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ABSTRACT

Spatial awareness is key to enable embodied multimodal AI systems. Yet, without
vast amounts of spatial supervision, current Visual Language Models (VLMs)
struggle at this task. In this paper, we introduce LynX, a framework that equips
pretrained VLMs with visual grounding ability without forgetting their existing
image and language understanding skills. To this end, we propose a Dual Mixture
of Experts module that modifies only the decoder layer of the language model,
using one frozen Mixture of Experts (MoE) pre-trained on image and language
understanding and another learnable MoE for new grounding capabilities. This
allows the VLM to retain previously learned knowledge and skills, while acquiring
what is missing. To train the model effectively, we generate a high-quality synthetic
dataset we call SCouT, which mimics human reasoning in visual grounding. This
dataset provides rich supervision signals, describing a step-by-step multimodal
reasoning process, thereby simplifying the task of visual grounding. We evaluate
LynX on several object detection and visual grounding datasets, demonstrating
strong performance in object detection, zero-shot localization and grounded reason-
ing while maintaining its original image and language understanding capabilities
on seven standard benchmark datasets.

1 INTRODUCTION

Visual language models (VLMs) have significantly advanced multimodal vision and language tasks,
enabling impressive capabilities such as image captioning and visual question answering (Alayrac
et al., 2022; Li et al., 2023; Dai et al., 2024; Liu et al., 2024). Models like CLIP (Radford et al.,
2021a) leveraged extensive image-caption data for multimodal training, while generative models like
Flamingo (Alayrac et al., 2022) and BLIP2 (Li et al., 2023) generate descriptive captions for images.
Because of their caption-based nature, these models often lack object localization abilities, making
them less suited for applications requiring precise spatial understanding (Wen et al., 2023; Luo et al.,
2024; Driess et al., 2023; Jin et al., 2023; Cheng et al., 2024). Naturally, one can equip a model with
localization ability by pre-training, (Wang et al., 2023; Chen et al., 2023b). However, this requires
massive datasets, human-annotated bounding boxes, and substantial computational resources, making
it costly and impractical for smaller setups. Rather than pre-training from scratch, we aim to equip a
pre-trained VLM with spatial understanding by fine-tuning.

Closest to our work is PIN (Dorkenwald et al., 2024), which fine-tunes a VLM for the specific task of
object localization by adding learned spatial parameters to the vision encoder. Trained on a synthetic
dataset of superimposed object renderings, PIN is evaluated on single-object localization, predicting
a bounding box given a query object name. Despite the obtained ability for object localization, PIN
suffers from catastrophic forgetting, losing image understanding abilities after fine-tuning. Moreover,
its synthetic data lacks inter-object relationships, limiting its utility for more complex tasks beyond
object localization, like multi-object detection and reasoning (Wang et al., 2023; Chen et al., 2023b).
Additionally, as demonstrated by PIN, even parameter-efficient methods like LoRA (Hu et al., 2021)
underfit due to the complexity differences between image understanding and grounding tasks. These
challenges underscore the need for a solution that adds grounding capabilities for many tasks without
compromising a model’s pre-existing strengths, which is the focus of our work.

Specifically, we introduce LynX (Linking eXperts for visual grounding), a novel framework that
leverages a Dual Mixture of Experts (MoE) architecture. This design allows the model to specialize
in both image understanding and visual grounding simultaneously, preventing the catastrophic
forgetting seen in PIN and enabling fine-tuning for grounding without sacrificing existing capabilities.
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Figure 1: Contributions overview. Our contributions include (a) enabling a pre-trained caption-
based vision-language model to learn new grounding skills by fine-tuning without forgetting old ones,
(b) improving model performance by scaling the generated dataset, and (c) enabling visual grounding
tasks through step-by-step training on our synthetic dataset.

Further, to address the shortcomings of PIN’s localization-only dataset, we propose SCouT: Synthetic
Chain-of-Thought with Grounding, a high-quality synthetic dataset with step-by-step grounded
chain-of-thought annotations. Unlike PIN’s object-pasting approach, SCouT captures meaningful
spatial relationships and reasoning steps, providing a richer training signal for grounding tasks.
We complement this with a step-by-step training methodology inspired by Lightman et al. (2023),
breaking down tasks into intermediate steps with individual loss functions, providing clearer learning
signals for handling complex multimodal tasks. Additionally, to address the challenge of evaluating
VLMs with free-form grounded responses—where existing metrics fall short—we propose an open-
source evaluation metric to fairly compare performance.

Our contributions can be summarized as follows:

1. We introduce LynX, a Dual Mixture of Experts framework that enables VLMs to acquire
new grounding capabilities via fine-tuning without forgetting pre-trained skills (Figure 1.a).

2. We present SCouT, a high-quality synthetic dataset with step-by-step grounded chain-
of-thought annotations, specifically designed to facilitate effective training of VLMs on
grounding tasks (Figure 1.b).

3. We propose a step-by-step training methodology, breaking down tasks into intermediate
steps with individual loss functions, improving model performance by scaling the generated
dataset (Figure 1.c).

4. We introduce an open-source evaluation pipeline for VLMs on object detection tasks,
accommodating their open-ended generative nature.

