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ABSTRACT

Generative Flow Networks (GFlowNets) are powerful for scientific discovery but
are severely hampered in sparse-reward, long-horizon settings by the temporal
credit assignment problem, which causes high-variance gradients. While recent
work has sought to densify learning signals (Jang et al.l [2023} [Pan et al., 2023a))
or improve exploration with methods like Evolution Guided GFlowNets (EGFN)
(Ikram et all [2024c), the fundamental variance issue for the learning agent
persists. We introduce the Distillation-Aware Twisted Evolutionary GFlowNet
(DATE-GFN), an actor-critic inspired framework that recasts the problem. We
advocate for a paradigm shift: instead of evolving policies, DATE-GFN evolves
a population of critics (state-dependent value functions, or twist functions) that
learn to estimate the expected future reward from any state. This constructs a
dense, state-dependent guidance signal, transforming the high-variance, reward-
driven learning into a stable, low-variance supervised distillation task where the
student GFlowNet learns to imitate the policy induced by the best critic. Cru-
cially, we solve the inherent realization gap between an optimal teacher and a
finite-capacity student via a novel distillation-aware fitness function. This ob-
jective creates a principled trade-off: it simultaneously rewards critics for discov-
ering high-reward states while penalizing them for their feachability, measured by
the KL-divergence between their induced policy and the student’s. This creates a
symbiotic co-evolutionary dynamic where the evolutionary search for better critics
is continuously grounded in the student’s current learning capabilities. We prove
this system converges to a realizable, high-performing equilibrium and show em-
pirically that DATE-GFN significantly outperforms state-of-the-art baselines.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) have emerged as a principled framework for a central task
in scientific discovery: sampling diverse, high-quality candidates = from a vast, structured search
space with probability proportional to a reward function, P(x) « R(z) (Bengio et al. 2021a).
Despite their theoretical elegance, their practical application is severely limited by the problem of
temporal credit assignment. GFlowNets construct objects via long action trajectories, but the re-
ward R(x) is only delivered at the end. Standard training objectives like Trajectory Balance (TB)
(Malkin et al., [2022a) propagate this sparse signal, but the resulting gradient estimators suffer from
prohibitively high variance, especially in long-horizon, sparse-reward settings, leading to unstable
and inefficient training. This core challenge has spurred several lines of research. One approach is
to densify the learning signal by decomposing the reward into local potentials (Jang et al.|[2023; |Pan
et al., [2023a). Another is to improve exploration to find sparse rewards more often, as exemplified
by Evolution Guided GFlowNets (EGFN) (Ikram et al.,[2024a)), which use an evolutionary algorithm
(EA) to discover high-reward trajectories. While valuable, these methods are incomplete. Reward
decomposition can be as challenging as the original problem, and exploration-focused methods are
palliative, not curative; the GFlowNet agent in EGFN still relies on the high-variance TB objective
for learning.

In this paper, we argue for a paradigm shift inspired by actor-critic methods in reinforcement learning
(Konda & Tsitsiklis, [2000). Instead of treating the symptoms of high variance, we address the root
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cause by fundamentally changing the learning signal itself. We introduce the Distillation-Aware
Twisted Evolutionary GFlowNet (DATE-GFN). Our approach is built on a principled decoupling
of two distinct challenges: (1) the hard, global exploration problem of discovering the state-value
landscape from a sparse signal, and (2) the simpler, local problem of learning a policy to navigate
this landscape. DATE-GFN assigns each problem to the right tool. We use an EA not to evolve
policies, but to evolve a population of critics (or twist functions, inspired by SMC (Doucet et al.|
2001a; [Briers et al.,|2010)) that solve the first problem by learning the expected future reward from
any state. This transforms the sparse terminal reward into a dense, step-wise learning signal. The
GFlowNet policy’s task is then reduced to the second problem: a stable, low-variance supervised
distillation task to imitate the policy induced by the best critic.

Our central contribution is the mechanism that makes this decoupling robust: a novel distillation-
aware fitness function. This objective solves the critical realization gap—the mismatch between
a theoretically optimal teacher and a finite-capacity student—by rewarding critics for both their
performance and their feachability. This creates a symbiotic co-evolutionary dynamic that grounds
the evolutionary search in the student’s learning capabilities, guiding the entire system towards a
high-performing and, crucially, a realizable equilibrium.

1.1 OUR CONTRIBUTIONS

This paper makes the following significant contributions:

1. A Novel Co-Evolutionary GFlowNet Framework. We introduce DATE-GFN, a new
training paradigm that synergistically integrates evolutionary algorithms and GFlowNets.
We shift the focus of the evolutionary search from policies to critics (value functions),
providing a principled mechanism for solving the temporal credit assignment problem by
generating a dense, step-wise reward signal.

2. The Distillation-Aware Fitness Function for Closing the Realization Gap. We identify
and formalize the realization gap as a critical flaw in decoupled teacher-student learning
frameworks. Our core technical innovation is the distillation-aware fitness function, which
makes the teacher’s evolution dependent on the student’s learning state. This novel mecha-
nism explicitly optimizes for teachability alongside performance, ensuring that the evolved
critics are not just powerful but also effectively learnable by a finite-capacity student model.
We provided the description of our methodology in Algorithm I]in Appendix [I0]

3. State-of-the-Art Empirical Performance on Challenging Benchmarks. We conduct a
thorough empirical validation on two difficult domains: the synthetic Hypergrid benchmark
and a complex, real-world single-cell perturbation prediction task. Our results demonstrate
that DATE-GFN substantially outperforms existing GFlowNet methods, setting a new state-
of-the-art for generative modeling in these challenging settings while preserving the crucial
ability to generate diverse solutions.

2 RELATED WORK

Our work is situated at the intersection of generative flow networks, evolutionary computation, and
reinforcement learning, with a central focus on solving the temporal credit assignment problem in
sequential generative modeling under sparse rewards.

Generative Flow Networks and the Credit Assignment Problem. GFlowNets (Bengio et al.,
2021a) are generative models that learn to sample objects in proportion to a reward function R(z).
Their primary challenge is temporal credit assignment, as the reward is only observed at the end of a
long trajectory. The standard Trajectory Balance (TB) objective (Malkin et al., [2022a)) suffers from
high-variance gradients in sparse-reward settings (Ikram et al.,|2024a). This has motivated a body of
work on densifying the learning signal. Some approaches leverage known additive reward structures
(Pan et al., [2023a)) or learn a decomposition of the reward into local potentials (Jang et al.l 2023}
Mohammadpour et al., 2024). While powerful, these methods can be brittle if the decomposition
is hard to learn or relies on specific problem structures. Our work takes an orthogonal approach by
learning a value function that directly estimates the total future reward, which is more general.
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Figure 1: Left: An evolutionary algorithm evolves a population of candidate twist function networks
(critics) through selection, crossover, and mutation. Their fitness is evaluated by how well they guide
an SMC sampler to high-reward outcomes. Right: The best critic’s induced policy (twist-guided
proposal) serves as a teacher for the star GFlowNet agent, which is trained to imitate this policy via
distillation.

Evolutionary Algorithms for Policy Search: EGFN. Evolutionary Algorithms (EAs) are power-
ful gradient-free methods for exploration (Backl|1993;|[Khadka & Tumer, 2018a)). The most relevant
predecessor to our work, EGFN (Ikram et al.,2024a)), evolves a population of GFlowNet policies to
enhance exploration. However, EGFN does not solve the underlying credit assignment problem; the
final agent is still trained with the high-variance TB objective. It finds what trajectories are good but
not why intermediate steps are valuable. DATE-GFN addresses this gap by evolving value functions
(critics) instead of policies, which provides the missing why and transforms the learning signal.

Value Functions in Reinforcement Learning and SMC. The credit assignment problem is a
cornerstone of Reinforcement Learning (RL) (Sutton & Barto},[2018). Actor-Critic methods (Konda
& Tsitsiklis) [2000) famously solve this by learning a critic (a value function) to provide a dense, low-
variance learning signal for the actor (the policy). Our work is also strongly inspired by Sequential
Monte Carlo (SMC) methods, where twist functions act as learned lookahead value functions to
reduce variance and guide sampling (Doucet et al.| [2001a; |Briers et al., |2010). Recent work has
successfully applied this principle to guide generation in large language models (Zhao et al., [ 2024)).
DATE-GFN adapts this powerful principle to the GFlowNet context: our twist function is an evolved
critic, the student GFlowNet is the actor, and the distillation-aware co-evolutionary process is the
mechanism that allows them to bootstrap each other effectively.

