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Abstract

When answering a question, humans utilize the information available across differ-
ent modalities to synthesize a consistent and complete chain of thought (CoT). This
process is normally a black box in the case of deep learning models like large-scale
language models. Recently, science question benchmarks have been used to diag-
nose the multi-hop reasoning ability and interpretability of an AI system. However,
existing datasets fail to provide annotations for the answers, or are restricted to
the textual-only modality, small scales, and limited domain diversity. To this end,
we present Science Question Answering (SCIENCEQA), a new benchmark that
consists of ⇠21k multimodal multiple choice questions with diverse science topics
and annotations of their answers with corresponding lectures and explanations. We
further design language models to learn to generate lectures and explanations as the
chain of thought (CoT) to mimic the multi-hop reasoning process when answering
SCIENCEQA questions. SCIENCEQA demonstrates the utility of CoT in language
models, as CoT improves the question answering performance by 1.20% in few-
shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound
for models to leverage explanations by feeding those in the input; we observe that
it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further
shows that language models, similar to humans, benefit from explanations to learn
from fewer data and achieve the same performance with just 40% of the data.1

1 Introduction

A long-standing goal of AI systems is to act reliably and learn complex tasks efficiently like human
beings. In the process of reliable decision making, humans follow an explicit chain-of-thought (CoT)
reasoning process that is typically expressed as an explanation. However, machine learning models
are trained mostly using a large number of input-output examples to perform a specific task. These
black-box models only generate the final decision without reliably revealing the underlying reasoning
process. Not surprisingly, it is unclear if they understand the task and can generalize even though
they perform well on the benchmark. On the other hand, humans are able to learn from instructions
or explanations from past experience and generalize them to novel and unseen problems. This helps
them learn more quickly with fewer data. In this work, we explore if machines can be endowed with
such reasoning abilities in the context of science-based question answering.

Recently, science problem solving benchmarks [18] have been used to diagnose the multi-hop
reasoning ability and interpretability of AI systems. To answer science questions, a model needs to

1The data and code are available at https://scienceqa.github.io.
Work was partially done while Pan Lu and Swaroop Mishra were interns at AI2.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: We construct the SCIENCEQA dataset where a data example consists of multimodal
question answering information and the grounded lecture and explanation. We study if QA models
can generate a reasonable explanation to reveal the chain-of-thought reasoning.

not only understand multimodal contents but also extract external knowledge to arrive at the correct
answer. Since these tasks require domain-specific knowledge and explicit multi-hop reasoning, a
model would be not interpretable if it fails to provide explanations to reveal the reasoning process.
However, current science question datasets [18, 17, 52] mostly lack annotated explanations for the
answers. To address this issue, other science datasets annotate the explanations, but they are restricted
to the textual only modality and limited to small data scales [13, 6, 37] or a small set of topics [20, 14].
Therefore, we collect Science Question Answering (SCIENCEQA), a large-scale multi-choice dataset
that contains multimodal science questions with explanations and features rich domain diversity.

SCIENCEQA is collected from elementary and high school science curricula, and contains 21,208
examples along with lectures and explanations. Different from existing datasets [17, 18, 52], SCI-
ENCEQA has richer domain diversity from three different subjects: natural science, social science,
and language science. A typical example consists of a question, multiple choices, multimodal con-
texts, a correct answer, as well as a lecture and an explanation. The lecture and explanation provide
general external knowledge and specific reasons, respectively, for arriving at the correct answer.

Consider the thoughts one person might have when answering the question in Figure 1. One first
recalls the knowledge regarding the definition of a force learned from textbooks: “A force is a push or

a pull that ... The direction of a push is ... The direction of a pull is ...”, then forms a line of reasoning:
“The baby’s hand applies a force to the cabinet door. ! This force causes the door to open. ! The

direction of this force is toward the baby’s hand.”, and finally arrives at the correct answer: “This

force is a pull.”. Following [41], we formulate the task to output a natural explanation alongside the
predicted answer. In this paper, we train language models to generate lectures and explanations as the
chain of thought (CoT) to mimic the multi-hop reasoning process to answer SCIENCEQA questions.

