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W2S: Microscopy Data with Joint Denoising and
Super-Resolution for Widefield to SIM Mapping
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Abstract. In fluorescence microscopy live-cell imaging, there is a crit-
ical trade-off between the signal-to-noise ratio and spatial resolution on
one side, and the integrity of the biological sample on the other side.
To obtain clean high-resolution images, one can either use microscopy
techniques such as structured-illumination microscopy (SIM), or apply
denoising and super-resolution (SR) algorithms. However, the former op-
tion requires multiple shots that can damage the samples, and although
efficient deep learning based algorithms exist for the latter option, no
benchmark exists to evaluate these algorithms on the joint denoising
and SR (JDSR) tasks.
To study joint denoising and SR on microscopy data, we propose such
a novel JDSR dataset, Widefield2SIM (W2S), acquired using a conven-
tional fluorescence widefield and SIM imaging. W2S includes 144,000
real fluorescence microscopy images, resulting in a total of 360 sets of
images. A set is comprised of noisy LR widefield images with different
noise levels, a noise-free LR image, and a corresponding high-quality HR
SIM image. W2S allows us to benchmark the combinations of 6 denoising
methods and 6 SR methods. We show that state-of-the-art SR networks
perform very poorly on noisy inputs. Our evaluation also reveals that
applying the best denoiser in terms of reconstruction error followed by
the best SR method does not necessarily yield the best final result. Both
quantitative and qualitative results show that SR networks are sensitive
to noise and the sequential application of denoising and SR algorithms
is sub-optimal. Lastly, we demonstrate that SR networks retrained end-
to-end for JDSR outperform any combination of state-of-the-art deep
denoising and SR networks1.

Keywords: Image Restoration Dataset, Denoising, Super-resolution, Mi-
croscopy Imaging, Joint Optimization

1 Introduction

Fluorescence microscopy allows to visualize sub-cellular structures and protein-
protein interaction at the molecular scale. However, due to the weak signals
and diffraction limit, fluorescence microscopy images suffer from high noise and
limited resolution. One way to obtain high-quality, high-resolution (HR) mi-
croscopy images is to leverage super-resolution fluorescence microscopy, such as

1 Code and data available at https://github.com/widefield2sim/w2s

https://github.com/widefield2sim/w2s
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Single Channel

Multi Channel

Full frame Raw crop 2× Average 4× Average 8× Average 16× Average Noise-free LR Target HR

Fig. 1. Example of image sets in the proposed W2S. We obtain 5 LR images with
different noise levels by either taking a single raw image or averaging different numbers
of raw images of the same field of view. The more images we average (e.g., 2, 4, 8, and
16), the lower the noise level, as shown in the different columns of the figure. The noise-
free LR images are the average of 400 raw images, and the HR images are obtained
using structured-illumination microscopy (SIM) [15]. The multi-channel images are
formed by mapping the three single-channel images of different wavelengths to RGB.
A gamma correction is applied for better visualization. Best viewed on screen.

structure illumination microscopy (SIM) [15]. This technique requires multiple
captures with several parameters requiring expert tuning to get high-quality im-
ages. Multiple or high-intensity-light acquisitions can cause photo-bleach and
even damage the samples. The imaged cells could be affected and, if imaged in
sequence for live tracking, possibly killed. This is because a single SIM acqui-
sition already requires a set of captures with varying structured illumination.
Hence, a large set of SIM captures would add up to high illumination and an
overhead in capture time that is detrimental to imaging and tracking of live
cells. Therefore, developing an algorithm to effectively denoise and super-resolve
a fluorescence microscopy image is of great importance to biomedical research.
However, a high-quality dataset is needed to benchmark and evaluate joint de-
noising and super-resolution (JDSR) on microscopy data.

Deep-learning-based methods in denoising [2,38,45,11] and SR [42,50,51] to-
day are outperforming classical signal processing approaches. A major limitation
in the literature is, however, the fact that these two restoration tasks are ad-
dressed separately. This is in great part due to a missing dataset that would allow
both to train and to evaluate JDSR. Such a dataset must contain aligned pairs
of LR and HR images, with noise and noise-free LR images, to allow retraining
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retrain prior denoising and SR methods for benchmarking the consecutive ap-
plication of a denoiser and an SR network as well as candidate one-shot JDSR
methods.