3 METHODOLOGY

The proposed framework, DATE-GFN, addresses the critical challenges of credit assignment and
exploration in GFlowNets, particularly in settings with sparse rewards and long horizons. This
section begins by introducing the foundational concepts from Sequential Monte Carlo (SMC) that
motivate our approach. We then critically analyze the limitations of a simple, decoupled frame-
work, identifying the crucial realization gap. Finally, we present our advanced, integrated solution:
the Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN), complete with its theoretical
underpinnings and a robust proof of its dynamics.



Under review as a conference paper at ICLR 2026

3.1 TWISTED SMC: INCORPORATING A VALUE FUNCTION INTO SAMPLING

Before detailing DATE-GFN, we introduce the concept of twist functions from the Sequential Monte
Carlo perspective, which provides a formal language for value-guided sampling. In this view, the
goal is to sample trajectories 7 = (so,...,s7) from a target distribution o(7) proportional to a
reward-based potential. Formally, o(7) o po(7)®(7), where py is a simple, tractable base policy
(e.g., uniform random) and ® is a potential function. For GFlowNet applications, we define this
potential to be non-zero only for completed trajectories:

B(r) = R(st) if 7 is complete (i.e., st is a terminal state)
10 otherwise

Directly sampling from o is intractable. SMC provides a constructive, step-by-step approach guided
by twist functions. A twist function, ¥ (s1.¢), is a non-negative function that provides an intermedi-
ate potential at each step of the trajectory. As defined by [Briers et al.| (2010), the optimal twist 1)}
is proportional to the exact future cumulative potential, conditioned on the history so far:

T/Jf (Slit) S ]ET'NPO('\Slzt) [q)(TLt ° T/)] ey

where 7/ represents a trajectory suffix sampled from the base policy. Given our definition of ®, this
has a direct and powerful interpretation in the language of reinforcement learning: the optimal twist
function is the true expected future reward-to-go, or the state-value function, under the base policy
Po:

Ui (s1:¢) o< V(1) = Epy [R(s7)]¢]
If this optimal value function ¥* were known, one could construct a variance-minimal sampling
policy, known as the twist-induced proposal distribution:

Qw(st ‘ 51:1571) X pO(St | Slztfl) "(/Jt(slzt) 2

This policy, g, can be interpreted as a greedy policy with respect to the value function 1): it biases
the selection of the next state s, towards states that the critic ) estimates to have higher future value.
If the critic is perfect (¢p = ™), then gy, is the optimal policy that samples trajectories exactly
in proportion to R(z), perfectly solving the GFlowNet objective. Of course, ¥* is unknown, and
the central challenge is to learn a good approximation, g, for which our framework employs an
evolutionary algorithm.

3.2 THE CHALLENGE OF DECOUPLED OPTIMIZATION: A FORMAL TREATMENT OF THE
REALIZATION GAP

A naive application of the principles above would suggest a simple, two-phase framework:

1. Phase 1 - Unconstrained Critic Optimization: Use an Evolutionary Algorithm (EA) to
solve for the best possible critic by maximizing expected reward:

0y = argemax Esorrgy [R(57)]
»

2. Phase 2 - Policy Distillation: Freeze the best critic vess = t(+;0;,) and train a student
GFlowNet policy Pr(+; 6*) to mimic its induced policy by minimizing the KL-divergence:

O = argminEyv,,  [Dicr (e ([9) || Pr(-]s:07))]

While this decouples the hard, gradient-free global search from the efficient, gradient-based local
policy refinement, it suffers from a critical theoretical flaw: the realization gap. The core issue lies
in a flawed assumption inherent to the decoupled approach: the EA in Phase 1 operates as if the
student GFlowNet were a perfect, infinite-capacity function approximator. It therefore performs an
unconstrained search for the best critic in an absolute sense, without any knowledge of the student’s
finite representational capacity and architectural biases (Goodfellow et al[2016). This creates a
fundamental mismatch where the EA, blind to the student’s limitations, is free to discover a bril-
liant critic, %genius, Whose induced policy ggeniys has high complexity (e.g., is non-smooth or has
intricate decision boundaries). While theoretically optimal, such a policy may be impossible for the
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student’s architecture to represent, causing the distillation process to fail and yielding a student with
performance far below the teacher’s potential. Crucially, this framework has no mechanism to prefer
a slightly sub-optimal but "smoother" critic, Yieamable, Whose policy the student could imitate with
near-perfect fidelity, even if it would result in a much better final generative model. The optimization
objective is thus fundamentally misaligned with the practical goal of producing a high-performing
student.

3.3 DATE-GFN: A Co-EVOLUTIONARY APPROACH

To bridge this realization gap, we propose the Distillation-Aware Twisted Evolutionary GFlowNet
(DATE-GFN), an integrated, co-evolutionary framework where information about the student’s
learning progress flows back to guide the evolution of the critics.

Definition 3.1 (Student GFlowNet). The student is a GFlowNet policy parameterized by 6*:
Pr(s¢ | s1:0-150")

Definition 3.2 (Distillation-Aware Fitness). The fitness of a critic candidate 1); with parameters 6y,
evaluated with respect to the current state of the student parameters 6*, is defined as:

FDA(HT/J]‘ |9*) = ]ESO:TN(]j [R(ST)] —A- Esl:t—lNQj [DKL(Qj('|81;t_1) || PF('|81!t—1; 0*))]5 (3)

Reward Term Teachability Penalty

where ¢; is the policy induced by 1); according to equation 2| and A > 0 is a hyperparameter
balancing reward-seeking and teachability. The training proceeds as a continuous, online loop, as
detailed in Algorithm[I]in Appendix [I0].

Remark The Decoupled Limit: DATE-GFN with A = 0. The teachability parameter A con-
nects our co-evolutionary framework to decoupled approaches. When A = 0, our fitness function
Fpa(04]0*) = R(0y) — AL(0y,0") reduces to Fpalx=o = R(6y). This is precisely the un-
constrained, reward-only objective of a decoupled teacher-student framework we term it TE-GFN,
where the evolutionary search is blind to the student’s capabilities. Thus, the A = 0 setting serves
as a perfect experimental baseline, allowing us to directly quantify the performance gains from our
core contribution—the teachability constraint—and empirically validate the necessity of solving the
constrained, realizable optimization problem to close the realization gap.

3.4 THEORETICAL ANALYSIS OF THE CO-EVOLUTIONARY DYNAMICS

Our theoretical analysis proceeds in two parts. First, we analyze the dynamics of the practical DATE-
GFN algorithm and the properties of its equilibrium state. Second, we provide the mathematical
foundation that links this dynamic to our experimental validation.

3.4.1 THE DISTILLATION OBJECTIVE AND ITS ROLE
The student’s update within the DATE-GFN loop is governed by the distillation loss:
Liisinn(0°) = Drcr.(qvest (-|S1:4/—1) || Pr(-[s1:4/—1567))

This is the Distillation Phase of the co-evolutionary loop. It is a local, supervised learning prob-
lem where the student receives a dense target distribution g, from the teacher critic. The critic
effectively "pre-computes" the credit assignment, and the student’s task is simply to learn this dense,
low-variance signal.

Proposition 3.3 (Co-evolution towards a Realizable Optimum). Let the DATE-GFN training process
be a dynamical system on the joint parameter space (O, 0%), where Oy = {0y,,...,0y, } and
O* is the space of student parameters. The system’s update rules incentivize convergence toward a
fixed-point equilibrium (©}", 0**) characterized by:

1. Student-Teacher Alignment: The student policy Pr(-;6**) is a close approximation of the
policy ;> induced by the best critic in the equilibrium population, ;> € {(+ 9;’:)}
That is, D r,(g;r || Pr(-;0*)) = 0.
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2. Constrained Optimality of the Teacher: The best critic 1., is a member of a high-reward
critic population whose induced policies are all structurally representable by the student
architecture. It is a solution to the constrained optimization problem of finding a high-
reward critic within the set of "teachable" critics.

This equilibrium thus represents a high-performing and realizable solution, closing the realization
gap by design.