2 RELATED WORK

Caption-based Visual Language Models (VLMs). Large language models, efficient at instruction
following and generalization, have been seamlessly integrated with vision-only encoder models,
yielding impressive results in multimodal tasks (Alayrac et al., 2022; Li et al., 2023; Bai et al., 2023;
Chen et al., 2023a; Wang et al., 2023; Chen et al., 2023d; Zhang et al., 2023a; Lin et al., 2023; Cha
et al., 2023; Dai et al., 2024; Ye et al., 2023; Zhao et al., 2023; Chen et al., 2023c; Liu et al., 2023;
Zhang et al., 2023b). Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023) are pioneering
works in this area. Flamingo combines a pretrained CLIP (Radford et al., 2021b) image encoder
with a pretrained LLM using perceiver and gated cross-attention blocks, while BLIP-2 employs a
lightweight Querying Transformer, pretrained in two stages: vision-language representation from a
frozen image encoder and vision-to-language generation from a frozen language model. Subsequently,
recent works have focused on improving performance through optimizing training strategies (Bai
et al., 2023; Chen et al., 2023a), increasing resolution of image (Bai et al., 2023; Chen et al., 2023a;
Wang et al., 2023), enhancing image encoders (Chen et al., 2023d; Zhang et al., 2023a; Bai et al.,
2023), aligning the input (Lin et al., 2023) and projection layers (Cha et al., 2023; Alayrac et al.,
2022; Dai et al., 2024; Ye et al., 2023; Zhao et al., 2023; Chen et al., 2023c). More importantly, many
recent works have focused on improving the model performance by expanding the instruction-tuning
dataset (Liu et al., 2023; Zhang et al., 2023b; Zhao et al., 2023). Instruction tuning in these models
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typically results in image captioning or simple question answering, overlooking spatial reasoning
and object localization. So, they excel at generating descriptive text but struggle with tasks requiring
precise spatial comprehension or multi-object grounding. In contrast, our work addresses these gaps
by enabling spatial understanding and complex visual reasoning, extending beyond captioning to
tasks like visual grounding and object localization.

Grounded Visual Language Models. Extending the capabilities of VLMs beyond image and
language understanding, many models now enable visual grounding to localize objects in an image
(Chen et al., 2021; Wang et al., 2022b; Lu et al., 2022; Yang et al., 2022; Wang et al., 2022a; 2024;
Chen et al., 2023b; Wang et al., 2023; Bai et al., 2023; Dorkenwald et al., 2024). Pix2Seq (Chen
et al., 2021) formulates object detection as an auto-regressive language modeling task, conditioned
on observed input pixels. Inspired by this approach, models such as OFA (Wang et al., 2022b),
Unified-IO (Lu et al., 2022), UniTab (Yang et al., 2022), GIT (Wang et al., 2022a), and VisionLLM
(Wang et al., 2024) incorporate coordinate vocabulary alongside language vocabulary for grounding
tasks. In contrast, models like Shikra (Chen et al., 2023b), CogVLM (Wang et al., 2023), and
Qwen-VL (Bai et al., 2023) treat positional input/output as natural language, demonstrating the
ability to generate interleaved grounded visual captions for images. While these models perform
impressively, they need large annotated datasets and significant computational resources. To address
this, PIN (Dorkenwald et al., 2024) introduces a learnable positional insert module and a synthetic
dataset to enhance spatial understanding in pretrained VLMs. However, their method shows limited
grounding performance and leads to forgetting pretrained knowledge. In contrast, we introduce LynX,
a framework that equips VLMs with grounding capabilities while retaining their image understanding
skills.

3 METHOD

In the following sections, we briefly review standard VLMs and the concept of Mixture of Experts
(MoE). We then introduce LynX, our dual MoE framework that equips VLMs with grounding abilities
while preserving their image understanding skills, without extensive pretraining. We also present
SCouT, a synthetic dataset with step-by-step reasoning supervision for learning complex grounding
tasks. Finally, we explain how step-by-step learning modifies the training loss to integrate grounding
and reasoning within the Dual MoE framework.

3.1 PRELIMINARIES

Visual Language Models (VLMs). VLMs process both image and text data for multimodal genera-
tive tasks. These models consist of a vision encoder ψ(·), a language decoder, ϕ(·), and a mapper func-
tion f(·). The language decoder takes a sequence of tokens as inputs [v1, v2, . . . , vm, t1, t2, . . . , tn]
being composed of visual and textual tokens. Visual tokens are computed from an image x as
[v1, v2, . . . , vm] = f(ψ(x)), and textual tokens are computed from the text input t as [t1, t2, . . . , tn] =
Tokenizer(t). VLMs are trained via cross-entropy loss on a next-token prediction task.

Mixture of Expert. Mixture of Experts (MoEs) are a way to increase the small model capacity
to compete with large models performance without a proportional increase in computational cost
(Shazeer et al., 2017). Specifically, a MoE layer is composed of E “experts” and a gating network
g(·). The gating network decides which expert is most suitable for a given token:

ln = MoE(ln−1) =

E∑
i=1

gi(ln−1) · ei(ln−1), (1)

where ln represents the output of the n-th layer, ln−1 the input, E the total number of experts, gi(·)
the gating function’s weight for the i-th expert, and ei(·) the i-th expert’s output. During inference,
only the top-k experts can be used, reducing inference costs considerably.

