

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATE-GFN: A CO-EVOLUTIONARY FRAMEWORK FOR PRINCIPLED EXPLORATION AND CREDIT ASSIGN- MENT IN GFLOWNETS

Anonymous authors

Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) are powerful for scientific discovery but are severely hampered in sparse-reward, long-horizon settings by the temporal credit assignment problem, which causes high-variance gradients. While recent work has sought to densify learning signals (Jang et al., 2023; Pan et al., 2023a) or improve exploration with methods like Evolution Guided GFlowNets (EGFN) (Ikram et al., 2024c), the fundamental variance issue for the learning agent persists. We introduce the Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN), an actor-critic inspired framework that recasts the problem. We advocate for a paradigm shift: instead of evolving policies, DATE-GFN evolves a population of critics (state-dependent value functions, or *twist functions*) that learn to estimate the expected future reward from any state. This constructs a dense, state-dependent guidance signal, transforming the high-variance, reward-driven learning into a stable, low-variance supervised distillation task where the student GFlowNet learns to imitate the policy induced by the best critic. Crucially, we solve the inherent *realization gap* between an optimal teacher and a finite-capacity student via a novel **distillation-aware fitness function**. This objective creates a principled trade-off: it simultaneously rewards critics for discovering high-reward states while penalizing them for their *teachability*, measured by the KL-divergence between their induced policy and the student’s. This creates a symbiotic co-evolutionary dynamic where the evolutionary search for better critics is continuously grounded in the student’s current learning capabilities. We prove this system converges to a realizable, high-performing equilibrium and show empirically that DATE-GFN significantly outperforms state-of-the-art baselines.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) have emerged as a principled framework for a central task in scientific discovery: sampling diverse, high-quality candidates x from a vast, structured search space with probability proportional to a reward function, $P(x) \propto R(x)$ (Bengio et al., 2021a). Despite their theoretical elegance, their practical application is severely limited by the problem of *temporal credit assignment*. GFlowNets construct objects via long action trajectories, but the reward $R(x)$ is only delivered at the end. Standard training objectives like Trajectory Balance (TB) (Malkin et al., 2022a) propagate this sparse signal, but the resulting gradient estimators suffer from prohibitively high variance, especially in long-horizon, sparse-reward settings, leading to unstable and inefficient training. This core challenge has spurred several lines of research. One approach is to *densify the learning signal* by decomposing the reward into local potentials (Jang et al., 2023; Pan et al., 2023a). Another is to *improve exploration* to find sparse rewards more often, as exemplified by Evolution Guided GFlowNets (EGFN) (Ikram et al., 2024a), which use an evolutionary algorithm (EA) to discover high-reward trajectories. While valuable, these methods are incomplete. Reward decomposition can be as challenging as the original problem, and exploration-focused methods are palliative, not curative; the GFlowNet agent in EGFN still relies on the high-variance TB objective for learning.

In this paper, we argue for a paradigm shift inspired by actor-critic methods in reinforcement learning (Konda & Tsitsiklis, 2000). Instead of treating the symptoms of high variance, we address the root

cause by fundamentally changing the learning signal itself. We introduce the **Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN)**. Our approach is built on a principled decoupling of two distinct challenges: (1) the hard, global exploration problem of discovering the state-value landscape from a sparse signal, and (2) the simpler, local problem of learning a policy to navigate this landscape. DATE-GFN assigns each problem to the right tool. We use an EA not to evolve policies, but to evolve a population of *critics* (or *twist functions*, inspired by SMC (Doucet et al., 2001a; Briers et al., 2010)) that solve the first problem by learning the expected future reward from any state. This transforms the sparse terminal reward into a dense, step-wise learning signal. The GFlowNet policy’s task is then reduced to the second problem: a stable, low-variance supervised distillation task to imitate the policy induced by the best critic.

Our central contribution is the mechanism that makes this decoupling robust: a novel **distillation-aware fitness function**. This objective solves the critical **realization gap**—the mismatch between a theoretically optimal teacher and a finite-capacity student—by rewarding critics for both their performance and their *teachability*. This creates a symbiotic co-evolutionary dynamic that grounds the evolutionary search in the student’s learning capabilities, guiding the entire system towards a high-performing and, crucially, a *realizable* equilibrium.

1.1 OUR CONTRIBUTIONS

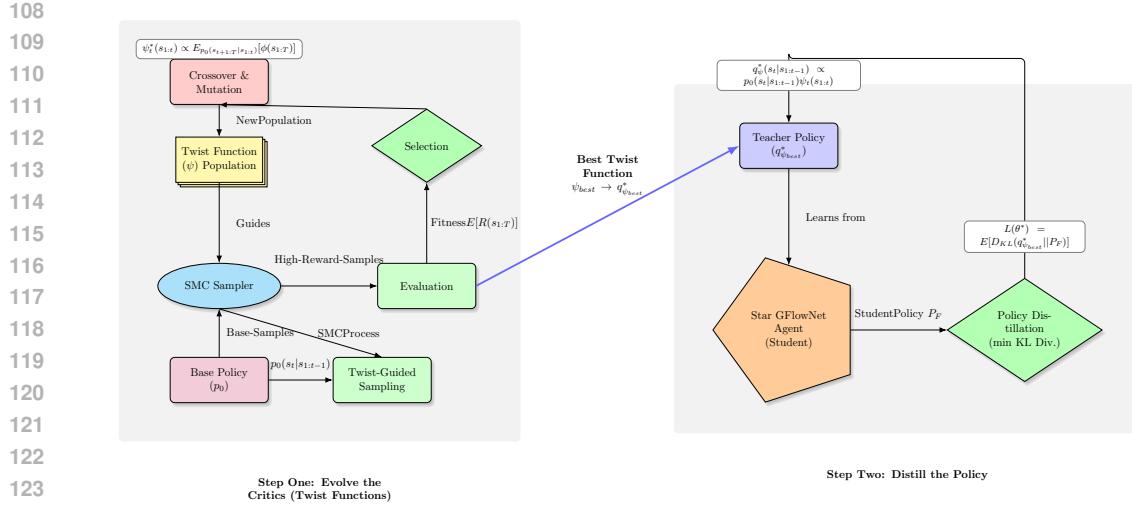
This paper makes the following significant contributions:

- 1. A Novel Co-Evolutionary GFlowNet Framework.** We introduce DATE-GFN, a new training paradigm that synergistically integrates evolutionary algorithms and GFlowNets. We shift the focus of the evolutionary search from policies to critics (value functions), providing a principled mechanism for solving the temporal credit assignment problem by generating a dense, step-wise reward signal.
- 2. The Distillation-Aware Fitness Function for Closing the Realization Gap.** We identify and formalize the *realization gap* as a critical flaw in decoupled teacher-student learning frameworks. Our core technical innovation is the distillation-aware fitness function, which makes the teacher’s evolution dependent on the student’s learning state. This novel mechanism explicitly optimizes for *teachability* alongside performance, ensuring that the evolved critics are not just powerful but also effectively learnable by a finite-capacity student model. We provided the description of our methodology in Algorithm 1 in Appendix 10.
- 3. State-of-the-Art Empirical Performance on Challenging Benchmarks.** We conduct a thorough empirical validation on two difficult domains: the synthetic Hypergrid benchmark and a complex, real-world single-cell perturbation prediction task. Our results demonstrate that DATE-GFN substantially outperforms existing GFlowNet methods, setting a new state-of-the-art for generative modeling in these challenging settings while preserving the crucial ability to generate diverse solutions.

2 RELATED WORK

Our work is situated at the intersection of generative flow networks, evolutionary computation, and reinforcement learning, with a central focus on solving the temporal credit assignment problem in sequential generative modeling under sparse rewards.

Generative Flow Networks and the Credit Assignment Problem. GFlowNets (Bengio et al., 2021a) are generative models that learn to sample objects in proportion to a reward function $R(x)$. Their primary challenge is temporal credit assignment, as the reward is only observed at the end of a long trajectory. The standard Trajectory Balance (TB) objective (Malkin et al., 2022a) suffers from high-variance gradients in sparse-reward settings (Ikram et al., 2024a). This has motivated a body of work on *densifying the learning signal*. Some approaches leverage known additive reward structures (Pan et al., 2023a) or learn a decomposition of the reward into local potentials (Jang et al., 2023; Mohammadpour et al., 2024). While powerful, these methods can be brittle if the decomposition is hard to learn or relies on specific problem structures. Our work takes an orthogonal approach by learning a value function that directly estimates the total future reward, which is more general.



DATE-GFN Framework

Figure 1: **Left:** An evolutionary algorithm evolves a population of candidate *twist function* networks (critics) through selection, crossover, and mutation. Their fitness is evaluated by how well they guide an SMC sampler to high-reward outcomes. **Right:** The best critic’s induced policy (twist-guided proposal) serves as a teacher for the *star GFlowNet* agent, which is trained to imitate this policy via distillation.

Evolutionary Algorithms for Policy Search: EGFN. Evolutionary Algorithms (EAs) are powerful gradient-free methods for exploration (Bäck, 1993; Khadka & Tumer, 2018a). The most relevant predecessor to our work, **EGFN** (Ikram et al., 2024a), evolves a population of GFlowNet policies to enhance exploration. However, EGFN does not solve the underlying credit assignment problem; the final agent is still trained with the high-variance TB objective. It finds *what* trajectories are good but not *why* intermediate steps are valuable. DATE-GFN addresses this gap by evolving value functions (critics) instead of policies, which provides the missing *why* and transforms the learning signal.

Value Functions in Reinforcement Learning and SMC. The credit assignment problem is a cornerstone of Reinforcement Learning (RL) (Sutton & Barto, 2018). **Actor-Critic** methods (Konda & Tsitsiklis, 2000) famously solve this by learning a critic (a value function) to provide a dense, low-variance learning signal for the actor (the policy). Our work is also strongly inspired by Sequential Monte Carlo (SMC) methods, where *twist functions* act as learned lookahead value functions to reduce variance and guide sampling (Doucet et al., 2001a; Briers et al., 2010). Recent work has successfully applied this principle to guide generation in large language models (Zhao et al., 2024). DATE-GFN adapts this powerful principle to the GFlowNet context: our *twist function* is an evolved critic, the *student GFlowNet* is the actor, and the distillation-aware co-evolutionary process is the mechanism that allows them to bootstrap each other effectively.

3 METHODOLOGY

The proposed framework, DATE-GFN, addresses the critical challenges of credit assignment and exploration in GFlowNets, particularly in settings with sparse rewards and long horizons. This section begins by introducing the foundational concepts from Sequential Monte Carlo (SMC) that motivate our approach. We then critically analyze the limitations of a simple, decoupled framework, identifying the crucial *realization gap*. Finally, we present our advanced, integrated solution: the Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN), complete with its theoretical underpinnings and a robust proof of its dynamics.

162 3.1 TWISTED SMC: INCORPORATING A VALUE FUNCTION INTO SAMPLING
163

164 Before detailing DATE-GFN, we introduce the concept of twist functions from the Sequential Monte
165 Carlo perspective, which provides a formal language for value-guided sampling. In this view, the
166 goal is to sample trajectories $\tau = (s_0, \dots, s_T)$ from a target distribution $\sigma(\tau)$ proportional to a
167 reward-based potential. Formally, $\sigma(\tau) \propto p_0(\tau)\Phi(\tau)$, where p_0 is a simple, tractable base policy
168 (e.g., uniform random) and Φ is a potential function. For GFlowNet applications, we define this
169 potential to be non-zero only for completed trajectories:

$$170 \quad \Phi(\tau) = \begin{cases} R(s_T) & \text{if } \tau \text{ is complete (i.e., } s_T \text{ is a terminal state)} \\ 171 \quad 0 & \text{otherwise} \end{cases}$$

173 Directly sampling from σ is intractable. SMC provides a constructive, step-by-step approach guided
174 by *twist functions*. A twist function, $\psi_t(s_{1:t})$, is a non-negative function that provides an intermediate
175 potential at each step of the trajectory. As defined by Briers et al. (2010), the **optimal twist** ψ_t^*
176 is proportional to the exact future cumulative potential, conditioned on the history so far:

$$177 \quad \psi_t^*(s_{1:t}) \propto \mathbb{E}_{\tau' \sim p_0(\cdot | s_{1:t})} [\Phi(\tau_{1:t} \circ \tau')] \quad (1)$$

179 where τ' represents a trajectory suffix sampled from the base policy. Given our definition of Φ , this
180 has a direct and powerful interpretation in the language of reinforcement learning: the optimal twist
181 function is the *true expected future reward-to-go*, or the state-value function, under the base policy
182 p_0 :

$$183 \quad \psi_t^*(s_{1:t}) \propto V^{p_0}(s_t) = \mathbb{E}_{p_0}[R(s_T) | s_t]$$

184 If this optimal value function ψ^* were known, one could construct a variance-minimal sampling
185 policy, known as the *twist-induced proposal* distribution:

$$186 \quad q_\psi(s_t | s_{1:t-1}) \propto p_0(s_t | s_{1:t-1}) \cdot \psi_t(s_{1:t}) \quad (2)$$

188 This policy, q_ψ , can be interpreted as a greedy policy with respect to the value function ψ : it biases
189 the selection of the next state s_t towards states that the critic ψ estimates to have higher future value.
190 If the critic is perfect ($\psi = \psi^*$), then q_ψ is the optimal policy that samples trajectories exactly
191 in proportion to $R(x)$, perfectly solving the GFlowNet objective. Of course, ψ^* is unknown, and
192 the central challenge is to learn a good approximation, ψ_θ , for which our framework employs an
193 evolutionary algorithm.