Our experiments show that current multimodal methods [55, 1, 21, 9, 26, 35] fail to achieve satisfac-
tory performance on SCIENCEQA and do not generate correct explanations. Instead, we find that CoT
can help large language models not only in the few-shot learning setting but also in the fine-tuning
setting. When combined with CoT to generate the lecture and explanation, the fine-tuned UnifiedQA
[19] achieves an improvement of 3.99% as opposed to not using CoT in the fine-tuning stage. The
few-shot GPT-3 model [4] via chain-of-thought prompting can obtain 75.17% on SCIENCEQA with
an improvement of 1.20% compared to the few-shot GPT-3 without CoT. Prompted with CoT, GPT-3
can generate reasonable explanations as evaluated by automated metrics, and promisingly, 65.2%
of explanations meet the gold standard of human evaluations. We also investigate the upper bound
for models to harness explanations by including them in the input. We find that doing so improves
GPT-3’s few-shot performance by 18.96%, suggesting that explanations do aid models and are
currently underutilized in the CoT framework. Further analysis shows that, like humans, language
models benefit from explanations to learn with less data: UnifiedQA with CoT obtains the same
results as UnifiedQA without CoT with only 40% of the training data.

To sum up, our contributions are three-fold: (a) To bridge the gap in existing datasets in the scientific
domain, we build Science Question Answering (SCIENCEQA), a new dataset containing 21,208
multimodal science questions with rich domain diversity. To the best of our knowledge, SCIENCEQA
is the first large-scale multimodal dataset that annotates lectures and explanations for the answers.
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(b) We show that CoT benefits large language models in both few-shot and fine-tuning learning by
improving model performance and reliability via generating explanations. (c) We further explore the
upper bound of GPT-3 and show that CoT helps language models learn from fewer data.

2 Related Work

Visual question answering. Since the task of visual question answering (VQA) was first proposed
in [2], there have been plenty of VQA datasets [56, 58, 23, 11, 15, 12] conducted to facilitate the
research work. Although our SCIENCEQA dataset shares some features with VQA, there are several
main differences between them. First, SCIENCEQA is more challenging than existing VQA datasets
because it contains multimodal contexts and diverse topics in the scientific domain. In addition,
most answers are annotated with lectures and explanations, which makes SCIENCEQA a suitable
dataset for multi-modal question answering and multi-hop reasoning for AI systems. Inspired by
the recent remarkable performance achieved for VQA [33, 32, 10, 9, 26, 7, 8], in this paper, we
further extensively benchmark SCIENCEQA with a wide range of attention-based [1, 33, 21, 9] and
Transformer-based [30, 26, 27, 7] methods.

Datasets for science problems. Science problem solving is a challenging task that requires an AI
system not only to understand the multimodal information from the science curriculum but also to
reason about how to answer the domain-specific questions. Current science problem datasets such
as AI2D [17], DVQA [16], VLQA [52], and FOODWEDS [24] have contributed to multimodal
reasoning in the scientific domain. For example, a portion of VLQA contains multimodal questions
on science subjects. These datasets, however, lack annotated explanations for the answers to reveal
the reasoning steps. Some other datasets annotate the answers in the forms of supporting facts
[37, 20], entailment trees [6], explanation graphs [13], reasoning chains [14]. However, these datasets
are restricted to the single text modality with small data scales and limited topics. Instead, our
SCIENCEQA annotates the answers with grounded lectures and explanations. Besides, SCIENCEQA
features a richer domain diversity across 3 subjects, 26 topics, 127 categories, and 379 skills.

Learning from explanations and few-shot learning. Explanations help humans understand a task
better, and there have been several attempts to show the same for models. For example, the learning
from instruction paradigm [40, 43, 53, 39, 45, 25], where the task level explanation is provided in
the form of instruction, improves model performance significantly. An example of learning from
explanations in the scientific domain is proposed in [51] where the model interprets demonstrative
solutions to solve geometry problems. Recently, there has been a surge of interest in few-shot learning,
where language models learn a specific task from a few examples [46, 3]. For instance, [42, 54, 34]
find that explanations in the format of the chain of thought can improve language models’ reasoning
ability in few-shot learning. In this paper, we show that the chain of thought boosts the performance
of large language models like UnifiedQA [19] if the models generate explanations along with the
answer in a fine-tuning way. Furthermore, a few-shot GPT-3 model via chain-of-thought prompting
is able to improve the reasoning performance on SCIENCEQA and generate reasonable explanations.

