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ABSTRACT

In the adversarial-perturbation problem of neural networks, an adversary starts
with a neural network model F and a point x that F classifies correctly, and ap-
plies a small perturbation to x to produce another point x′ that F classifies in-
correctly. In this paper, we propose taking into account the inherent confidence
information produced by models when studying adversarial perturbations, where
a natural measure of “confidence” is ‖F (x)‖∞ (i.e. how confident F is about its
prediction?). Motivated by a thought experiment based on the manifold assump-
tion, we propose a “goodness property” of models which states that confident
regions of a good model should be well separated. We give formalizations of this
property and examine existing robust training objectives in view of them. Interest-
ingly, we find that a recent objective by Madry et al. encourages training a model
that satisfies well our formal version of the goodness property, but has a weak con-
trol of points that are wrong but with low confidence. However, if Madry et al.’s
model is indeed a good solution to their objective, then good and bad points are
now distinguishable and we can try to embed uncertain points back to the closest
confident region to get (hopefully) correct predictions. We thus propose embed-
ding objectives and algorithms, and perform an empirical study using this method.
Our experimental results are encouraging: Madry et al.’s model wrapped with our
embedding procedure achieves almost perfect success rate in defending against
attacks that the base model fails on, while retaining good generalization behavior.

1 INTRODUCTION

In the adversarial perturbation problem of neural networks, an adversary starts with a neural network
model F and a point x that F classifies correctly (we assume that F ends with a softmax layer,
which is common in the literature), and applies a small perturbation to x to produce another point
x′ that F classifies incorrectly. Szegedy et al. (2013) first noticed the vulnerability of existing
(deep) neural networks to adversarial perturbations, which is a somewhat surprising phenomenon
given the great generalization capability of these networks. Since then, a line of research (see, for
example, Goodfellow et al. (2014); Papernot et al. (2016b); Miyato et al. (2017); Madry et al. (2017))
has been devoted to harden neural networks against adversarial perturbation. However, while modest
progress has been made, until now there is still a large gap in successfully defending against more
advanced attacks, such as attack by Carlini & Wagner (2017).

In this paper, we propose taking into account the inherent confidence information produced by
models when studying adversarial perturbations. To this end, a natural measure of confidence is
‖F (x)‖∞ (i.e., how confident F is about its prediction?) We motivate this consideration with a
thought experiment based on the manifold assumption (Zhu & Goldberg (2009); man) that is com-
monly made in unsupervised and semi-supervised learning, which states that natural data points lie
on (or near to) separate low dimensional manifolds for different classes. Essentially, if one believes
that deep neural networks learn to approximate well these low dimensional manifolds, then an ideal
model should have the property that it can confidently distinguish points from natural manifolds as
they are well separated due to the assumption. Moreover, since the learner never sees points that are
far away from the natural manifolds, an ideal model should not claim confidence there.

Taking this perspective, we propose a goodness property which states that confident regions of a
good model should be well separated. We give formalizations of this property and examine existing
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robust training objectives in view of them. Interestingly, we find that a recent objective function
by Madry et al. (2017) encourages training a model that satisfies well our formal version of the
goodness property, in the sense that high-confidence predictions of different classes are well sepa-
rated. On the other hand, our analysis also indicates that there could be many points with wrong
but low-confidence predictions. Therefore, if Madry et al.’s model is indeed a good solution to their
objective, then we can distinguish between good and bad points with confidence, and try to embed
a low-confidence point back to confident regions to get (hopefully) the correct prediction.

We propose two embedding objectives: (1) δ-Most Confident Neighbor (MCNδ), where MCNδ(F,x) =
arg maxz∈N(x,δ) ‖F (z)‖∞ for a point x, a radius parameter δ > 0, andN(x, δ) the δ-neighborhood
around x. (2) p-Nearest Confident Neighbor (NCNp), where NCNp(F,x) = arg minz ‖z− x‖ subject
to ‖F (z)‖∞ ≥ p, for a point x and a confidence parameter p ∈ (0, 1). With these, the end to end
predictions become F (MCNδ(F, x)) and F (NCNp(F, x)). We note that these objectives are semantic:
They fail only when the model has a confident but wrong prediction in the neighborhood.

We perform an empirical study over CIFAR10. We first empirically validate that Madry et al.’s
model is better, in view of our goodness property, than models trained without a robustness objec-
tive. We then give end-to-end defense results based on our method. Specifically, we propose using
gradient based optimization, such as Carlini-Wagner attacks Carlini & Wagner (2017) (which, how-
ever, are now used for defense) to solve MCNδ or NCNp. Our empirical results are encouraging: (1)
It achieves almost perfect success rate in defending against attacks that the base model fails on, and
(2) It also retains the good generalization behavior of the base model.

The rest of the paper is organized as follows: We first discuss important prior work in Section 2
and some preliminaries in Section 3. Then Section 4 proposes the goodness property, and examines
Madry et al.’s robust training objective function in view of the property. We then present embedding
objectives and algorithms for handling low-confidence points in Section 5. Section 6 performs
an empirical study where we validate that Madry et al.’s robust model satisfies well our goodness
property, and then give defense results for our technique. Section 7 concludes with discussions on
implications of our method.

