes larger than this threshold do not provide noticeable performance gains and, in
fact, result in performance degradation on tasks like MultiDoc QA and Code. This suggests that most
downstream tasks contain only sparse long-term dependencies, and as long as the local dependencies
are accurately captured, performance can be maintained.

6 LIMITATION

First, while HASA can accelerate the pre-filling phase, this advantage becomes more evident
with lengthy sequences. Second, although HASA offers efficient training, it is not a training-free
method and still requires some computational resources, limiting its applicability compared to fully
training-free approaches.

7 CONCLUSION

In this work, we revisited efficient pre-filling strategies and demonstrated that applying diagonal
block sparse attention during the pre-filling phase effectively reduces computational costs by
over 90%, without significant degradation in language modeling performance. To further close
the performance gap between this naive method and full-attention pre-filling, we introduced
Hierarchy-Aided Sparse Attention (HASA), which leverages a specialized branch to recover global
information discarded by sparse attention. By processing global embeddings across chunks and
calibrating attention scores, HASA stabilizes the sparse attention computation, allowing the model
to handle long sequences while maintaining robust language modeling performance.

Our implementation of HASA on LLaMA2-7B and LLaMA2-7B-32K, fine-tuned with LoRA,
demonstrated improved pre-filling efficiency and significantly reduced time to first token (TTFT)
across a variety of benchmarks, including language modeling, few-shot NLU tasks, Needle in a
Haystack, and LongBench. These results confirm that HASA not only accelerates pre-filling but
also sustains, and in some cases, enhances model performance.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. GQA: Training generalized multi-query transformer models from multi-head
checkpoints. In EMNLP, 2023.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In ACL, 2024.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv, 2020.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In AAAI, 2020.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv, 2023a.

Yukang Chen, Shaozuo Yu, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya
Jia. Long alpaca: Long-context instruction-following models, 2023b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv, 2018.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In ICLR,
2024.

Michiel de Jong, Yury Zemlyanskiy, Joshua Ainslie, Nicholas FitzGerald, Sumit Sanghai, Fei Sha,
and William W. Cohen. Fido: Fusion-in-decoder optimized for stronger performance and faster
inference. In ACL, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for LLMs. In ICLR, 2024.

gkamradt. gkamradt/llmtest-needleinahaystack, 2023.

Driss Guessous. Implementing high-performance transformers with scaled dot product attention,
2024.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and
Yinfei Yang. LongT5: Efficient text-to-text transformer for long sequences. In Findings of the
Association for Computational Linguistics: NAACL 2022, 2022.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang.
Star-transformer. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 2019.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite: Simple
on-the-fly length generalization for large language models. In NAACL, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022.

Maor Ivgi, Uri Shaham, and Jonathan Berant. Efficient long-text understanding with short-text
models. Transactions of the Association for Computational Linguistics, 2023.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In EACL: Main Volume, 2021.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference 1.0:
Accelerating pre-filling for long-context llms via dynamic sparse attention. arXiv, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. arXiv, 2017.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. arXiv, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tunstall L., Von Werra L., and Wolf T. Natural language processing with transformers. 2022.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, , and Hao Zhang. How long can open-source llms truly promise on context length?,
2023. URL https://lmsys.org/blog/2023-06-29-longchat.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test time. In NeurIPS, 2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
ICLR, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window
extension of large language models. In ICLR, 2024.

Markus N. Rabe and Charles Staats. Self-attention does not need o(n2) memory, 2021.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv, 2019.

Ohad Rubin and Jonathan Berant. Long-range language modeling with self-retrieval. arXiv, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. CACM, 2021.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, 2019.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Bi-directional block
self-attention for fast and memory-efficient sequence modeling. ArXiv, 2018.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In ACL, 2019.

Together.AI. togethercomputer/llama-2-7b-32k, 2023a.

Together.AI. togethercomputer/llama-2-7b-32k-instruct, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv, 2023b.