In this paper, we present such a dataset, which, to the best of our knowledge,
is the first JDSR dataset. This dataset allows us to evaluate the existing denoising
and SR algorithms on microscopy data. We leverage widefield microscopy and
SIM techniques to acquire data fulfilling the described requirements above. Our
noisy LR images are captured using widefield imaging of human cells. We capture
a total of 400 replica raw images per field of view, 8 times more than a recent
denoising-only dataset using similar imaging technology [49]. We average several
of the LR images to obtain images with different noise levels, and all of the 400
replicas to obtain the noise-free LR image. Using SIM imaging [15], we obtain
the corresponding high-quality HR images. Our resulting Widefield2SIM (W2S)
dataset consists of 360 sets of LR and HR image pairs, with different fields of
view and acquisition wavelengths. Visual examples of the images in W2S are
shown in Fig. 1.

We leverage our JDSR dataset to benchmark different approaches for denois-
ing and SR restoration on microscopy images. We compare the sequential use of
different denoisers and SR methods, of directly using an SR method on a noisy
LR image, and of using SR methods on the noise-free LR images of our dataset
for reference. We additionally evaluate the performance of retraining SR net-
works on our JDSR dataset. Results show a significant drop in the performance
of SR networks when the low-resolution (LR) input is noisy compared to it be-
ing noise-free. We also find that the consecutive application of denoising and SR
achieves better results. It is, however, not as performing in terms of RMSE and
perceptual texture reconstruction as training a single model on the JDSR task,
due to the accumulation of error. The best results are thus obtained by training
a single network for the joint optimization of denoising and SR.

In summary, we create a microscopy JDSR dataset, W2S, containing noisy
images with 5 noise levels, noise-free LR images, and the corresponding high-
quality HR images. We analyze our dataset by comparing the noise magnitude
and the blur kernel of our images to those of existing denoising and SR datasets.
We benchmark state-of-the-art denoising and SR algorithms on W2S, by evalu-
ating different settings and on different noise levels. Results show the networks
can benefit from joint optimization.

2 Related Work

2.1 Biomedical Imaging Techniques for Denoising and
Super-resolution

Image averaging of multiple shots is one of the most employed methods to obtain
a clean microscopy image. This is due to its reliability and to avoid the poten-
tial blurring or over-smoothing effects of denoisers. For microscopy experiments
requiring long observation and minimal degradation of specimens, low-light con-
ditions and short exposure times are, however, preferred as multiple shots might
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damage the samples. To then reduce the noise influence and increase the reso-
lution, denoising methods and SR imaging techniques are leveraged.

To recover a clean image from a single shot, different denoising methods
have been designed, including the Poisson-oriented PURE-LET [25], EPLL [55],
and BM3D [7]. Although these methods provide promising results, recent deep
learning methods outperform them by a big margin according to our bench-
mark results. To achieve resolution higher than that imposed by the diffrac-
tion limit, a variety of SR microscopy techniques exist, which achieve SR either
by spatially modulating the fluorescence emission using patterned illumination
(e.g., STED [17] and SIM [15]), or by stochastically switching on and off indi-
vidual molecules using photo-switchable probes (e.g., STORM [33]), or photo-
convertible fluorescent proteins (e.g., PALM [36]). However, all of these methods
require multiple shots over a period of time, which is not suitable for live cells
because of the motion and potential damage to the cell. Thus, in this work, we
aim to develop a deep learning method to reconstruct HR images from a single
microscopy capture.

2.2 Datasets for Denoising and Super-resolution

Several datasets have commonly been used in benchmarking SR and denois-
ing, including Set5 [3], Set14 [44], BSD300 [27], Urban100 [18], Manga109 [28],
and DIV2K [39]. None of these datasets are optimized for microscopy and they
only allow for synthetic evaluation. Specifically, the noisy inputs are generated
by adding Gaussian noise for testing denoising algorithms, and the LR images
are generated by downsampling the blurred HR images for testing SR methods.
These degradation models deviate from the degradations encountered in real
image capture [5]. To better take into account realistic imaging characteristics
and thus evaluate denoising and SR methods in real scenarios, real-world de-
noising and SR datasets have recently been proposed. Here we discuss these real
datasets and compare them to our proposed W2S.
Real Denoising Dataset Only a few datasets allow to quantitatively evalu-
ate denoising algorithms on real images, such as DND [31] and SSID [1]. These
datasets capture images with different noise levels, for instance by changing the
ISO setting at capture. More related to our work, Zhang et al. [49] collect a
dataset of microscopy images. All three datasets are designed only for denoising,
and no HR images are provided that would allow them to be used for SR evalua-
tion. According to our benchmark results, the best denoising algorithm does not
necessarily provide the best input for the downstream SR task, and the JDSR
learning is the best overall approach. This suggests a dataset on joint denoising
and SR can provide a more comprehensive benchmark for image restoration.
Real Super-resolution Dataset Recently, capturing LR and HR image pairs
by changing camera parameters has been proposed. Chen et al. collect 100 pairs
of images of printed postcards placed at different distances. SR-RAW [48] con-
sists of 500 real scenes captured with multiple focal lengths. Although this
dataset provides real LR-HR pairs, it suffers from misalignment due to the
inevitable perspective changes or lens distortion. Cai et al. thus introduce an