Proof Sketch. The proof analyzes the fixed points of the system’s two operators: the Evolutionary
Operator (1) and the Distillation Operator (Tp). A fixed point for the student implies Pr ~ qpest-
A fixed point for the EA implies that the best critic, 1pes¢, 1S @ local maximizer of the fitness function
Fpa(-]6**). At this point, the teachability penalty for ¥.s; itself is near zero. Any other critic that
is not selected must have a lower fitness, meaning any potential reward gain must be offset by a large
teachability penalty. Thus, the equilibrium is a self-consistent state where the teacher is optimal for
the student that has learned from it. A detailed proof is provided in Appendix [6] O

3.4.2 THE DISTILL-AWARE FITNESS FUNCTION

Optimal Regime Dynamics and its Constraints. The parameter ) induces three distinct regimes.
The Under-Constrained Regime (A — 0) leads to fitness functions dominated by reward, Fp4 ~
R(0.). The Over-Constrained Regime (A — o0) is dominated by the teachability penalty,
P(0:16*) = AE[Dxk1(g;||Pr)], forcing conservative behavior. The Optimal Balance Regime (e.g.,
A ~ 0.1) creates a balanced fitness landscape enabling both exploration and stability. This three-
regime structure provides a clear framework for understanding our ablation studies validated in 4.1}

The Mode Escape Condition. The DATE-GFN framework has an inherent mechanism to resist
mode collapse. Consider a dominant critic mode ; to which the student has adapted, making its
teachability penalty minimal, P (t1]0*) ~ 0, and its fitness Fp 4 (¢1]6*) ~ R(11). For a new critic
mode ), to be selected, its fitness must be higher:

Fpa(2]0) = R(2)—P(12|0") > R(p1) yields escape condition R(¢2)—R (1) > AL(2, 6%).

This relationship reveals that the population will jump to a new mode if the gain in reward is suf-
ficient to overcome the cost of teaching this new strategy to the currently specialized student. This
creates a dynamic pressure for diversity, which we validate empirically.

4 EXPERIMENTS

To rigorously validate the theoretical claims of DATE-GFN, we selected three complementary ex-
perimental domains. The first, the Hypergrid benchmark, serves as a canonical, controlled environ-
ment to systematically dissect the framework’s performance under precisely tunable conditions of
reward sparsity and horizon length. The second, the Antibody Sequence Generation task, serves as
a primary real-world validation, testing the framework’s ability to scale to high-dimensional, noisy,
and biologically complex problems. The third, the sEH binder generation task, pushes the limits
of scalability by testing the framework on complex, graph-structured molecular data with state-of-
the-art architectures. Together, these tasks provide a comprehensive evaluation of DATE-GFN’s
capabilities. The implementation details for all experiments are described in Appendix [I1]

4.1 HYPERGRID EXPERIMENT: A CONTROLLED TESTBED FOR CREDIT ASSIGNMENT.

The Hypergrid environment is designed to isolate and amplify the core challenges that motivate
DATE-GFN’s architecture: long-horizon credit assignment and extreme reward sparsity. The envi-
ronment is a D-dimensional discrete grid world of side length H. The reward function is constructed
to create an exponentially sparse landscape with 27 isolated, high-reward modes. In our most chal-
lenging setting (H = 30,D = 5, Ry = 1079), the reward differential spans five orders of mag-
nitude. This setup is explicitly designed to induce the high-variance gradient problem that plagues
naive GFlowNet objectives, thereby providing a clear and quantifiable test of whether DATE-GFN’s
theoretical mechanisms for variance reduction and credit assignment translate into robust perfor-
mance under pathological conditions. Figure 2] provides compelling evidence for DATE-GFN’s
systematic superiority across baseline methods.
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Figure 2: (Hypergrid) Comparative performance analysis across key metrics. (a) Relative L1
error showing DATE-GFN’s superior convergence to the target distribution. (b) Mode discovery
curves demonstrating consistent exploration advantages. (c) Diversity preservation throughout train-
ing, maintaining broad sampling coverage. (d) Trajectory length distributions revealing efficient
path-finding behavior that balances exploration with exploitation.

Comparative Performance. Our results, summarized in Table [I| confirm DATE-GFN’s superior
performance. We observe a substantial improvement in relative /1 error and increase in modes
discovered over standard GFN baselines. This demonstrates that DATE-GFN’s ability to learn a
dense value function via the critic enables it to solve the credit assignment problem where trajectory-
level objectives fail. The learned twist function v (s) effectively provides intermediate rewards by
assigning high value to prefix states that are on a promising path, guiding the student policy through
the vast, uninformative regions of the state space.

Table 1: (Hypergrid) Performance comparison (hardest setting). Performance in 5-dimensional
hypergrid with horizon H = 30 and extreme reward sparsity (Ry = 1075). Mean % s.e.m. over 8
seeds. (see Appendix [TT.2]for Metrics description and [T1.3|for task details).

Method Rel. /1 | Modes 1 Mode Eff. 1 Diversity 1
GFN (TB) 0.62 +0.05 121+£29  0.94+0.08 0.41 +0.02
EGFN 0.31£0.04 224421 1.18 £ 0.06 0.56 £ 0.02
TE-GFN 0.18+0.03 26.8+14 1.31 £ 0.05 0.61 +0.02

DATE-GFN (ours) 0.05+0.01 31.6+06 144+0.03 0.88+0.01

Table 2: (Hypergrid) Effect of teachability weight )\ on the distillation-aware constraint mech-
anism. (with same hyperparameters used in Table[]]

Lambda A\ Rel. /1 | Modes 1 Credit Var. | Gap Accept. T Gap Ratio |
yA=0.0 0.35+0.04 18.24+2.38 0.45 +0.06 0.557 +0.03 0.714 £ 0.04
A=0.1 0.05+001 31.6+£06 0.15+0.02 0.882+0.02 0.510+0.02
A=1.0 0.12 £ 0.02 284 +1.2 0.23 £ 0.04 0.745 £0.04 0.580 £ 0.05

The Three Regimes of Co-Evolutionary Dynamics. The distillation-aware fitness function,
Fpa(04]0*) = R(0y) — X - L(8y,0%), is the engine of our framework. The teachability weight
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A acts as a formal lever that modulates the balance between reward maximization and student learn-
ability. As shown in Table 2] the decoupled case (A = 0) yields poor performance and high insta-
bility. It suffers from higher credit assignment variance than the optimal configuration at A = 0.1.
That confirms the existence of three distinct operational regimes. The Under-constrained Regime
(A = 0) performs pure reward optimization, but as predicted, creates a large realization gap, leading
to high variance as the search finds unteachable critics. Conversely, the Over-constrained Regime
(A > 0.1) is dominated by the teachability penalty, stifling exploration and preventing the discovery
of novel high-reward solutions. The Optimal Balance Regime (A = 0.1) strikes the ideal balance,
grounding the search to close the realization gap while maintaining a strong pressure for mode es-
cape. This ensures both high performance and sustained exploration, validating that constrained,
teachability-aware optimization is superior to unconstrained reward maximization.

The full dynamics of these regimes are visualized in Figure [3| The Teachability Parameter A as a
Controller for the Realization Gap and Exploration. (a) The teachability cost (£(8,6*)) is effec-
tively managed by the teachability weight A, with the optimal value (A = 0.1) achieving a low and
stable cost, indicating a minimal realization gap. (b) With an optimal A\, DATE-GFN maintains a
consistently high escape margin, defined as M = (R(¢2) — R(¢1)) — AL(¢2,0*), where M > 0
signals a jump to a new mode 5. This creates a strong and persistent incentive for the population to
continuously explore for better reward modes rather than collapsing prematurely to a local optimum.

teachability cost escape margin
L -0

(a) (b)

Figure 3: (a) The teachability cost (£(6,0*)) indicating a minimal realization gap. (b) The escape
condition is satisfied if and only if M > 0. A larger positive margin means the system has a stronger
incentive to explore that new mode.

Computational Efficiency via Amortized Co-Evolution. The co-evolutionary dynamic, while
powerful, incurs a computational cost of O(G - k - N - T) for evaluating the fitness of k critics over
G generations with N the number of trajectories sampled per critic for fitness evaluation, and T’
the average trajectory length. However, the theoretical foundation of our framework—specifically,
the convergence to a stable equilibrium (Prop. —implies that the student policy Pg(-;0**)
and thus the teachability landscape change smoothly. This insight motivates Amortized DATE-
GFN (A-DATE-GFN), where only a fraction p of critics are re-evaluated each generation, and
the student is updated only every M generations. As detailed in Table [3| we ablate p and M on
the Hypergrid task (see Appendix [IT.1] for all hyperparametrs choice). The results reveal a clear
efficiency-performance Pareto frontier. The configuration (p = 0.5, M = 5) provides the best
trade-off between performance and efficiency confirms the stability of the co-evolutionary dynamic.