3 Dataset

We collect SCIENCEQA, which is a multimodal multiple-choice science question dataset containing
21,208 examples. An example in SCIENCEQA is shown in Figure 1. Given the science question
and multimodal contexts, the task is to select the correct answer from multiple options. Different
from existing datasets [50, 17, 52, 31, 24], SCIENCEQA covers diverse topics across three subjects:
natural science, social science, and language science. Moreover, most questions are annotated with
grounded lectures and detailed explanations. The lecture provides general knowledge that introduces
the background information for solving problems of a similar class. The explanation reveals a
specific reason for the answer. To effectively answer the questions, a model often needs to be able
to understand the multimodal content in the input and extract external knowledge, similar to how
humans do. More importantly, the goal of SCIENCEQA is to aid development of a reliable model that
is capable of generating a coherent chain of thought when arriving at the correct answer to reveal the
multi-step reasoning process. For data collection details, see Appendix A.1.
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Statistic Number

Total questions 21,208

Questions with text context 10,220 (48.2%)
Questions with image context 10,332 (48.7%)

* Image of natural format ⇡2,960 (14.0%)
* Image of diagram format ⇡7,372 (34.8%)

Questions with both contexts 6,532 (30.8%)
Questions without any context 7,188 (33.9%)
Questions with a lecture 17,798 (83.9%)
Questions with a explanation 19,202 (90.5%)

Different questions 9,122
Different lectures 261

Topic classes 26
Category classes 127
Skill classes 379

Average question length 12.11
Average choice length 4.40
Average lecture length 125.06
Average explanation length 47.66

Table 1: Main statistics in SCIENCEQA. Figure 2: Question distribution in SCIENCEQA.

3.1 Data Analysis

Key statistics. We randomly split the dataset into training, validation, and test splits with a ratio of
60:20:20. Each split has 12,726, 4,241, and 4,241 examples, respectively. Table 1 shows the main
statistics of SCIENCEQA. SCIENCEQA has a large set of different questions, totaling up to 9,122.
Out of the 21,208 questions in SCIENCEQA, 10,332 (48.7%) have an image context, 10,220 (48.2%)
have a text context, and 6,532 (30.8%) have both. 83.9% of the questions are annotated with a lecture,
while 90.5% of the questions feature an explanation. The cross-combination of these information
sources diversifies the problem scenario: sometimes the model is given a lot of information from
multiple sources, while at other times, the only source of information is the question itself. This level
of complexity is very common in grade-level science exams.

(a) Question length distribution of related datasets. SCI-
ENCEQA is distributed more evenly in terms of the num-
ber of question words than other datasets.

3,800
(17.92%)

3,688
(17.39%)

6,532
(30.80%)

7,188
(33.89%) No context

Image Text

Image and text!

(b) Question distribution with different con-
text formats. 66.11% of the questions in SCI-
ENCEQA have either an image or text con-
text, while 30.80% have both.

Figure 3: Question length distribution (a) and context distribution in SCIENCEQA (b).

Question analysis. SCIENCEQA has a diverse set of science questions. Figure 2 shows a distribution
of the first four words in the question text. A large number of question lengths and formats highlight
the diversity of SCIENCEQA. The question lengths range from 3 words to 141 words, and the
questions in SCIENCEQA have an average length of 12.11 words. The question length distribution
is visualized against other VQA datasets in Figure 3 (a). As shown in the diagram, SCIENCEQA’s
distribution is flatter than other datasets, spanning more evenly across different question lengths.

Context analysis. Figure 3 (b) shows the number and percentage of questions with either an image
context, a text context, or both. There are a total of 7,803 unique image contexts and 4,651 unique text
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Figure 4: Domain diversity in SCIENCEQA. Each color corresponds to one subject: natural science,
social science, and language science. For visual clarity, only the most frequent classes are shown.

contexts. 66.11% of the questions have at least one type of context information. The image context
is in the format of diagrams or natural images, which visualize the critical scenario necessary for
question answering or simply illustrate the question for better understanding. Similarly, the textual
context can provide either semantically rich information or a simple hint to the question. Therefore,
models need to be flexible and general to understand these diverse types of contexts.