3.2 LYNX: LINKING EXPERTS FOR VISUAL GROUNDING

We start with a caption-based mixture-of-expert VLM (Lin et al., 2024) adept at visual question
answering tasks, and extend it for the task of object grounding as depicted in Figure 2. A transformer
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Figure 2: LynX architecture overview. Our dual Mixture of Experts (MoE) module replaces the
feed-forward network in every other transformer block of the language decoder, preserving the visual
encoder and self-attention modules. It includes two parallel MoE blocks: one frozen for image
understanding and one trainable for visual grounding. Outputs are combined using a learnable α
coefficient, facilitating knowledge transfer and faster training. During inference, alpha is adjusted
based on the task, classified by our BERT token classifier.

block of the language decoder of a VLM is composed of multi-head attention (MHA) and feed-
forward network (FFN), which processes the input tokens as follows:

l̂n = MHA(LN(ln−1)) + ln−1, (2)

ln = FFN(LN(l̂n)) + l̂n, (3)

where ln−1 is the input from layer n − 1, l̂n is the hidden representation at layer n, and ln is the
output of the n-th layer. The mixture of expert module only modifies Eq. (3) by replacing the FFN
module with a MoE in the transformer block computation as follows:

ln = MoE(LN(l̂n)) + l̂n. (4)

We introduce a parallel MoE module for visual grounding and modify above equations as follows:

lIUn = MoEIU(LN(l̂n)) + l̂n, lVGn = MoEVG(LN(l̂n)) + l̂n, (5)

ln = α · lIUn + (1− α) · lVGn , (6)

where MoEIU is a frozen MoE module pretrained on image understanding tasks, MoEVG is a learnable
MoE module trained for object localization task, and α is a learnable coefficient weight adjusting the
contribution of each MoE module. This design choice prevents catastrophic forgetting of pretrained
image understanding skills of VLMs. Moreover, the shared modules allow knowledge transfer from
the pretrained MoE into the grounding MoE, helping the latter to better interpret grounding tasks.

Training step. We train our method using a cross-entropy loss for the next token prediction task:

L = −

[
N∑
i=1

logPθ(ti|v1, . . . , vm, t1, . . . , ti−1)

]
+ λ ·R(g), (7)

where L is the next token prediction loss, N represents the length of the text sequence, vi refers to
the i-th visual token in the sequence, ti denotes the i-th textual token in the sequence, θ refers to the
model parameters, λ is a regularization coefficient, and R(g) is a regularization term for sparsifying
the gating mechanism. This loss function aims to minimize the discrepancy between the predicted
and actual next token in the sequence.

Inference step. During inference, we automatically determine the task type (image understanding or
visual grounding) based on the input prompt and adjust α accordingly. Instead of relying on manual
task tokens, we employ a lightweight BERT-based classifier (Devlin, 2018) which takes an input
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prompt and classifies it into one of the two task categories. Based on the classifier’s output, we adjust
α dynamically:

α =

{
1 for Image Understanding ,
unchanged for Visual Grounding.

(8)

Thus, at test time, the output of the dual MoE module is as follows:

ln+1 =

{
lIUn+1 for Image Understanding,
α · lIUn+1 + (1− α) · lVGn+1 for Visual Grounding.

(9)

This automated task classification eliminates the need for manual task tokens, making the system
more user-friendly and robust. The BERT classifier adds minimal computational overhead, as it is
an 8-bit quantized tiny model with approximately 1 million parameters, bringing the total active
parameters from 1.67B to 1.671B. Our experiments show that the classifier achieves 99.98% accuracy,
ensuring negligible impact on performance.

3.3 SCOUT: SYNTHETIC CHAIN-OF-THOUGHT WITH GROUNDING

Visual question answering datasets often incorporate spatial reasoning, such as “What object is to
the left of the girl?” or “Is there a bowl on top of the table?”. Grounding tasks particularly benefit
from this spatial reasoning, as describing relationships like ”A cat at [x1, y1, x2, y2] sits to the
left of a dog at [a1, b1, a2, b2]” offers clearer relative positioning, improving the interpretation
of localization data for VLMs. Following this intuition, recent works such as Shikra (Chen et al.,
2023b) have made progress in creating grounded chain-of-thought datasets. Shikra uses an LLM to
generate reasoning-based question-answer pairs from image captions, without access to the actual
visual content. However, this reliance on captions alone leads to hallucinated narratives that do not
reflect the image (see halluciantion examples of Shikra dataset in Appendix Figure 5).

To address the hallucination problem, we introduce the SCouT dataset, which integrates visual
information with textual descriptions from captions. We generate “where” and “what” questions
using an LLM, such as Mixtral, ensuring contextual alignment with captions through in-context
prompting (see Appendix Figure 7). For answer generation, instead of relying solely on the LLM like
Shikra, we use a pretrained VLM, such as CogVLM, which incorporates image context to answer
questions step-by-step, reducing hallucinations (see Appendix Figure 3). In a comparison of 100
randomly selected samples from each dataset, SCouT achieved an accuracy of 94.7%, significantly
outperforming Shikra’s 63.1%. A correct response is defined as one where the generated grounding
steps accurately reflect the relationships and spatial positions of objects in the image, without
hallucinations. This demonstrates the effectiveness of our method in producing reliable, contextually
grounded data.

Step-by-step loss function. Inspired by Lightman et al. (2023), we then decompose the generated
answers, focusing on one task per sentence, to make it easily digestible for training our small visual
language model, as seen in Figure 1 (c). These steps are not separate tasks but subtasks of a unified
task. To illustrate this concept mathematically, the loss function for training under step-by-step
reasoning supervision can be expressed as follows:

Lstep-by-step =

J∑
j=1

−
 Nj∑

i=1

logPθ(t
(j)
i | v1, . . . , vm, t(j)1 , . . . , t

(j)
i−1)

+ λ ·R(g), (10)

.

where Lstep-by-step represents the step-by-step reasoning loss function, J is the number of reasoning
steps,Nj is the number of tokens in step j, t(j)i represents the ith token in the jth step output, v1....vm
are the image tokens, Pθ is the probability predicted by the model and R(g) is the regularization term
with weight λ. We compare the dataset statistics of our generated dataset with Shikra’s in Table 10
and provide detailed visualizations of our dataset in Figures 3 and 4 in the appendix.
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4 EXPERIMENTS

We perform our evaluation of LynX on three different grounding tasks: i) object localization, ii)
object detection and iii) visual grounding, on top of standard image understanding tasks. The details
of our architectural implementation and the dataset splits for each task is explained as follows.