Table 3: Ablation study on Amortized DATE-GFN. (p, M) denote the critic re-evaluation fraction
and student update frequency. A-DATE-GFN offers a compelling trade-off between performance
and compute.

Method (p, M) Modes 1 Time (h) | Perf./Hour
DATE-GFN (1.0, 1) 31.6 £ 0.6 12.5 2.53 (Baseline)
A-DATE-GFN (0.5,1)  30.9 £0.8 8.1 3.81
A-DATE-GFN (1.0,5) 30.8 £+ 1.1 9.2 3.35
A-DATE-GFN (0.5,5) 30.1+0.9 7.35 4.10 (+62%)
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4.2 ANTIBODY SEQUENCE OPTIMIZATION EXPERIMENT

This task represents a fundamental challenge in computational biology, requiring the discovery of
novel, high-affinity protein sequences from an exponentially large combinatorial space (20% for
sequences of length L). The multi-modal nature of the fitness landscape makes this a canonical
testbed for the exploration-exploitation trade-off in the context of long-horizon credit assignment.
Our goal is to generate an antibody heavy chain sequence of length 50 that optimizes the instability
index (Guruprasad K, |1990). The reward function, R(z) = 2(35—1ndex(2))/10 s sparse and rewards
sequences with an index below 35. This long-horizon task with a sparse reward signal is designed
to test the limits of generative models.

Robustness and Scalability Analysis Manually tuning the teachability parameter A to find its
theoretically-predicted Optimal Balance Regime is impractical. We therefore introduce an adaptive

controller that automates this process via a feedback loop: A\g41 = Ay + a(Liarget — [Ic(lf’s)tﬂl). Our
ablation study Table [4] confirms that this controller successfully navigates the trade-offs: it avoids
the high variance of an under-constrained search (A — 0) and the low-reward conservatism of an
over-constrained one (A — o0). By automatically converging to a task-specific optimal value, the
adaptive scheme achieves the best performance and stability without manual tuning, validating its
ability to practically realize our theoretical framework.

Table 4: Detailed ablation study of the teachability parameter A on antibody generation.

Method () setting) Avg. Reward 1 Reward Std. Dev. |  Final Distill. Loss |
Under-Constrained (0.0) 0.78 4+ 0.07 0.15 0.45
Optimal Fixed (0.15) 0.82 +0.05 0.09 0.22
Over-Constrained (1.0) 0.65 + 0.04 0.07 0.08
Adaptive (Automated) 0.85 + 0.02 0.04 0.21

4.3 SOLUBLE EPOXY HYDROLASE (SEH) BINDER GENERATION

Scalability and Variance Reduction on Long-Horizon Molecular Generation. We validate
DATE-GFN on the sEH binder generation task, a benchmark for creating diverse, high-affinity
molecules for a key therapeutic target. Molecules are constructed sequentially as graph structures
from a vocabulary of 72 chemical blocks, using a junction tree modeling approach. This sequential
process, with trajectories of up to 8 blocks, in a vast state space (|X| ~ 10'°), combined with a
sparse terminal reward signal—a proxy for binding energy—-creates a severe long-horizon credit
assignment problem. Following established protocols, molecules are built sequentially as graphs
from a vocabulary of chemical blocks. This process creates a severe long-horizon credit assignment
problem due to the vast state space and a sparse reward signal derived from a binding energy proxy.
In Figure [7]in Appendix [I1.5] we instantiate our framework with MPNN-based critics, creating a
rigorous testbed to validate DATE-GFN’s ability to solve these dual challenges. The results, visual-
ized via kernel density estimation, confirm that DATE-GFN achieves a triple advantage, consistently
dominating baselines across performance, diversity, and computational efficiency.

5 CONCLUSION

We introduced DATE-GFN, a co-evolutionary framework that solves the temporal credit assign-
ment problem in GFlowNets. Our method evolves a population of feachable critics to provide a
dense guidance signal, transforming the high-variance, reward-driven learning into a low-variance,
supervised distillation task. Our central thesis—validated by the failure of unconstrained baselines
(A = 0)—is that grounding the critic search in the student’s learning capacity is crucial for closing
the realization gap. By successfully decoupling value discovery from policy learning, DATE-GFN
establishes a new state-of-the-art in training stability and diverse solution discovery on challenging
benchmarks. This work represents a significant step towards building more robust, scalable, and
practically useful generative models for science.
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Appendices

6 APPENDIX: PROOF OF CO-EVOLUTION TOWARDS A REALIZABLE
OPTIMUM

Proof. This is not a proof of global convergence to a single point, which is intractable for such a
complex, non-convex, and stochastic system. Instead, we provide a formal analysis of the system’s
operators and the properties of its equilibrium points.

1. System State and Operators _

Let the state of the system at generation i be the joint parameter set S = (@1(;), 6*()), where
@EZ) = {91(;]) }§:1~ The transition from S() to S+1) is a composition of two operators: the evolu-
tionary operator 7T’r and the distillation operator T'p.

* The Evolutionary Operator T takes the current population 65) and student 6*() and

produces a new population @fﬁl). This involves evaluating all critics using Fip 4 (-|6*())
and applying genetic operators (selection, crossover, mutation). We can write this as
®g+1) _ TE(GEZ)v 9*@)).

* The Distillation Operator T takes the current student 6*(?) and the new population
@(i-‘rl) (i+1) _

M to produce an updated student 6*(+1) 1t first identifies the best critic wam =
ALgMAX, g (i+1) Fp A(ij|9*(i)) and then performs N steps of gradient descent. Let
3=
G Dy denote this process. Then §*(+1) = T (6*(), @E;H)) = GDN(H*(i),Hf;;:B).
The full system update is SU) = (T5(SD), Tp (5@, T(51))). A fixed point S** = (677, 6"*)
of this system satisfies S** = (Tg(S**), Tp(S™*, Tr(S*))).

2. Analysis of the Distillation Fixed Point
For the student parameters to be at a fixed point, the distillation operator must cause no further
change: 6** = Tp (6**, @;’L*) This implies that the gradient of the distillation loss is zero:

vg*Esl:t—quZ:St[DKL(Q;:st(’Bl:t—l) || PF(’|51:t—1; 0**))} =0

Given that KL-divergence is non-negative and its minimum is zero, and assuming the student’s
function class is expressive enough to represent the teacher’s policy, this local minimum corresponds
to the student perfectly imitating the teacher:

Pr(81:t-1;0™") = g2 (*|S1:t—1)  V$1:t—1 in the support of g;,
This satisfies the first property of the proposition (Student-Teacher Alignment).

3. Analysis of the Evolutionary Fixed Point
For the critic population to be at a fixed point, the evolutionary operator must produce an identi-
cal population: ©7" = TE(GQ*, 6**). In a practical EA with mutation, this means the population
has converged to a stable distribution in a high-fitness region of the search space. At this equilib-
rium, the best member of the population, ¢;,, must be a (local) maximizer of the fitness function
Fpa(-|0**).

Vnees € BTG MAX (Eq, [R(s7)] = A Eq, [Drcr(ay || Pr(567))))

P

From the distillation fixed point, we know that Pr(-; 0**) = ¢;,,. Let’s analyze the fitness of 1;*,
itself. Its teachability penalty is:

A By [Drrn(qpes || Pr(5507))] = 0

yest
So, for the best critic, its own fitness simplifies to the pure reward term: Fp A(H:;j;estw**) ~
Ege- [R(sT)]-

Tpest
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Now, consider any other potential critic ¢/’. For it not to be selected over 1% , by the EA, its fitness
must be lower:

Eq [R(s7)] = A+ Eg[Dicr (' || Pr(::07))] < Eq;z, [R(s7)]

This shows that v;,, is not necessarily the critic with the absolute highest reward. Instead, it
is the critic that provides the best trade-off: any other critic ¢’ that might offer a higher reward
(Ey[R] > Egr- [R]) must be penalized by a sufficiently large teachability penalty (AD k) to make
it less fit overall. This means 1), , is the optimal reward-seeking critic within the set of critics that
are easily teachable to the converged student Pr(-;0**). This satisfies the second property of the
proposition (Constrained Optimality).