2 PRIOR WORK

Szegedy et al. (2013) first observed the susceptibility of deep neural networks to adversarial pertur-
bations. Since then, a large body of work have been devoted to studying hardening neural networks
for this problem (a subset of work in this direction is Goodfellow et al. (2014); Papernot et al.
(2016b); Miyato et al. (2017)). Simultaneously, another line of work have been devoted to devise
more effective or efficient attacks (a small set of work in this direction is Moosavi-Dezfooli et al.
(2016); Papernot et al. (2016a); Carlini & Wagner (2017)). Unfortunately, there still seems to be
a large gap for the defense methods to defend against more sophisticated attacks, such as Carlini-
Wagner attacks Carlini & Wagner (2017). For example, while the recent robust residual network
constructed by Madry et al. (2017) achieves encouraging robustness results on MNIST, on CIFAR10
the accuracy against a strong adversary, such as attacks by Carlini & Wagner (2017), can be as low
as 45.8%.

A dominant defense approach is to add to the training objective function an appropriate robustness
component to improve robustness of the resulting model. Our method is fundamentally different
and tries to complement training-based method by exploiting fundamental structures a model has
learned. Our method has some remote similarities with a recent proposal by Lu et al. (2017), which
tries to exploit features deep in the network (that is “semantics” of a model) to detect adversarial
examples. However, beyond detecting adversarial attacks, our work takes a step further to compute
correct prediction on the adversarial examples.

Our work is inspired by a recent line of research which demonstrates that neural networks are effec-
tive devices to represent low dimensional manifold data (for example, Rifai et al. (2011); Shaham
et al. (2015); Basri & Jacobs (2016)). Specifically, in Basri & Jacobs (2016), the authors studied a
specific type of manifolds called monotonic chains. They showed that neural networks can effec-
tively represent data that both fall on, and near the manifolds (see “Section 4. Error Analysis” of
the corresponding paper). While their network is not trained but is specifically constructed to fit
the data, we believe that it has provided evidence that deep networks can extract intrinsic geometric
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structures. To this end, one may interpret our work as arguing that if manifold assumption indeed
holds, and the model approximates natural manifolds well, then it may not be surprising to see the
coexistence of good generalization and adversarial perturbations. In particular, one may expect to
see many wrong predictions though with low confidence.

3 PRELIMINARIES

As in existing work, such as Carlini & Wagner (2017); Papernot et al. (2016b), we define F to be a
neural network after the softmax layer. With this notation, the final classification is then CF (x) =
arg maxi F (x)i where F (x)i gives the confidence of the network in classifying x for class i. We
use Z(x) to denote part of F except the softmax layer. That is, Z(x) computes the logits to be
fed into the softmax function. We use C to denote the class of all labels. We need the following
definitions:
Definition 1 (p-confident point and p-confident region). Let p ∈ [0, 1] be a parameter, F be a model,
and l ∈ C. A point x is p-confident for label l if F (x)l ≥ p. Further, the p-confident region of F for
label l isMp

l = {x | F (x)l ≥ p}. That isMl is the set of points where F has confidence at least p
for label l.
Definition 2. Let d(·, ·) be a distance metric between points, andM1,M2 be two sets of points, the
distance betweenM1 andM2, d(M1,M2) is defined to be d(M1,M2) = infx∈M1,y∈M2

d(x, y).

For example, a common distance metric used in studying adversarial perturbations is d(x, y) =
‖x − y‖∞ where ‖ · ‖∞ is the infinity norm of a vector. Therefore d(M1,M2) is the infimum of
‖x− y‖∞ for x ∈M1, y ∈M2.
Definition 3 (Cross entropy). Let p, q be two discrete probability distributions, the cross entropy
between p, q is H(p, q) = −

∑
i pi log qi, where the log is base 2.

4 GOODNESS PROPERTY AND MADRY ET AL.’S OBJECTIVE

This section develops our main arguments. In particular:

• We propose a goodness property of models which states that confident regions of a good
model should be well separated.

• We examine existing robust training objectives and demonstrate that an objective function
of Madry et al. (2017) encourages very good separation for p-confident points with large p,
but has a weak control of points that are wrong but with low confidence.

Goodness Property. Manifold assumption in unsupervised and semi-supervised learning states that
natural data points lie on (or near to) separate low dimensional manifolds for different classes. Under
this assumption what would an ideal model look like? Clearly, we would expect that an ideal model
can confidently classify points from the manifolds, while not claiming confidence for points that are
far away from those manifold. Therefore, we propose the following goodness property

Confident regions of a good model should be well separated.

The following definition captures well-separatedness in a strict sense,
Definition 4 ((p, δ)-separation). Let p ∈ [0, 1], δ ≥ 0, and d(·, ·) be a distance metric. F is said to
have (p, δ)-separation if

inf
l 6=l′

d(Mp
l ,M

p
l′) ≥ δ

whereMp
l andMp

l′ are p-confident regions for labels l, l′, respectively.