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#2
ECCV

#2

ECCV-20 submission ID 2 5

iterative image registration scheme into the registration of another dataset, Re-
alSR [4]. However, to have high-quality images, all these datasets are captured
with low ISO setting, and the images thus contain very little noise as shown in
our analysis. Qian et al. propose a dataset for joint demosaicing, denoising and
SR [32], but the noise in their dataset is simulated by adding white Gaussian
noise. Contrary to these datasets, our proposed W2S is constructed using SR
microscopy techniques [15], all pairs of images are well aligned, and it contains
raw LR images with different noise levels and the noise-free LR images, thus
enabling the benchmarking of both denoising and SR under real settings.

2.3 Deep Learning based Image Restoration

Deep learning-based methods have shown promising results on various image
restoration tasks, including denoising and SR. We briefly present prior work and
the existing problems that motivate joint optimization.
Deep Learning for Denoising Recent deep learning approaches for image de-
noising achieve state-of-the-art results on recovering the noise-free images from
images with additive noise, such as Gaussian noise. They outperform classical
methods like BM3D [7]. Whether based on residual learning [45], using mem-
ory blocks [38], attention mechanisms [2], or internally modeling Gaussian noise
parameters [11], these deep learning methods all require training data. For real-
world raw-image denoising, the training data should include noisy images with a
Poisson noise component, and a corresponding aligned noise-free image, which is
not easy to acquire. However, these networks are evaluated only on the denois-
ing task, often only on the one they are trained on. They optimize for minimal
squared pixel error, leading to potentially smoothed out results that favour re-
construction error at the expense of detail preservation. When a subsequent
task such as SR is then applied on the denoised outputs from these networks,
the quality of the final results does not, as we see in our benchmark, necessarily
correspond to the denoising performance of the different approaches. This high-
lights the need for a more comprehensive perspective that jointly considers both
restoration tasks.
Deep Learning for Super-resolution Since the first convolutional neural net-
work for SR [9] outperformed conventional methods on synthetic datasets, many
new architectures [20,24,35,40,42,50,51] and loss functions [19,22,34,47,52] have
been proposed to improve the effectiveness and the efficiency of the networks.
To enable the SR networks generalize better on the real-world LR images where
the degradation is unknown, works have been done on kernel prediction [4,14]
and kernel modeling [46,54]. However, most of the SR networks assume that
the LR images are noise-free or contain additive Gaussian noise with very small
variance. Their predictions are easily affected by noise if the distribution of the
noise is different from their assumptions [6]. This again motivates a joint ap-
proach developed for the denoising and SR tasks.
Joint Optimization in Deep Image Restoration Recent studies have
shown the performance of joint optimization in image restoration, for exam-
ple, the joint demosaicing and denoising [13,21], joint demosaicing and super-
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resolution [48,53]. All these methods show that the joint solution outperforms the
sequential application of the two stages. More relevant to JDSR, Xie et al. [43]
present a dictionary learning approach with constraints tailored for depth maps,
and Miao et al. [29] propose a cascade of two networks for joint denoising and
deblurring, evaluated on synthetic data only. Similarly, our results show that a
joint solution for denoising and SR also obtains better results than any sequen-
tial application. Note that our W2S dataset allows us to draw such conclusions
on real data, rather than degraded data obtained through simulation.

3 Joint Denoising and Super-Resolution Dataset for
Widefield to SIM Mapping

In this section, we describe the experimental setup that we use to acquire the
sets of LR and HR images and present an analysis of the noise levels and blur
kernels of our dataset.