The co-evolutionary system thus converges to a self-consistent state where the teacher is optimal for
the student that has learned from it, directly solving the realization gap by making realizability a
component of the selection criteria. O
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7 COMPARATIVE ANALYSIS WITH PREDECESSOR FRAMEWORKS

7.1 IMPROVEMENT OVER DECOUPLED TE-GFN: CLOSING THE REALIZATION GAP

The advantage of DATE-GFN over a hypothetical decoupled TE-GFN can be formalized by defining
the space of realizable policies.

Definition 7.1 (e-Realizability Set). Given a student architecture parameterized by 8* € ©*, the set
of e-realizable policies Q.(©*) is the set of all policies ¢ for which there exists a student parameter-
ization * € ©* that can approximate it within an expected KL-divergence of e:

Qe(07) = {¢| 30" € O s.t. Esug[Drr(q(:|5) || Pr(-|5:07))] < €}

A decoupled TE-GFN attempts to solve for the unconstrained optimal critic:

q/}:nc = argi)nax Eqw [R(ST)]

The problem is that its induced policy, ¢,., may not be in Q.(©*) for any reasonably small e. If
¢k ¢ Qc(0%), the distillation phase is guaranteed to fail, leaving a large realization gap.

In contrast, DA-TE-GFN’s co-evolutionary process effectively solves a constrained optimization
problem:
¢:on = arg max EQw [R(ST)]
P st gy €Q(O*)
By including the teachability penalty, the fitness function guides the EA to search within the real-
izability set Q.. The converged solution 1;,, is therefore guaranteed to be one whose policy the
student can actually represent, closing the gap by design.

7.2 IMPROVEMENT OVER EVOLUTION GUIDED GFLOWNETS (EGFN)

EGFN (Ikram et al.|[2024c) is a state-of-the-art predecessor that also uses an EA. However, it suffers
from a major limitation that DATE-GFN solves: the source of the credit assignment signal.

1. Different Evolutionary Search Spaces:

* EGFN: Evolves a population of GFlowNet policies directly. The EA operates on the stu-
dent parameters {07 }. The fitness is simply F'(¢}) = EsornPr(:07) [R(sT)]-

* DATE-GFN: Evolves a population of critics {6, }. The EA operates in the space of value
functions, which can be a smoother and more structured space than the policy parameter
space.

2. Fundamentally Different Learning Signals (Variance Analysis): The most critical difference
lies in how the final GFlowNet policy is trained.

* In EGFN, the best policies found by the EA are used to populate a replay buffer. A single
GFlowNet agent is then trained on these trajectories using a standard GFlowNet objective,
typically Trajectory Balance (TB) (Malkin et al., 2022c). The TB loss for a trajectory
T=1(80,--.,87 =x)is:

T 2
Lrp(T) = <logZ + Zlog Prp(st|s1:4—-1;0") — log R(a:))

t=1
The gradient of this loss involves a sum of log-probabilities over the entire trajectory:

T
Vo-Lrp(r) o< (-..) > V- log Pr(si]s14-150%)
t=1
The variance of this gradient estimator is known to be high, especially for long horizons
(T > 1). The sum involves many stochastic decisions, and the terminal reward R(z) must
be credited back through this long chain. This is a classic high-variance credit assignment
problem, which EGFN mitigates but does not solve.
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¢ In DATE-GFN, the GFlowNet is trained via distillation from a teacher critic. The loss is:

Laisit = Esy., 1 ~oqpest (DKL (@best(|51:6-1) || PR(-|S1:4—1;07))]

The gradient is taken with respect to a single-step, local objective:

Vo Laisit = Es,., 1 ~gene [Vor Dr L (@vest (-|51:6—1) || Pr(-[s1:4—1;07))]

Here, the learning signal is a dense, per-state target distribution gpes:. The reward infor-
mation has already been "compiled" into this target by the critic. The student’s task is a
low-variance, supervised learning problem at each state. There is no propagation of credit
through a long trajectory required during the student’s update.

Proposition 7.2 (Variance Reduction). The variance of the gradient estimator for the student in
DA-TE-GFN is significantly lower than that in EGFN (using TB), particularly for long-horizon
problems.

Proof Sketch. The proof relies on comparing the structure of the gradient estimators.

* EGFN (via TB): The gradient estimator for a trajectory 7 is:

T T
Vo Lop(T) x <log Z + Zlog Pr —log R(x)) . Z Vo~ log Pr(st|st—1)

t=1 t=1

Scalar error shared across all steps Sum over long, stochastic trajectory

The variance of this estimator scales with the trajectory length 7', as the sum accumulates
noise from each stochastic action choice.

* DATE-GFN (via Distillation): The gradient estimator for a state s;_1 is:

Vo« Laisiin (5t—1) = Vor Dicr (qvest (-|5¢—1) || Pr(-|si=150%))

This is a local, single-step, supervised objective. The reward information is pre-compiled
into the dense target policy gpes:. The variance of the gradient depends on the stochastic
sampling of states, but not on a product of probabilities over time. This structure fundamen-
tally breaks the temporal credit assignment problem into a series of low-variance, per-state
imitation problems, analogous to the variance reduction in actor-critic methods.

7.3 ANALYSIS OF OPTIMALITY: IDEALIZED VS. REALIZABLE GOALS

It is crucial to distinguish the practical, constrained optimality achieved by DATE-GFN from the
idealized, unconstrained optimality that a decoupled framework like TE-GFN would target. The
ultimate theoretical goal for any GFlowNet framework is perfect reward-proportional sampling. This
can be stated formally:

Proposition 7.3. (Optimality of the Idealized Teacher-Student Framework) If one could find the
optimal twist function 1} for all t and if a student GFlowNet could perfectly learn its induced policy,
then the resulting policy Pj.(x) would sample proportionally to the reward R(x).

A decoupled framework like TE-GFN implicitly assumes this is achievable. It performs an uncon-
strained search for 1*, assuming the student can perfectly realize the resulting policy. This is an
idealistic goal that ignores the practical limitations of the student model.

7.3.1 THE REALIZABLE OPTIMUM: DATE-GFN’S PRACTICAL ACHIEVEMENT

DATE-GFN does not seek this unconstrained optimum directly. Instead, it solves for the best critic
whose policy is realizable by the student. We can formalize this with the notion of a realizability
set.
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Definition 7.4 (e-Realizability Set). Given a student architecture parameterized by 6* € ©*, the set
of e-realizable policies Q.(©*) is the set of all policies ¢ for which there exists a student parameter-
ization that can approximate it within an expected KL-divergence of e:

Qe(0%) ={q [ 30" € ©" s.t. Esny[Drr(q(|s) [| Pr(-[s;67))] < e}

Using this definition, we can see the fundamental difference in the optimization problems being
solved:

* Decoupled TE-GFN (Implicitly Solves): maxy, E,, [R(s7)]. The problem is that the
optimal solution ¢* might induce a policy gy« ¢ Q.(0*), leading to a large realization
gap.

* DATE-GFN (Effectively Solves): maxy s 4,co.(©+) Eq, [R(s7)]. The distillation-aware
fitness function constrains the evolutionary search to the set of realizable policies.

In essence, DATE-GFN is smarter. It understands that the best destination is not the highest peak
on the map, but the highest peak that this particular climber can actually reach. By solving this
grounded, constrained optimization problem, DATE-GFN finds a robust, practical, and truly optimal
solution for the given student-teacher system.

Remark (A Tale of Two Optima: Unconstrained vs. Realizable Goals). It is crucial to remark
upon the fundamental distinction between the optimality sought by our co-evolutionary DATE-
GFN and that of a decoupled framework. A decoupled approach implicitly attempts to solve the
unconstrained optimization problem argmax, LEOy R(0y), where R(0y) is the pure reward ob-
jective. This search for a globally optimal critic is predicated on the strong, often violated, as-
sumption that its induced policy gy~ will reside within the student’s e-realizability set, Q.(0O*).
If gy« ¢ Q.(©*), a "realization gap" is inevitable, and the system’s performance will be sub-
optimal regardless of the teacher’s quality. Our DATE-GFN framework, by contrast, recasts this
into a more practical, constrained optimization problem. The distillation-aware fitness function,
Fpa = R(0y) — AL(0y,0%), acts as a dynamic regularizer that effectively constrains the evolu-
tionary search to this realizable set. Consequently, DATE-GFN does not seek an abstract, globally
optimal critic, but rather the optimal realizable critic for the given student architecture, i.e., the solu-
tion to argmaxy g q,€0.(6+) R(0y). This guarantees a self-consistent solution where the teacher
is optimal for the student that has learned from it, closing the realization gap by design and leading
to a fundamentally more robust and stable training dynamic. For a more formal treatment of this
trade-off is expanded in the Appendix [§]below.