It is also natural to consider the following probabilistic version of Definition 4,
Definition 5 ((p, q, δ)-separation). Let D be a data generating distribution, p, q ∈ [0, 1], δ ≥ 0, and
d(·, ·) be a distance metric. F is said to have (p, q, δ)-separation if

Pr
(x,y)∼D

[
(∃y′ 6= y, x′ ∈ N(x, δ)) F (x′)y′ ≥ p

]
≤ q,

where N(x, δ) = {x′ | d(x, x′) ≤ δ}.
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Note that these two definitions have some important differences: (1) Definition 4 is defined over
sets of points while Definition 5 is defined point-wise. Further, Definition 5 allows certain points to
be “bad” in the sense that they are not separated from confident points with wrong predictions. (2)
Perhaps more importantly, Definition 5 depends on the data generating distribution, but Definition 4
is solely a property of the model. We are not aware of how to train a model to satisfy Definition 4.
However, interestingly, we find that existing robust training can indeed give guarantees with respect
to Definition 5. We next give an analysis of this.

Objective function of Madry et al. (2017). We now examine objective function used in Madry et al.
(2017), and prove that it encourages training a model that satisfies Definition 5. Complementing this,
we show that their objective has a weak control of points with low-confidence but wrong predictions.
To start with, their objective function is of the form

minimize ρ(θ),where ρ(θ) = E
(x,y)∼D

[
max
∆∈S

L(θ, x+ ∆, y)

]
. (1)

where D is the data generating distribution, S is set of allowed perturbations (for example S =
{∆ | ‖∆‖∞ ≤ δ}), and L(θ, x, y) is the loss of θ on (x, y). Madry et al. (2017) uses cross entropy
loss function:

L(θ, x, y) = H(1y, Fθ(x)) = − logFθ(x)y

where Fθ is the model instantiated with parameters θ, and 1y is the indicator vector of label y.

Denote κ(θ, x, y) = max∆∈S L(θ, x+ ∆, y), we have the following proposition,
Proposition 1. If ρ(θ) ≤ ε, then

Pr
(x,y)∼D

[
(∃y′ 6= y, x′ ∈ x+ S)Fθ(x

′)y′ ≥ p
]
≤ − ε

log(1− p)

That is, the probability of an x′ ∈ x+ S that is p-confident on a different label vanishes as p→ 1.

Proof. Let E be the event {∃y′ 6= y, x′ ∈ x+S, Fθ(x′)y′ ≥ p}. If E happens, then Fθ(x′)y ≤ 1−p,
and κ(θ, x, y) ≥ − log(1− p), therefore by Markov’s inequality1,

Pr
(x,y)∼D

[E ] ≤ Pr
(x,y)∼D

[
κ(θ, x, y) ≥ − log(1− p)

]
≤ − ε

log(1− p)
.

The proof is complete.

This immediately generates the following corollary,
Corollary 1. Let S be a region defined as {∆ | d(∆,0) ≤ δ}. If ρ(θ) ≤ ε, then the model Fθ is
(p,− ε

log(1−p) , δ)-separated.

This indicates that even if a model is only a somewhat good solution to (1), meaning ρ(θ) ≤ ε for
somewhat small ε, (note that in reality D is unknown and a learner can only approximate (1)), then
p-confident points will be well separated (in the sense of Definition 5) as soon as p increases.

The above proposition considers a situation where we have a confident but wrong point (with con-
fidence p). What about points that have wrong but low-confidence predictions? For example, the
confidence on the wrong label is only 1

2 +ν for some tiny ν? Note that by setting p = 1/2 we derive
immediately a bound ε (much weaker than −ε/ log(1 − p) for large p) on the probability that bad
events happen. Further, without further assumptions, this bound in tight so that in a worst-case sense
that there exists a bad model so that bound ε is achieved. We have the following proposition.
Proposition 2. Let Fθ be a neural network parameterized by θ, and CFθ be the classification net-
work. If ρ(θ) ≤ ε, then

Pr
(x,y)∼D

[
(∃y′ 6= y, x′ ∈ x+ S) CFθ (x

′) = y′
]
≤ ε.

Further the bound is tight.

1 Let X be a nonnegative random variable and a > 0, Markov’s inequality says that Pr[X ≥ a] ≤ E[X]/a.
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Proof. Let E be the event {(∃y′ 6= y, x′ ∈ x + S) CFθ (x
′) = y′}. If E happens then Fθ(x′)y ≤ 1

2
(otherwise x′ will be classified as y), and so κ(θ, x, y) ≥ − log(1/2) = 1. On the other hand, if E
does not happen, then we can lower bound κ(θ, x, y) by 0. Therefore

ε ≥ E[κ(θ, x, y)] ≥ Pr[¬E ] · 0 + Pr[E ] · 1 = Pr[E ].

Tightness follows as we can force equality for each of the inequalities. The proof is complete.