Domain diversity. Each SCIENCEQA question belongs to one of the three subjects: natural science,
social science, and language science. With each subject, questions are categorized first by the topic
(Biology, Physics, Chemistry, etc.), then by the category (Plants, Cells, Animals, etc.), and finally
by the specific skill (Classify fruits and vegetables as plant parts, Identify countries of Africa, etc.).
SCIENCEQA has a total of 26 topics, 127 categories, and 379 skills. The treemap in Figure 4
visualizes the different subjects, topics, and categories and shows that SCIENCEQA questions are
very diverse, spanning a wide range of domains.

3.2 Comparisons with Existing Datasets

Table 2 shows a comparison of SCIENCEQA and other science problem datasets. As shown in the
table, SCIENCEQA is much larger than most other datasets. SCIENCEQA also has the largest set of
images, spans across all 12 grades, contains the longest questions, and has the most diverse input
sources. As opposed to limiting the subject to only natural science, SCIENCEQA also includes social
science and language science, largely adding to the domain diversity of the dataset. Furthermore,
most of the questions in SCIENCEQA are annotated with textual lectures (83.9%) and explanations
(90.5%), which reveal the reasoning path to the correct answer. To the best of our knowledge,
SCIENCEQA is the first large-scale multimodal science question dataset that annotates the answers
with detailed lectures and explanations.

#Q #I AvgQ MaxQ Grades Science subjects Contexts Images Lecture Explanation

Geometry3K [31] 3,002 2,342 10.1 46 6-12 natural (geometry) image diagram 8 8
AI2D [17] 4,563 4,903 9.8 64 1-6 natural image diagram 8 8
FOODWEBS [24] ⇡5,000 ⇡5,00 - - 8 natural (foodweb only) image diagram 8 8
ARC [5] 7,787 0 20.4 128 3-9 natural 8 8 8 8
TQA [18] 26,260 3,455 9.2 57 6-8 natural image, text diagram 4 8
IconQA [35] 107,439 96,817 8.4 73 PreK-3 math visual diagram 8 8

WorldTree [13] 1,680 0 - - 3-5 natural 8 8 8 4
OpenBookQA [37] 5,957 0 10.6 68 1-6 natural 8 8 8 4
QASC [20] 9,980 0 8.0 25 1-9 natural 8 8 8 4
SCIENCEQA (ours) 21,208 10,332 12.1 141 1-12 natural, social, language image, text natural, diagram 4 4

Table 2: Statistics for SCIENCEQA and comparisons with existing datasets. #Q: number of questions,
#I: number of images, AvgQ: average question length; MaxQ: maximum question length.
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4 Baselines and Chain-of-Thought Models

In this section, we establish baselines and develop two chain-of-thought models on SCIENCEQA.

4.1 Baselines

Heuristic baselines. The first heuristic baseline is random chance: we randomly select one from the
multiple options. Each trial is completed on the whole test set, and we take three different trials for
an average result. The second heuristic baseline is human performance. We post the task to Amazon
Mechanical Turk and ask workers to answer SCIENCEQA questions. Only workers who obtain a
high school or higher degree and pass the qualification examples are qualified for the study. Each
worker needs to answer a set of 10 test questions, and each question is answered by three different
workers. For more details of the human performance study, see Appendix B.2.

Zero-shot and few-shot baselines. We establish the zero-shot baselines on top of UnifiedQA
[19] and GPT-3 [4]. The zero-shot setup follows the format of QCM!A where the input is the
concatenation of tokens of the question text (Q), the context text (C), and multiple options (M), while
the output is to predict the answer (A) from the option set. We extract the caption from the captioning
model based on ViT [7] and GPT-2 [47] for the image as the visual context. In the few-shot setting, we
follow the standard prompting [4] where in-context examples from the training set are concatenated
before the test instance. These in-context examples serve as an instruction for the language model to
adjust to the specific task in SCIENCEQA.