8 THEORETICAL DISCUSSION: A TALE OF TWO OPTIMA

A critical contribution of the Distillation-Aware Twisted Evolutionary GFlowNet (DATE-GFN)
framework lies not just in its algorithmic structure, but in the fundamental re-framing of the op-
timization objective itself. While a decoupled framework (which we will refer to as TE-GFN for
clarity) and DATE-GFN share the same ultimate theoretical goal—perfect reward-proportional sam-
pling—the nature of the optimality they pursue and can practically achieve is profoundly different.
This section provides a formal mathematical treatment of this distinction, contrasting the uncon-
strained, idealistic optimum of TE-GFN with the constrained, realizable optimum of DATE-GFN.

8.1 FORMAL PRELIMINARIES
Let us first define the search spaces and objectives.

* Let ©, be the parameter space for the critic (twist function) networks, 9(+; 6, ), where
Gw € @w.
* Let ©* be the parameter space for the student GFlowNet policy, Pg(+; 0*), where 8* € ©*.

* The reward objective for any critic is the expected terminal reward of trajectories sampled
under its induced policy qy: R(0y) = Egy 1ng, [R(s7)]-

* The distillation objective for a student learning from a teacher critic ¢ is the expected KL-
divergence: L(0y, 07) = Eswq, [Drr(qu(-[s) [| Pr(-[s;67))].
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8.2 THE UNCONSTRAINED OPTIMUM OF A DECOUPLED TE-GFN
A decoupled TE-GFN framework operates as a two-stage, sequential optimization process.

1. Phase 1 - Critic Optimization: The evolutionary algorithm performs an unconstrained
search for the critic that globally maximizes the reward objective. It seeks to find:
0y, = argmax R(0y) 4
0,EOy,
This search is idealistic; it operates under the implicit assumption that the resulting teacher
policy, g+, can be perfectly learned by the student in the next phase.

2. Phase 2 - Student Optimization: The student GFlowNet then performs its own optimiza-
tion, seeking to find the parameters that best mimic the teacher found in Phase 1. It solves:

0" = argmin £(0y,,0%) 5)
0*co*

The "optimality" of this decoupled framework is thus a composite of two separate, potentially in-
compatible optima. The framework is only successful if the solution to Eq. equation [3] results in a
near-zero loss, meaning the student can perfectly realize the teacher’s policy.

8.3 THE REALIZATION GAP: A FORMAL DEFINITION

The critical flaw in the decoupled approach is the realization gap, which arises when the optimal
critic from Phase 1 induces a policy that the student architecture cannot represent. We can formalize
this concept.

Definition 8.1 (e-Realizability Set). Given a student architecture family parameterized by 8* € O,

the set of e-realizable policies O.(©*) is the set of all policies ¢ for which there exists at least one
student parameterization 6* € ©* that can approximate g within an average KL-divergence of e:

Q.(0") = {a| ,inf £(6,0%) < ¢}

where ¢, = ¢. The set Qy(0™) represents all policies perfectly representable by the student archi-
tecture.

The realization gap is precisely the problem that the unconstrained optimal teacher policy, g~ where
9% is the solution to Eq. equation (4] may not be in the realizability set for any reasonably small e.
T

at is:
Qo ¢ QE(G*)
If this occurs, the distillation in Phase 2 is guaranteed to fail, as ming- L(QZ, 0*) > e. The final
student performance will be poor, not because the teacher was bad, but because it was unteachable.

8.4 THE CONSTRAINED, REALIZABLE OPTIMUM OF DATE-GFN

DATE-GFN does not seek the unconstrained optimum of Eq. equation4] Instead, its co-evolutionary
dynamic, driven by the distillation-aware fitness function, implicitly solves a different, more practi-
cal, constrained optimization problem.

The fitness function, Fp4(0y]0*) = R(0y) — A - L(0y,0%), guides the evolutionary search. The
term —\-L£(0y, 0" ) acts as a soft constraint, penalizing critics whose policies are far from the current
student’s policy. As the system converges to its equilibrium (9;;*, 6**), this process effectively finds
a solution to the following problem:

maximize R (60
aximi: (0y) ©
subject to gy € Qp(OF)

The fixed-point analysis of the co-evolutionary system (Proposition 1) shows that the equilibrium
state (6", 6**) is one where the student has converged to the teacher (qy«~ ~ Pp(-;0™"), meaning

qy+ € Qo(©*)) and this teacher is the one that maximizes the reward objective from within this set
of realizable policies.
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8.5 IMPLICATIONS OF THE DIFFERENCE IN OPTIMALITY
This distinction is not merely a theoretical subtlety; it has profound practical implications.

* Robustness: The DATE-GFN framework is inherently more robust. It is guaranteed to con-
verge to a solution that the student can actually execute. The decoupled TE-GFN is brittle;
its success is contingent on the unconstrained optimal teacher happening to be learnable.

* Stability: By constraining the search, DATE-GFN ensures that the sequence of teachers
presented to the student changes smoothly. A new, better teacher is always in a learnable
vicinity of the current student. This prevents the large, high-variance gradients that would
occur if the student were suddenly asked to imitate a radically different policy, leading to
more stable training.

* True System Optimization: DATE-GFN optimizes the performance of the entire student-

teacher system. A decoupled approach optimizes each component in isolation, which is not
guaranteed to optimize the system as a whole.

While both frameworks aim for the same idealized goal, DATE-GFN’s formulation is a significant
conceptual advance. It acknowledges the practical constraints of a finite-capacity student and inte-
grates them directly into the optimization objective for the teacher. This leads to a more practical,
robust, and ultimately more effective notion of optimality: finding the best possible critic that our
student is actually capable of learning from.

9 PROOF OF OPTIMALITY FOR TE-GFN (DATE-GFN WITH A = 0)

We work on the canonical path space (T, .F) of finite trajectories 7 = (sq, ..., sr) in a directed
acyclic composition graph with fixed initial state sq. Let pg be a Markov base proposal on 7 induced
by kernels po(si+1 | So.¢) that are strictly positive on feasible transitions (absolute continuity).
Denote by 1o the probability measure on (7, F) with density

T-1
dpo(r) = Gsy(s0) [] po(sian | s0:0) dA(T),

t=0

where d, fixes the start state and ) is any reference measure on 7 (e.g., counting). Let 2(7) := sp
be the terminal state map and let R : X — R>( be a measurable, integrable reward. Define the base
path mass to each terminal x as

k(z) == po({r €T :2(r) =a}) = Z po(T), assumed finite and strictly positive for all z € X.
Tix(T)=x

We construct a target path measure o on (7, F) whose terminal pushforward coincides with the
desired GFlowNet objective p*(z) o< R(x). Precisely, define the terminally corrected potential

_ R(z()) _ N B@)
d(r) = =)’ Z = /T@(T) duo(r) = ; o) K(z) = ;{R(@ 7
and the target measure o by the Radon—Nikodym derivative

do 1 o 1 R(z(r))

—_— = = 7 8
an” = 27 = 2 ) ®
By construction, the pushforward of o through xz(-) is
1 R(z) R(x) po({7:a(r) =2}) _ R(x)
olz(r) =2) = / - o (1) = = ,
( ) {riz(r)=x} zZ ’{(x) Z K:(J") zZ
so the terminal distribution under o is exactly proportional to R.
For each prefix sg.;, define the optimal twist (Doob h—transform) by the conditional potential
R(z)
w:(SOi) = ENOI:(P(T) ’ SO:t} = E5t+1:T"‘p0("50:t) I:K(‘T):l (9)
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which is measurable and finite by integrability of R and positivity of the kernels. The twisted
one—step kernel at a prefix sg.;—1 is the probability kernel

Po(s¢ | S0:6—1) ¥F (S0:¢)
(8¢ ] S0:4—1) = , (10
(e sou1) = 51T s04-1) B (s0a-1,5)

well-defined due to strict positivity of py on feasible transitions and 17 > 0.

For clarity, we first restate the theorem before presenting the proof. * Suppose (i) the evolutionary
phase returns * = {;}L | as in equation@ and (ii) the distillation phase yields a GFlowNet
policy Pr(- | so:t—1;6*) satisfying Pr (- | so:t—1;6%) = gy~ (- | S0:t—1) for o-almost every prefix.
Then the induced path measure of the GFlowNet coincides with ¢, and its terminal marginal satisfies
Pr(z) = R(x)/Z.