194 3.2 THE CHALLENGE OF DECOUPLED OPTIMIZATION: A FORMAL TREATMENT OF THE
195 REALIZATION GAP
196

197 A naive application of the principles above would suggest a simple, two-phase framework:

199 1. **Phase 1 - Unconstrained Critic Optimization:** Use an Evolutionary Algorithm (EA) to
200 solve for the best possible critic by maximizing expected reward:

$$201 \quad \theta_\psi^* = \arg \max_{\theta_\psi} \mathbb{E}_{s_{0:T} \sim q_\psi} [R(s_T)]$$

203 2. **Phase 2 - Policy Distillation:** Freeze the best critic $\psi_{\text{best}} = \psi(\cdot; \theta_\psi^*)$ and train a student
204 GFlowNet policy $P_F(\cdot; \theta^*)$ to mimic its induced policy by minimizing the KL-divergence:

$$206 \quad \theta_F^{**} = \arg \min_{\theta^*} \mathbb{E}_{s \sim q_{\psi_{\text{best}}}} [D_{KL}(q_{\psi_{\text{best}}}(\cdot | s) || P_F(\cdot | s; \theta^*))]$$

208 While this decouples the hard, gradient-free global search from the efficient, gradient-based local
209 policy refinement, it suffers from a critical theoretical flaw: the **realization gap**. The core issue lies
210 in a flawed assumption inherent to the decoupled approach: the EA in Phase 1 operates as if the
211 student GFlowNet were a perfect, infinite-capacity function approximator. It therefore performs an
212 unconstrained search for the best critic in an absolute sense, without any knowledge of the student's
213 finite **representational capacity** and architectural biases (Goodfellow et al., 2016). This creates a
214 fundamental mismatch where the EA, blind to the student's limitations, is free to discover a
215 brilliant critic, ψ_{genius} , whose induced policy q_{genius} has high complexity (e.g., is non-smooth or has
intricate decision boundaries). While theoretically optimal, such a policy may be impossible for the

student's architecture to represent, causing the distillation process to fail and yielding a student with performance far below the teacher's potential. Crucially, this framework has no mechanism to prefer a slightly sub-optimal but "smoother" critic, $\psi_{\text{learnable}}$, whose policy the student could imitate with near-perfect fidelity, even if it would result in a much better final generative model. The optimization objective is thus fundamentally misaligned with the practical goal of producing a high-performing student.

3.3 DATE-GFN: A CO-EVOLUTIONARY APPROACH

To bridge this realization gap, we propose the **Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN)**, an integrated, co-evolutionary framework where information about the student's learning progress flows back to guide the evolution of the critics.

Definition 3.1 (Student GFlowNet). The student is a GFlowNet policy parameterized by θ^* :

$$P_F(s_t | s_{1:t-1}; \theta^*)$$

Definition 3.2 (Distillation-Aware Fitness). The fitness of a critic candidate ψ_j with parameters θ_{ψ_j} , evaluated with respect to the *current* state of the student parameters θ^* , is defined as:

$$F_{DA}(\theta_{\psi_j} | \theta^*) = \underbrace{\mathbb{E}_{s_{0:T} \sim q_j} [R(s_T)]}_{\text{Reward Term}} - \lambda \cdot \underbrace{\mathbb{E}_{s_{1:t-1} \sim q_j} [D_{KL}(q_j(\cdot | s_{1:t-1}) || P_F(\cdot | s_{1:t-1}; \theta^*))]}_{\text{Teachability Penalty}}, \quad (3)$$

where q_j is the policy induced by ψ_j according to equation 2, and $\lambda \geq 0$ is a hyperparameter balancing reward-seeking and teachability. The training proceeds as a continuous, online loop, as detailed in Algorithm 1 in Appendix 10..

Remark The Decoupled Limit: DATE-GFN with $\lambda = 0$. The teachability parameter λ connects our co-evolutionary framework to decoupled approaches. When $\lambda = 0$, our fitness function $F_{DA}(\theta_{\psi} | \theta^*) = \mathcal{R}(\theta_{\psi}) - \lambda \mathcal{L}(\theta_{\psi}, \theta^*)$ reduces to $F_{DA}|_{\lambda=0} = \mathcal{R}(\theta_{\psi})$. This is precisely the unconstrained, reward-only objective of a decoupled teacher-student framework we term it TE-GFN, where the evolutionary search is blind to the student's capabilities. Thus, the $\lambda = 0$ setting serves as a perfect experimental baseline, allowing us to directly quantify the performance gains from our core contribution—the teachability constraint—and empirically validate the necessity of solving the constrained, realizable optimization problem to close the realization gap.

3.4 THEORETICAL ANALYSIS OF THE CO-EVOLUTIONARY DYNAMICS

Our theoretical analysis proceeds in two parts. First, we analyze the dynamics of the practical DATE-GFN algorithm and the properties of its equilibrium state. Second, we provide the mathematical foundation that links this dynamic to our experimental validation.

3.4.1 THE DISTILLATION OBJECTIVE AND ITS ROLE

The student's update within the DATE-GFN loop is governed by the distillation loss:

$$\mathcal{L}_{\text{distill}}(\theta^*) = D_{KL}(q_{\text{best}}(\cdot | s_{1:t'-1}) || P_F(\cdot | s_{1:t'-1}; \theta^*))$$

This is the **Distillation Phase of the co-evolutionary loop**. It is a local, supervised learning problem where the student receives a dense target distribution q_{best} from the teacher critic. The critic effectively "pre-computes" the credit assignment, and the student's task is simply to learn this dense, low-variance signal.

Proposition 3.3 (Co-evolution towards a Realizable Optimum). *Let the DATE-GFN training process be a dynamical system on the joint parameter space $(\Theta_{\psi}, \Theta^*)$, where $\Theta_{\psi} = \{\theta_{\psi_1}, \dots, \theta_{\psi_k}\}$ and Θ^* is the space of student parameters. The system's update rules incentivize convergence toward a fixed-point equilibrium $(\Theta_{\psi}^{**}, \Theta^*)$ characterized by:*

1. **Student-Teacher Alignment:** *The student policy $P_F(\cdot; \theta^{**})$ is a close approximation of the policy q_{best}^{**} induced by the best critic in the equilibrium population, $\psi_{\text{best}}^{**} \in \{\psi(\cdot; \theta_{\psi_j}^{**})\}$. That is, $D_{KL}(q_{\text{best}}^{**} || P_F(\cdot; \theta^{**})) \approx 0$.*

270 2. **Constrained Optimality of the Teacher:** The best critic ψ_{best}^{**} is a member of a high-reward
 271 critic population whose induced policies are all structurally representable by the student
 272 architecture. It is a solution to the constrained optimization problem of finding a high-
 273 reward critic within the set of "teachable" critics.

274 This equilibrium thus represents a high-performing and realizable solution, closing the realization
 275 gap by design.

277 *Proof Sketch.* The proof analyzes the fixed points of the system's two operators: the Evolutionary
 278 Operator (T_E) and the Distillation Operator (T_D). A fixed point for the student implies $P_F \approx q_{best}$.
 279 A fixed point for the EA implies that the best critic, ψ_{best} , is a local maximizer of the fitness function
 280 $F_{DA}(\cdot | \theta^{**})$. At this point, the teachability penalty for ψ_{best} itself is near zero. Any other critic that
 281 is not selected must have a lower fitness, meaning any potential reward gain must be offset by a large
 282 teachability penalty. Thus, the equilibrium is a self-consistent state where the teacher is optimal for
 283 the student that has learned from it. A detailed proof is provided in Appendix 6. \square

285 3.4.2 THE DISTILL-AWARE FITNESS FUNCTION

286 **Optimal Regime Dynamics and its Constraints.** The parameter λ induces three distinct regimes.
 287 The *Under-Constrained Regime* ($\lambda \rightarrow 0$) leads to fitness functions dominated by reward, $F_{DA} \approx \mathcal{R}(\theta_c)$. The *Over-Constrained Regime* ($\lambda \rightarrow \infty$) is dominated by the teachability penalty,
 288 $\mathcal{P}(\theta_c | \theta^*) = \lambda \mathbb{E}[D_{KL}(q_j || P_F)]$, forcing conservative behavior. The *Optimal Balance Regime* (e.g.,
 289 $\lambda \approx 0.1$) creates a balanced fitness landscape enabling both exploration and stability. This three-
 290 regime structure provides a clear framework for understanding our ablation studies validated in 4.1.

293 **The Mode Escape Condition.** The DATE-GFN framework has an inherent mechanism to resist
 294 mode collapse. Consider a dominant critic mode ψ_1 to which the student has adapted, making its
 295 teachability penalty minimal, $\mathcal{P}(\psi_1 | \theta^*) \approx 0$, and its fitness $F_{DA}(\psi_1 | \theta^*) \approx \mathcal{R}(\psi_1)$. For a new critic
 296 mode ψ_2 to be selected, its fitness must be higher:

$$297 \quad F_{DA}(\psi_2 | \theta^*) = \mathcal{R}(\psi_2) - \mathcal{P}(\psi_2 | \theta^*) > \mathcal{R}(\psi_1) \quad \text{yields escape condition } \mathcal{R}(\psi_2) - \mathcal{R}(\psi_1) > \lambda \mathcal{L}(\psi_2, \theta^*).$$

298 This relationship reveals that the population will jump to a new mode if the gain in reward is suf-
 299 ficient to overcome the *cost of teaching* this new strategy to the currently specialized student. This
 300 creates a dynamic pressure for diversity, which we validate empirically.

302 4 EXPERIMENTS

304 To rigorously validate the theoretical claims of DATE-GFN, we selected three complementary ex-
 305 perimental domains. The first, the *Hypergrid benchmark*, serves as a canonical, controlled environ-
 306 ment to systematically dissect the framework's performance under precisely tunable conditions of
 307 reward sparsity and horizon length. The second, the *Antibody Sequence Generation task*, serves as
 308 a primary real-world validation, testing the framework's ability to scale to high-dimensional, noisy,
 309 and biologically complex problems. The third, the *sEH binder generation task*, pushes the limits
 310 of scalability by testing the framework on complex, graph-structured molecular data with state-of-
 311 the-art architectures. Together, these tasks provide a comprehensive evaluation of DATE-GFN's
 312 capabilities. The implementation details for all experiments are described in Appendix 11.

314 4.1 HYPERGRID EXPERIMENT: A CONTROLLED TESTBED FOR CREDIT ASSIGNMENT.

315 The Hypergrid environment is designed to isolate and amplify the core challenges that motivate
 316 DATE-GFN's architecture: long-horizon credit assignment and extreme reward sparsity. The envi-
 317 ronment is a D -dimensional discrete grid world of side length H . The reward function is constructed
 318 to create an exponentially sparse landscape with 2^D isolated, high-reward modes. In our most chal-
 319 lenging setting ($H = 30, D = 5, R_0 = 10^{-5}$), the reward differential spans five orders of mag-
 320 nitude. This setup is explicitly designed to induce the high-variance gradient problem that plagues
 321 naive GFlowNet objectives, thereby providing a clear and quantifiable test of whether DATE-GFN's
 322 theoretical mechanisms for variance reduction and credit assignment translate into robust per-
 323 formance under pathological conditions. Figure 2 provides compelling evidence for DATE-GFN's
 systematic superiority across baseline methods.

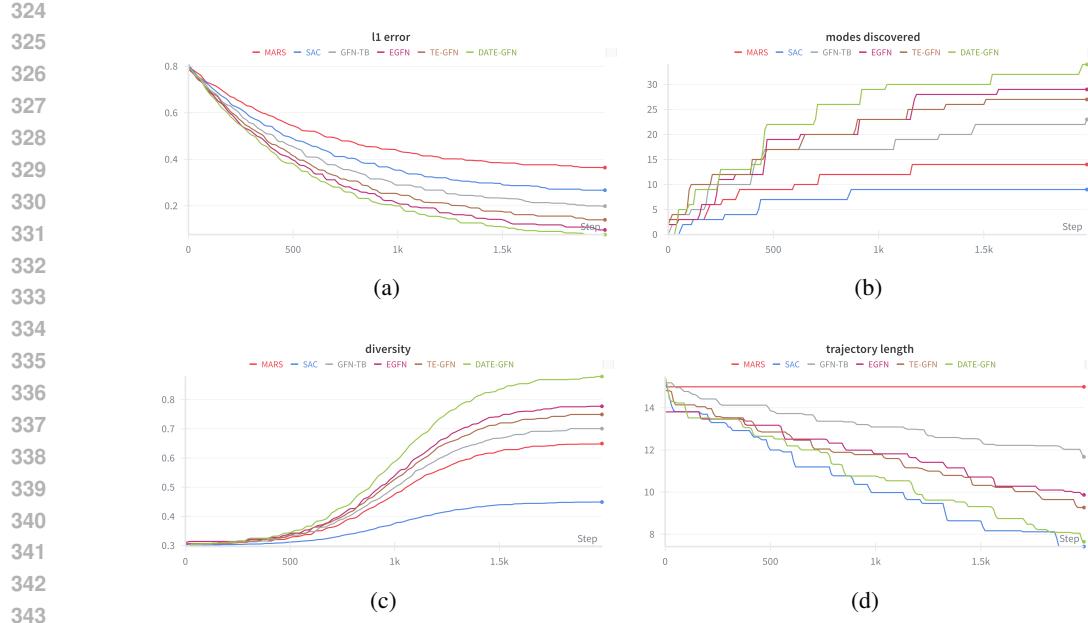


Figure 2: **(Hypergrid) Comparative performance analysis across key metrics.** (a) Relative L1 error showing DATE-GFN’s superior convergence to the target distribution. (b) Mode discovery curves demonstrating consistent exploration advantages. (c) Diversity preservation throughout training, maintaining broad sampling coverage. (d) Trajectory length distributions revealing efficient path-finding behavior that balances exploration with exploitation.