Fine-tuning baselines. We first consider the fine-tuning baselines from VQA models [1, 21, 55, 9,
22, 35, 26] proposed in recent years. These VQA baselines take the question, the context, and choices
as the textual input, take the image as the visual input, and predict the score distribution over choice
candidates via a linear classifier. In addition, we build the fine-tuning baseline on top of the large
language model UnifiedQA [19]. UnifiedQA takes the textual information as the input and outputs
the answer option. Similarly, the image is converted into a caption that provides the visual semantics
for the language model.

4.2 Language Models with the Chain of Thought

A chain of thought refers to a coherent flow of sentences that reveals the premises and conclusion of
a reasoning problem [54]. A chain of thought clearly decomposes a multi-hop reasoning task into
intermediate steps instead of solving the task in a black-box way. The chain of thought can be the
step-by-step thought process [54] before arriving at the final answer or explanations [41] that come
after the answer. The annotated lectures and explanations in SCIENCEQA serve as demonstrations of
the chain of thought that mimics the multi-step reasoning steps of human beings. In this paper, we
study if large language models can generate reasonable explanations as the chain of thought to reveal
the thought process when answering SCIENCEQA questions. Further, we explore how the chain of
thought can improve the reasoning ability of language models on SCIENCEQA in both few-shot and
fine-tuning learning.

UnifiedQA with the chain of thought. UnifiedQA [19] is a state of the art model for multi-option
question answering. The original architecture of UnifiedQA takes the question and options as the
input and outputs a short phrase as the final answer. We make a format modification to develop
UnifiedQA with the chain of thought (CoT), i.e., UnifiedQA is fine-tuned to generate a long sequence
of text which consists of the answer followed by the lecture and explanation.

GPT-3 via chain-of-thought prompting. Recent research work [4, 38, 34] has shown that GPT-3
[4] can perform various tasks when provided with in-context examples in a standard prompt. Take
multi-option question answering as an example, the standard prompt [36, 57, 29] builds instructions
using in-context examples with components of the question text, options, and the correct answer
text. This style of few-shot learning enables the GPT-3 model to answer specific questions without
parameter updates. Different from standard prompting, we build GPT-3 via chain-of-thought (CoT)
prompting, as shown in Figure 5. To be specific, for each test problem t, we map the prompt
instruction I : {Ii}n, It into a textual format where {Ii}n refers to the instruction set of n-shot
in-context examples from the training set, while It denotes the test instruction. Instead of the way
where the explanation comes before the answer [54], we feed the instruction I into the encoder-
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Question: question : Iquesi

Options: (A) option : Iopti1 (B) option : Iopti2 (C) option : Iopti3
Context: context : Icont

i
Answer: The answer is answer : Iai . BECAUSE: lecture : Ilecti explanation : Iexpi

Question: question : Iquest
Options: (A) option : Ioptt1 (B) option : Ioptt2 (C) option : Ioptt3 (D) option : Ioptt4
Context: context : Icont

t
Answer:

Figure 5: Prompt instruction encoding for the test example t in GPT-3 (CoT). The prompt above
consists of the instruction {Ii}1 for the 1-shot training example and It for the test example.

decoder model GPT-3 to generate the answer a followed by the lecture lect and explanation exp:
M : {Ii}n, It ! a, lect, exp.

5 Experiments

5.1 Experimental Setup

Evaluation metrics. The heuristics and VQA baselines treat our SCIENCEQA task as a multi-class
classification problem with multiple options and are evaluated with the accuracy metrics. UnifiedQA
and GPT-3 treat SCIENCEQA as a text generation problem. So the most similar option is selected
as the final prediction to evaluate the question answering accuracy. The generated lectures and
explanations are evaluated by automatic metrics [44, 28, 49] and human scores by annotators.

Implementation details. The VQA baselines are trained for a maximum number of 50 epochs with a
learning rate of 5e�5. We fine-tune the UnifiedQA for 50k iterations and evaluate every 1k iteration.
The training process is stopped following the early stopping strategy with a patience period of three
evaluations. For GPT-3, we use the text-davinci-002 engine, which is the most capable model
version suggested in the official documentation. More details can be found in Appendix B.1.

5.2 Results for Question Answering

Table 3 demonstrates the empirical results for Science Question Answering.