Contrasting Proposition 1 and 2, we note the following:

• First, let us note that the objective function 1 is defined with respect to the data generating
distributionD, which is unknown, and in reality we only have a training set to approximate
the objective. Also, cross entropy function is unbounded (so in particular it can happen that
ρ(θ) ≥ 1). Therefore, one may only expect that ρ(θ) is somewhat small.

• Nevertheless, even with a somewhat large ρ(θ), Proposition 1 indicates that high-
confidence predictions of different classes will be well separated as soon as confidence
p increases. On the other hand, Proposition 2 then indicates that there may still be many
points that have wrong predictions with low confidence.

• Finally, if we take the manifold point of view again, then intuitively it seems harder to
control low-confidence points than to separate confident regions. This is because natural
manifolds reside in lower dimensions and so there can be a large volume of low-confidence
points at the confidence boundary. This thus indicates that handling low-confidence points
may be the core difficulty in getting a good solution to (1).

5 EMBEDDING

Our analysis from previous section shows that there can be good models with well-separated confi-
dent regions, yet there is essentially no control for uncertain points. However, since now uncertain
points are distinguishable as they have low confidence, a natural plan to handle these points is to try
to “embed them back” to confident regions. The rest of this section presents objective functions and
algorithms for this purpose.

Objective Functions. We propose two objective functions for embedding.

Definition 6 (Most Confident Neighbor Objective). Let F be a model, ‖ · ‖ be a norm, and δ > 0
be a real number. The δ-Most Confident Neighbor objective (or simply MCNδ objective) computes:

MCNδ(F,x) ≡ arg max
z∈N(x,δ)

‖F (z)‖∞. (2)

where N(x, δ) is the δ-ball around x with respect to ‖ · ‖, and ‖ · ‖∞ denotes the L∞-norm.

Definition 7 (Nearest Confident Neighbor Objective). Let F be a model, ‖ · ‖ be a norm, and
p ∈ (0, 1) be a real number. The p-Nearest Confident Neighbor objective (or simply NCNp objective)
computes:

NCNp(F,x) ≡ arg min
z
‖ z−x ‖ subject to ‖F (z)‖∞ ≥ p. (3)

where ‖ · ‖∞ denotes the L∞-norm.

In short, MCN considers a δ-neighborhood of a point and use the most confident point in the neigh-
borhood for prediction. On the other hand, NCN considers the nearest neighbor that achieves certain
confidence threshold.

Model Shell. From an algorithmic point of view, our approach essentially tries to wrap around a
learned model with a “shell” to handle points that are “slightly” out of the confident regions it has
learned. There are many possible shells for this purpose. For example, a valid such shell is weighted
majority vote. We thus begin by giving some general definitions.
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Definition 8 (Model Shell). Let F be a model. A model shell G is an algorithm that takes as its
input F and a point x ∈ Rd to classify, and outputs a softmax layer G(F,x). In this paper we only
consider the case where F is a model that is chosen apriori and fixed. In this case, the resulting
model for classification is G(F, ·), which maps a feature vector to a softmax layer. In this scenario,
we say that F is the base model of the model shell G, and denote G(F, ·) as G[F ].

Model shell captures the intuition that we want to wrap around an existing model with another
algorithm that can exploit semantics of the base model. In this paper, we only examine model shells
with a restricted structure, which we call factor model shells. We define search factor,

Definition 9 (Search Factor). A search factor H is an algorithm that takes as its input a model F ,
and a point x ∈ Rd to classify, and output another point x′ ∈ Rd. If F is chosen and fixed apriori
we say that F is the base model of the search factor H , and denote H(F, ·) as H[F ].

Definition 10 (Factor Model Shell). A model shell G is said to be a factor model shell if G can be
written as a composition of F ◦H where H is a search factor. In other words, G(F,x) works as

G(F,x) ≡ (F ◦H[F ])(x) = F (H(F,x)) .

A factor model shell captures our intuitions from MCN or NCN objectives. That is, we first apply a
search factor H to find another feature point x′ = H(F,x), and then apply the base model F on x′

to produce a final prediction. As a result, a factor model shell for MCNδ objective should compute
the final prediction as:

(F ◦ MCNδ)(x) = F (MCNδ(F,x)), (4)

and accordingly for NCNp objective:

(F ◦ NCNp)(x) = F (NCNp(F,x)) (5)

We note the following:

• Exact computations of (4) and (5) provide semantic defenses. That is, the final predic-
tion is wrong only if the model has a confident but wrong prediction in the neighborhood.
Furthermore, our discussion from Section 4 indicates that for good models, wrong predic-
tions should also have low confidence. Therefore, embedding should be effective in fixing
low-confidence errors of good models.

• We note that the resulting factor model shells, (F ◦ MCNδ) and (F ◦ NCNp) are non-
differentiable as MCNδ(F, x) and NCNp(F, x) are non-differentiable with respect to x (they
are argmin or argmax over a ball). This renders existing attacks fail to work directly to
attack F ◦ MCNδ or F ◦ NCNp, since they all require the assumption that the output softmax
layer is differentiable with respect to the input feature vector x2 As a result, this forces
attacks to either attack the base model F and then transfer attacks to the model shell, or has
to find some differentiable approximations or derivative-free optimization to attack MCNδ
and NCNp directly.