Comparative Performance. Our results, summarized in Table 1, confirm DATE-GFN’s superior performance. We observe a substantial improvement in relative ℓ_1 error and increase in modes discovered over standard GFN baselines. This demonstrates that DATE-GFN’s ability to learn a dense value function via the critic enables it to solve the credit assignment problem where trajectory-level objectives fail. The learned twist function $\psi(s)$ effectively provides intermediate rewards by assigning high value to prefix states that are on a promising path, guiding the student policy through the vast, uninformative regions of the state space.

Table 1: **(Hypergrid) Performance comparison (hardest setting).** Performance in 5-dimensional hypergrid with horizon $H = 30$ and extreme reward sparsity ($R_0 = 10^{-5}$). Mean \pm s.e.m. over 8 seeds. (see Appendix 11.2 for Metrics description and 11.3 for task details).

Method	Rel. $\ell_1 \downarrow$	Modes \uparrow	Mode Eff. \uparrow	Diversity \uparrow
GFN (TB)	0.62 ± 0.05	12.1 ± 2.9	0.94 ± 0.08	0.41 ± 0.02
EGFN	0.31 ± 0.04	22.4 ± 2.1	1.18 ± 0.06	0.56 ± 0.02
TE-GFN	0.18 ± 0.03	26.8 ± 1.4	1.31 ± 0.05	0.61 ± 0.02
DATE-GFN (ours)	0.05 ± 0.01	31.6 ± 0.6	1.44 ± 0.03	0.88 ± 0.01

Table 2: **(Hypergrid) Effect of teachability weight λ on the distillation-aware constraint mechanism.** (with same hyperparameters used in Table 1)

Lambda λ	Rel. $\ell_1 \downarrow$	Modes \uparrow	Credit Var. \downarrow	Gap Accept. \uparrow	Gap Ratio \downarrow
$\lambda = 0.0$	0.35 ± 0.04	18.2 ± 2.8	0.45 ± 0.06	0.557 ± 0.03	0.714 ± 0.04
$\lambda = 0.1$	0.05 ± 0.01	31.6 ± 0.6	0.15 ± 0.02	0.882 ± 0.02	0.510 ± 0.02
$\lambda = 1.0$	0.12 ± 0.02	28.4 ± 1.2	0.23 ± 0.04	0.745 ± 0.04	0.580 ± 0.05

The Three Regimes of Co-Evolutionary Dynamics. The distillation-aware fitness function, $F_{DA}(\theta_\psi | \theta^*) = \mathcal{R}(\theta_\psi) - \lambda \cdot \mathcal{L}(\theta_\psi, \theta^*)$, is the engine of our framework. The teachability weight

λ acts as a formal lever that modulates the balance between reward maximization and student learnability. As shown in Table 2, the decoupled case ($\lambda = 0$) yields poor performance and high instability. It suffers from higher credit assignment variance than the optimal configuration at $\lambda = 0.1$. That confirms the existence of three distinct operational regimes. The *Under-constrained Regime* ($\lambda \rightarrow 0$) performs pure reward optimization, but as predicted, creates a large realization gap, leading to high variance as the search finds unteachable critics. Conversely, the *Over-constrained Regime* ($\lambda \gg 0.1$) is dominated by the teachability penalty, stifling exploration and preventing the discovery of novel high-reward solutions. The *Optimal Balance Regime* ($\lambda \approx 0.1$) strikes the ideal balance, grounding the search to close the realization gap while maintaining a strong pressure for mode escape. This ensures both high performance and sustained exploration, validating that constrained, teachability-aware optimization is superior to unconstrained reward maximization.

The full dynamics of these regimes are visualized in Figure 3. The Teachability Parameter λ as a Controller for the Realization Gap and Exploration. (a) The teachability cost ($\mathcal{L}(\theta, \theta^*)$) is effectively managed by the teachability weight λ , with the optimal value ($\lambda = 0.1$) achieving a low and stable cost, indicating a minimal realization gap. (b) With an optimal λ , DATE-GFN maintains a consistently high escape margin, defined as $M = (R(\psi_2) - R(\psi_1)) - \lambda L(\psi_2, \theta^*)$, where $M > 0$ signals a jump to a new mode ψ_2 . This creates a strong and persistent incentive for the population to continuously explore for better reward modes rather than collapsing prematurely to a local optimum.

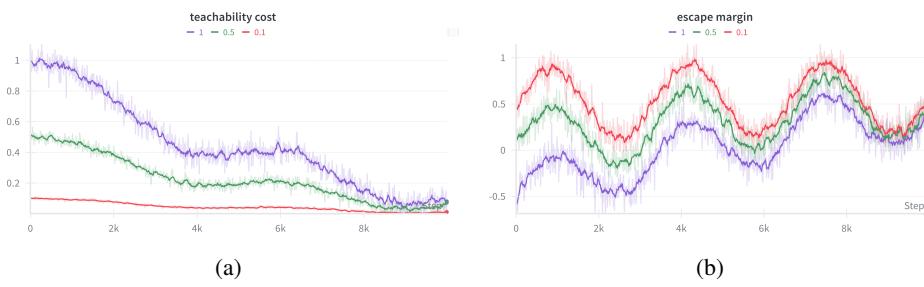


Figure 3: (a) The teachability cost ($\mathcal{L}(\theta, \theta^*)$) indicating a minimal realization gap. (b) The escape condition is satisfied if and only if $M > 0$. A larger positive margin means the system has a stronger incentive to explore that new mode.

Computational Efficiency via Amortized Co-Evolution. The co-evolutionary dynamic, while powerful, incurs a computational cost of $\mathcal{O}(G \cdot k \cdot N \cdot \bar{T})$ for evaluating the fitness of k critics over G generations with N the number of trajectories sampled per critic for fitness evaluation, and \bar{T} the average trajectory length. However, the theoretical foundation of our framework—specifically, the convergence to a stable equilibrium (Prop. 3.3)—implies that the student policy $P_F(\cdot; \theta^{**})$ and thus the teachability landscape change smoothly. This insight motivates **Amortized DATE-GFN (A-DATE-GFN)**, where only a fraction ρ of critics are re-evaluated each generation, and the student is updated only every M generations. As detailed in Table 3, we ablate ρ and M on the Hypergrid task (see Appendix 11.1 for all hyperparametrs choice). The results reveal a clear efficiency-performance Pareto frontier. The configuration ($\rho = 0.5, M = 5$) provides the best trade-off between performance and efficiency confirms the stability of the co-evolutionary dynamic.

Table 3: Ablation study on Amortized DATE-GFN. (ρ, M) denote the critic re-evaluation fraction and student update frequency. A-DATE-GFN offers a compelling trade-off between performance and compute.

Method (ρ, M)	Modes \uparrow	Time (h) \downarrow	Perf./Hour
DATE-GFN (1.0, 1)	31.6 ± 0.6	12.5	2.53 (Baseline)
A-DATE-GFN (0.5, 1)	30.9 ± 0.8	8.1	3.81
A-DATE-GFN (1.0, 5)	30.8 ± 1.1	9.2	3.35
A-DATE-GFN (0.5, 5)	30.1 ± 0.9	7.35	4.10 (+62%)

432 4.2 ANTIBODY SEQUENCE OPTIMIZATION EXPERIMENT
433

434 This task represents a fundamental challenge in computational biology, requiring the discovery of
435 novel, high-affinity protein sequences from an exponentially large combinatorial space (20^L for
436 sequences of length L). The multi-modal nature of the fitness landscape makes this a canonical
437 testbed for the exploration-exploitation trade-off in the context of long-horizon credit assignment.
438 Our goal is to generate an antibody heavy chain sequence of length 50 that optimizes the instability
439 index (Guruprasad K, 1990). The reward function, $R(x) = 2^{(35-\text{index}(x))/10}$, is sparse and rewards
440 sequences with an index below 35. This long-horizon task with a sparse reward signal is designed
441 to test the limits of generative models.

442
443 **Robustness and Scalability Analysis** Manually tuning the teachability parameter λ to find its
444 theoretically-predicted *Optimal Balance Regime* is impractical. We therefore introduce an adaptive
445 controller that automates this process via a feedback loop: $\lambda_{g+1} = \lambda_g + \alpha(\mathcal{L}_{\text{target}} - \mathcal{L}_{\text{distill}}^{(g)})$. Our
446 ablation study Table 4 confirms that this controller successfully navigates the trade-offs: it avoids
447 the high variance of an under-constrained search ($\lambda \rightarrow 0$) and the low-reward conservatism of an
448 over-constrained one ($\lambda \rightarrow \infty$). By automatically converging to a task-specific optimal value, the
449 adaptive scheme achieves the best performance and stability without manual tuning, validating its
450 ability to practically realize our theoretical framework.

451
452 Table 4: Detailed ablation study of the teachability parameter λ on antibody generation.

453 Method (λ setting)	454 Avg. Reward \uparrow	455 Reward Std. Dev. \downarrow	456 Final Distill. Loss \downarrow
457 Under-Constrained (0.0)	0.78 \pm 0.07	0.15	0.45
458 Optimal Fixed (0.15)	0.82 \pm 0.05	0.09	0.22
459 Over-Constrained (1.0)	0.65 \pm 0.04	0.07	0.08
460 Adaptive (Automated)	0.85 \pm 0.02	0.04	0.21

461 4.3 SOLUBLE EPOXY HYDROLASE (sEH) BINDER GENERATION
462

463 **Scalability and Variance Reduction on Long-Horizon Molecular Generation.** We validate
464 DATE-GFN on the sEH binder generation task, a benchmark for creating diverse, high-affinity
465 molecules for a key therapeutic target. Molecules are constructed sequentially as graph structures
466 from a vocabulary of 72 chemical blocks, using a junction tree modeling approach. This sequential
467 process, with trajectories of up to 8 blocks, in a vast state space ($|\mathcal{X}| \approx 10^{16}$), combined with a
468 sparse terminal reward signal—a proxy for binding energy—creates a severe long-horizon credit
469 assignment problem. Following established protocols, molecules are built sequentially as graphs
470 from a vocabulary of chemical blocks. This process creates a severe long-horizon credit assignment
471 problem due to the vast state space and a sparse reward signal derived from a binding energy proxy.
472 In Figure 7 in Appendix 11.5 we instantiate our framework with MPNN-based critics, creating a
473 rigorous testbed to validate DATE-GFN’s ability to solve these dual challenges. The results, visualized
474 via kernel density estimation, confirm that DATE-GFN achieves a triple advantage, consistently
475 dominating baselines across performance, diversity, and computational efficiency.

476 5 CONCLUSION
477

478 We introduced DATE-GFN, a co-evolutionary framework that solves the temporal credit assign-
479 ment problem in GFlowNets. Our method evolves a population of *teachable* critics to provide a
480 dense guidance signal, transforming the high-variance, reward-driven learning into a low-variance,
481 supervised distillation task. Our central thesis—validated by the failure of unconstrained baselines
482 ($\lambda = 0$)—is that grounding the critic search in the student’s learning capacity is crucial for closing
483 the *realization gap*. By successfully decoupling value discovery from policy learning, DATE-GFN
484 establishes a new state-of-the-art in training stability and diverse solution discovery on challenging
485 benchmarks. This work represents a significant step towards building more robust, scalable, and
486 practically useful generative models for science.

486 REFERENCES
487488 Abhinav K Adduri, Dhruv Gautam, Beatrice Bevilacqua, et al. Predicting cellular responses to
489 perturbation across diverse contexts with state. *bioRxiv preprint* 2025.06.26.661135, 2025.490 Arc Institute State Team et al. Predicting cellular responses to perturbation across diverse contexts
491 with state. *bioRxiv*, 2025. doi: 10.1101/2025.06.26.661135. URL <https://www.biorxiv.org/content/10.1101/2025.06.26.661135v2>. Preprint; replace author list with full
493 author names from the preprint if desired.
494495 Thomas Bäck. Optimal mutation rates in genetic search. In *Proceedings of the 5th International
496 Conference on Genetic Algorithms*. Morgan Kaufmann, 1993.497 Richard Bellman. The theory of dynamic programming. *Bulletin of the American Mathematical
498 Society*, 60(6):503–515, 1954.
499500 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
501 network based generative models for non-iterative diverse candidate generation. In *Advances in
502 Neural Information Processing Systems (NeurIPS)*, 2021a.503 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
504 network based generative models for non-iterative diverse candidate generation. In *Advances in
505 Neural Information Processing Systems*, volume 34, 2021b.
506507 Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Ben-
508 ggio. Flow network based generative models for non-iterative diverse candidate gen-
509 eration. In *Advances in Neural Information Processing Systems (NeurIPS)*, vol-
510 umne 34, 2021c. URL <https://proceedings.neurips.cc/paper/2021/file/e614f646836aaed9f89ce58e837e2310-Paper.pdf>.
511512 Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
513 Gflownet foundations. *Journal of Machine Learning Research*, 24, 2023. URL <https://jmlr.org/papers/volume24/22-0364/22-0364.pdf>.
514515 Matthew Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state-space models
516 using twisted particle filters. *Statistics and Computing*, 20(2):151–164, 2010.
517518 Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke,
519 Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython: freely
520 available python tools for computational molecular biology and bioinformatics. *Bioinformatics*,
521 25(11):1422–1423, 2009.
522523 Thomas M Cover and Joy A Thomas. *Elements of information theory*. John Wiley & Sons, 2006.
524525 Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
526 and Yoshua Bengio. Bayesian structure learning with generative flow networks. In *Uncertainty
527 in Artificial Intelligence*, pp. 518–528, 2022.528 Arnaud Doucet, Nando de Freitas, and Neil Gordon (eds.). *Sequential Monte Carlo Methods in
529 Practice*. Springer, 2001a.
530531 Arnaud Doucet, Nando De Freitas, and Neil Gordon. Sequential monte carlo methods in practice.
532 In *Sequential Monte Carlo methods in practice*. Springer, 2001b.
533534 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
535 message passing for quantum chemistry. In *International conference on machine learning*, pp.
536 1263–1272, 2017.
537538 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
539540 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
541 A kernel two-sample test. *Journal of Machine Learning Research*, 13(3):723–773, 2012.

