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ABSTRACT

Different approaches to generative modeling entail different approaches to evalua-
tion. While some models admit test likelihood estimation, for others only proxy
metrics for visual quality are being reported. In this paper, we propose a simple
method to compute differential entropy of an arbitrary decoder-based generative
model. Using this approach, we found that models with qualitatively different
samples are distinguishable in terms of entropy. In particular, adversarially trained
generative models typically have higher entropy than variational autoencoders.
Additionally, we provide support for the application of entropy as a measure of
sample diversity.

1 INTRODUCTION

In the past few years, an impressive variety of methods for generative modeling has been proposed, yet
the approaches for model comparison seem to be at an early stage of development. Existing methods
can sometimes be a source of misleading conclusions. For example, the inception score (Salimans
et al. (2016)), may assign a high score to a model that gives as output k samples representing each
class in the dataset. In an effort to improve existing model comparison methods, we propose an
approach based on differential entropy that captures sample diversity of the generative model.

In this work, we propose a method for entropy estimation for an arbitrary differentiable decoder
model. We verify it in a setting where the differential entropy is known and then proceed with an
empirical study of common generative models.

In our experiments, we observed an overall increase of entropy as the number of classes present in
the training set increased, suggesting that differential entropy is indeed related to the coverage of
various modes in the dataset. At the same time, we observed that the entropy of adversarially-trained
generative models is always higher than the entropy of variational autoencoder. While variational
autoencoders are known to have a high capacity to cover all of the modes in the training set, our
results imply that this ability comes at cost of smaller sample variability.

2 ENTROPY ESTIMATION

Support of an arbitrary decoder-based generative model is by construction limited to a low-
dimensional manifold embedded in a high dimensional space. As a result, to compute differential
entropyH = −Ep(x) log p(x) of the model, one has to define the density of an arbitrary point of the
manifold and then perform the integration. In the next section, we propose a method to estimate
log p(x). Along with Monte-Carlo estimation of the expectation, the method gives a way to compute
the differential entropy of a deep generative model.

2.1 DENSITY ESTIMATION IN AN AUXILIARY LATENT VARIABLE MODEL

Following Wu et al. (2016), we introduce a latent variable model to approximate the given generative
model defined by decoder d(·). Standard Gaussian distribution p(z) = N (z|0, I) and isotropic
Gaussian approximation p(x|z, d) = N (x|d(z), s2I) of decoder output induce marginal likelihood
of observation p(x|d).
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We then adopt variational inference to estimate the log-marginal density log p(x|d). Suppose for a
moment that the decoder is bijective and that for a given x0 we know z0 = d−1(x0). In the limit of
s→ 0, the posterior distribution is an improper distribution with all probability mass concentrated at
the pre-image of x0. With this in mind, we restrict the variational posterior to Gaussian distributions
with known mean z0 = Eq(z)z.

To infer the covariance matrix of variational approximation Σ, we replace the likelihood term
in the variational lower bound with a second-order Taylor approximation at z0 with ∆z = z −
z0. Optimization with respect to covariance matrix Σ gives the following amortized variational
approximation (see appendix A for details):

q(z|x, d) = N
(
z|d−1(x0),Σ

)
, Σ = s2

 ∂d
∂z

T ∂d

∂z

∣∣∣∣∣
z=d−1(x0)

+ s2I

−1 (1)

Then variational approximation q(z|x, d) can be used to compute a lower bound on marginal likeli-
hood p(x|d, s) ≥ Eq log p(x,z|d,s)

q(z|x,d) . Although the lower bound depends on the scale parameter s and
can be arbitrary high for sufficiently small s, in the next section we show that the lower bound can be
decomposed into a sum of a scale-dependent term and a bounded decoder-specific term, which is
related to density estimation on low-dimensional manifolds.

2.2 CONNECTION TO DENSITY ESTIMATION USING THE CHANGE OF VARIABLE FORMULA

As described in Gemici et al. (2016), a bijective differentiable transformation d−1 of a random

variable z with density p(·) induces density r(x) = p(d−1(x))
∣∣∣∂d∂z T ∂d∂z ∣∣∣−1/2

z=d−1(x)
. This formula is a

generalization of a change of variable formula for probability distributions to situations where the
image x can lie in a higher-dimensional space.