3.1 Structured-Illumination Microscopy

Structured-illumination microscopy (SIM) is a technique used in microscopy
imaging that allows samples to be captured with a higher resolution than the one
imposed by the physical limits of the imaging system [15]. Its operation is based
on the interference principle of the Moiré effect. We present how SIM works in
more detail in our supplementary material. We use SIM to extend the resolution
of standard widefield microscopy images. This allows us to obtain aligned LR
and HR image pairs to create our dataset. The acquisition details are described
in the next section.

3.2 Data Acquisition

We capture the LR images of the W2S dataset using widefield microscopy [41].
Images are acquired with a high-quality commercial fluorescence microscope and
with real biological samples, namely, human cells.
Widefield Images A time-lapse widefield of 400 images is acquired using a
Nikon SIM setup (Eclipse T1) microscope. The details of the setup are given
in the supplementary material. In total, we capture 120 different fields-of-view
(FOVs), each FOV with 400 captures in 3 different wavelengths. All images are
raw, i.e., are linear with respect to focal plane illuminance, and are made up of
512 × 512 pixels. We generate different noise-level images by averaging 2, 4, 8,
and 16 raw images of the same FOV. The larger the number of averaged raw
images is, the lower the noise level. The noise-free LR image is estimated as the
average of all 400 captures of a single FOV. Examples of images with different
noise levels and the corresponding noise-free LR images are presented in Fig. 1.
SIM Imaging The HR images are captured using SIM imaging. We acquire the
SIM images using the same Nikon SIM setup (Eclipse T1) microscope as above.
We present the details of the setup in the supplementary material. The HR
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images have a resolution that is higher by a factor of 2, resulting in 1024× 1024
pixel images.

3.3 Data Analysis

W2S includes 120 different FOVs, each FOV is captured in 3 channels, corre-
sponding to the wavelengths 488nm, 561nm and 640nm. As the texture of the
cells is different and independent across different channels, the different chan-
nels can be considered as different images, thus resulting in 360 views. For each
view, 1 HR image and 400 LR images are captured. We obtain LR images with
different noise levels by averaging different numbers of images of the same FOV
and the same channel. In summary, W2S provides 360 different sets of images,
each image set includes LR images with 5 different noise levels (corresponding
to 1, 2, 4, 8, and 16 averaged LR images), the corresponding noise-free LR image
(averaged over 400 LR images) and the corresponding HR image acquired with
SIM. The LR images have dimensions 512×512, and the HR images 1024×1024.

To quantitatively evaluate the difficulty of recovering the HR image from the
noisy LR observation in W2S, we analyze the degradation model relating the
LR observations to their corresponding HR images. We adopt a commonly used
degradation model [5,9,14,54], with an additional noise component,

InoisyLR = (IHR ~ k) ↓m +n, (1)

where InoisyLR and IHR correspond, respectively, to the noisy LR observation
and the HR image, ~ is the convolution operation, k is a blur kernel, ↓m is a
downsampling operation with a factor of m, and n is the additive noise. Note that
n is usually assumed to be zero in most of the SR networks’ degradation models,
while it is not the case for our dataset. As the downsampling factor m is equal to
the targeted super-resolution factor, it is well defined for each dataset. We thus
analyze in what follows the two unknown variables of the degradation model for
W2S; namely the noise n and the blur kernel k. Comparing to other denoising
datasets, W2S contains 400 noisy images for each view, DND [6] contains only 1,
SSID [1] contains 150, and FMD [49], which also uses widefield imaging, contains
50. W2S can thus provide a wide range of noise levels by averaging a varying
number of images out of the 400. In addition, W2S provides LR and HR image
pairs that do not suffer from misalignment problems often encountered in SR
datasets.
Noise Estimation We use the noise modeling method in [12] to estimate the
noise magnitude in raw images taken from W2S, from the denoising dataset
FMD [49], and from the SR datasets RealSR [4] and City100 [5]. The approach
of [12] models the noise as Poisson-Gaussian. The measured noisy pixel intensity
is given by y = x + nP (x) + nG, where x is the noise-free pixel intensity, nG
is zero-mean Gaussian noise, and x + nP (x) follows a Poisson distribution of
mean ax for some a > 0. This approach yields an estimate for the parameter
a of the Poisson distribution. We evaluate the Poisson parameter of the noisy
images from the three noise levels (obtained by averaging 1, 4 and 8 images)
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(a) Estimated noise (log) (b) Estimated kernels