Implementation details. LynX is built on MoE-llava (Lin et al., 2024), which uses Phi2 as its
pretrained language model. MoE-llava has 4 experts dedicated to image understanding tasks. For
LynX, we add a separate MoE module with two experts for grounding tasks, initialized from the image
understanding MoE in the same decoder layer. The vision encoder and multi-head attention layers
remain frozen, as do the interleaved decoder layers. LynX is optimized with AdamW (Loshchilov &
Hutter, 2019) using a 2e− 5 learning rate, and trained on 4× A6000 GPUs for about 1.5 days. LynX
contains 1.67B trainable parameters, with only 0.8B active, roughly one fourth the size of Shikra-7B.

Datasets. We train LynX using three types of datasets:

1. Referential expression comprehension (REC): The task is to use textual references to accurately
identify and locate objects in a scene. For example, given the phrase “guy with his back turned to
us,” the model must find the person and provide the bounding box coordinates around him in the
image (see Figure 6 in the appendix). We use the standard RefCOCO (Yu et al., 2016) dataset which
consists of three splits: RefCOCO, RefCOCO+ and RefCOCOg. In total, we have 128,000 samples
of image-referential expression pairs from the COCO2014 (Lin et al., 2014) train dataset.

2. Grounded image captioning (GIC): The task involves generating detailed image captions that
not only identify objects in the image but also provide precise bounding box coordinates for each
mentioned object (see Figure 6 in the appendix). For this task, we process 108k images from the
COCO2017 (Lin et al., 2014) train dataset using CogVLM to produce interleaved captions with
corresponding bounding boxes for each object described.

3. Synthetic grounded visual question answering (SCouT): This task requires the object to have
image understanding and spatial reasoning along with localization capability (see section 3.3 for more
detail). We use the Flickr30k (Plummer et al., 2015) image dataset consisting of image captions. We
prompt Mixtral (Jiang et al., 2024) to generate questions from these captions by leveraging in-context
learning ability of LLMs (Figure 7 in appendix). Given the generated questions and the corresponding
image, we prompt CogVLM to generate step-by-step answers for each query. For all tasks, bounding
box locations are integers, with x and y coordinates ranging from 0 to 99, creating a 100× 100 grid.

4.1 OBJECT LOCALIZATION

We begin by comparing LynX with PIN (Dorkenwald et al., 2024), as both methods involve fine-
tuning pretrained models for grounding tasks. PIN evaluates its object localization ability on a task
that requires generating bounding boxes when prompted with object names. Their evaluation is
conducted on subsets of COCO, PVOC, and LVIS, with up to three objects per image, totaling 3,582,
2,062, and 6,016 test images, respectively. For each image, the model is provided with a ground truth
object name and tasked with localizing it. The mean Intersection over Union (mIoU) is reported for
all bounding boxes, as well as for medium (32× 32 to 96× 96 pixels) and large (over 96× 96 pixels)
bounding boxes, quantifying the overlap between the predicted and true bounding boxes.

LynX outperforms PIN in single-object localization, with a 22% improvement in mIoU on PVOC,
32% on COCO, and 39% on LVIS, particularly excelling with medium-sized objects. Notably, LynX
achieves this without being exclusively trained for localization, whereas PIN, despite being tailored
for this specific task, struggles to match our performance. Attempts to fine-tune MoE-LLaVA using
LoRA also underperform across all datasets, reinforcing the robustness of our dual MoE architecture
for both localization and image understanding.

Although PIN uses fewer parameters (1.4M vs. 1.67B), it is limited to single-object detection
and suffers from catastrophic forgetting of its image understanding capabilities. This disparity in
backbones may introduce unfairness in the comparison. To better showcase LynX’s full potential,
we introduce a protocol-based evaluation that assesses more complex multi-object grounding tasks –
areas where PIN cannot compete – and standardizes evaluation for comparing VLMs.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with PIN (Dorkenwald et al., 2024) on their COCO, PVOC, and LVIS subsets.
Our model outperforms PIN across all datasets and metrics, despite not being specifically fine-tuned
for this task.

PVOC≤3 Objects COCO≤3 Objects LVIS≤3 Objects

Method mIoU mIoUM mIoUL mIoU mIoUM mIoUL mIoU mIoUM mIoUL

PIN 0.45 0.27 0.62 0.35 0.26 0.59 0.26 0.24 0.61
MoE-LLaVA w/ LoRA 0.43 0.21 0.65 0.36 0.29 0.60 0.24 0.21 0.62
LynX 0.68 0.58 0.81 0.66 0.57 0.78 0.65 0.55 0.76

4.2 OBJECT DETECTION

While the comparison with PIN highlights LynX’s superiority in standard localization tasks, we
aim to demonstrate its full potential in more complex visual grounding challenges. Unlike PIN,
which is limited to single-object detection, LynX handles multi-object localization and complex
grounding across multiple entities. However, traditional object detection datasets like COCO (Lin
et al., 2014), PASCAL VOC (Everingham et al., 2010), and LVIS (Gupta et al., 2019) are not fully
suited for VLMs, as LynX generates free-form captions and predicts objects from an open vocabulary.
To fairly evaluate its performance against larger models like CogVLM and Shikra we introduce a
protocol-based framework that bridges this gap.