540 Pandit MW Guruprasad K, Reddy BV. Correlation between stability of a protein and its dipep-
 541 tide composition: a novel approach for predicting *in vivo* stability of a protein from its primary
 542 sequence. *Protein engineering*, 4(2), 155–161, 1990. doi: 10.1093/protein/4.2.155.

543

544 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 545 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
 546 ence on machine learning*, pp. 1861–1870, 2018.

547

548 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 549 preprint arXiv:1503.02531*, 2015.

550

551 Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. *arXiv preprint
 552 arXiv:2402.02186*, 2024a.

553

554 Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. In *The Twelfth
 555 International Conference on Learning Representations*, 2024b.

556

557 Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. *arXiv preprint*,
 2024c. doi: 10.48550/arXiv.2402.02186. URL <https://arxiv.org/abs/2402.02186>.
 558 Also listed with Transactions on Machine Learning Research (TMLR).

559

560 Moksh Jain, S Son, E Bengio, A volokhova, F fresca, and Y Bengio. Multi-objective gflownets.
 561 *arXiv preprint arXiv:2210.12513*, 2022.

562

563 Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial inference
 564 of gflownets. *arXiv preprint arXiv:2310.03301*, 2023.

565

566 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
 567 molecular graph generation. In *International conference on machine learning*, pp. 2323–2332,
 2018.

568

569 Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
 570 In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018a.

571

572 Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
 573 In *Advances in neural information processing systems*, volume 31, 2018b.

574

575 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 576 arXiv:1412.6980*, 2014.

577

578 Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. *SIAM Journal on Control and Opti-
 579 mization*, 42(4):1143–1166, 2000.

580

581 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! *arXiv
 582 preprint arXiv:1803.08475*, 2018.

583

584 Dieterich Lawson, Allan Raventós, Andrew Warrington, and Scott Linderman. SIO: Smooth-
 585 ing inference with twisted objectives. In *Advances in Neural Information Processing Systems
 586 (NeurIPS)*, 2022.

587

588 Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative
 589 modeling for single-cell transcriptomics. In *Nature methods*, volume 15, pp. 1053–1058, 2018a.

590

591 Romain Lopez, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. Deep generative
 592 modeling for single-cell transcriptomics. *Nature Methods*, 15(12):1053–1058, 2018b. doi: 10.
 593 1038/s41592-018-0229-2. URL <https://doi.org/10.1038/s41592-018-0229-2>.

594

595 Mohammad Lotfollahi, F. Alexander Wolf, and Fabian J. Theis. scgen predicts single-cell perturba-
 596 tion responses. *Nature Methods*, 16(8):715–721, 2019. doi: 10.1038/s41592-019-0494-8. URL
 597 <https://www.nature.com/articles/s41592-019-0494-8>.

594 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ignacio L. Ibarra, Sanjay R. Srivatsan, Mohsen Naghipourfar, Riza M. Daza, Beth Martin, Jay Shendure, Jose L. McFaline-Figueroa, Pierre Boyeau, F. Alexander Wolf, Nafissa Yakubova, Stephan G  nnemann, Cole Trapnell, David Lopez-Paz, and Fabian J. Theis. Predicting cellular responses to complex perturbations in high-throughput screens. *Molecular Systems Biology*, 19(6):e11517, 2023. doi: 10.1525/msb.202211517. URL <https://www.embopress.org/doi/10.1525/msb.202211517>.

601 Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei C Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial 602 episodes for improved convergence and stability. In *International Conference on Machine Learning*, 2023.

603 Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: 604 Improved credit assignment in gflownets. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022a.

605 Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: 606 Improved credit assignment in gflownets. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022b. URL <https://arxiv.org/abs/2201.13259>.

607 Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: 608 Improved credit assignment in gflownets. In *Advances in Neural Information Processing Systems*, 609 volume 35, pp. 34324–34336, 2022c.

610 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level 611 control through deep reinforcement learning. In *Nature*, volume 518, pp. 529–533, 2015.

612 Sobhan Mohammadpour, Emmanuel Bengio, Emma Freijinger, and Pierre-Luc Bacon. Maximum 613 entropy gflownets with soft q-learning, 2024. URL <https://arxiv.org/abs/2312.14331>.

614 Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with 615 local credit and incomplete trajectories. *arXiv preprint arXiv:2302.01687*, 2023a.

616 Ling Pan, Dinghuai Zhang, Moksh Jain, Long-Kai Huang, and Yoshua Bengio. Stochastic generative 617 flow networks. *arXiv preprint arXiv:2302.09465*, 2023b.

618 R  mi Pourchot and Olivier Sigaud. CEM-RL: Combining evolutionary and gradient-based methods 619 for policy search. In *International Conference on Learning Representations (ICLR)*, 2019.

620 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum 621 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

622 Joshua Romoff, Yash Sharma, and Yoshua Bengio. On bias in surrogate model-based optimization: 623 Selection as a source of model bias. *Journal of Machine Learning Research*, 24(178):1–33, 2023.

624 Tim Salimans, Jonathan Ho, Ilya Sutskever, and Openai. Evolution strategies as a scalable alternative 625 to reinforcement learning. *arXiv preprint arXiv:1703.03864*, 2017.

626 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In 627 *International conference on learning representations*, 2016.

628 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy 629 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

630 Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. *Evolutionary computation*, 10(2):99–127, 2002.

631 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

632 Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as 633 entropy-regularized rl, 2024. URL <https://arxiv.org/abs/2310.12934>.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
650 *processing systems*, volume 30, 2017.

651

652 Christopher John Cornish Hellaby Watkins. *Q-learning*. PhD thesis, University of Cambridge, 1992.

653

654 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
655 learning. *Machine learning*, 8(3):229–256, 1992.

656

657 Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models
658 with gflownets. *arXiv preprint arXiv:2209.02606*, 2022a.

659

660 Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
661 Bengio. Generative flow networks for discrete probabilistic modeling. In Kamalika Chaud-
662 huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Pro-
663 ceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceed-
664 ings of Machine Learning Research*, pp. 26412–26428. PMLR, 17–23 Jul 2022b. URL <https://proceedings.mlr.press/v162/zhang22v.html>.

665

666 Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
667 Bengio. Generative flow networks for discrete probabilistic modeling. In *International Confer-
668 ence on Machine Learning*, pp. 26412–26428, 2022c.

669

670 Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
671 language models via twisted sequential monte carlo. *arXiv preprint arXiv:2404.17546*, 2024.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Appendices

6 APPENDIX: PROOF OF CO-EVOLUTION TOWARDS A REALIZABLE OPTIMUM

Proof. This is not a proof of global convergence to a single point, which is intractable for such a complex, non-convex, and stochastic system. Instead, we provide a formal analysis of the system’s operators and the properties of its equilibrium points.

1. System State and Operators

Let the state of the system at generation i be the joint parameter set $S^{(i)} = (\Theta_{\psi}^{(i)}, \theta^{*(i)})$, where $\Theta_{\psi}^{(i)} = \{\theta_{\psi_j}^{(i)}\}_{j=1}^k$. The transition from $S^{(i)}$ to $S^{(i+1)}$ is a composition of two operators: the evolutionary operator T_E and the distillation operator T_D .

- The **Evolutionary Operator** T_E takes the current population $\Theta_{\psi}^{(i)}$ and student $\theta^{*(i)}$ and produces a new population $\Theta_{\psi}^{(i+1)}$. This involves evaluating all critics using $F_{DA}(\cdot | \theta^{*(i)})$ and applying genetic operators (selection, crossover, mutation). We can write this as $\Theta_{\psi}^{(i+1)} = T_E(\Theta_{\psi}^{(i)}, \theta^{*(i)})$.
- The **Distillation Operator** T_D takes the current student $\theta^{*(i)}$ and the new population $\Theta_{\psi}^{(i+1)}$ to produce an updated student $\theta^{*(i+1)}$. It first identifies the best critic $\theta_{\psi_{best}}^{(i+1)} = \arg \max_{\theta_{\psi_j} \in \Theta_{\psi}^{(i+1)}} F_{DA}(\theta_{\psi_j} | \theta^{*(i)})$ and then performs N steps of gradient descent. Let GD_N denote this process. Then $\theta^{*(i+1)} = T_D(\theta^{*(i)}, \Theta_{\psi}^{(i+1)}) = GD_N(\theta^{*(i)}, \theta_{\psi_{best}}^{(i+1)})$.

The full system update is $S^{(i+1)} = (T_E(S^{(i)}), T_D(S^{(i)}, T_E(S^{(i)})))$. A fixed point $S^{**} = (\Theta_{\psi}^{**}, \theta^{**})$ of this system satisfies $S^{**} = (T_E(S^{**}), T_D(S^{**}, T_E(S^{**})))$.

2. Analysis of the Distillation Fixed Point

For the student parameters to be at a fixed point, the distillation operator must cause no further change: $\theta^{**} = T_D(\theta^{**}, \Theta_{\psi}^{**})$. This implies that the gradient of the distillation loss is zero:

$$\nabla_{\theta^*} \mathbb{E}_{s_{1:t-1} \sim q_{best}^{**}} [D_{KL}(q_{best}^{**}(\cdot | s_{1:t-1}) || P_F(\cdot | s_{1:t-1}; \theta^{**}))] = 0$$

Given that KL-divergence is non-negative and its minimum is zero, and assuming the student’s function class is expressive enough to represent the teacher’s policy, this local minimum corresponds to the student perfectly imitating the teacher:

$$P_F(\cdot | s_{1:t-1}; \theta^{**}) = q_{best}^{**}(\cdot | s_{1:t-1}) \quad \forall s_{1:t-1} \text{ in the support of } q_{best}^{**}$$

This satisfies the first property of the proposition (Student-Teacher Alignment).

3. Analysis of the Evolutionary Fixed Point

For the critic population to be at a fixed point, the evolutionary operator must produce an identical population: $\Theta_{\psi}^{**} = T_E(\Theta_{\psi}^{**}, \theta^{**})$. In a practical EA with mutation, this means the population has converged to a stable distribution in a high-fitness region of the search space. At this equilibrium, the best member of the population, ψ_{best}^{**} , must be a (local) maximizer of the fitness function $F_{DA}(\cdot | \theta^{**})$.

$$\theta_{\psi_{best}}^{**} \in \arg \max_{\theta_{\psi}} (\mathbb{E}_{q_{\psi}} [R(s_T)] - \lambda \cdot \mathbb{E}_{q_{\psi}} [D_{KL}(q_{\psi} || P_F(\cdot; \theta^{**}))])$$

From the distillation fixed point, we know that $P_F(\cdot; \theta^{**}) \approx q_{best}^{**}$. Let’s analyze the fitness of ψ_{best}^{**} itself. Its teachability penalty is:

$$\lambda \cdot \mathbb{E}_{q_{best}^{**}} [D_{KL}(q_{best}^{**} || P_F(\cdot; \theta^{**}))] \approx 0$$

So, for the best critic, its own fitness simplifies to the pure reward term: $F_{DA}(\theta_{\psi_{best}}^{**} | \theta^{**}) \approx \mathbb{E}_{q_{best}^{**}} [R(s_T)]$.

756 Now, consider any other potential critic ψ' . For it *not* to be selected over ψ_{best}^{**} by the EA, its fitness
 757 must be lower:
 758

$$759 \mathbb{E}_{q'}[R(s_T)] - \lambda \cdot \mathbb{E}_{q'}[D_{KL}(q' \parallel P_F(\cdot; \theta^{**}))] \leq \mathbb{E}_{q_{best}^{**}}[R(s_T)]$$

760 This shows that ψ_{best}^{**} is not necessarily the critic with the absolute highest reward. Instead, it
 761 is the critic that provides the best trade-off: any other critic ψ' that might offer a higher reward
 762 ($\mathbb{E}_{q'}[R] > \mathbb{E}_{q_{best}^{**}}[R]$) must be penalized by a sufficiently large teachability penalty (λD_{KL}) to make
 763 it less fit overall. This means ψ_{best}^{**} is the optimal reward-seeking critic *within the set of critics that*
 764 *are easily teachable to the converged student $P_F(\cdot; \theta^{**})$* . This satisfies the second property of the
 765 proposition (Constrained Optimality).

766 The co-evolutionary system thus converges to a self-consistent state where the teacher is optimal for
 767 the student that has learned from it, directly solving the realization gap by making realizability a
 768 component of the selection criteria. \square
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 7 COMPARATIVE ANALYSIS WITH PREDECESSOR FRAMEWORKS

812 7.1 IMPROVEMENT OVER DECOUPLED TE-GFN: CLOSING THE REALIZATION GAP

814 The advantage of DATE-GFN over a hypothetical decoupled TE-GFN can be formalized by defining
815 the space of realizable policies.

816 **Definition 7.1** (ϵ -Realizability Set). Given a student architecture parameterized by $\theta^* \in \Theta^*$, the set
817 of ϵ -realizable policies $\mathcal{Q}_\epsilon(\Theta^*)$ is the set of all policies q for which there exists a student parameter-
818 ization $\theta^* \in \Theta^*$ that can approximate it within an expected KL-divergence of ϵ :

$$819 \mathcal{Q}_\epsilon(\Theta^*) = \{q \mid \exists \theta^* \in \Theta^* \text{ s.t. } \mathbb{E}_{s \sim q}[D_{KL}(q(\cdot|s) \parallel P_F(\cdot|s; \theta^*))] \leq \epsilon\}$$

821 A decoupled TE-GFN attempts to solve for the unconstrained optimal critic:

$$823 \psi_{\text{unc}}^* = \arg \max_{\psi} \mathbb{E}_{q_\psi}[R(s_T)]$$

825 The problem is that its induced policy, q_{unc}^* , may not be in $\mathcal{Q}_\epsilon(\Theta^*)$ for any reasonably small ϵ . If
826 $q_{\text{unc}}^* \notin \mathcal{Q}_\epsilon(\Theta^*)$, the distillation phase is guaranteed to fail, leaving a large realization gap.