Algorithms. We now give one concrete algorithms to solve (2) and (3). To start with, we note that
the optimization for solving MCNδ (2) is nothing but for each label t ∈ C we try to find

zt = arg max
z∈N(x,δ)

F (z)t (6)

2 For example, let us examine one objective function used in Carlini-Wagner Carlini & Wagner (2017),
which is one of the strongest attacks known. They use an objective function of the form (f5 on pp. 6 of their
paper Carlini & Wagner (2017)):

f(x′) = − log(2F (x′)t − 2)

where F (x′)t denotes the coordinate of F (x′) at label t. This objective is differentiable in x′ as F is differen-
tiable in x′. We note that such a first-order assumption is natural for neural networks because neural networks
are typically composition of differentiable functions. With first order information, attacks can “relatively accu-
rately” follow the gradient direction to modify the image feature so as to increase the confidence of the model
in incorrect labels and thus produce adversarial perturbations.
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and then compute zt∗ for t∗ = arg maxt F (zt)t.

Now, however, we can solve (6) using any preferred gradient-based optimization (for example, pro-
jected gradient descent Nocedal & Wright (2006)). This thus gives the following factor model shell:

Algorithm 1 Solving MCNδ objective.
Input: x a feature vector, δ > 0 a real parameter, a base model F , any gradient-based optimization

algorithm O to solve the constrained optimization problem defined in (6).
1: function MCNOracleShell(x, δ, F )
2: for t ∈ C do
3: zt ←O(x, F, t)

4: return zt∗ where t∗ = arg maxt∈C F (zt)t

We note that solving (6) is similar to a targeted adversarial attack which tries to modify x so as to
increase the confidence on label t. Therefore an adversarial attack, such as strong attack proposed
in Carlini & Wagner (2017), can be used as O here.

Another concern is that gradient-based optimization may only find local optimal in the neighbor-
hood. However, we note that global optimal may not be needed for our method to work, as long
as local minima of the correct class are “separated” from local minima of incorrect classes. More
specifically, let l be the correct class, and

Sl = {z : z ∈ N(x, δ), z is a local maximal of ‖F (x)‖∞, ‖F (z)‖∞ = F (z)l}
and

S−l = {z : z ∈ N(x, δ), z is a local maximal of ‖F (x)‖∞, ‖F (z)‖∞ 6= F (z)l}
then local optimal works as soon as infz∈Sl ‖F (z)‖∞ > supy∈S−l ‖F (y)‖∞.

We can also take a similar path to solve NCNp objective with standard numeric optimization. Note
that ‖F (z)‖∞ ≥ p is equivalent to ∃t, F (z)t ≥ p. Therefore, we can solve

zt = arg min
F (z)t≥p

‖ z−x ‖ (7)

for every t, and then compute zt∗ where t∗ = arg mint ‖ zt−x ‖. By a similar reasoning as above,
zt∗ is the solution to problem 3. This thus gives algorithm 2 for NCNp.

Algorithm 2 Solving NCNp objective.
Input: x a feature vector, p > 0 a real parameter, a base model F , any gradient-based optimization

algorithm O to solve the constrained optimization problem defined in (7).
1: function NCNOracleShell(x, p, F )
2: for t ∈ C do
3: zt ←O(x, F, t)

4: return zt∗ where t∗ = arg mint ‖ zt−x ‖

Solving (7), however, is not trivial. A standard method is the augmented Lagrangian method Bert-
sekas (1996) which turns the problem into solving a series of unconstrained optimization. For exam-
ple, consider the following quadratic penalty function Q(z, α, t) = ‖ z−x ‖ + α

2 ([F (z)− p]−)
2,

where [y]− denotes max{y, 0}. Then we can solve the unconstrained optimization minQ(z, α, t)
for a series of different α, and terminates once we find a satisfying solution. The intuition is that (i)
solving the unconstrained optimization is easy, (ii) by increasing the coefficient α, we can force the
minimizer of the penalty function closer to the feasible region F (z) ≥ p, and (iii) for well chosen
α, the minimizer of the penalty function is close enough to that of problem 7. Other classic con-
strained optimization algorithms to solve this problem are interior methods and sequential quadratic
programming Nocedal & Wright (2006). We also note a recent work Bienstock & Michalka (2014)
which specifically focuses on optimizing convex objective over non-convex constraints, into which
problem 7 falls as well.
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6 EMPIRICAL STUDY

In this section we perform an empirical study of our approach. Note that there are three basic com-
ponents in a defense with our method: (1) the base model we choose, (2) the embedding procedure
we choose to wrap around the base model, and (3) the attack we choose to evaluate the defense.
Therefore we have the following key empirical questions:

1. How well does a base model satisfy our goodness property?

2. How susceptible is the chosen base model to the chosen attack? We want that the chosen
attack is strong enough to break even a good base model on many points.

3. How effective does our approach improve robustness of the base model? Ideally, we want
to see a significant improvement of robustness for a good base model.