Protocol 1 - Common Class Comparison: In this evaluation, CogVLM serves as the ground truth,
providing object names and bounding boxes. The task asks models to “Locate objects in this image
along with their bounding box coordinates,” with responses in free-form text. We focus on the top 50
shared object classes between each model and CogVLM. LynX—after incorporating SCouT into its
training—significantly outperforms all models, including Shikra 7B, with an increase of AP50 by 7.4
on COCO, 6.8 on PVOC, and 7.9 on LVIS. Despite having fewer parameters and no pretraining, LynX
surpasses Shikra in these metrics, while PIN scores zero as it only generates bounding boxes without
object names. The importance of dataset quality is evident in LynX’s performance gains. Initial
training with the REC dataset resulted in low scores, as single-object annotations failed to generalize
to multi-object detection. Adding the GIC dataset led to improvements of 28.5 on COCO, 31.7 on
PVOC, and 27.6 on LVIS. However, incorporating Visual Genome (VG)—a noisy dataset—negatively
impacted performance, highlighting the detrimental effect of noisy data. Replacing VG with SCouT
yielded substantial improvements, demonstrating the necessity of high-quality, contextually grounded
annotations for complex tasks.

Protocol 2 - Class Grouping: In this protocol, we map open-vocabulary predictions from LynX
and CogVLM to predefined categories in COCO, PVOC, and LVIS using a sentence transformer.
This groups similar classes (e.g., “man” and “woman” into “person”), standardizing labels across
models. LynX—trained with SCouT continues to outperform other models under these stricter class
mappings, with AP50 increasing by 5.7 on COCO, 6.0 on PVOC, and 3.9 on LVIS compared to the
GIC variant. As in Protocol 1, SCouT proves essential for maintaining strong performance, while the
noise in VG continues to hinder results.

Protocol 3 - Reference Ground Truth Annotation: In this protocol, we use COCO’s standardized
Table 2: Comparison on COCO for Protocol 3.
LynX peform comparably to CogVLM and sur-
passes Shikra7B, despite fewer parameters. Low
scores highlight the challenge of this task, where
VLMs predict less objects than dataset annotations.

Method AP↑ AP50↑ APL ↑
PIN 0 0 0
Shikra 13.2 46.8 16.7
LynX 14.0 48.3 17.3
CogVLM 16.1 52.7 21.3

annotations as the ground truth to ensure a
fair comparison between VLMs, as relying on
model-generated outputs (as in Protocols 1 and
2) can be misleading due to different object fo-
cuses by different VLMs. By using COCO an-
notations, we objectively evaluate each model’s
accuracy in detecting objects. LynX, despite be-
ing much smaller (1.67B parameters), performs
comparably to CogVLM (17B), our dataset
generator and upper bound. LynX also out-
performs Shikra (7B), even though both Shikra
and CogVLM have significantly more parame-
ters and pretraining. The relatively low average
precision (AP) scores across all models highlight the difficulty of this task—COCO averages 7 anno-
tations per image, while VLMs typically predict 3-4 objects. This protocol provides a standardized
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way to evaluate object detection across VLMs, demonstrating LynX’s strong balance of model size
and performance.

Table 3: Results on the COCO, PVOC, and LVIS validation sets for Protocols 1 and 2. LynX,
trained with SCouT, consistently outperforms other variants across all evaluated metrics. In Protocol
1, despite being a zero-shot evaluation with training only on COCO, LynX generalizes effectively to
PVOC and LVIS without prior exposure. In Protocol 2, which maps open-vocabulary predictions
to predefined object categories, LynX maintains strong performance, demonstrating robustness
even under class-mapping constraints. Adding the Visual Genome (VG) dataset negatively impacts
performance, emphasizing the need for high-quality, contextually grounded data like SCouT for
effective training on complex grounding tasks.

Dataset Type COCO VOC LVIS
REC GIC VG SCouT AP↑ AP50↑ APL↑ AP↑ AP50↑ APL↑ AP↑ AP50↑ APL↑
Protocol 1: Common Class 50 Classes 50 Classes 50 Classes
✓ × × × 0 0 0 0 0 0 0 0 0
✓ ✓ × × 8.2 28.5 10.1 10.3 31.7 12.4 8.0 27.6 9.6
✓ ✓ ✓ × 6.5 23.1 8.2 8.6 29.7 11.0 6.2 24.1 7.9
✓ ✓ ✓ ✓ 10.4 34.7 13.0 12.5 37.2 15.1 10.3 34.2 13.5
✓ ✓ × ✓ 11.1 35.9 13.7 13.1 38.5 15.9 11.1 35.5 14.0

PIN - - - 0 0 0 0 0 0 0 0 0
Shikra 7B - - - 8.9 29.3 12.7 11.7 33.8 13.6 9.2 28.5 10.2

Protocol 2: Class Grouping 80 Classes 20 Classes 200 Classes
✓ × × × 0 0 0 0 0 0 0 0 0
✓ ✓ × × 6.9 23.4 9.4 12.1 38.0 15.5 4.1 12.1 5.5
✓ ✓ ✓ × 4.8 20.3 7.2 10.1 36.5 13.2 2.4 9.7 4.0
✓ ✓ ✓ ✓ 8.7 27.8 12.2 13.7 41.0 17.1 5.2 14.8 6.9
✓ ✓ × ✓ 9.3 29.1 13.3 14.5 44.0 19.2 5.8 16.0 7.8

PIN - - - 0 0 0 0 0 0 0 0 0
Shikra 7B - - - 7.2 25.5 10.8 13.3 39.1 16.7 4.9 13.4 5.8

4.3 VISUAL GROUNDING

We evaluate LynX on two key visual grounding tasks: referential expression comprehension (REC)
and phrase grounding. For REC, we use the RefCOCO, RefCOCO+, and RefCOCOg (Yu et al., 2016)
datasets, where the objective is to identify a single object in an image based on a descriptive query.
In contrast, phrase grounding, evaluated on the Flickr30k Entities (Plummer et al., 2015) dataset,
involves linking multiple objects to their corresponding noun phrases in a sentence, requiring more
complex contextual reasoning.