827 In contrast, DA-TE-GFN's co-evolutionary process effectively solves a constrained optimization
828 problem:

$$829 \psi_{\text{con}}^* = \arg \max_{\psi \text{ s.t. } q_\psi \in \mathcal{Q}_\epsilon(\Theta^*)} \mathbb{E}_{q_\psi}[R(s_T)]$$

831 By including the teachability penalty, the fitness function guides the EA to search within the real-
832 izationability set \mathcal{Q}_ϵ . The converged solution ψ_{best}^{**} is therefore guaranteed to be one whose policy the
833 student can actually represent, closing the gap by design.

834 7.2 IMPROVEMENT OVER EVOLUTION GUIDED GFLOWNETS (EGFN)

835 EGFN (Ikram et al., 2024c) is a state-of-the-art predecessor that also uses an EA. However, it suffers
836 from a major limitation that DATE-GFN solves: the source of the credit assignment signal.

837 1. Different Evolutionary Search Spaces:

- 838 • **EGFN:** Evolves a population of GFlowNet policies directly. The EA operates on the stu-
839 dent parameters $\{\theta_j^*\}$. The fitness is simply $F(\theta_j^*) = \mathbb{E}_{s_{0:T} \sim P_F(\cdot; \theta_j^*)}[R(s_T)]$.
- 840 • **DATE-GFN:** Evolves a population of critics $\{\theta_{\psi_j}\}$. The EA operates in the space of value
841 functions, which can be a smoother and more structured space than the policy parameter
842 space.

843 **2. Fundamentally Different Learning Signals (Variance Analysis):** The most critical difference
844 lies in how the final GFlowNet policy is trained.

- 845 • In EGFN, the best policies found by the EA are used to populate a replay buffer. A single
846 GFlowNet agent is then trained on these trajectories using a standard GFlowNet objective,
847 typically Trajectory Balance (TB) (Malkin et al., 2022c). The TB loss for a trajectory
848 $\tau = (s_0, \dots, s_T = x)$ is:

$$849 \mathcal{L}_{TB}(\tau) = \left(\log Z + \sum_{t=1}^T \log P_F(s_t | s_{1:t-1}; \theta^*) - \log R(x) \right)^2$$

850 The gradient of this loss involves a sum of log-probabilities over the entire trajectory:

$$851 \nabla_{\theta^*} \mathcal{L}_{TB}(\tau) \propto (\dots) \cdot \sum_{t=1}^T \nabla_{\theta^*} \log P_F(s_t | s_{1:t-1}; \theta^*)$$

852 The variance of this gradient estimator is known to be high, especially for long horizons
853 ($T \gg 1$). The sum involves many stochastic decisions, and the terminal reward $R(x)$ must
854 be credited back through this long chain. This is a classic high-variance credit assignment
855 problem, which EGFN mitigates but does not solve.

864 • In **DATE-GFN**, the GFlowNet is trained via distillation from a teacher critic. The loss is:
 865

$$866 \quad \mathcal{L}_{\text{distill}} = \mathbb{E}_{s_{1:t-1} \sim q_{\text{best}}} [D_{KL}(q_{\text{best}}(\cdot|s_{1:t-1}) \parallel P_F(\cdot|s_{1:t-1}; \theta^*))]$$

867 The gradient is taken with respect to a single-step, local objective:
 868

$$869 \quad \nabla_{\theta^*} \mathcal{L}_{\text{distill}} = \mathbb{E}_{s_{1:t-1} \sim q_{\text{best}}} [\nabla_{\theta^*} D_{KL}(q_{\text{best}}(\cdot|s_{1:t-1}) \parallel P_F(\cdot|s_{1:t-1}; \theta^*))]$$

870 Here, the learning signal is a dense, per-state target distribution q_{best} . The reward information
 871 has already been "compiled" into this target by the critic. The student's task is a
 872 low-variance, supervised learning problem at each state. There is no propagation of credit
 873 through a long trajectory required during the student's update.
 874

875 **Proposition 7.2** (Variance Reduction). *The variance of the gradient estimator for the student in
 876 DA-TE-GFN is significantly lower than that in EGFN (using TB), particularly for long-horizon
 877 problems.*

878 *Proof Sketch.* The proof relies on comparing the structure of the gradient estimators.
 879

880 • **EGFN (via TB):** The gradient estimator for a trajectory τ is:
 881

$$882 \quad \nabla_{\theta^*} \mathcal{L}_{TB}(\tau) \propto \underbrace{\left(\log Z + \sum_{t=1}^T \log P_F - \log R(x) \right)}_{\text{Scalar error shared across all steps}} \cdot \underbrace{\sum_{t=1}^T \nabla_{\theta^*} \log P_F(s_t|s_{t-1})}_{\text{Sum over long, stochastic trajectory}}$$

883 The variance of this estimator scales with the trajectory length T , as the sum accumulates
 884 noise from each stochastic action choice.
 885

886 • **DATE-GFN (via Distillation):** The gradient estimator for a state s_{t-1} is:
 887

$$888 \quad \nabla_{\theta^*} \mathcal{L}_{\text{distill}}(s_{t-1}) = \nabla_{\theta^*} D_{KL}(q_{\text{best}}(\cdot|s_{t-1}) \parallel P_F(\cdot|s_{t-1}; \theta^*))$$

889 This is a local, single-step, supervised objective. The reward information is pre-compiled
 890 into the dense target policy q_{best} . The variance of the gradient depends on the stochastic
 891 sampling of states, but not on a product of probabilities over time. This structure fundamen-
 892 tally breaks the temporal credit assignment problem into a series of low-variance, per-state
 893 imitation problems, analogous to the variance reduction in actor-critic methods.
 894

895 \square

900 7.3 ANALYSIS OF OPTIMALITY: IDEALIZED VS. REALIZABLE GOALS

901 It is crucial to distinguish the practical, constrained optimality achieved by DATE-GFN from the
 902 idealized, unconstrained optimality that a decoupled framework like TE-GFN would target. The
 903 ultimate theoretical goal for any GFlowNet framework is perfect reward-proportional sampling. This
 904 can be stated formally:
 905

906 **Proposition 7.3.** *(Optimality of the Idealized Teacher-Student Framework) If one could find the
 907 optimal twist function ψ_t^* for all t and if a student GFlowNet could perfectly learn its induced policy,
 908 then the resulting policy $P_F^*(x)$ would sample proportionally to the reward $R(x)$.*
 909

910 A decoupled framework like TE-GFN implicitly assumes this is achievable. It performs an uncon-
 911 strained search for ψ^* , assuming the student can perfectly realize the resulting policy. This is an
 912 idealistic goal that ignores the practical limitations of the student model.
 913

914 7.3.1 THE REALIZABLE OPTIMUM: DATE-GFN'S PRACTICAL ACHIEVEMENT

915 DATE-GFN does not seek this unconstrained optimum directly. Instead, it solves for the best critic
 916 whose policy is *realizable* by the student. We can formalize this with the notion of a realizability
 917 set.
 918

918 **Definition 7.4** (ϵ -Realizability Set). Given a student architecture parameterized by $\theta^* \in \Theta^*$, the set
 919 of ϵ -realizable policies $\mathcal{Q}_\epsilon(\Theta^*)$ is the set of all policies q for which there exists a student parameter-
 920 ization that can approximate it within an expected KL-divergence of ϵ :

$$921 \quad \mathcal{Q}_\epsilon(\Theta^*) = \{q \mid \exists \theta^* \in \Theta^* \text{ s.t. } \mathbb{E}_{s \sim q} [D_{KL}(q(\cdot|s) \parallel P_F(\cdot|s; \theta^*))] \leq \epsilon\}$$

923 Using this definition, we can see the fundamental difference in the optimization problems being
 924 solved:

- 926 • **Decoupled TE-GFN (Implicitly Solves):** $\max_{\psi} \mathbb{E}_{q_\psi} [R(s_T)]$. The problem is that the
 927 optimal solution ψ^* might induce a policy $q_{\psi^*} \notin \mathcal{Q}_\epsilon(\Theta^*)$, leading to a large realization
 928 gap.
- 929 • **DATE-GFN (Effectively Solves):** $\max_{\psi \text{ s.t. } q_\psi \in \mathcal{Q}_\epsilon(\Theta^*)} \mathbb{E}_{q_\psi} [R(s_T)]$. The distillation-aware
 930 fitness function constrains the evolutionary search to the set of realizable policies.

931 In essence, DATE-GFN is smarter. It understands that the best destination is not the highest peak
 932 on the map, but the highest peak that this particular climber can actually reach. By solving this
 933 grounded, constrained optimization problem, DATE-GFN finds a robust, practical, and truly optimal
 934 solution for the given student-teacher system.

936 **Remark (A Tale of Two Optima: Unconstrained vs. Realizable Goals).** It is crucial to remark
 937 upon the fundamental distinction between the optimality sought by our co-evolutionary DATE-
 938 GFN and that of a decoupled framework. A decoupled approach implicitly attempts to solve the
 939 unconstrained optimization problem $\arg \max_{\theta_\psi \in \Theta_\psi} \mathcal{R}(\theta_\psi)$, where $\mathcal{R}(\theta_\psi)$ is the pure reward ob-
 940 jective. This search for a globally optimal critic is predicated on the strong, often violated, as-
 941 sumption that its induced policy q_{ψ^*} will reside within the student's ϵ -realizability set, $\mathcal{Q}_\epsilon(\Theta^*)$.
 942 If $q_{\psi^*} \notin \mathcal{Q}_\epsilon(\Theta^*)$, a "realization gap" is inevitable, and the system's performance will be sub-
 943 optimal regardless of the teacher's quality. Our DATE-GFN framework, by contrast, recasts this
 944 into a more practical, constrained optimization problem. The distillation-aware fitness function,
 945 $F_{DA} = \mathcal{R}(\theta_\psi) - \lambda \mathcal{L}(\theta_\psi, \theta^*)$, acts as a dynamic regularizer that effectively constrains the evolu-
 946 tionary search to this realizable set. Consequently, DATE-GFN does not seek an abstract, globally
 947 optimal critic, but rather the *optimal realizable critic* for the given student architecture, i.e., the solution
 948 to $\arg \max_{\theta_\psi \text{ s.t. } q_\psi \in \mathcal{Q}_\epsilon(\Theta^*)} \mathcal{R}(\theta_\psi)$. This guarantees a self-consistent solution where the teacher
 949 is optimal for the student that has learned from it, closing the realization gap by design and leading
 950 to a fundamentally more robust and stable training dynamic. For a more formal treatment of this
 951 trade-off is expanded in the Appendix 8 below.

952 8 THEORETICAL DISCUSSION: A TALE OF TWO OPTIMA

954 A critical contribution of the Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN)
 955 framework lies not just in its algorithmic structure, but in the fundamental re-framing of the op-
 956 timization objective itself. While a decoupled framework (which we will refer to as TE-GFN for
 957 clarity) and DATE-GFN share the same ultimate theoretical goal—perfect reward-proportional sam-
 958 pling—the nature of the optimality they pursue and can practically achieve is profoundly different.
 959 This section provides a formal mathematical treatment of this distinction, contrasting the *uncon-
 960 strained, idealistic optimum* of TE-GFN with the *constrained, realizable optimum* of DATE-GFN.

962 8.1 FORMAL PRELIMINARIES

963 Let us first define the search spaces and objectives.

- 965 • Let Θ_ψ be the parameter space for the critic (twist function) networks, $\psi(\cdot; \theta_\psi)$, where
 966 $\theta_\psi \in \Theta_\psi$.
- 967 • Let Θ^* be the parameter space for the student GFlowNet policy, $P_F(\cdot; \theta^*)$, where $\theta^* \in \Theta^*$.
- 968 • The reward objective for any critic is the expected terminal reward of trajectories sampled
 969 under its induced policy q_ψ : $\mathcal{R}(\theta_\psi) = \mathbb{E}_{s_{0:T} \sim q_\psi} [R(s_T)]$.
- 970 • The distillation objective for a student learning from a teacher critic ψ is the expected KL-
 971 divergence: $\mathcal{L}(\theta_\psi, \theta^*) = \mathbb{E}_{s \sim q_\psi} [D_{KL}(q_\psi(\cdot|s) \parallel P_F(\cdot|s; \theta^*))]$.