We notice that for x = d(z) the likelihood estimates from the previous section can be decomposed
into two summands and a diminishing term (see appendix B for more details):

Eq
p(x, z|s)
q(z|x)

= −D − d
2

log(2πs2) +

(
log p(d−1(x))− 1

2
log

∣∣∣∣∣∂d∂z T ∂d∂z + s2I

∣∣∣∣∣
)

+ o(s) (2)

As s tends to zero, the first term converges to +∞, while the second term converges to the change of
variable formula defined above.

2.3 ENTROPY ESTIMATION

To estimate model entropy we compute a Monte-Carlo estimate for a sufficiently small s. We found
the regularization term s2I to be crucial for stable computation of the log-determinant term across
random model samples.

H =
1

N

∑
zi∼p(z)

(
log p(zi)−

1

2
log

∣∣∣∣∣∂d∂z T ∂d∂z + s2I

∣∣∣∣∣
z=zi

)
. (3)

3 EXPERIMENTS

3.1 ENTROPY OF A UNIFORM DISTRIBUTION ON A HALF-SPHERE

To verify the entropy estimate method, we consider a decoder d(·) : R2 → S2
− that maps a standard

Gaussian distribution to a uniform distribution on a half-sphere. Differential entropy of a uniform
distribution on a half-sphere is equal to log(2π) ≈ 1.8379.
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Entropy estimates for various scale parameters and N = 5 · 105 samples are reported in table 1.
Additionally, a standard deviation of density estimate among samples is presented. By design of
the experiment, each point has the same true density. In practice, we observe a decrease in standard
deviation as the scale parameter s tends to zero.

Table 1: Entropy estimates for a uniform distribution on a half-sphere. The estimate converges to the
true entropy value as the scale parameter s tends to zero.

True s = 10−1 s = 10−2 s = 10−3 s = 10−4

≈ 1.8379 1.9160± 0.0032 1.8428± 0.0009 1.8388± 0.0003 1.8379± 0.0001

3.2 COMPARISON OF DEEP GENERATIVE MODELS

We estimate entropy of four common generative models: VAE by Kingma & Welling (2013), GAN
by Goodfellow et al. (2014), WGAN by Arjovsky et al. (2017), WGAN GP by Gulrajani et al. (2017).
The four models were trained on MNIST and Fashion MNIST datasets for 64 epochs using an
implementation from Lee (2017) with Gaussian input noise.

Figure 1: Generative model samples for MNIST and Fashion MNIST.

As shown in Figure. 1, the variational autoencoder samples tend to be blurrier, while WGAN samples
were significantly noisier than the samples from other models. Entropy estimates reported for
s = 10−4 in table 2 reflect these specifics. Firstly, we observe that the variational autoencoder has
notably lower entropy. This effect can be attributed to the posterior variance underestimation, which
is specific for variational inference. Secondly, the high entropy of WGAN matches the high noisiness
of model samples. Finally, WGAN GP and GAN have visually indistinguishable samples, but the
slightly higher entropy of the former model is quantitative evidence for its higher sample diversity.

Table 2: Entropy estimates underline the difference between variational autoencoders and adversarially
trained models.

Dataset / Model VAE GAN WGAN GP WGAN
MNIST -98.0 -82.1 -75.1 -41.4

Fashion MNIST -117.2 2.9 6.7 25.4

3.3 SENSITIVITY TO CLASS EXCLUSION

We train a VAE on subsets of MNIST, containing all digits up to k-th digit. This experiment is
intended to model situations in which a generative model misses important subsets in the dataset.

We then measure entropy of the resulting 10 generative models and report it for s = 10−4 in table 3.
While the size of the training set and diversity of training samples increase monotonically, in our
experiments we did not observe a strictly monotonic increase in model entropy.

For MNIST we observe two entropy drops when images for digits "1" and "7" are added. These digits
share similar shape and have, on average, significantly higher likelihood on test set than other digits.
Therefore, they lower the overall entropy of the generative model.

Table 3: Entropy estimates for generative models trained on first k classes of the dataset.