Unlike most models in this comparison, which rely on pretraining, LynX and PIN are fine-tuning
approaches. Despite this, LynX trained with SCouT outperforms Shikra-7B on the complex Flickr30k
phrase grounding task by 1.4%, demonstrating our model’s strength in relational tasks. On REC tasks,
LynX remains highly competitive despite Shikra’s specialized training, particularly given our smaller
model size and fine-tuning approach. We also outperform OFA-L and VisionLLM-H on all REC
benchmarks and exceed PIN by 62% on RefCOCO test-A, where PIN struggles with more complex
queries. The SCouT variant further improves performance, highlighting the value of step-by-step
supervision.

4.4 IMAGE UNDERSTANDING EVALUATION

A major strength of LynX is its ability to retain image understanding capabilities even after fine-tuning
for grounding tasks—unlike PIN, which suffers from catastrophic forgetting. As shown in Table 5,
LynX matches the performance of MoE-LLaVA and is even better than much larger models like
LLaVA-phi2 (Liu et al., 2024), despite being nearly ten times smaller. This is achieved without the
extensive pretraining on multiple datasets that models like Shikra require, which cannot even perform
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Table 4: Comparison of LynX variants on the REC task. We compare LynX with OFA-L,
VisionLLM-H, Shikra, and PIN. LynX outperforms OFA-L, VisionLLM-H, and PIN, with the SCouT-
trained variant showing enhanced performance compared to the variant trained without it. We also
report results on the Flickr30k Entities dataset for both Shikra-7B and LynX. Numbers for OFA-L,
VisionLLM-H, and Shikra are taken from Shikra (Chen et al., 2023b).

RefCOCO RefCOCO+ RefCOCOg Flickr30k Entities
Model val test-A test-B val test-A test-B val test val test

OFA-L* (Wang et al., 2022b) 80.0 83.7 76.4 68.3 76.0 61.8 67.6 67.6 - -
VisionLLM-H (Wang et al., 2024) - 86.7 - - - - - - - -
Shikra-7B (Chen et al., 2023b) 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 75.84 76.54

PIN (Dorkenwald et al., 2024) - 26.4 - - - - - - - -
LynX w/ REC 83.9 89.1 77.6 77.0 84.3 68.1 79.3 78.3 - -
LynX w/ REC + SCouT 85.4 90.2 79.3 78.4 85.7 68.5 80.3 80.6 76.83 77.91

Table 5: Benchmark evaluation results for LynX on standard image understanding tasks. Despite
its smaller size, LynX performs better than larger models like LLaVA-phi2 and I-80B, successfully
retaining the image understanding abilities of its base (MoE-LLava) through the dual MoE module.

Image Question Answering Benchmark Toolkit

Model Active GQA SQA1 VQAT POPE MME LLaVAW MM-Vet

I-80B (Laurençon et al., 2024) 65B 45.2 - 30.9 - - - -
LLaVA-phi2 13B - 68.4 48.6 85.0 1335.1 - 28.9
MoE-LLaVA-phi2 (our base) 3.6B 61.4 68.5 51.4 86.3 1423.0 94.1 34.3
LynX 1.6B 61.4 68.5 51.4 86.3 1423.0 94.1 34.3

these image understanding tasks. The reported numbers, except for MME, reflect accuracy scores,
while MME represents a cumulative perception score with a maximum value of 2000.

5 ABLATIONS

5.1 FINE-TUNING CHALLENGES

From Tables 6 and 7, fine-tuning MoE-LLaVA on both image understanding (task A) and grounding
(task B) significantly degrades task A performance, while fine-tuning solely on task B leads to
catastrophic forgetting, where task A abilities are entirely lost. Despite substantial training, these
methods fall short compared to our Dual MoE approach.

Table 6: Grounding results on COCO validation
set. LynX achieves better grounding performance
compared to MoE-LLaVA finetuned variants.

Method AP↑ AP50↑ APL ↑
MoE-LLaVA (base) 0 0 0
MoE-LLaVA (A & B) 8.1 32.6 10.3
MoE-LLaVA (only B) 10.7 35.2 12.9
LynX 11.1 35.9 13.7

The zero results in Table 6 illustrate catastrophic
forgetting: the model generates bounding boxes
for task A prompts (e.g., GQA expects ”brown”
as an answer but receives a bounding box), re-
sulting in zero accuracy. Similarly, the zero
average precision (AP) scores in Table 7 reflect
the model’s inability to generate bounding boxes
without specific training, leading to zero AP on
MS-COCO. This highlights the necessity of our
Dual MoE module, for overcoming the limita-
tions of traditional fine-tuning.

5.2 EFFECT OF TRAINING LYNX WITH NEGATIVE SUPERVISION DATA.

In constructing the SCouT dataset, we incorporate negative supervision samples (Figure 4 in the
appendix) to train LynX. This approach offers two key advantages: First, as demonstrated in Table
8, training with negative samples leads to notable improvements in object detection performance,
enhancing the model’s ability to distinguish relevant objects. Second, negative supervision signif-
icantly reduces hallucinations, a common issue in VLMs. For example, as illustrated in Figure 6
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Table 7: Image understanding results. Fine-tuning MoE-LLaVA on both task A and B leads to
poor performance on image understanding tasks, while fine-tuning only on task B causes catastrophic
forgetting of task A. LynX preserves performance across both tasks.