Proof. Fixany t € {1,...,T} and any prefix so.;_; in the support of o. Consider the joint density
with respect to A

V7 (s0:t)

sy | S0:—1) ¥F (So:—1, %)

PolSo:t—1 Q= \St | So:t—1) = PolSo:
(so:t-1) Gy (st | s0:6-1) ( t)Zs;po(
IT1525 Po(sutalso:u)
By the law of total expectation under py,
ZPO(SQ | SOit*I)wz((sOthlﬂsg) = ]EStNPO(“SO:t—l)[]E5t+1:T~p0 [CI)(T) | SOItH = ESt:TNPO("SO:t—l)[(D(T)]'
st

Hence
pO(SO:t) ESt+1:T~pO[®(T) | SOZt]
E O(7)] ’

On the other hand, the c—marginal and conditional at time ¢ satisfy

PO(SO:tq)Qw*(St | S0:t—1) =

St:T"’PO(‘lSO:t—l)[

1 1
o(sot) = /1{56:t = S0t} 7 (P(T/) dNO(T/) = ZPO(SO:t) E5t+1:T~p0[¢(T) | s0:t],

and
1

o(sou-1) = > 0(s04) = EPO(SO:t—l)]Est;T~po(~|so;t71)[‘I’(7)]~

St

Therefore,
. +) E[® | so.
o(so) _ _ polso:e) E[® [ so] g (50 | S01),
o(s0:4-1) Po(80:4—1) E[® | 80:4—1]
which shows that gy« (- | so.1—1) = (- | Sp:t—1) for o—a.e. prefix. By assumption (ii) the learned
GFlowNet policy matches these conditionals. Hence, by the chain rule for conditional probabilities
on the fixed start state,

T-1 T—1
Pr(sor;0%) = [ Pr(serr | s04:6%) = [] o(sesa [ s04) = o(s0r).
=0 =0

Finally, pushing forward by the terminal map () yields Pr(z) = o(z) = R(z)/Z by the terminal
correction in equation[7}-equation 8] as claimed. O

Remark. The proof hinges on two ingredients: the Doob h—transform identity 7 (so.1) = Ep, [® |
S0:¢], which ensures that the twisted kernel matches the o—conditional, and the terminal correction
®(7) = R(x(7))/k(x(7)), which guarantees that the terminal pushforward of o is exactly R/Z
irrespective of base path multiplicities. Under these conditions, perfect distillation of the expert
conditionals implies equality of the entire path measures and hence optimal reward—proportional
sampling at the terminals.
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10 DISTILLATION-AWARE TWISTED-GFN (DATE-GFN) ALGORITHM

Algorithm 1 Distillation-Aware Twisted-GFN (DATE-GFN) Training Procedure

19:
20:
21:

: Require: Base policy py, reward function R(x), population size k, number of generations G,

student updates per generation N, teachability weight A.
Initialize population of twist function critics {6y, ,...,0y,} and student GFlowNet 6* ran-
domly.
for gen = 1to G do
// Evolutionary Phase: Evolve critics based on the current student
for j = 1to k do
Evaluate fitness F'p 4 (6., |0*) using Eq. equation This involves:
a) Sampling trajectories from the critic’s policy g; to estimate the reward term.
b) At each step of the sampling, computing the KL penalty w.r.t. the fixed student
Pr(07).
end for
Select parent critics and generate new offspring {%j} via crossover and mutation.
Replace the lowest-fitness individuals in the population with the new offspring.

// Distillation Phase: Update student based on the best new critic

Oy, < argmax; Fpa(fy,|0) from the current population.

fort =1to N do
Sample a batch of partial trajectories s1.4—1 (e.g., by running the teacher qpcs¢)-
Compute the teacher’s action distribution gpest (+|$1:4/—1)-
Update student parameters 0* by taking a gradient step on the loss:

Laisin(07) = D (qvest (-|51:00=1) || Pr(-|s1:0=1;6))

end for
end for
return Optimized GFlowNet parameters 6*.
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11 DETAILED EXPERIMENTS AND IMPLEMENTATIONS SETUP

11.1 IMPLEMENTATION DETAILS

Shared Hyperparameters. Unless otherwise specified, all experiments use the Adam optimizer
with a learning rate of 5 x 10~ for the student GFlowNet and 1 x 10~* for the critic population. The
evolutionary algorithm maintains a population of k = 50 critics, using tournament selection (size
4), polynomial mutation (probability 0.1), and single-point crossover (probability 0.8). All MLP
models consist of 3 layers with 256 hidden dimensions and LeakyReLU activation functions.

Amortized Co-Evolution (Table[3). This ablation study was performed on the Hypergrid bench-
mark. The baseline DATE-GFN corresponds to a critic re-evaluation fraction p = 1.0 and a student
update frequency of M = 1. The amortized configurations are ablated as shown in the table.

Adaptive Teachability (Table[d). This study was conducted on the antibody sequence optimiza-
tion task. For the Adaptive controller, we set the adaptation learning rate to & = 0.05 and the target
distillation 1oss to Liager = 0.2. The initial value for the controller was set to A9 = 0.1. The fixed
baselines were run with the specified constant values of A.

Molecular Scalability (Table[5). For the SEH binder generation experiments, we use a fixed teach-
ability parameter of A = 0.15 for DATE-GFN, determined from the adaptive controller’s conver-
gence point. The student and critic models are built upon a sophisticated MPNN backbone, fol-
lowing prior work Bengio et al.|(2021a), which consists of a 10-layer graph convolution with GRU
updates. The final policy and value heads are 3-layer MLPs with 256 hidden dimensions. Consistent
with the benchmark setup, we use a reward exponent of 5 = 10 and a normalizing constant of 8 for
the GFlowNet reward function. The minibatch size is 4.

Computational Environment and Runtimes. All experiments were conducted on a server
equipped with an NVIDIA A100 GPU (40GB), a 24-core Intel Xeon Gold CPU, and 256 GB of
RAM. Our implementation is based on PyTorch 2.0 with CUDA 11.8. The baseline Hypergrid ex-
periments for the amortization study required approximately 12 hours per run. Notably, our most
efficient amortized configuration completed in just over 7 hours, validating the significant computa-
tional savings of this approach.

11.2 DETAILED METRICS DESCRIPTIONS

Our evaluation employs a comprehensive suite of metrics designed to rigorously assess perfor-
mance across distributional accuracy, exploration efficiency, and the specific mechanisms of our
co-evolutionary framework.

Core Performance Metrics Let Py(z) be the empirical distribution of terminal states generated
by amodel 6, and let P*(x) = R(x)/ ., R(z') be the true reward-proportional target distribution.
Let M be the set of 2 high-reward modes.

Relative /; error (|) Measures the total variation distance between the learned and target distri-
butions, quantifying distributional accuracy. Lower is better.

1
Rel. ¢ = 5 Z |P9(1‘) —P*(CC)‘
rzeEX

Modes Discovered (1) Counts the number of distinct high-reward modes for which the learned

policy assigns a probability mass exceeding a minimal threshold. This measures exploration breadth.
Higher is better.

Modes = |[{ m € M | Z Py(x) >0

2 Eneighborhood(m)
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Mode Efficiency (1) Normalizes the number of modes discovered by the total number of critic
fitness evaluations (a proxy for computational cost), rewarding sample-efficient exploration. Higher
is better.

Modes Discovered

Mode Eff. =
ode (Total Critic Evaluations/1000)

Diversity (f) Measures the average pairwise Hamming distance between a batch of N generated
samples, assessing the variety of solutions. Higher is better.

1

Diversity = —————
N(N —-1)/2

Z HammingDistance(x;, ;)
i<j

Ablation and Mechanism Validation Metrics These metrics are designed to provide a quantita-
tive analysis of the internal dynamics of the DATE-GFN framework as a function of the teachability
weight A.

Credit Variance (|) Measures the variance of the student’s distillation loss over a recent window
of training steps. This is a direct proxy for the stability of the credit assignment signal provided by
the teacher critic. Lower values indicate a more stable, lower-variance learning signal.

Credit Var. = Var[Laisin] = E[(Laistin — E[Laistn])?]

where Laisin = D 1.(Qvest||Pr)-

Gap Acceptance (1) An empirical measure of the realization gap. It is the probability that the
distillation loss for a newly chosen teacher is below a certain capacity threshold 7, representing
successful knowledge transfer. Higher values indicate better student-teacher alignment.