Fig. 2. Noise and kernel estimation on images from different datasets. A comparably-
high noise level and a wide kernel indicate that the HR images of W2S are challenging
to recover from the noisy LR observation.

of W2S, the raw noisy images of FMD, and the LR images of the SR datasets
for comparison. We show the mean of the estimated noise magnitude for the
different datasets in Fig. 2(a). We see that the raw noisy images of W2S have a
high noise level, comparable to that of FMD. On the other hand, the estimated
noise parameters of the SR datasets are almost zero, up to small imprecision, and
are thus significantly lower than even the estimated noise magnitude of the LR
images from the lowest noise level in W2S. Our evaluation highlights the fact that
the additive noise component is not taken into consideration in current state-
of-the-art SR datasets. The learning-based SR methods using these datasets are
consequently not tailored to deal with noisy inputs that are common in many
practical applications, leading to potentially poor performance. In contrast, W2S
contains images with high (and low) noise magnitude comparable to the noise
magnitude of a recent denoising dataset [49].
Blur Kernel Estimation We estimate the blur kernel k shown in Eq. (1) as

k = argmin
k
||Inoise−free

LR ↑bic −k ~ IHR||22, (2)

where Inoise−free
LR ↑bic is the noise-free LR image upscaled using bicubic inter-

polation. We solve for k directly in the frequency domain using the Fast Fourier
Transform [10]. The estimated blur kernel is visualized in Fig. 2(b). For the pur-
pose of comparison, we show the estimated blur kernel from two SR datasets:
RealSR [4] and City100 [5]. We also visualize the two other blur kernels: the
MATLAB bicubic kernel that is commonly used in the synthetic SR datasets,
and the Gaussian blur kernel with a sigma of 2.0, which is the largest kernel
used by the state-of-the-art blind SR network [14] for the upscaling factor of
2. From the visualization we clearly see the bicubic kernel and Gaussian blur
kernel that are commonly used in synthetic datasets are very different from the
blur kernels of real captures. The blur kernel of W2S has a long tail compared
to the blur kernels estimated from the other SR datasets, illustrating that more
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high-frequency information is removed for the LR images in W2S. This is be-
cause a wider space-domain filter corresponds to a narrower frequency-domain
low pass, and vice versa. Hence, the recovery of HR images from such LR images
is significantly more challenging.

Compared to the SR datasets, the LR and HR pairs in W2S are well-aligned
during the capture process, and no further registration is needed. Furthermore,
to obtain high-quality images, the SR datasets are captured under high ISO
and contain almost zero noise, whereas W2S contains LR images with different
noise levels. This makes it a more comprehensive benchmark for testing under
different imaging conditions. Moreover, as shown in Sec. 3.3, the estimated blur
kernel of W2S is wider than that of other datasets, and hence it averages pixels
over a larger window, filtering out more frequency components and making W2S
a more challenging dataset for SR.

4 Benchmark

We benchmark on the sequential application of state-of-the-art denoising and
SR algorithms on W2S using RMSE and SSIM, which are two common metrics
for evaluating image quality. Note that we do not consider the inverse order,
i.e., first applying SR methods on noisy images, as this amplifies the noise and
causes a large increase in RMSE as shown in the last row of Table 2. With current
methods, it would be extremely hard for a subsequent denoiser to recover the
original clean signal.

4.1 Setup

We split W2S into two disjoint training and test sets. The training set consists of
240 LR and HR image sets, and the test set consists of 120 sets of images, with
no overlap between the training set and the test set. We retrain the learning-
based methods on the training set, and the evaluation of all methods is carried
out on the test set.

For denoising, we evaluate different approaches from both classical meth-
ods and deep-learning methods. We use a method tailored to address Pois-
son denoising, PURE-LET [25], and the classical Gaussian denoising meth-
ods EPLL [55] and BM3D [7]. The Gaussian denoisers are combined with the
Anscombe variance-stabilization transform (VST) [26] to first modify the distri-
bution of the image noise into a Gaussian distribution, denoise, and then invert
the result back with the inverse VST. We estimate the noise magnitude using
the method in [12], to be used as input for both the denoiser and for the VST
when the latter is needed. We also use the state-of-the-art deep-learning meth-
ods MemNet [38], DnCNN [45], and RIDNet [2]. For a fair comparison with the
traditional non-blind methods that are given a noise estimate, we separately
train each of these denoising methods for every noise level, and test with the
appropriate model per noise level. The training details are presented in the sup-
plementary material.
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Number of raw images averaged before denoising
Method 1 2 4 8 16