4. Will our approach change the generalization behavior of the base model? Since embedding
may change predictions, we need to justify if there is little or no change in generalization.

A summary of our findings are as follows:

• We empirically validate that the model from Madry et al. (2017) is significantly better than
models without robustness training, according to our goodness property.

• We thus use Madry et al.’s model as the base model, and attack the model using attacks
from Carlini & Wagner (2017) (denoted as CW attack). We use CIFAR10 Krizhevsky
(2009) to evaluate the robustness and generalization. As reported by Madry et al., their
model is still fairly susceptible to CW attack over CIFAR10, and the accuracy against CW
attack can be as low as 45.8%, which indicates a significant room for improving robustness.

• We choose MCNOracleShell (Algorithm 1) and use again CW attack but now as embed-
ding. The resulting model shell is called CarliniWagnerShell. We find that embedding
significantly improves the robustness of the base model over 5 batches of points we evalu-
ated, reducing the attack success rate from 30% to 1.33%.

• Finally, embedding incurs almost no effect on generalization. In fact, there are only three
such points that the embedding procedure changes the predictions from correct to wrong.
We note that the model has very low confidence (∼ 50%) on these points, and thus are
difficult to defend as predicted by our theoretical analysis.

Limitations of our experiments. Due to the complexity of the Madry et al.’s residual network
model, our embedding procedure takes a long time to compute and we have only tested on 150
points which the base model classifies correctly (we do not evaluate robustness for test points that
have incorrect predictions in the first place). While our current experiments are limited, they corrob-
orate well our theoretical analysis that embedding should work well with a good model to resolve
adversarial perturbation problem. We have made our model and code publicly available cod, in the
hope of triggering more thoughts and feedback.

Experimental Setup We use CIFAR10 Krizhevsky (2009) which consists of 60000 color images of
objects where 50000 are for training and 10000 are for testing. Each image is of size 32× 32 pixels,
and there are ten labels {0, 1, . . . , 9} for classification. We use Carlini-Wager attacks (CW attack)
for two purposes: (i) as an attack to challenge the defense. In this case, we use the original attacks to
make attacks as strong as possible. We apply non-targeted attacks (namely changing classification
is the purpose) with L∞ norm (i.e. try to find a perturbation of minimal L∞ norm). To set the norm
bound δ, we note that Madry et al. (2017) uses a norm bound δ = 8.0. Since we normalize images
when applying the CW attack, we set δ = 8

255 . A perturbation is valid if and only if it both changes
the classification and its L∞ norm is at most δ. (ii) as an embedding procedure for instantiating
MCNOracleShell. In our actual CarliniWagnerShell implementation, we slightly tweak parameters
of CW attack so that the CW attack used as embedding is weaker but faster than the one used for
attacking. This makes our results stronger because only the defense is weaker.

Experimental Methodology We perform two experiments. First, we compare two models in view
of the goodness property: (i) The robust model trained by Madry et al. (2017), and (ii) a natural
model that has the same model architecture, but is trained without a robust objective. The compari-
son method is based on Proposition 1. Let P = {p | p ∈ [0.5, 1]} be a set of probability values. We
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first sample a batch of points K. For each p ∈ P , we try to find, for each point (x, y) in K, a point
that is predicted as y′ 6= y with confidence ≥ p in its δ-neighborhood. For each p we get a fraction
sp of points in K that such confident attacks can be found. We find that the robust model has much
smaller sp for larger p and hence it satisfies our the goodness property better.

We then evaluate our end-to-end defense. We go through a random permutation of test data points,
and measure the following for a point that the base model predicts correctly: (1) Susceptibility. That
is, whether CW attack can successfully attack this point. (2) Robustness. There are two cases: (i) the
model is already robust to CW attack where we expect CarlinWagnerShell retains the robustness,
and (ii) the model is vulnerable to CW attack, where we expect CarliniWagnerShell to harden the
model. (3) Generalization. That is, whether CarliniWagnerShell still predicts correctly on the point.

Comparing models using the goodness property. From Definition 5 and Proposition 1, our goal
is to statistically estimate Pr(x,y)∼D

[
(∃y′ 6= y, x′ ∈ N(x, δ))F (x′)y′ ≥ p

]
. As mentioned above,

we compare the robust model in Madry et al. (2017) and its natural variant. Let Eb denote the bad
event (∃y′ 6= y, x′ ∈ N(x, δ))F (x′)y′ ≥ p. We randomly sample batches of data points from the
test set, and compute frequency that Eb happens for each batch. To do so, we attack samples using
a modified CW attack, which tries to generate an adversarial example within the norm bound where
the model classifies incorrectly with high confidence. Table 1 summarizes the results.

# successful attacks

Robust model Natural model
Batch #1 2 26
Batch #2 3 27
Batch #3 4 26
Batch #4 5 28
Batch #5 2 29
Batch #6 4 25
Batch #7 0 28
Batch #8 2 30
Batch #9 3 28

Batch #10 1 30

Total 26 277

Table 1: Results from testing the goodness property of base models. Each batch has 30 random
samples. For each column, we record the number of samples that we can successfully find attacks
of confidence at least p = 0.9 against the model corresponding to the column.