12

https://lmsys.org/blog/2023-06-29-longchat

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen Zhou. Multi-hop
reading comprehension across multiple documents by reasoning over heterogeneous graphs. In
ACL, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In EMNLP,
2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: a stickier benchmark for general-purpose language
understanding systems. In NIPS, 2019.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. ArXiv, 2020.

Shao Wenqi, Chen Mengzhao, Zhang Zhaoyang, Xu Peng, Zhao Lirui, Li Zhiqian, Zhang Kaipeng
Zhang, Gao Peng, Qiao Yu, and Luo Ping. Omniquant: Omnidirectionally calibrated quantization
for large language models. 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In EMNLP, 2020.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, 2018.

Jinwei Yao, Kexun Zhang, Kaiqi Chen, Jiaxuan You, Zeke Wang, Binhang Yuan, and Tao Lin.
DeFT: Flash tree-attention with IO-awareness for efficient tree-search-based LLM inference. In
ICLR Workshop, 2024.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL, 2019.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
augment large language models. arXiv, 2023a.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from
4k to 400k: Extending llm’s context with activation beacon. arXiv, 2024a.

Peitian Zhang, Ninglu Shao, Zheng Liu, Shitao Xiao, Hongjin Qian, Qiwei Ye, and Zhicheng Dou.
Extending llama-3’s context ten-fold overnight, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o:
Heavy-hitter oracle for efficient generative inference of large language models. In NeurIPS,
2023b.

B.P. Zhangir Azerbayev, Edward Ayers. Proof-pile, 2022. URL https://huggingface.co/
datasets/hoskinson-center/proof-pile.

13

https://huggingface.co/datasets/hoskinson-center/proof-pile
https://huggingface.co/datasets/hoskinson-center/proof-pile

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In NIPS, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2024.

Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention for
sequences, 2021.

A IMPLEMENTATION DETAILS

Figure 8: The decoding simulation can construct an attention matrix in which each token is endowed
with global attention.

Decoding Simulation. Since our focus is solely on the decoding stage—specifically on the output
and internal properties of tokens with global attention—applying language modeling loss to tokens
from the pre-filling stage is unnecessary, as their key-value representations serve only as contextual
embeddings, not for generating output. To improve data utilization, we aim to enable every token to
function as a decoding-stage token for language modeling. Achieving this within a single forward
pass is insufficient, as a token cannot simultaneously serve as both a pre-filling and decoding-stage
token in the same pass. Therefore, we propose a two-pass approach. In the first forward pass, all
tokens are treated as pre-filling-stage tokens, generating an approximate key-value (KV) cache at
each layer. In the second pass, every token acts as a decoding-stage token, attending to the KV
cache generated from the first pass. This decoding simulation approach, illustrated in Figure 8, is
employed in both LLaMA2-7B with HASA and LLaMA2-7B-32K with HASA architectures.

Position Embedding within a Chunk. For RoPE (Su et al., 2021) within a chunk, there are two
encoding strategies. The first involves encoding based on the token’s position within the original
sequence, while the second encodes the token relative to its position within the chunk itself. In
post-training settings, both strategies deliver comparable performance. As a result, we adopted the
second approach for both LLaMA2-7B with HASA and LLaMA2-7B-32K with HASA, as it offers
easier implementation. However, in training-free scenarios, the choice of position encoding has a
more significant impact. Specifically, using the first method can lead to model instability, whereas
the second method maintains robust performance. This behavior is analyzed in detail by Xiao et al.
(2024), who propose adding a sink token to each chunk as a solution. This modification allows the
first encoding method to regain its stability and match the performance of the second method in
training-free setups, achieving near lossless results.