GQA↑ SQA↑ VQAT ↑ POPE↑ MME↑ LLaVAW ↑ MM-Vet↑
MoE-LLaVA (base) 61.4 68.5 51.4 86.3 1423.0 94.1 34.3
MoE-LLaVA (A & B) 53.1 56.9 46.3 65.7 1347.0 71.8 28.6
MoE-LLaVA (only B) 0 0 0 0 0 0 0
LynX 61.4 68.5 51.4 86.3 1423.0 94.1 34.3

(appendix), when faced with a query like “What is the dog doing near the shoreline?” LynX, trained
with negative samples, first verifies the presence of the dog before attempting to answer. If no dog is
present, and only a girl is in the image, LynX recognizes the question as invalid, thereby avoiding
incorrect assumptions and improving overall accuracy.

5.3 EFFECT OF NUMBER OF EXPERTS.

We investigate the impact of varying the number of experts in the grounding MoE module, exper-
imenting with configurations that use 2 and 4 experts, corresponding to approximately 1.67B and
3.3B trainable parameters, respectively. While increasing the number of experts to 4 results in a slight
performance improvement, the gains are marginal compared to the increased computational cost.
This diminishing return suggests that beyond a certain point, additional experts do not significantly
enhance model performance for the grounding tasks. As a result, we adopt the 2-expert configuration
in all our experiments, striking an optimal balance between performance and efficiency, as reflected
in the results across different datasets.

Table 8: LynX trained with neg-
ative samples shows enhanced ob-
ject detection performance.

Pos. Neg. AP↑ AP50↑
✓ × 10.8 34.9
✓ ✓ 11.1 35.9

Table 9: Effect of number of experts. 2 experts per-
form on par with 4, using half the trainable parameters.

RefCOCO RefCOCO+
Experts Param. test-A test-B test-A test-B

2 1.6B 90.2 79.3 85.7 68.5
4 3.3B 90.9 79.8 86.3 68.8

5.4 SCALING PROPERTIES OF OUR SYNTHETIC DATASET.

We explore the scalability of SCouT in Figure 1 (part b). Leveraging our efficient data generation
pipeline, we experiment with varying dataset sizes ranging from 64k to 3M samples. As seen in our
results, model performance improves consistently with increase in dataset size, particularly up to 512k
data points, after which the improvements begin to plateau. This trend highlights the effectiveness
of SCouT in providing high-quality, diverse training samples, outperforming conventional human-
annotated datasets in scaling the model’s capabilities for complex grounding tasks.

Limitations. We generated our SCouT dataset using CogVLM and trained LynX with this data,
making us dependent on its quality. Since the data quality relies on CogVLM’s reasoning capability,
this sets an upper bound on our performance.

6 CONCLUSION

We introduce LynX, a versatile framework with a dual mixture of experts module, enabling a
small VLM to retain pretrained knowledge while acquiring new skills. Training step-by-step with
our scalable SCouT dataset provides an effective learning signal and highlights the potential of
synthetic data. We also present an open-source evaluation pipeline for comparing VLMs at various
granularities. LynX demonstrates SOTA effectiveness in object localization on multiple visual
grounding benchmarks and matches pretrained performance on image understanding benchmarks.
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A APPENDIX

The supplementary material consists of the following sections: A.1 Dataset Visualization, A.2 Sample
Outputs from LynX, A.3 Number of Parameters and Datasets and A.4 In-context Prompts for Mixtral.

A.1 DATASET VISUALIZATION AND STATISTICS

We present dataset statistics comparison between our generated and shikra generated grounded
chain-of-though datasets in Table 10 along with three visualizations in this subsection: the positive
samples of our synthetic grounded chain-of-thought dataset in Figure 3, its negative samples in Figure
4, and samples from the noisy dataset generated by Shikra using LLMs in Figure 5.

Dataset Statistics We present a comparison of dataset statistics between our Synthetic Grounded
Chain-of-Thought (SCouT) dataset and the Shikra-generated dataset in Table 10. The table highlights
key metrics such as the number of images, words, turns, objects, and Q/A pairs. This comparison
demonstrates the scale and richness of our SCouT dataset.

Table 10: Comparison of dataset statistics between our synthetic data and the Shikra-generated
dataset.

Images Words Turns Objects Q/A Pairs
Shikra 883 7106 1 23692 5922
SCouT 30000 15524 ∼ 4 654314 3113763

SCouT: Synthetic Grounded Chain-of-Thought Dataset This dataset is designed to provide step-
by-step answers to questions, thereby simplifying the learning process for our models. For example,
in the first row of Figure 3, when asked ”What is the color of the hat the man is wearing?”, instead of
directly trying to answer the question, the dataset breaks down the task into manageable steps:

1. Identify the man in the image.
2. Find the hat he is wearing.
3. Determine the color of the hat.
4. Provide the final answer: “The hat is orange.”

This structured breakdown helps our smaller models learn more effectively and quickly by reducing
the complexity of the task.

Negative Samples In Figure 4, we include some negative samples for our SCouT dataset, where the
question is intentionally incorrect or irrelevant to the image. This is done to mitigate the hallucinations
of LynX. For instance, in the second row of Figure 4, the image shows a girl at the shoreline, but the
question asks, “What is the cat doing near the shoreline?” Our methodology begins by attempting to
identify the main object (in this case, the cat). If the model cannot find a cat in the image, it correctly
identifies the question as invalid. This type of negative supervision is crucial for training our model to
recognize and handle invalid or contradictory queries, thereby improving its robustness and accuracy.

We generate 40k negative samples for our dataset along with the 3M positive samples. The whole
dataset will be released.