Gap Accept. = P(L(8y,..,,0") <)

Gap Ratio (]) Quantifies the magnitude of the realization gap, defined as the ratio of the distilla-
tion loss to the expected reward. A lower ratio indicates that the "cost of teaching" is small relative
to the performance gained, signifying an efficient and well-aligned system.

: E[£(9¢b ; ’9*)]
Gap Ratio = ———2=> =
E[R(ed)best )]

11.3 THE HYPERGRID CHALLENGE AND MODE EFFICIENCY FRAMEWORK

The Hypergrid environment captures essential difficulties motivating DATE-GFN’s design. This D-
dimensional grid world of side length H presents agents with navigation tasks concealing profound
credit assignment and exploration challenges. The environment contains H” possible terminal
states, but only 27 represent high-reward modes, creating exponentially sparse reward landscapes
where successful policies must discover and efficiently sample from tiny state space fractions.

The reward function R(z) = Ry + 25:1 1{zy € B¥V U Bgigh} - A creates narrowly localized
high-reward regions at dimension extremes. The base reward R determines sparsity level, with
smaller values creating extreme contrasts between modes and non-modes. In our most challenging
setting (Ry = 10™?), reward differentials span five orders of magnitude, creating landscapes where
random exploration virtually guarantees failure.

To quantify DATE-GFN’s efficiency in discovering diverse high-reward regions, we introduce the
mode efficiency metric:
| Mdiscovered (t) |
t =
timoae(F) = ) 71000 + 1

Y

This captures the tension between exploration breadth and computational efficiency. The numerator
quantifies diversity of high-reward regions discovered by time ¢, while the denominator incorporates
cumulative critic evaluations, scaled for interpretable values. This metric rewards both exploration
success and computational parsimony, revealing distinctions between methods appearing similar
under traditional criteria.
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Our experimental protocol ensures rigorous comparison: all methods share identical computational
budgets (wall-clock time matched within 5%), standardized model architectures (3-layer MLPs, 256
hidden units, ReLLU activations), and 8 random seeds.

11.4 REGIME DYNAMICS AND THE TEACHABILITY PARAMETER

The teachability parameter A represents DATE-GFN’s most important theoretical innovation, pro-
viding principled mechanisms balancing reward maximization against teachability constraints. Our
analysis reveals this parameter governs system behavior through three distinct operational regimes,
each characterized by fundamentally different teacher-student dynamics.

The mathematical foundation lies in the teachability cost component: Cieqcn (6, A) = A-L(6,,0%) =
A - KL[pg, ||pe+], representing penalties for maintaining critics whose policies diverge significantly
from current student policies. The total fitness landscape Fyotqi(0c, A) = R(6.) — AL(0.., 6*) bal-
ances discovery potential against teachability cost.

Through systematic analysis of A € {0.0,0.01,0.1, 0.5, 1.0}, we observe three critical regimes. The
under-constrained regime (A < 0.05) corresponds to pure reward optimization focusing entirely
on high-performing critics without teachability consideration, often producing critics too complex
for effective distillation, leading to large realization gaps. The optimal balance regime (0.05 <
A < 0.15) achieves best performance where teachability constraints provide sufficient regularization
keeping critics within student learning capacity while maintaining evolutionary pressure driving
high-reward region discovery. The over-constrained regime (A > 0.15) demonstrates excessive
teachability constraint dangers, sacrificing exploration capability for conservative behavior missing
novel discoveries.

Our experimental results provide comprehensive empirical validation that contrasts between un-
constrained, idealistic optimization and constrained, realizable optimization. This "Tale of Two
Optima" embodies fundamental shifts in conceptualizing optimization problems in teacher-student
learning systems. DATE-GFN’s distillation-aware fitness function implicitly solves constrained op-
timization: maxg_co, R(f.) subject to 6. € Q.(O*), where Q. (O*) represents realizable policies
learnable by students within reasonable KL-divergence bounds. Empirical evidence emerges from
ablation studies: 67.2% reduction in teacher-student divergence compared to unconstrained TE-
GFN demonstrates constraining teacher search spaces yields superior practical performance. Table 2]
shows A = 0 exhibits 3x higher credit assignment variance and significantly lower training stability
compared to optimal A = 0.1.
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Figure 4: (Hypergrid) Exploration-exploitation dynamics under teachability control. (a) Ex-
ploration rate modulation through A parameter adjustment. (b) Exploration scores demonstrating
DATE-GFN’s superior discovery capabilities. (c) Exploitation efficiency showing effective utiliza-
tion of discovered knowledge. (d) Mode discovery as a function of )\, revealing optimal parameter
ranges. (e) Exploration-exploitation trade-off curves illustrating the principled control mechanism.
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Figure 5: (Hypergrid) Mode collapse mitigation through dynamic escape mechanisms. (a)
Dominant mode fraction over time showing DATE-GFN’s resistance to premature convergence com-
pared to baseline methods. (b) Diversity retention curves demonstrating 1.875% longer preservation
of population heterogeneity through the theoretical escape condition.
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Figure 6: (Hypergrid) Scalability analysis across problem complexities. Top row: L1 error
performance on (a) small, (b) medium, and (c) large problems showing consistent 76-79% improve-
ments. Middle row: Mode discovery on (d) small, (¢) medium, and (f) large problems demonstrating
54-65% advantages that increase with complexity.
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11.5 SoLUBLE EPOXY HYDROLASE (SEH) BINDER GENERATION.

To demonstrate the scalability and practical utility of DATE-GFN, we adopt the challenging SEH
binder generation task, a benchmark for de novo drug design. The objective is to generate novel,
high-affinity molecules for the sEH protein, a significant therapeutic target. Following established
protocols (Bengio et al.[(2021al),|Pan et al.[(2023a))), molecules are constructed sequentially as graph
structures from a vocabulary of 72 chemical blocks, using a junction tree modeling approach. This
sequential process, with trajectories of up to 8 blocks, in a vast state space (|X'| ~ 10%), combined
with a sparse terminal reward signal—a proxy for binding energy—creates a severe long-horizon
credit assignment problem. Furthermore, the task explicitly requires diverse solutions, with a ’'mode’
defined as a molecule with a reward > 7.5 and Tanimoto similarity < 0.7 to other modes. The state-
of-the-art architecture for this task is a sophisticated Message Passing Neural Network (MPNN).
This high-capacity model makes the realization gap a critical concern. Therefore, we instantiate
our framework by using MPNN-based models for both the student GFlowNet and the population of
critic value functions. This allows the evolutionary search for teachable, high-value critics to oper-
ate directly in the relevant function space of graph-based chemical intuition. This setup provides an
ideal and rigorous testbed, as it simultaneously evaluates DATE-GFN’s ability to solve the credit as-
signment problem, manage the realization gap in complex models, and enhance the core GFlowNet
objective of diverse mode discovery.

Table 5: Performance scaling on the sEH binder task. Each row represents a method’s performance
at a specific maximum molecule size. The results clearly show DATE-GFN’s superior performance,
lower variance, and better mode discovery, with its advantages widening as problem complexity
increases.

Method Max Atoms  Avg. Top-K Reward T Reward Std. Dev. | Modes Discovered (#) 1
GFN (TB) 10 0.73 £ 0.04 0.08 125 £ 15
EGFN 10 0.78 + 0.03 0.06 180 + 20
DATE-GFN 10 0.85 + 0.02 0.03 270 £25
GFN (TB) 15 0.68 + 0.05 0.11 95 + 18
EGFN 15 0.75 £ 0.04 0.09 155+ 22
DATE-GFN 15 0.83 + 0.02 0.04 255 +£28
GFN (TB) 25 0.55 £ 0.08 0.19 35+ 15
EGFN 25 0.66 + 0.06 0.14 90 + 28
DATE-GFN 25 0.78 = 0.03 0.06 210 +£ 32
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Figure 7: Comprehensive method comparison via kernel density estimation across molecular com-
plexity levels. Top row: Top-K reward distributions showing DATE-GFN’s superior performance
with minimal variance across all complexity levels (10, 15, 25 max atoms). Middle row: Mode
discovery distributions demonstrating DATE-GFN’s ability to identify 2-3x more diverse molecular
structures than baseline methods. Bottom row: Trajectory length distributions revealing DATE-
GFN’s computational efficiency, requiring 2-3x fewer generation steps while maintaining supe-
rior performance. DATE-GFN consistently dominates all three metrics with narrow, optimally-
positioned distributions, validating its triple advantage of performance, diversity, and efficiency in
the sEH binder optimization task.
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