972 8.2 THE UNCONSTRAINED OPTIMUM OF A DECOUPLED TE-GFN
973974 A decoupled TE-GFN framework operates as a two-stage, sequential optimization process.
975976 1. **Phase 1 - Critic Optimization:** The evolutionary algorithm performs an **unconstrained**
977 **search** for the critic that globally maximizes the reward objective. It seeks to find:
978

979
$$\theta_\psi^* = \arg \max_{\theta_\psi \in \Theta_\psi} \mathcal{R}(\theta_\psi) \quad (4)$$

980

981 This search is idealistic; it operates under the implicit assumption that the resulting teacher
982 policy, q_{ψ^*} , can be perfectly learned by the student in the next phase.
983984 2. **Phase 2 - Student Optimization:** The student GFlowNet then performs its own optimization,
985 seeking to find the parameters that best mimic the teacher found in Phase 1. It solves:
986

987
$$\theta^{**} = \arg \min_{\theta^* \in \Theta^*} \mathcal{L}(\theta_\psi^*, \theta^*) \quad (5)$$

988

989 The "optimality" of this decoupled framework is thus a composite of two separate, potentially in-
990 compatible optima. The framework is only successful if the solution to Eq. equation 5 results in a
991 near-zero loss, meaning the student can perfectly realize the teacher's policy.
992993 8.3 THE REALIZATION GAP: A FORMAL DEFINITION
994995 The critical flaw in the decoupled approach is the **realization gap**, which arises when the optimal
996 critic from Phase 1 induces a policy that the student architecture cannot represent. We can formalize
997 this concept.
998999 **Definition 8.1** (ϵ -Realizability Set). Given a student architecture family parameterized by $\theta^* \in \Theta^*$,
1000 the set of **ϵ -realizable policies** $\mathcal{Q}_\epsilon(\Theta^*)$ is the set of all policies q for which there exists at least one
1001 student parameterization $\theta^* \in \Theta^*$ that can approximate q within an average KL-divergence of ϵ :
1002

1003
$$\mathcal{Q}_\epsilon(\Theta^*) = \{q \mid \inf_{\theta^* \in \Theta^*} \mathcal{L}(\theta_\psi, \theta^*) \leq \epsilon\}$$

1004

1005 where $q_\psi = q$. The set $\mathcal{Q}_0(\Theta^*)$ represents all policies perfectly representable by the student archi-
1006 tecture.
10071008 The realization gap is precisely the problem that the unconstrained optimal teacher policy, q_{ψ^*} where
1009 θ_ψ^* is the solution to Eq. equation 4, may not be in the realizability set for any reasonably small ϵ .
1010 That is:
1011

1012
$$q_{\psi^*} \notin \mathcal{Q}_\epsilon(\Theta^*)$$

1013

1014 If this occurs, the distillation in Phase 2 is guaranteed to fail, as $\min_{\theta^*} \mathcal{L}(\theta_\psi^*, \theta^*) > \epsilon$. The final
1015 student performance will be poor, not because the teacher was bad, but because it was *unreachable*.
10161017 8.4 THE CONSTRAINED, REALIZABLE OPTIMUM OF DATE-GFN
10181019 DATE-GFN does not seek the unconstrained optimum of Eq. equation 4. Instead, its co-evolutionary
1020 dynamic, driven by the distillation-aware fitness function, implicitly solves a different, more practi-
1021 cal, **constrained optimization problem**.
10221023 The fitness function, $F_{DA}(\theta_\psi | \theta^*) = \mathcal{R}(\theta_\psi) - \lambda \cdot \mathcal{L}(\theta_\psi, \theta^*)$, guides the evolutionary search. The
1024 term $-\lambda \cdot \mathcal{L}(\theta_\psi, \theta^*)$ acts as a soft constraint, penalizing critics whose policies are far from the *current*
1025 student's policy. As the system converges to its equilibrium $(\theta_\psi^{**}, \theta^{**})$, this process effectively finds
1026 a solution to the following problem:
1027

1028
$$\begin{aligned} & \underset{\theta_\psi \in \Theta_\psi}{\text{maximize}} && \mathcal{R}(\theta_\psi) \\ & \text{subject to} && q_\psi \in \mathcal{Q}_0(\Theta^*) \end{aligned} \quad (6)$$

1029

1030 The fixed-point analysis of the co-evolutionary system (Proposition 1) shows that the equilibrium
1031 state $(\theta_\psi^{**}, \theta^{**})$ is one where the student has converged to the teacher ($q_{\psi^{**}} \approx P_F(\cdot; \theta^{**})$), meaning
1032 $q_{\psi^{**}} \in \mathcal{Q}_0(\Theta^*)$) and this teacher is the one that maximizes the reward objective *from within this set*
1033 of realizable policies.
1034

1026 8.5 IMPLICATIONS OF THE DIFFERENCE IN OPTIMALITY
10271028 This distinction is not merely a theoretical subtlety; it has profound practical implications.
1029

- 1030 • **Robustness:** The DATE-GFN framework is inherently more robust. It is guaranteed to converge to a solution that the student can actually execute. The decoupled TE-GFN is brittle; its success is contingent on the unconstrained optimal teacher happening to be learnable.
- 1031 • **Stability:** By constraining the search, DATE-GFN ensures that the sequence of teachers presented to the student changes smoothly. A new, better teacher is always in a learnable vicinity of the current student. This prevents the large, high-variance gradients that would occur if the student were suddenly asked to imitate a radically different policy, leading to more stable training.
- 1032 • **True System Optimization:** DATE-GFN optimizes the performance of the *entire student-teacher system*. A decoupled approach optimizes each component in isolation, which is not guaranteed to optimize the system as a whole.

1041 While both frameworks aim for the same idealized goal, DATE-GFN’s formulation is a significant
1042 conceptual advance. It acknowledges the practical constraints of a finite-capacity student and integrates them directly into the optimization objective for the teacher. This leads to a more practical,
1043 robust, and ultimately more effective notion of optimality: finding the best possible critic that our
1044 student is actually capable of learning from.
1045

1046 9 PROOF OF OPTIMALITY FOR TE-GFN (DATE-GFN WITH $\lambda = 0$)
1047

1048 We work on the canonical path space $(\mathcal{T}, \mathcal{F})$ of finite trajectories $\tau = (s_0, \dots, s_T)$ in a directed
1049 acyclic composition graph with fixed initial state s_0 . Let p_0 be a Markov base proposal on \mathcal{T} induced
1050 by kernels $p_0(s_{t+1} \mid s_{0:t})$ that are strictly positive on feasible transitions (absolute continuity).
1051 Denote by μ_0 the probability measure on $(\mathcal{T}, \mathcal{F})$ with density
1052

$$1053 \quad d\mu_0(\tau) := \delta_{s_0}(s_0) \prod_{t=0}^{T-1} p_0(s_{t+1} \mid s_{0:t}) d\lambda(\tau),$$

1054 where δ_{s_0} fixes the start state and λ is any reference measure on \mathcal{T} (e.g., counting). Let $x(\tau) := s_T$
1055 be the terminal state map and let $R : \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$ be a measurable, integrable reward. Define the *base*
1056 *path mass* to each terminal x as
1057

$$1058 \quad \kappa(x) := \mu_0(\{\tau \in \mathcal{T} : x(\tau) = x\}) = \sum_{\tau: x(\tau)=x} \mu_0(\tau), \quad \text{assumed finite and strictly positive for all } x \in \mathcal{X}.$$

1059 We construct a target path measure σ on $(\mathcal{T}, \mathcal{F})$ whose terminal pushforward coincides with the
1060 desired GFlowNet objective $p^*(x) \propto R(x)$. Precisely, define the *terminally corrected potential*
1061

$$1062 \quad \Phi(\tau) = \frac{R(x(\tau))}{\kappa(x(\tau))}, \quad Z = \int_{\mathcal{T}} \Phi(\tau) d\mu_0(\tau) = \sum_{x \in \mathcal{X}} \frac{R(x)}{\kappa(x)} \kappa(x) = \sum_{x \in \mathcal{X}} R(x), \quad (7)$$

1063 and the target measure σ by the Radon–Nikodym derivative
1064

$$1065 \quad \frac{d\sigma}{d\mu_0}(\tau) = \frac{1}{Z} \Phi(\tau) = \frac{1}{Z} \frac{R(x(\tau))}{\kappa(x(\tau))}. \quad (8)$$

1066 By construction, the pushforward of σ through $x(\cdot)$ is
1067

$$1068 \quad \sigma(x(\tau) = x) = \int_{\{\tau: x(\tau)=x\}} \frac{1}{Z} \frac{R(x)}{\kappa(x)} d\mu_0(\tau) = \frac{R(x)}{Z} \frac{\mu_0(\{\tau: x(\tau)=x\})}{\kappa(x)} = \frac{R(x)}{Z},$$

1069 so the terminal distribution under σ is exactly proportional to R .
1070

1071 For each prefix $s_{0:t}$, define the *optimal twist* (Doob h -transform) by the conditional potential
1072

$$1073 \quad \psi_t^*(s_{0:t}) := \mathbb{E}_{\mu_0}[\Phi(\tau) \mid s_{0:t}] = \mathbb{E}_{s_{t+1:T} \sim p_0(\cdot \mid s_{0:t})} \left[\frac{R(x)}{\kappa(x)} \right], \quad (9)$$

which is measurable and finite by integrability of R and positivity of the kernels. The *twisted one-step kernel* at a prefix $s_{0:t-1}$ is the probability kernel

$$q_{\psi^*}(s_t | s_{0:t-1}) = \frac{p_0(s_t | s_{0:t-1}) \psi_t^*(s_{0:t})}{\sum_{s'_t} p_0(s'_t | s_{0:t-1}) \psi_t^*(s_{0:t-1}, s'_t)}, \quad (10)$$

well-defined due to strict positivity of p_0 on feasible transitions and $\psi_t^* \geq 0$.

For clarity, we first restate the theorem before presenting the proof. * Suppose (i) the evolutionary phase returns $\psi^* = \{\psi_t^*\}_{t=1}^T$ as in equation 9, and (ii) the distillation phase yields a GFlowNet policy $P_F(\cdot | s_{0:t-1}; \theta^*)$ satisfying $P_F(\cdot | s_{0:t-1}; \theta^*) = q_{\psi^*}(\cdot | s_{0:t-1})$ for σ -almost every prefix. Then the induced path measure of the GFlowNet coincides with σ , and its terminal marginal satisfies $P_F(x) = R(x)/Z$.

Proof. Fix any $t \in \{1, \dots, T\}$ and any prefix $s_{0:t-1}$ in the support of σ . Consider the joint density with respect to λ

$$\underbrace{p_0(s_{0:t-1})}_{\prod_{u=0}^{t-2} p_0(s_{u+1} | s_{0:u})} q_{\psi^*}(s_t | s_{0:t-1}) = p_0(s_{0:t}) \frac{\psi_t^*(s_{0:t})}{\sum_{s'_t} p_0(s'_t | s_{0:t-1}) \psi_t^*(s_{0:t-1}, s'_t)}.$$

By the law of total expectation under p_0 ,

$$\sum_{s'_t} p_0(s'_t | s_{0:t-1}) \psi_t^*(s_{0:t-1}, s'_t) = \mathbb{E}_{s_t \sim p_0(\cdot | s_{0:t-1})} \left[\mathbb{E}_{s_{t+1:T} \sim p_0} [\Phi(\tau) | s_{0:t}] \right] = \mathbb{E}_{s_{t:T} \sim p_0(\cdot | s_{0:t-1})} [\Phi(\tau)].$$

Hence

$$p_0(s_{0:t-1}) q_{\psi^*}(s_t | s_{0:t-1}) = \frac{p_0(s_{0:t}) \mathbb{E}_{s_{t+1:T} \sim p_0} [\Phi(\tau) | s_{0:t}]}{\mathbb{E}_{s_{t:T} \sim p_0(\cdot | s_{0:t-1})} [\Phi(\tau)]}.$$

On the other hand, the σ -marginal and conditional at time t satisfy

$$\sigma(s_{0:t}) = \int \mathbf{1}\{s'_{0:t} = s_{0:t}\} \frac{1}{Z} \Phi(\tau') d\mu_0(\tau') = \frac{1}{Z} p_0(s_{0:t}) \mathbb{E}_{s_{t+1:T} \sim p_0} [\Phi(\tau) | s_{0:t}],$$

and

$$\sigma(s_{0:t-1}) = \sum_{s_t} \sigma(s_{0:t}) = \frac{1}{Z} p_0(s_{0:t-1}) \mathbb{E}_{s_{t:T} \sim p_0(\cdot | s_{0:t-1})} [\Phi(\tau)].$$

Therefore,

$$\frac{\sigma(s_{0:t})}{\sigma(s_{0:t-1})} = \frac{p_0(s_{0:t}) \mathbb{E}[\Phi | s_{0:t}]}{p_0(s_{0:t-1}) \mathbb{E}[\Phi | s_{0:t-1}]} = q_{\psi^*}(s_t | s_{0:t-1}),$$

which shows that $q_{\psi^*}(\cdot | s_{0:t-1}) = \sigma(\cdot | s_{0:t-1})$ for σ -a.e. prefix. By assumption (ii) the learned GFlowNet policy matches these conditionals. Hence, by the chain rule for conditional probabilities on the fixed start state,

$$P_F(s_{0:T}; \theta^*) = \prod_{t=0}^{T-1} P_F(s_{t+1} | s_{0:t}; \theta^*) = \prod_{t=0}^{T-1} \sigma(s_{t+1} | s_{0:t}) = \sigma(s_{0:T}).$$

Finally, pushing forward by the terminal map $x(\cdot)$ yields $P_F(x) = \sigma(x) = R(x)/Z$ by the terminal correction in equation 7–equation 8, as claimed. \square

Remark. The proof hinges on two ingredients: the Doob h -transform identity $\psi_t^*(s_{0:t}) = \mathbb{E}_{p_0} [\Phi | s_{0:t}]$, which ensures that the twisted kernel matches the σ -conditional, and the terminal correction $\Phi(\tau) = R(x(\tau))/\kappa(x(\tau))$, which guarantees that the terminal pushforward of σ is exactly R/Z irrespective of base path multiplicities. Under these conditions, perfect distillation of the expert conditionals implies equality of the entire path measures and hence optimal reward–proportional sampling at the terminals.