Grounded chain-of-thought dataset by Shikra Finally, we visualize samples from the dataset
generated by Shikra using LLMs in Figure 5. These examples highlight common errors due to the
absence of visual context during data generation. For example, in the first row, the question asks “Is
the man [260.0, 4.04, 443.0, 349.056] smiling for the picture?” and the ground truth response for this
in their dataset is “The image quality doesn’t provide enough details to determine if the man [260.0,
4.04, 443.0, 349.056] is smiling or not. Hence, it cannot be confidently answered.” We can clearly
see from the image that the man is smiling. However, in the Flickr30K dataset, where this image
and its captions originate, the captions do not mention that the man is smiling. Shikra uses an LLM
to generate data based solely on these captions, without analyzing the image itself. As a result, the
LLM states that it cannot determine if the man is smiling because the captions do not provide this
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Figure 3: Visualization of the Grounded Chain-of-Thought Dataset. Here we provide step-by-step
answers to questions, simplifying the learning process. For instance, identifying the man, finding his
hat, determining its color, and finally answering that the hat is orange. This structured approach aids
in faster and more effective learning for smaller models.

information. Similarly, in the last row, the question asks, “Can you see the girl’s [89.0, 4.125, 403.0,
375.0] eyes in the image?” with the ground truth answer stating, “The provided information does not
mention the girl’s [89.0, 4.125, 403.0, 375.0] eyes, so it’s difficult to confidently say if they are visible
in the image.” However, the girl’s eyes are clearly visible in the image. Such errors demonstrate the
limitations of generating datasets without access to visual information and underscore the importance
of creating a high-quality dataset like our SCouT.
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Figure 4: Visualization of Negative Samples. Here we include examples where the question is
incorrect or irrelevant, such as asking “What is the cat doing near the shoreline?” when no cat is
present. The model begins by identifying the main object and, if it cannot find the object, declares
the question invalid. This negative supervision enhances the model’s ability to handle invalid or
contradictory queries, improving robustness and accuracy.

A.2 SAMPLE OUTPUTS FROM LYNX

In Figure 6, we showcase outputs generated by our LynX model trained on SCouT. The image
demonstrates LynX’s versatility across a wide range of tasks, including visual question answering,
referential expression comprehension, referential expression grounding, grounded image captioning,
and grounded chain of thought. Additionally, LynX effectively avoids hallucination through its
chain-of-thought reasoning.

A.3 NUMBER OF PARAMETERS AND DATASETS

In table 11, we provide the number of trainable parameters of each baseline and the training dataset
used for each baseline model used for our paper. As seen, compared the our baselines, LynX efficiently
achieves competitive performance with only 1.67 billion trainable parameters and 0.8 billion active
parameters, which is significantly less than most models with similar capabilities. Although we
have more parameters than PIN, it is limited to generating single bounding box locations per prompt
and cannot perform other tasks. Moreover, LynX accomplishes this feat while utilizing a relatively
modest training dataset of 651k image-caption pairs, showcasing its ability to extract maximum value
from limited data and potentially offering improved scalability and resource efficiency compared to
methods requiring billions of parameters or massive training datasets.

A.4 IN-CONTEXT PROMPTS FOR MIXTRAL

Large Language Models (LLMs) excel in in-context learning scenarios, where they can understand
and perform tasks based on provided examples within the input context. This ability allows LLMs to
adapt to various tasks without requiring explicit retraining. By leveraging patterns and information
from the input context, LLMs can generate coherent and relevant responses, making them highly
versatile and effective across diverse applications. Leveraging this quality, we employ Mixtral, an
open-source LLM, to generate queries, a crucial step in creating our SCouT dataset. Additionally, we
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Figure 5: Visualization of errors in the Grounded Chain-of-Thought data generated by Shikra
due to absence of visual context. In the first row, the LLM fails to determine if the man is smiling,
and in the last row, it cannot confirm the visibility of the girl’s eyes, despite both being clearly visible
in the images. These errors highlight the limitations of relying solely on captions for data generation.
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Figure 6: Samples generated by LynX trained on our SCouT.
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Table 11: Comparison of image-caption models: trainable parameters, active parameters, and training
dataset sizes. LynX achieves competitive performance with fewer parameters and a smaller dataset
compared to most models with similar capabilities.

Method Trainable Parameters Active Parameters Size of Training Dataset
PIN 1.4M 1.4M 70k image-caption pairs
Shikra 7B (13B) 7B (13B) 7.8M image-caption pairs
CogVLM 17B 17B 1B image-caption pairs
OFA-L* 470M 470M 24.37M image-caption pairs
VisionLLM-H 1.62B 1.62B 738k image-caption pairs
I-80B 80B 80B 300M image-caption pairs
LLaVA-1.5 13B 13B 7.8M image-caption pairs
LynX 1.67B 800M 651k image-caption pairs

Figure 7: Prompt used for generating engaging and relevant questions for the positive samples
in our SCouT dataset, demonstrating Mixtral’s ability to enhance query formulation.

utilize this LLM’s ability to extract object names and bounding boxes from the free-form text outputs
of our VLM models, particularly in grounded image captioning. Figure 7 illustrates the prompt used
for generating interesting questions for the positive samples in our SCouT dataset. Figure 8 shows
the prompts used to generate negative samples. Finally, Figure 9 depicts the prompts employed to
extract objects from grounded image captions produced by our models.
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Figure 8: Prompt utilized for creating negative samples in our SCouT dataset, showcasing the
method for generating queries that highlight contradictions or irrelevant information.

Figure 9: Prompt used to extract object names and bounding boxes from grounded image captions
generated by our VLM models, illustrating the process of transforming free-form text outputs into
structured data.
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