D
en

o
is

er
s

PURE-LET [25] 0.089/0.864 0.076/0.899 0.062/0.928 0.052/0.944 0.044/0.958
VST+EPLL [55] 0.083/0.887 0.074/0.916 0.061/0.937 0.051/0.951 0.044/0.962
VST+BM3D [7] 0.080/0.897 0.072/0.921 0.059/0.939 0.050/0.953 0.043/0.962

MemNet† [38] 0.090/0.901 0.072/0.909 0.063/0.925 0.059/0.944 0.059/0.944

DnCNN† [45] 0.078/0.907 0.061/0.926 0.049/0.944 0.041/0.954 0.033/0.964

RIDNet† [2] 0.076/0.910 0.060/0.928 0.049/0.943 0.041/0.955 0.034/0.964

Table 1. RMSE/SSIM results on denoising the W2S test images. We benchmark a
variety of standard methods, three classical ones (of which PURE-LET is designed for
Poisson noise removal), and three deep learning based methods. The larger the number
of averaged raw images is, the lower the noise level. †These learning-based methods are
trained for each noise level separately, on our training set. An interesting observation
is that the best RMSE results (in red) do not necessarily give the best result after
the downstream SR method, as we see in Table 2. We highlight the results under the
highest noise level with gray background for easier comparison with Table 2.

We use six state-of-the-art SR networks for the benchmark: four pixel-wise
distortion based SR networks, RCAN [50], RDN [51], SAN [8], SRFBN [23], and
two perceptually-optimized SR networks, EPSR [40] and ESRGAN [42]. The
networks are trained for SR and the inputs are assumed to be noise-free, i.e.,
they are trained to map from the noise-free LR images to the high-quality HR
images. All these networks are trained using the same settings, the details of
which are presented in the supplementary material.

4.2 Results and Discussion

We apply the denoising algorithms on the noisy LR images, and calculate the
RMSE and SSIM values between the denoised image and the corresponding
noise-free LR image in the test set of W2S. The results of the 6 benchmarked
denoising algorithms are shown in Table 1. DnCNN and RIDNet outperform
the classical denoising methods for all noise levels. Although MemNet achieves
worse results than the classical denoising methods in terms of RMSE and SSIM,
the results of MemNet contain fewer artifacts as shown in Fig. 3.

One interesting observation is that a better denoising with a lower RMSE or
a higher SSIM, in some cases, results in unwanted smoothing in the form of a
local filtering that incurs a loss of detail. Although the RMSE results of DnCNN
are not the best (Table 1), when they are used downstream by the SR networks
in Table 2, the DnCNN denoised images achieve the best final performance.

Qualitative denoising results are shown in the first row of Fig. 3. We note that
the artifacts created by denoising algorithms are amplified when SR methods are
applied on the denoised results (e.g., (a) and (b) of Fig. 3). Although the denoised
images are close to the clean LR image according to the evaluation metrics, the
SR network is unable to recover faithful texture from these denoised images as
the denoising algorithms remove part of the high-frequency information.
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Denoising Results

(a) PURE-LET (b) EPLL (c) BM3D (d) MemNet (e) DnCNN (f) RIDNet (g) clean LR

RDN [51] applied on denoised results

(a) RDN+ (b) RDN+ (c) RDN+ (d) RDN+ (e) RDN+ (f) RDN+ (g) RDN+

PURE-LET EPLL BM3D MemNet DnCNN RIDNet clean LR

Fig. 3. The first row shows qualitative results of the denoising algorithms on a test LR
image with the highest noise level. The second row shows qualitative results of the SR
network RDN [51] applied on top of the denoised results. RDN amplifies the artifacts
created by PURE-LET [25] and EPLL [55], and is unable to recover faithful texture
when the input image is over-smoothed by denoising algorithms. A gamma correction
is applied for better visualization. Best viewed on screen.