With these statistics we can thus estimate (p, q, δ)-separation (Definition 5) of the models in com-
parison. We have (details are deferred to Appendix A).
Proposition 3 (Separation from statistics). The following two hold:

• With probability at least .9 the robust model in Madry et al. (2017) satisfies

Pr
(x,y)∼D

[
(∃y′ 6= y, x′ ∈ N(x, δ))F (x′)y′ ≥ .9

]
≤ 14

75
= 0.18667 . . .

That is, the robust model has ( 9
10 ,

14
75 ,

8
255 )-separation.

• With probability at least .9 the natural model satisfies

Pr
(x,y)∼D

[
(∃y′ 6= y, x′ ∈ N(x, δ))F (x′)y′ ≥ .9

]
≥ 247

300
= 0.82333 . . .

That is, the natural model does not have ( 9
10 , q,

8
255 )-separation for q < 247

300 .

End-to-end defense results. We have evaluated 5 non-overlapping batches from the test set (each
batch consists of 30 points, thus 150 points in total), where the base model classifies test points in

9
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these batches correctly (in other words, we skip test points where the base model predicts incor-
rectly). We find that the base model is susceptible to CW attack for 56 of them (thus the attack
success rate is 37.33%). We find the following after applying CarliniWagnerShell: First, the points
that were robust with base model remain robust, thus we do not introduce new vulnerabilities. Sec-
ond, among the 56 vulnerable points of base model, for 53 of them CarliniWagnerShell now is
both correct and robust against attacks on which the base model fails. Finally, for the remaining 3
points: For only one of them, CarliniWagner shell produces wrong prediction but is robust (makes
consistent predictions for both vanilla the perturbed points), and for the remaining two CarliniWagn-
erShell is both incorrect and not robust. As a summary, the attack success rate reduces from 37.33%
to 2/150 = 1.33%, and the accuracy retained is 147/150 = 98%. The results are summarized in
Table 2.

Base model CarliniWagnerShell-equipped model

Attack success rate Attack success rate Retained accuracy
Batch #1 30 % 0 % 96.67 %

Batch #2 33.33 % 0 % 100 %

Batch #3 40 % 0 % 100 %

Batch #4 33.33 % 0.07 % 99.33 %

Batch #5 46.67 % 0 % 100 %

Average 37.33 % 1.33 % 98 %

Table 2: Summary of the experimental results. Among the 150 test points where the base model is
correct. For 56 of them the base model is vulnerable to CW attacks. Applying CarliniWagnerShell
does not introduce new vulnerable points. And for 53 of the 56 vulnerable points, CarliniWagner-
Shell is both correct and robust against the attacks that are successful on the base model. For one
of the remaining three points, CarliniWagnerShell is incorrect but robust. For the remaining two
CarliniWagnerShell is both incorrect and not robust.

Wrong data points, confidence, and the manifold boundary. We now describe the three data
points where CarliniWagnerShell fails. We observe that for these three points the model has low
confidence, and so by our theory it is expected to be hard to defend. Taking again a manifold
point of view, we suspect that one possibility why these points have low confidence is that “natural
manifolds” (which are spaces of points generated by some computational devices) are not really well
separated. In the following we examine each of these three points.

From the first batch, we have a single point that CarliniWagnerShell gives a wrong prediction, but
does not change its prediction after the image is adversarially perturbed (and thus is robust, but
not correct). The image is presented in Figure 1(a). We note that the model gives low confidence
(∼ 50%) on the original image. (where the correct label is a “cat”), and it has significantly higher
confidence (∼ 75%) on the perturbed image (classified as a “frog”). In this case, Proposition 1
only indicates very weak separation, (indeed, ε) and so it is expected to be hard to defend. Figure 1
depicts the images, with a similar frog image for comparison. We note that these points as generated
by some cameras have essentially ignored the “size” information of different objects (can we tell
from these images that a cat should be bigger than a frog?), and thus may not be well separated.

From the fourth batch, we have two points that CarlniWagnerShell gives us wrong predictions, and
changes its predictions after the images are adversarially perturbed. Figure 2(a) and 2(f) depict
these images and corresponding results. The situation is similar to the first image above where
model predictions have low confidence: the base model gives low confidence on the original image
(∼ 50% for “automobile” 2(a), and ∼ 60% for “airplane” 2(f)) and adversarially perturbed images
(∼ 60% for 2(a), and∼ 50% for 2(f). Both predictions are “ship”). For each row we attach an image
which is a valid “ship” image but resembles “automobile” and “airplane” images in shape. Again,
we suspect that the underlying natural manifolds are not well separated as one might expect.

7 DISCUSSION

We now discuss our method and results.

10
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(a) Original cat image
with unconfident pre-
diction “cat”

(b) Adversarially per-
turbed image with a
wrong and unconfident
prediction “frog”

(c) A frog image

Figure 1: The point (a) where our CarliniWagnerShell makes a wrong prediction, and is consistent
on the original test point and the perturbed one. We show the original image (a), CarliniWagnerShell
perturbation of the image (b), and for comparison, a frog image (c) that the model is confident about.