1134 10 DISTILLATION-AWARE TWISTED-GFN (DATE-GFN) ALGORITHM
11351136

1137 **Algorithm 1** Distillation-Aware Twisted-GFN (DATE-GFN) Training Procedure

1138 1: **Require:** Base policy p_0 , reward function $R(x)$, population size k , number of generations G ,
1139 student updates per generation N , teachability weight λ .
1140 2: Initialize population of twist function critics $\{\theta_{\psi_1}, \dots, \theta_{\psi_k}\}$ and student GFlowNet θ^* ran-
1141 domly.
1142 3: **for** $gen = 1$ **to** G **do**
1143 4: *// Evolutionary Phase: Evolve critics based on the current student*
1144 5: **for** $j = 1$ **to** k **do**
1145 6: Evaluate fitness $F_{DA}(\theta_{\psi_j} | \theta^*)$ using Eq. equation 3. This involves:
1146 7: a) Sampling trajectories from the critic's policy q_j to estimate the reward term.
1147 8: b) At each step of the sampling, computing the KL penalty w.r.t. the fixed student
1148 $P_F(\cdot; \theta^*)$.
1149 9: **end for**
1150 10: Select parent critics and generate new offspring $\{\theta'_{\psi_j}\}$ via crossover and mutation.
1151 11: Replace the lowest-fitness individuals in the population with the new offspring.
1152 12:
1153 13: *// Distillation Phase: Update student based on the best new critic*
1154 14: $\theta_{\psi_{best}} \leftarrow \arg \max_j F_{DA}(\theta_{\psi_j} | \theta^*)$ from the current population.
1155 15: **for** $t = 1$ **to** N **do**
1156 16: Sample a batch of partial trajectories $s_{1:t'-1}$ (e.g., by running the teacher q_{best}).
1157 17: Compute the teacher's action distribution $q_{best}(\cdot | s_{1:t'-1})$.
1158 18: Update student parameters θ^* by taking a gradient step on the loss:
1159
$$\mathcal{L}_{\text{distill}}(\theta^*) = D_{KL}(q_{best}(\cdot | s_{1:t'-1}) || P_F(\cdot | s_{1:t'-1}; \theta^*))$$

1160 19: **end for**
1161 20: **end for**
1162 21: **return** Optimized GFlowNet parameters θ^* .

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 11 DETAILED EXPERIMENTS AND IMPLEMENTATIONS SETUP
11891190 11.1 IMPLEMENTATION DETAILS
1191

1192 **Shared Hyperparameters.** Unless otherwise specified, all experiments use the Adam optimizer
1193 with a learning rate of 5×10^{-4} for the student GFlowNet and 1×10^{-4} for the critic population. The
1194 evolutionary algorithm maintains a population of $k = 50$ critics, using tournament selection (size
1195 4), polynomial mutation (probability 0.1), and single-point crossover (probability 0.8). All MLP
1196 models consist of 3 layers with 256 hidden dimensions and LeakyReLU activation functions.
1197

1198 **Amortized Co-Evolution (Table 3).** This ablation study was performed on the Hypergrid bench-
1199 mark. The baseline DATE-GFN corresponds to a critic re-evaluation fraction $\rho = 1.0$ and a student
1200 update frequency of $M = 1$. The amortized configurations are ablated as shown in the table.
1201

1202 **Adaptive Teachability (Table 4).** This study was conducted on the antibody sequence optimiza-
1203 tion task. For the **Adaptive** controller, we set the adaptation learning rate to $\alpha = 0.05$ and the target
1204 distillation loss to $\mathcal{L}_{\text{target}} = 0.2$. The initial value for the controller was set to $\lambda_0 = 0.1$. The fixed
1205 baselines were run with the specified constant values of λ .
1206

1207 **Molecular Scalability (Table 5).** For the sEH binder generation experiments, we use a fixed teach-
1208 ability parameter of $\lambda = 0.15$ for DATE-GFN, determined from the adaptive controller’s conver-
1209 gence point. The student and critic models are built upon a sophisticated MPNN backbone, fol-
1210 lowing prior work Bengio et al. (2021a), which consists of a 10-layer graph convolution with GRU
1211 updates. The final policy and value heads are 3-layer MLPs with 256 hidden dimensions. Consistent
1212 with the benchmark setup, we use a reward exponent of $\beta = 10$ and a normalizing constant of 8 for
1213 the GFlowNet reward function. The minibatch size is 4.
1214

1215 **Computational Environment and Runtimes.** All experiments were conducted on a server
1216 equipped with an NVIDIA A100 GPU (40GB), a 24-core Intel Xeon Gold CPU, and 256 GB of
1217 RAM. Our implementation is based on PyTorch 2.0 with CUDA 11.8. The baseline Hypergrid ex-
1218 periments for the amortization study required approximately 12 hours per run. Notably, our most
1219 efficient amortized configuration completed in just over 7 hours, validating the significant computa-
1220 tional savings of this approach.
1221

1222 11.2 DETAILED METRICS DESCRIPTIONS
1223

1224 Our evaluation employs a comprehensive suite of metrics designed to rigorously assess perfor-
1225 mance across distributional accuracy, exploration efficiency, and the specific mechanisms of our
1226 co-evolutionary framework.
1227

1228 **Core Performance Metrics** Let $P_\theta(x)$ be the empirical distribution of terminal states generated
1229 by a model θ , and let $P^*(x) = R(x) / \sum_{x'} R(x')$ be the true reward-proportional target distribution.
1230 Let \mathcal{M} be the set of 2^D high-reward modes.
1231

1232 **Relative ℓ_1 error (\downarrow)** Measures the total variation distance between the learned and target distri-
1233 butions, quantifying distributional accuracy. Lower is better.
1234

$$\text{Rel. } \ell_1 = \frac{1}{2} \sum_{x \in \mathcal{X}} |P_\theta(x) - P^*(x)|$$

1235 **Modes Discovered (\uparrow)** Counts the number of distinct high-reward modes for which the learned
1236 policy assigns a probability mass exceeding a minimal threshold. This measures exploration breadth.
1237 Higher is better.
1238

$$\text{Modes} = \left| \left\{ m \in \mathcal{M} \mid \sum_{x \in \text{neighborhood}(m)} P_\theta(x) > 0 \right\} \right|$$

1242 **Mode Efficiency (↑)** Normalizes the number of modes discovered by the total number of critic
 1243 fitness evaluations (a proxy for computational cost), rewarding sample-efficient exploration. Higher
 1244 is better.

1245
$$\text{Mode Eff.} = \frac{\text{Modes Discovered}}{(\text{Total Critic Evaluations}/1000)}$$

1246 **Diversity (↑)** Measures the average pairwise Hamming distance between a batch of N generated
 1247 samples, assessing the variety of solutions. Higher is better.

1248
$$\text{Diversity} = \frac{1}{N(N-1)/2} \sum_{i < j} \text{HammingDistance}(x_i, x_j)$$

1249 **Ablation and Mechanism Validation Metrics** These metrics are designed to provide a quantitative
 1250 analysis of the internal dynamics of the DATE-GFN framework as a function of the teachability
 1251 weight λ .

1252 **Credit Variance (↓)** Measures the variance of the student's distillation loss over a recent window
 1253 of training steps. This is a direct proxy for the stability of the credit assignment signal provided by
 1254 the teacher critic. Lower values indicate a more stable, lower-variance learning signal.

1255
$$\text{Credit Var.} = \text{Var}[\mathcal{L}_{\text{distill}}] = \mathbb{E}[(\mathcal{L}_{\text{distill}} - \mathbb{E}[\mathcal{L}_{\text{distill}}])^2]$$

1256 where $\mathcal{L}_{\text{distill}} = D_{KL}(q_{\text{best}} || P_F)$.

1257 **Gap Acceptance (↑)** An empirical measure of the realization gap. It is the probability that the
 1258 distillation loss for a newly chosen teacher is below a certain capacity threshold τ , representing
 1259 successful knowledge transfer. Higher values indicate better student-teacher alignment.

1260
$$\text{Gap Accept.} = P(\mathcal{L}(\theta_{\psi_{\text{best}}}, \theta^*) \leq \tau)$$

1261 **Gap Ratio (↓)** Quantifies the magnitude of the realization gap, defined as the ratio of the distillation
 1262 loss to the expected reward. A lower ratio indicates that the "cost of teaching" is small relative
 1263 to the performance gained, signifying an efficient and well-aligned system.

1264
$$\text{Gap Ratio} = \frac{\mathbb{E}[\mathcal{L}(\theta_{\psi_{\text{best}}}, \theta^*)]}{\mathbb{E}[\mathcal{R}(\theta_{\psi_{\text{best}}})]}$$

1265 11.3 THE HYPERGRID CHALLENGE AND MODE EFFICIENCY FRAMEWORK

1266 The Hypergrid environment captures essential difficulties motivating DATE-GFN's design. This D -
 1267 dimensional grid world of side length H presents agents with navigation tasks concealing profound
 1268 credit assignment and exploration challenges. The environment contains H^D possible terminal
 1269 states, but only 2^D represent high-reward modes, creating exponentially sparse reward landscapes
 1270 where successful policies must discover and efficiently sample from tiny state space fractions.

1271 The reward function $R(x) = R_0 + \sum_{d=1}^D \mathbf{1}\{x_d \in B_d^{\text{low}} \cup B_d^{\text{high}}\} \cdot \Delta$ creates narrowly localized
 1272 high-reward regions at dimension extremes. The base reward R_0 determines sparsity level, with
 1273 smaller values creating extreme contrasts between modes and non-modes. In our most challenging
 1274 setting ($R_0 = 10^{-5}$), reward differentials span five orders of magnitude, creating landscapes where
 1275 random exploration virtually guarantees failure.

1276 To quantify DATE-GFN's efficiency in discovering diverse high-reward regions, we introduce the
 1277 mode efficiency metric:

1278
$$\eta_{\text{mode}}(t) = \frac{|M_{\text{discovered}}(t)|}{E_{\text{critic}}(t)/1000 + 1} \quad (11)$$

1279 This captures the tension between exploration breadth and computational efficiency. The numerator
 1280 quantifies diversity of high-reward regions discovered by time t , while the denominator incorporates
 1281 cumulative critic evaluations, scaled for interpretable values. This metric rewards both exploration
 1282 success and computational parsimony, revealing distinctions between methods appearing similar
 1283 under traditional criteria.

1296 Our experimental protocol ensures rigorous comparison: all methods share identical computational
 1297 budgets (wall-clock time matched within 5%), standardized model architectures (3-layer MLPs, 256
 1298 hidden units, ReLU activations), and 8 random seeds.
 1299

1300 11.4 REGIME DYNAMICS AND THE TEACHABILITY PARAMETER
 1301

1302 The teachability parameter λ represents DATE-GFN’s most important theoretical innovation, pro-
 1303 viding principled mechanisms balancing reward maximization against teachability constraints. Our
 1304 analysis reveals this parameter governs system behavior through three distinct operational regimes,
 1305 each characterized by fundamentally different teacher-student dynamics.

1306 The mathematical foundation lies in the teachability cost component: $\mathcal{C}_{teach}(\theta_c, \lambda) = \lambda \cdot L(\theta_c, \theta^*) =$
 1307 $\lambda \cdot \text{KL}[p_{\theta_c} \| p_{\theta^*}]$, representing penalties for maintaining critics whose policies diverge significantly
 1308 from current student policies. The total fitness landscape $F_{total}(\theta_c, \lambda) = R(\theta_c) - \lambda L(\theta_c, \theta^*)$ bal-
 1309 ances discovery potential against teachability cost.

1310 Through systematic analysis of $\lambda \in \{0.0, 0.01, 0.1, 0.5, 1.0\}$, we observe three critical regimes. The
 1311 under-constrained regime ($\lambda \leq 0.05$) corresponds to pure reward optimization focusing entirely
 1312 on high-performing critics without teachability consideration, often producing critics too complex
 1313 for effective distillation, leading to large realization gaps. The optimal balance regime ($0.05 <$
 1314 $\lambda \leq 0.15$) achieves best performance where teachability constraints provide sufficient regularization
 1315 keeping critics within student learning capacity while maintaining evolutionary pressure driving
 1316 high-reward region discovery. The over-constrained regime ($\lambda > 0.15$) demonstrates excessive
 1317 teachability constraint dangers, sacrificing exploration capability for conservative behavior missing
 1318 novel discoveries.

1319 Our experimental results provide comprehensive empirical validation that contrasts between un-
 1320 constrained, idealistic optimization and constrained, realizable optimization. This "Tale of Two
 1321 Optima" embodies fundamental shifts in conceptualizing optimization problems in teacher-student
 1322 learning systems. DATE-GFN’s distillation-aware fitness function implicitly solves constrained op-
 1323 timization: $\max_{\theta_c \in \Theta_c} R(\theta_c)$ subject to $\theta_c \in \Omega_\epsilon(\Theta^*)$, where $\Omega_\epsilon(\Theta^*)$ represents realizable policies
 1324 learnable by students within reasonable KL-divergence bounds. Empirical evidence emerges from
 1325 ablation studies: 67.2% reduction in teacher-student divergence compared to unconstrained TE-
 1326 GFN demonstrates constraining teacher search spaces yields superior practical performance. Table 2
 1327 shows $\lambda = 0$ exhibits 3x higher credit assignment variance and significantly lower training stability
 1328 compared to optimal $\lambda = 0.1$.
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