B ADDITIONAL EXPERIMENTAL RESULTS

Detailed Results on LongBench. In Table 6, we present the detailed scores for each dataset
across five sub-tasks from LongBench, along with the average number of tokens and other
relevant information. For the baseline models, we selected LLaMA2-7B-32K (Together.AI, 2023a)
(LM), LongChat-7B-32K (Li et al., 2023) (LC), LongAlpaca-7B-16K (Chen et al., 2023a) (LA),
YaRN-7B-128K (Peng et al., 2024) (YN), and Activation Beacon (Zhang et al., 2024a) (AB). Since
LongAlpaca-7B-16K has a context window smaller than 32K, left-side truncation was applied.

Attention Visualization. We aim for the approximated key-value representations generated during
the pre-filling phase by our method to receive an attention allocation in the decoding stage that is
comparable to that of the accurate key-value representations produced by the full attention baseline.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Detailed results of various long-context LLMs on LongBench (Bai et al., 2024).

Benchmark Avg Length Lang Metric LM LC LA YN AB LLaMA2-7B w/ HASA
NarrativeQA 18,409 en F1 xx 19.15 19.10 6.93 19.10 19.41

Qasper 3,619 en F1 xx 29.41 26.73 12.36 19.33 39.14
MultiField-en 4,559 en F1 xx 42.90 34.90 22.55 24.43 54.11SingleDoc QA

MultiField-zh 6,701 zh F1 xx 35.06 25.91 16.93 20.91 43.94
HotpotQA 9,151 en F1 xx 33.05 42.42 9.23 12.06 39.99

2WikiMQA 4,887 en F1 xx 24.14 35.28 9.56 13.46 29.96
MuSiQue 11,214 en F1 xx 14.75 19.83 5.86 6.07 18.80MultiDoc QA

DuReader 15,768 zh Rouge-L xx 21.47 14.50 17.83 17.94 23.30
GovReport 8,734 en Rouge-L xx 30.83 31.38 24.49 27.51 28.09
QMSum 10,614 en Rouge-L xx 22.93 23.98 18.84 22.56 23.06

MultiNews 2,113 en Rouge-L xx 26.65 27.13 18.81 26.17 26.31Summarization

VCSUM 15,380 zh Rouge-L xx 6.68 15.79 8.16 13.56 9.29

TREC 5,177 en Acc (CLS) xx 66.50 60.50 65.50 47.50 69.00
TriviaQA 8,209 en F1 xx 83.99 85.27 84.01 77.25 81.43
SAMSum 6,258 en Rouge-L xx 22.32 39.47 25.24 39.11 45.65Few-shot

LSHT 22,337 zh Acc (CLS) xx 24.50 26.75 30.5 10.50 29.00

LCC 1,235 Python/C#/Java Edit Sim xx 52.98 54.86 61.19 56.51 52.96Code Completion RepoBench-P 4,206 Python/Java Edit Sim xx 56.86 50.10 55.48 49.72 49.40

To evaluate this, we visualized the attention maps produced by HASA during the decoding stage,
along with those generated by the full attention baseline. Additionally, we also visualized their
residuals. We utilized a decoding simulation chunk size of 128, using the first sample from the
PG19 test set as the input sequence. The results are presented in Figure 9. Notably, for each layer,
the attention maps generated by our method exhibit a strong similarity to those of the baseline, both
on a global scale and at a more localized level. A comparison of the residuals reveals no significant
systematic errors; rather, the differences appear to be akin to random noise. Specifically, in the
attention map of layer 31, it is evident that our method effectively attends to several significant
tokens, indicating its capability to capture long-term dependencies.

Figure 9: Attention map visualization for a subset of layers, with head 0 displayed for each layer.

15

	Introduction
	Related Works
	Pruning Attention for Efficient Pre-filling
	Hierarchy-Aided Sparse Attention
	Hierarchical Attention Approximation
	Hierarchical Transformer

	Experiments
	Evaluations and Setups
	Performance Comparison
	Efficiency Analysis
	Ablations

	Limitation
	Conclusion
	Implementation Details
	Additional Experimental Results