The SR networks are applied on the denoised results of the denoising algo-
rithms, and are evaluated using RMSE and SSIM. We also include the results
of applying the SR networks on the noise-free LR images. As mentioned above,
we notice that there is a significant drop in performance when the SR networks
are given the denoised LR images instead of the noise-free LR images as shown
in Table 1. For example, applying RDN on noise-free LR images results in the
SSIM value of 0.836, while the SSIM value of the same network applied to the
denoised results of RIDNet on the lowest noise level is 0.756 (shown in the first
row, last column in Table 3). This illustrates that the SR networks are strongly
affected by noise or over-smoothing in the inputs. We also notice that a better
SR network according to the evaluation on a single SR task does not necessar-
ily provide better final results when applied on the denoised images. Although
RDN outperforms RCAN in both RMSE and SSIM when applied on noise-free
LR images, RCAN is more robust when the input is a denoised image. Among
all the distortion-based SR networks, RCAN shows the most robustness as it
outperforms all other networks in terms of RMSE and SSIM when applied on
denoised LR images. As mentioned above, another interesting observation is that
although DnCNN results in lower RMSE and higher SSIM than other networks
for denoising at the highest noise level, DnCNN still provides a better input
for the SR networks. We note generally that better denoisers according to the
denoising benchmark do not necessarily provide better denoised images for the
downstream SR task. Although the denoised results from MemNet have larger
RMSE than the conventional methods, as shown in Table 1, the SR results on
MemNet’s denoised images achieve higher quality based on RMSE and SSIM.
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Super-resolution networks
RCAN RDN SAN SRFBN EPSR ESRGAN

D
en

o
is

er
s

PURE-LET .432/.697 .458/.695 .452/.693 .444/.694 .658/.594 .508/.646
VST+EPLL .425/.716 .434/.711 .438/.707 .442/.710 .503/.682 .485/.703
VST+BM3D .399/.753 .398/.748 .418/.745 .387/.746 .476/.698 .405/.716

MemNet .374/.755 .392/.749 .387/.746 .377/.752 .411/.713 .392/.719
DnCNN .357/.756 .365/.749 .363/.753 .358/.754 .402/.719 .373/.726
RIDNet .358/.756 .371/.747 .364/.752 .362/.753 .411/.710 .379/.725

Noise-free LR .255/.836 .251/.837 .258/.834 .257/.833 .302/.812 .289/.813

Noisy LR .608/.382 .589/.387 .582/.388 .587/.380 .627/.318 .815/.279

Table 2. RMSE/SSIM results on the sequential application of denoising and SR meth-
ods on the W2S test images with the highest noise level, corresponding to the first
column of Table 1. We omit the leading ‘0’ in the results for better readability. For
each SR method, we highlight the best RMSE value in red. The SR networks applied
on the denoised results are trained to map the noise-free LR images to the high-quality
HR images. Results on other noise levels are presented in the supplementary material.

Qualitative results are given in Fig. 4, where for each SR network we show
the results for the denoising algorithm that achieves the highest RMSE value for
the joint task (i.e., using the denoised results of DnCNN). We note that none of
networks is able to produce results with detailed texture. As denoising algorithms
remove some high-frequency signals along with noise, the SR results from the
distortion-based networks are blurry and many texture details are lost. Although
the perception-based methods (EPSR and ESRGAN) are able to produce sharp
results, they fail to reproduce faithful texture and suffer a drop in SSIM.

(a) 0.313 (b) 0.322 (c) 0.322 (d) 0.344 (e) 0.405 (f) 0.400 Ground-truth

Fig. 4. Qualitative results with the corresponding RMSE values on the sequen-
tial application of denoising and SR algorithms on the W2S test images with the
highest noise level. (a) DnCNN [45]+RCAN [50], (b) DnCNN [45]+RDN [51], (c)
DnCNN [45]+SAN [8], (d) DnCNN [45]+SRFBN [23], (e) DnCNN [45]+EPSR [40],
(f) DnCNN [45]+ESRGAN [42]. A gamma correction is applied for better visualiza-
tion. Best viewed on screen.

4.3 Joint Denoising and Super-Resolution (JDSR)

Our benchmark results in Sec. 4 show that the successive application of denoising
and SR algorithms does not produce the highest-quality HR outputs. In this
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section, we demonstrate that it is more effective to train a JDSR model that
directly transforms the noisy LR image into an HR image.