VQA baselines. We feed the VQA baseline models with the input of QCM format to predict answers
A. Out of all the VQA models we benchmarked, VisualBERT [26, 27] performs the best on average
(61.87%). Interestingly, Patch-TRM [35] beats VisualBERT in natural science (NAT) and language
science (LAN), and it also performs better in higher-grade questions (67.50% v.s. 59.92%). However,
in the subject of social science (SOC), VisualBERT outperforms Patch-TRM by a large margin
(+22.39%). Such drastic changes in performance might imply that current VQA models are not
generalized to process the challenging questions in SCIENCEQA.

Language models. We evaluate whether large-scale pretraining on text can help language models
learn scientific knowledge and thus perform better on the SCIENCEQA task. For this purpose, we
have tried two of the state-of-the-art pre-trained language models: UnifiedQA and GPT-3.

(i) UnifiedQA. The results show that without any supervised fine-tuning (zero-shot), UnifiedQA
cannot beat any VQA baseline model, while the pretraining does help the model obtain some
scientific knowledge to outperform the random baseline. When fine-tuned with the answer labels in
SCIENCEQA, UnifiedQABASE reports an accuracy of 70.12% on average. By further teaching the
model to generate the answer along with lecture and explanation, the developed language model with
chain-of-thought (UnifiedQABASE (CoT)) brings additional improvements of +3.21% (QCM!AE)
and +3.99% (QCM!ALE). These results show that generating the chain of thought along with the
answer benefits the reasoning ability of language models.

(ii) GPT-3. The positive effect of pretraining is also proved by the surprisingly good results from
GPT-3 in the same zero-shot setting as UnifiedQA. Without any fine-tuning, GPT-3 already reaches
almost the best performance we can get. Interestingly, prompting the GPT-3 with two training
examples with only answers results in a negligible difference. However, if we prompt GPT-3 with
chain-of-thought prompting (QCM!ALE), we obtain the state-of-the-art result so far (75.17%).
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Model Learning Format NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Random chance - M!A 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67 39.83

Q only [1] train set Q!A 41.34 27.22 47.00 41.79 35.15 44.60 39.28 40.87 39.85
CI only [1] train set CI!A 41.34 29.25 45.45 42.33 36.09 42.93 39.21 41.07 39.87

Q+M only [1] train set QM!A 52.66 51.86 60.18 55.57 50.37 57.42 52.53 57.88 54.44
Q+CT +M only [1] train set QCT M!A 57.28 49.04 61.36 60.46 52.80 58.82 54.44 60.51 56.61
Q+CI+M only [1] train set QCIM!A 58.97 53.77 60.45 62.85 54.49 57.63 56.72 61.04 58.26

MCAN [55] train set QCM!A 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down [1] train set QCM!A 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02

BAN [21] train set QCM!A 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF [9] train set QCM!A 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT [22] train set QCM!A 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14

Patch-TRM [35] train set QCM!A 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT [26, 27] train set QCM!A 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQASMALL [48] zero-shot QCM!A 47.78 40.49 46.00 50.24 44.12 44.39 45.56 46.21 45.79
UnifiedQABASE [48] zero-shot QCM!A 50.13 44.54 48.18 53.08 48.09 46.69 47.58 50.03 48.46

UnifiedQASMALL [48] train set QCM!A 53.77 58.04 61.09 52.10 51.51 61.46 58.22 53.59 56.57
UnifiedQABASE [48] train set QCM!A 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12

UnifiedQABASE (CoT) train set QCM!AE 70.60 74.02 78.36 65.69 64.80 81.53 75.48 69.48 73.333.21"
UnifiedQABASE (CoT) train set QCM!ALE 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.113.99"

GPT-3 [4] zero-shot QCM!A 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87 74.04
GPT-3 [4] 2-shot QCM!A 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97

GPT-3 (CoT) 2-shot QCM!AE 76.60 65.92 77.55 75.51 66.09 79.58 78.49 67.63 74.610.64"
GPT-3 (CoT) 2-shot QCM!ALE 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.171.20"

Human - QCM!A 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

Table 3: Evaluation of baselines over different classes in accuracy (%). Model names: Q = question,
M = multiple options, C = context, CT = text context, CI = image context, CoT = chain of thought.
Format names: A = answer, AE = answer with explanation, ALE = answer with lecture and expla-
nation. Question classes: NAT = natural science, SOC = social science, LAN = language science,
TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.
Segments 1: Random chance; Segment 2: Ablation studies on top of Top-Down; Segment 3: VQA
baselines; Segment 4: UnifiedQA baselines and UnifiedQA with CoT; Segment 5: GPT-3 baselines
and GPT-3 with CoT; Segment 6: Average human performance.