(a) Base model
on x, unconfi-
dent prediction
“automobile”

(b) CarliniWag-
nerShell on x,
unconfident pre-
diction “ship”

(c) Base model
on x′, unconfi-
dent prediction
“ship”

(d) Carlini-
WagnerShell on
x′, unconfident
prediction
“automobile”

(e) A valid
“ship” that
resembles the
“automobile”

(f) Base model
on x, unconfi-
dent prediction
“airplane”

(g) CarliniWag-
nerShell on x,
unconfident pre-
diction “ship”

(h) Base model
on x′, unconfi-
dent prediction
“ship”

(i) CarliniWag-
nerShell on x′,
unconfident
prediction
“airplane”

(j) A valid
“ship” image
that resembles
the “airplane”

Figure 2: The images (a) and (e) are the points where our CarliniWagnerShell makes a wrong
prediction. We show the original image on the first column, CarliniWagnerShell perturbations of
the original images on the second column, adversarial perturbed images on the third column, and
CarliniWagnerShell perturbations of the adversarial examples on the fourth column. Example ship
images are presented on the last row for comparison.

Our technical contributions. Our first technical contribution is the proposal to take into account
the inherent confidence information produced by models when studying adversarial perturbations.
Our second technical contribution is a formulation of a goodness property of models, and an analysis
of existing models in view of the property. Interestingly, and somewhat surprisingly, we find that a
recent robust training objective function by Madry et al. (2017) encourages good separation of high-
confidence points, but has essentially no control of low-confidence points. Our third contribution is
the proposal of embedding to handle low-confidence points. Our final contribution is a first empirical
study that validates Madry et al.’s model in terms of the goodness property, and further demonstrates
that a good model, when wrapped with embedding, simultaneously achieves good generalization and
almost perfect robustness.

Interpretations of our results. One interpretation of our results is that adversarial perturbations can
naturally coexist with good generalization. While this is manifested in our analysis of Madry et al.’s
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objective function, we think that this phenomenon naturally and generally exists if one takes again
a manifold point of view: Since natural manifolds reside in low dimensions, it seems much more
challenging to control the confidence boundary, where “adversarial perturbations” exist in abun-
dance, than controlling separation of the learned structures (i.e. confident regions that approximate
the underlying manifolds).

On the other hand, if all one cares about is robustness (decision does not change in a small neighbor-
hood), then adversarial perturbation problem can be resolved by combining goodness property with
embedding. For example, consider the following “good model:” If a data point is from the training
set, then it outputs the correct label with confidence 1, otherwise it outputs a uniform distribution
over labels. In other words, this model learns nothing but fitting the training set. We note that in
this case, the adversarial perturbation problem is only well defined around the training points. More-
over, embedding now becomes 1-nearest neighbor search among the training points. As a result, the
model is still perfectly robust with our method if training points are well separated.

Highly confident predictions on random noises. We note that several work shows that neural
networks can have highly confident predictions on random noises (e.g., Nguyen et al. (2015)). In
view of our work it is somewhat not surprising that neural networks can have such behaviors: These
points are essentially ones that are far away from the “universe” the learner is asked to learn, and
so if we do not control the training of neural networks to not claim confidence over the structure it
has never seen, then it is valid to fit a model that has good behaviors on natural manifolds but also
divergent behaviors outside. After all, why is a network supposed to work on points that are far
away from the underlying natural manifolds, which is essentially the data generating distribution?
Finally, we note that the adversarial perturbation problem is not well defined even near those points.
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A BOUNDING THE PROBABILITY FOR (p, q, δ)-SEPARATION

This section gives details of our estimation of (p, q, δ)-separation from statistics in Table 1. Note
that event Eb corresponds to a Bernoulli trial. Let X1, . . . , Xt be independent indicator random
variables, where

Xi =

{
1 if Eb happens,
0 otherwise

,

and X = (
∑t
i=1Xi)/t. Recall Chebyshev’s inequality:

Theorem 1 (Chebyshev’s Inequality). For independent random variables X1, . . . , Xt bounded in
[0, 1], and X = (

∑t
i=1Xi)/t, we have Pr[|X − E[X]| ≥ ε] ≤ Var[X]

ε2 .

In our case, E[X] = E[X1] = · · · = E[Xt] and let it be µ, and let the computed frequency be µ̂
(observed value). Thus Pr[|µ̂ − µ| ≥ ε] ≤ 1/(4ε2t) since Var[X] = µ(1 − µ)/t < 1/4t. We thus
have the following proposition about (p, q, δ)-separation.
Proposition 4. Let α, ε ∈ [0, 1]. For sufficiently large t where 1

4ε2t ≤ 1− α holds, we have:

• (Upper bound) With probability at least α, µ is smaller than µ̂+ ε.

• (Lower bound) With probability at least α, µ is bigger than µ̂− ε.

For example, we have guarantees for α = .9 by putting ε = .1 and t ≥ 250.
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