4.4 Training Setup

For JDSR, we adopt a 16-layer RRDB network [42]. To enable the network to
better recover texture, we replace the GAN loss in the training with a novel
texture loss. The GAN loss often results in SR networks producing realistic
but fake textures that are different from the ground-truth and may result in a
significant drop in SSIM [42]. Instead, we introduce a texture loss that exploits
the features’ second-order statistics to help the network produce high-quality
and real textures. This choice is motivated by the fact that traditional second-
order descriptors have proven particularly effective for tasks such as texture
recognition [16]. We leverage the difference in second-order statistics of VGG
features to measure the similarity of the texture between the reconstructed HR
image and the ground-truth HR image. Our texture loss is defined as

Ltexture = ||Cov(φ(ISR))− Cov(φ(IHR))||22, (3)

where ISR is the estimated result from the network for JDSR and IHR is the
ground-truth HR image, φ(·) is a neural network feature space, and Cov(·) com-
putes the covariance. We follow the implementation of MPN-CONV [30] for the
forward and backward feature covariance calculation. To improve visual quality,
we further incorporate a perceptual loss to the training objective

Lperceptual = ||φ(ISR)− φ(IHR)||22. (4)

Our final loss function is then given by

L = L1 + α · Lperceptual + β · Ltexture, (5)

where L1 represents the `1 loss between the estimated image and the ground-
truth. We empirically set α = 0.05 and β = 0.05. For the neural network feature
space, we use a pre-trained 19-layer VGG [37].

We follow the same training setup as the experiments in Sec. 4. For compar-
ison, we also train RCAN [51] and ESRGAN [42] on JDSR.

4.5 Results and Discussion

The quantitative results of different methods on different noise levels are reported
in Table 3. The results indicate that comparing to the sequential application of
denoising and SR, a single network trained on JDSR is more effective even though
it has fewer parameters. GAN-based methods generate fake textures and lead
to low PSNR and SSIM scores. Our model, trained with texture loss, is able to
outperform RDN and effectively recover high-fidelity texture information even
when high noise levels are present in the LR inputs. We show the qualitative
results of JDSR on the highest noise level (which corresponds to the first column
of Table 1) in Fig. 5. We see that other networks have difficulties to recover the
shape of the cells in the presence of noise, whereas our method trained with
texture loss is able to generate a higher-quality HR image with faithful texture.
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Number of raw images averaged before JDSR
#Parameters

Method 1 2 4 8

DnCNN†+RCAN‡ 0.357/0.756 0.348/0.779 0.332/0.797 0.320/0.813 0.5M+15M

DnCNN†+ESRGAN‡ 0.373/0.726 0.364/0.770 0.349/0.787 0.340/0.797 0.5M+18M
JDSR-RCAN∗ 0.353/0.767 0.340/0.780 0.324/0.799 0.318/0.814 15M

JDSR-ESRGAN∗ 0.361/0.758 0.359/0.771 0.346/0.788 0.332/0.798 18M
Ours∗ 0.357/0.760 0.346/0.779 0.328/0.797 0.330/0.801 11M

Table 3. JDSR RMSE/SSIM results on the W2S test set. †The denoising networks are
retrained per noise level. ‡The SR networks are trained to map noise-free LR images
to HR images. ∗The networks trained for JDSR are also retrained per noise level.

(a) 0.101 (b) 0.065 (c) 0.160 (d) 0.124 (e) 0.084 Ground-truth

(a) 0.398 (b) 0.397 (c) 0.436 (d) 0.448 (e) 0.375 Ground-truth

Fig. 5. Qualitative results with the corresponding RMSE values of denoising and SR
on the W2S test images with the highest noise level. (a) DnCNN+RCAN, (b) RCAN,
(c) DnCNN+ESRGAN, (d) ESRGAN, (e) a 16-layer RRDB network [42] trained with
texture loss. The multi-channel images are formed by mapping the three single-channel
images of different wavelengths to RGB. A gamma correction is applied for better
visualization. Best viewed on screen.

5 Conclusion

We propose the first joint denoising and SR microscopy dataset, Widefield2SIM.
We use image averaging to obtain LR images with different noise levels and the
noise-free LR. The HR images are obtained with SIM imaging. With W2S, we
benchmark the combination of various denoising and SR methods. Our results
indicate that SR networks are very sensitive to noise, and that the consecutive
application of two approaches is sub-optimal and suffers from the accumulation
of errors from both stages. We also observe form the experimental results that the
networks benefit from joint optimization for denoising and SR. W2S is publicly
available, and we believe it will be useful in advancing image restoration in
medical imaging. Although the data is limited to the domain of microscopy data,
it can be a useful dataset for benchmarking deep denoising and SR algorithms.
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