Question: What do these two changes have in common?\n
bleaching clothes\n
a piece of apple turning brown\n
Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are 
caused by heating.\n
Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance 
is. A physical change only changes the substance’s physical properties, such as its size, shape, or color.\n
A chemical change is a change to a substance that changes what the substance is. A chemical change changes the substance’s 
chemical properties, such as its chemical structure.\n
The changes that you listed are both chemical changes.\n
When you bleach clothes, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color.\n 
When a piece of fruit turns brown, the chemical structure of the fruit changes. This change makes the fruit taste different.

Figure 6: One example of the predicted answer along with the chain of thought from GPT-3 (CoT).

Human performance. Humans outperform all benchmarks consistently across question classes,
context types, and grades, e.g., a 20.07% gap for questions with the image context (IMG) between
humans and our best performing model. The gap is to be filled by future research on multimodal
reasoning for scientific question answering.

5.3 Results for Generated Explanations

One prediction example of GPT-3 (CoT) is visualized in Figure 6. We can see that GPT-3 (CoT)
predicts the correct answer and generates a reasonable lecture and explanation to mimic the human
thought process. We further report automatic metrics (BLEU-1/4 [44], ROUGE-L [44], and (sentence)
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Similarity [49] to evaluate the generated lectures and explanations, as shown in Table 4. The Similarity
metric computes the cosine-similarity of semantic embeddings between two sentences based on
the Sentence-BERT network [49]. The results show that UnifiedQABASE (CoT) generates the most
similar explanations to the given ones. However, it’s commonly agreed that automatic evaluation
of generated texts only provides a partial view and has to be complemented by a human study. By
asking annotators to rate the relevance, correctness, and completeness of generated explanations, we
find that the explanations generated by GPT-3 (CoT) conform best to human judgment.

Model Format BLEU-1 BLEU-4 ROUGE-L Similarity Relevant Correct Complete Gold
UnifiedQABASE (CoT) QCM!ALE 0.397 0.370 0.714 0.811 80.4% 76.6% 76.1% 56.9%
GPT-3 (CoT) QCM!AE 0.234 0.048 0.351 0.561 76.9% 73.0% 70.5% 52.5%
GPT-3 (CoT) QCM!ALE 0.192 0.052 0.323 0.595 88.5% 78.8% 84.5% 65.2%

Table 4: Automatic metrics (BLEU-1/4, ROUGE-L, Similarity) and human evaluation of generated
explanations. Note that a gold explanation refers to one that is relevant, correct, and complete.

5.4 Analysis

Blind studies. Blind studies are conducted on top of the modification of the full model, Top-Down [1].
The results achieved in blind studies of Q only and CI only are close to random chance, showing that
the SCIENCEQA dataset is robust and reliable in distribution. The performance drops in Q+M only,
Q+CT +M only, and Q+CI+M only indicate that all input components provide critical information for
answering SCIENCEQA questions.

Prompt types. We study the effect of prompt types and visualize the comparison in Figure 7 (a). It
shows that prompting the GPT-3 model with both lectures and explanations (QCM!ALE) results
in the highest accuracy on average and the smallest variance. In contrast, prompting with only
explanations (QCM!AE) gives the largest variance, resulting in a less stable model.

(a) Acc. v.s. different prompts with 4-shot examples. (b) Acc. v.s. different # of training examples.

Figure 7: Accuracy of GPT-3 (CoT) cross different prompt types (a) and # of training examples (b).

Number of in-context examples. In Figure 7 (b), we further investigate how different numbers of
training examples encoded in prompts can affect the prediction accuracy. The QCM!ALE prompt
type outperforms or performs comparably to the QCM!A type with all numbers of examples. And
we observe the peak performance of QCM!ALE with 2 training examples being prompted. After
that, the accuracy goes down as more training examples are added to the model.