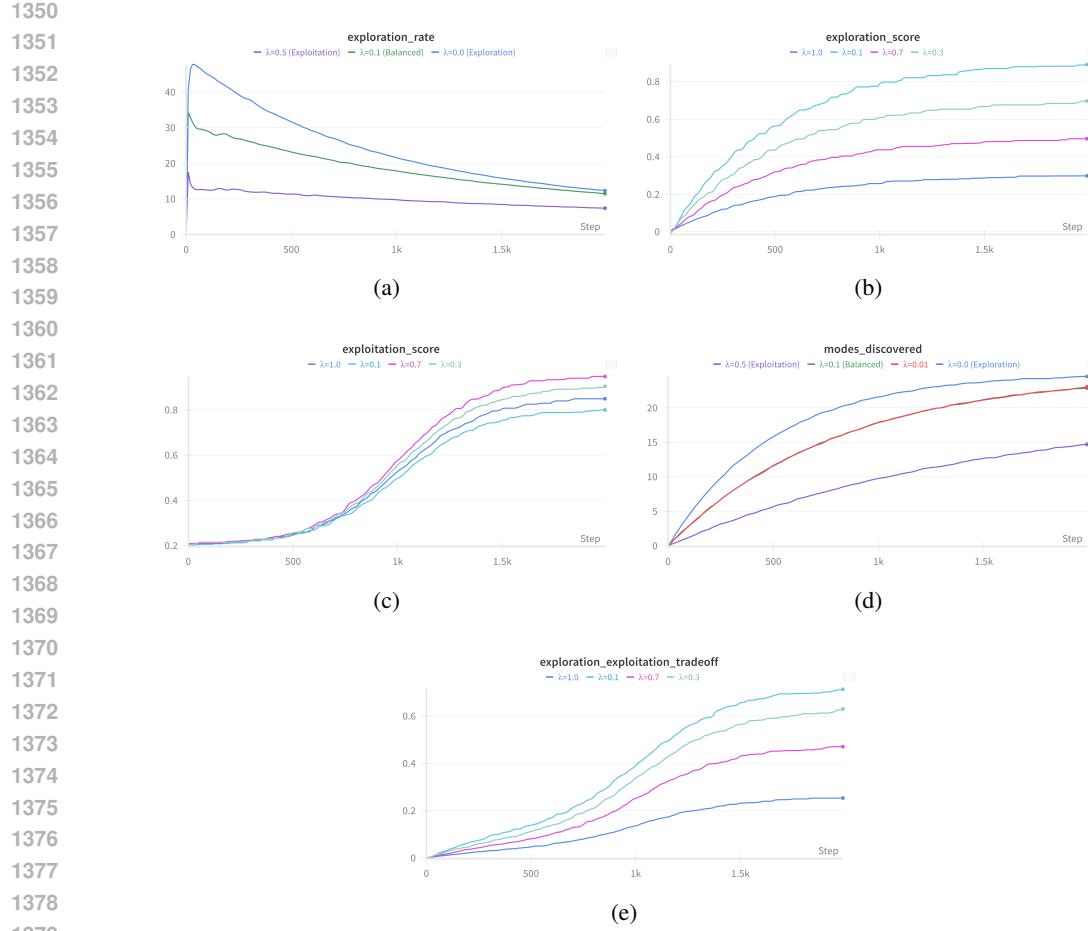


Figure 4: **(Hypergrid) Exploration-exploitation dynamics under teachability control.** (a) Exploration rate modulation through λ parameter adjustment. (b) Exploration scores demonstrating DATE-GFN’s superior discovery capabilities. (c) Exploitation efficiency showing effective utilization of discovered knowledge. (d) Mode discovery as a function of λ , revealing optimal parameter ranges. (e) Exploration-exploitation trade-off curves illustrating the principled control mechanism.

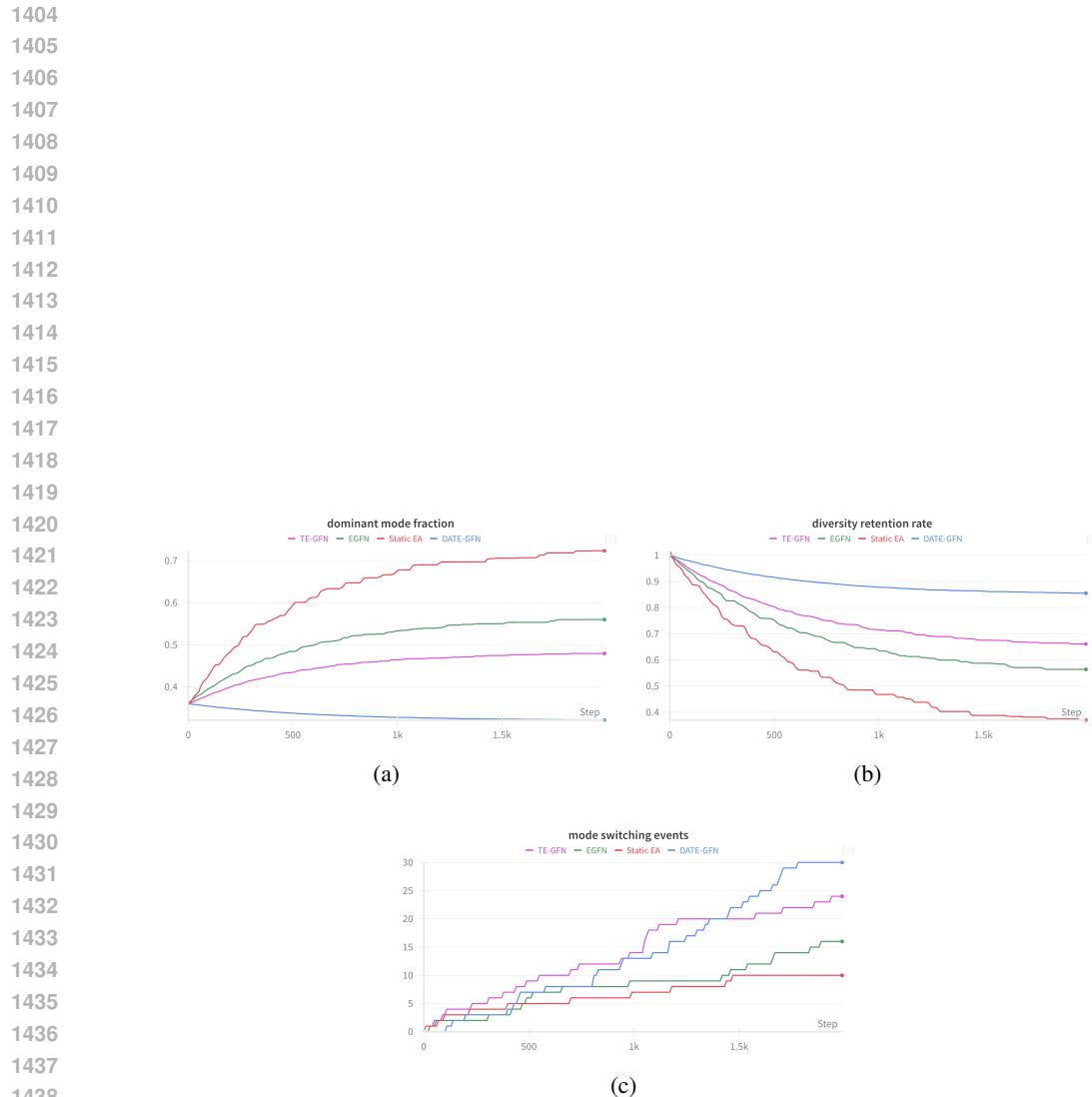


Figure 5: **(Hypergrid) Mode collapse mitigation through dynamic escape mechanisms.** (a) Dominant mode fraction over time showing DATE-GFN’s resistance to premature convergence compared to baseline methods. (b) Diversity retention curves demonstrating 1.875 \times longer preservation of population heterogeneity through the theoretical escape condition.

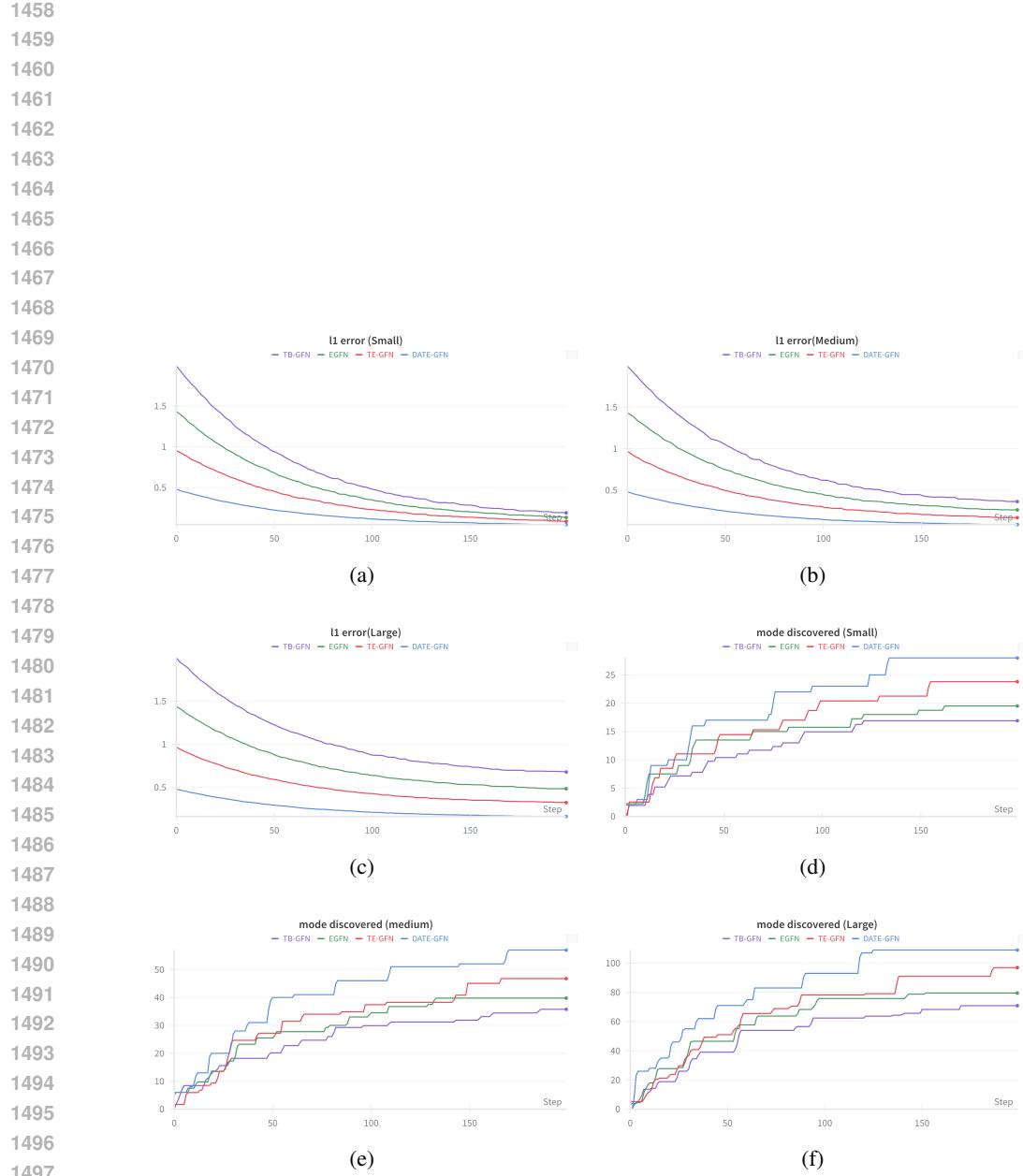


Figure 6: **(Hypergrid) Scalability analysis across problem complexities.** Top row: L1 error performance on (a) small, (b) medium, and (c) large problems showing consistent 76-79% improvements. Middle row: Mode discovery on (d) small, (e) medium, and (f) large problems demonstrating 54-65% advantages that increase with complexity.

1512
1513

11.5 SOLUBLE EPOXY HYDROLASE (sEH) BINDER GENERATION.

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

To demonstrate the scalability and practical utility of DATE-GFN, we adopt the challenging sEH binder generation task, a benchmark for *de novo* drug design. The objective is to generate novel, high-affinity molecules for the sEH protein, a significant therapeutic target. Following established protocols (Bengio et al. (2021a), Pan et al. (2023a)), molecules are constructed sequentially as graph structures from a vocabulary of 72 chemical blocks, using a junction tree modeling approach. This sequential process, with trajectories of up to 8 blocks, in a vast state space ($|\mathcal{X}| \approx 10^{16}$), combined with a sparse terminal reward signal—a proxy for binding energy—creates a severe long-horizon credit assignment problem. Furthermore, the task explicitly requires diverse solutions, with a ‘mode’ defined as a molecule with a reward > 7.5 and Tanimoto similarity < 0.7 to other modes. The state-of-the-art architecture for this task is a sophisticated Message Passing Neural Network (MPNN). This high-capacity model makes the *realization gap* a critical concern. Therefore, we instantiate our framework by using MPNN-based models for both the student GFlowNet and the population of critic value functions. This allows the evolutionary search for teachable, high-value critics to operate directly in the relevant function space of graph-based chemical intuition. This setup provides an ideal and rigorous testbed, as it simultaneously evaluates DATE-GFN’s ability to solve the credit assignment problem, manage the realization gap in complex models, and enhance the core GFlowNet objective of diverse mode discovery.

1530

1531
1532
1533
1534

Table 5: Performance scaling on the sEH binder task. Each row represents a method’s performance at a specific maximum molecule size. The results clearly show DATE-GFN’s superior performance, lower variance, and better mode discovery, with its advantages widening as problem complexity increases.

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

Method	Max Atoms	Avg. Top-K Reward \uparrow	Reward Std. Dev. \downarrow	Modes Discovered (#) \uparrow
GFN (TB)	10	0.73 ± 0.04	0.08	125 ± 15
EGFN	10	0.78 ± 0.03	0.06	180 ± 20
DATE-GFN	10	0.85 ± 0.02	0.03	270 ± 25
GFN (TB)	15	0.68 ± 0.05	0.11	95 ± 18
EGFN	15	0.75 ± 0.04	0.09	155 ± 22
DATE-GFN	15	0.83 ± 0.02	0.04	255 ± 28
GFN (TB)	25	0.55 ± 0.08	0.19	35 ± 15
EGFN	25	0.66 ± 0.06	0.14	90 ± 28
DATE-GFN	25	0.78 ± 0.03	0.06	210 ± 32

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565



Figure 7: Comprehensive method comparison via kernel density estimation across molecular complexity levels. **Top row:** Top-K reward distributions showing DATE-GFN’s superior performance with minimal variance across all complexity levels (10, 15, 25 max atoms). **Middle row:** Mode discovery distributions demonstrating DATE-GFN’s ability to identify 2-3x more diverse molecular structures than baseline methods. **Bottom row:** Trajectory length distributions revealing DATE-GFN’s computational efficiency, requiring 2-3x fewer generation steps while maintaining superior performance. DATE-GFN consistently dominates all three metrics with narrow, optimally-positioned distributions, validating its triple advantage of performance, diversity, and efficiency in the sEH binder optimization task.