Prompt type Sampling Acc. (%)
QCM!ALE Dynamic (same topic) 75.15
QCM!ALE Dynamic (same category) 74.58
QCM!ALE Dynamic (same skill) 75.10

Table 5: Dynamic sampling for GPT-3 (CoT).

Dynamic sampling. In Table 5, instead of ran-
dom sampling, we try to dynamically select the
in-context examples to prompt with the same
class as the test sample. However, slight differ-
ences in prediction accuracy are observed when
comparing them to simple random sampling.

Upper bound. We search the upper bound of the GPT-3 accuracy by feeding the gold lecture and
explanation in the test prompt. As reported in Table 6, QCME*!A outperforms the QCM!ALE
baseline by 18.86% and QCMLE*!A outperforms QCM!ALE by 18.96%, indicating a potential
improvement direction by generating correct explanations before answering science questions.
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Prompt type Sampling Acc. (%)
QCML*!A Random 73.59
QCML*!AE Random 74.32
QCME*!A Random 94.0318.86"
QCMLE*!A Random 94.1318.96"
QCM!ALE Random 75.17

Table 6: Upper bound of GPT-3 (CoT).

Prompt type Sampling Acc. (%)
QCM!LA Random 60.6
QCM!EA Random 56.0
QCM!LEA Random 55.4
QCM!ELA Random 51.5
QCM!ALE Random 73.6

Table 7: Different positions of L/E for GPT-3 (CoT).

Positions of lectures and explanations. We study the performance of GPT-3 (CoT) in terms of
different positions of lectures and explanations on 1,000 test examples. The results are shown in
Table 7. There could be huge accuracy decreases if GPT-3 (CoT) predicts lectures and explanations
before answers. It is mainly because if GPT-3 (CoT) is formulated to generate the long lecture and
explanation first, there is a greater chance that it will stop generating the prediction early or use up
the maximum token limits before obtaining the required answer.

Figure 8: UnifiedQA (CoT) learns ef-
ficiently with fewer training examples.

CoT learns with fewer data. To study if the chain of
thought helps language models learn more efficiently, we
report the accuracies of UnifiedQA and UnifiedQA (CoT)
fine-tuned on different sizes of the training set in Figure 8.
UnifiedQA (CoT) benefits language models by learning the
coherent reasoning path when answering questions, resulting
in similar accuracy with fewer training examples.

Error analysis. GPT-3 via chain-of-thought prompting ob-
tains promising results but still fails to answer a wide range
of challenging questions in SCIENCEQA. See examples of
failure cases in Appendix B.4. The failure cases can be clas-
sified into two types: (a) the model fails to understand the
multimodal inputs and lacks domain-specific knowledge to arrive at the correct answer; (b) the model
generates the wrong chain of thought with irrelevant, incorrect, or incomplete information.

6 Discussion and Conclusion
In this paper, we propose SCIENCEQA, a dataset that features 21,208 multi-option questions with
multimodal contexts from the science curriculum. To the best of our knowledge, SCIENCEQA is the
first large-scale multimodal science dataset where most questions are annotated with corresponding
lectures and explanations. We establish various baselines, including recent VQA models and large
language models on SCIENCEQA. We further study if language models can generate reasonable
explanations and then benefit the reasoning ability. Experiments show that UnifiedQA with the chain
of thought can achieve an improvement of 3.99% and few-shot GPT-3 via chain-of-thought (CoT)
prompting can obtain a satisfactory accuracy of 75.17% on SCIENCEQA. 65.2% of the generated
explanations from GPT-3 (CoT) meet the gold standard by human evaluations.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We discussed compute resources
in Appendix B.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We collected the

SCIENCEQA dataset from https://www.ixl.com/. The copyright belongs to IXL.
(b) Did you mention the license of the assets? [Yes] SCIENCEQA is under the CC BY-NC-

SA 4.0 license and is used for non-commercial research purposes.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included data examples and a visualizer tool in the supplemental material. The
dataset will be available at https://scienceqa.github.io.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The collected data does not contain personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] We included screenshots of the instructions in Appendix B.2 and
B.3.
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] We included the monetary compensation
details in Appendix B.2 and B.3.
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