≤ k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
MNIST -177.7 -191.0 -146.7 -130.9 -129.9 -107.3 -104.4 -110.5 -104.7 -105.7
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A DERIVATION OF COVARIANCE ESTIMATE

Firstly, we replace the data-term in ELBO with a second-order Taylor approximation in z0 = z:

Eq(z|x,φ) log p(x|z, θ) (4)

≈ [log p(x|z0, θ) + Eq(z|x,φ)
[
∂ log p(x|z, θ)

∂z
∆z +

1

2
∆zT

∂2 log p(x|z, θ)
∂z2

∆z

]
. (5)

(6)

Both expectations in the approximation can be computed analytically and lead to the following
approximation:

Eq(z|x,φ) log p(x|z, θ) ≈ log p(x|z0, θ) +
1

2
tr

[
∂2 log p(x|z, θ)

∂z2
Σ

]
(7)

Eq(z|x,φ) log p(x|z, θ)−KL(q(z|x, φ)||p(z)) ≈ (8)

log p(x|z0, θ) +
1

2

[
tr

(
∂2 log p(x|z, θ)

∂z2
− I
)

Σ− zT0 z0 + d+ log |Σ|
]

(9)

For a negative-definite matrix ∂2 log p(x|z,θ)
∂z2 the latter approximation has a unique optimum point

Σ = (I − ∂2 log p(x|z,θ)
∂z2 )−1. For the Gaussian decoder distribution p(x|z, d) = N (x|d(z), sI) and

x = d(z0) the Hessian is negative-definite

∂2 log p(x|z, θ)
∂z2

= −

(
1

s2
∂d

∂z

T ∂d

∂z
+
∂2d

∂z2
(d(z0)− x)

)
= − 1

s2
∂d

∂z

T ∂d

∂z
, (10)

and the optimal covariance for the ELBO approximation is

Σ = s2

 ∂d
∂z

T ∂d

∂z

∣∣∣∣∣
z=d−1(x0)

+ s2I

−1 . (11)

B ASYMPTOTIC REPRESENTATION OF ELBO

Again, we replace the quadratic term in likelihood p(x|z, d) with a Taylor approximation:

Eq(z|x,d) log p(x|z, d) = −D
2

log(2πs2)− 1

2s2
Eε||x− d(z0 + Σ1/2ε)||22 (12)

= −D
2

log(2πs2)− 1

2s2
tr

[
∂2 log p(x|z, θ)

∂z2
Σ

]
+ o(s) (13)

= −D
2

log(2πs2)− 1

2
tr(I + s2

∂2 log p(x|z, θ)
∂z2

)−1 + o(s) (14)

= −D
2

log(2πs2)− d

2
+ o(s). (15)

The KL-term can be represented as follows:

KL(q(z|x, d)||p(z)) =
1

2
(tr Σ + zT0 z0 − d− log |Σ|) (16)

=
1

2
(zT0 z0 − d− d log s2 + log

∣∣∣∣∣∂d∂z T ∂d∂z + s2I

∣∣∣∣∣) + o(s) (17)
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Subtracting KL-term from the average likelihood we get

Eq(z|x,d)
p(x, z|d)

q(z|x, d)
= −D − d

2
log(2πs2) +

(
log p(d−1(x))− 1

2
log

∣∣∣∣∣∂d∂z T ∂d∂z + s2I

∣∣∣∣∣
)
. (18)

C COMPARISON WITH VAE LOWER BOUNDS

Other variational approximations can be used to compute a lower bound for log p(x|d). For instance,
one may fix a decoder and train a VAE encoder to estimate entropyHd ≤ −Eq log p(x,z)

q(z|x) . However,
in practice these estimates appear to be inexact.

We fit an encoder for GAN and WGAN GP models trained on MNIST dataset from subsection 3.2.
We use an isotropic Gaussian decoder approximation p(x|z, d) = N (x|d(z), sI) with s = 10−4 as a
proxy for likelihood. In table 4 we report the entropy upper bounds along with the scale correction
Hq = −Ep(x)Eq log p(x,z|θ)

q(z|x,φ) −
D−d
2 log(2πs2).

Entropy upper bounds are reported for a basic encoder qA(z|x, φ) = N (z|µφ(x),Σφ(x)) and for
a "decoder-aware" approximation qB(z|x, φ) = N (z|d−1(x),Σφ(x)). In all four cases, amortized
approximations for posterior parameters are too loose. In particular, a trivial estimate for the
decoder mean z0 = d−1(x) decreases the estimate by an order of magnitude. Additionally, due to
gradient optimization issues, upper bounds with a full covariance matrix result in significantly weaker
approximations. Thus amortized variational inference is inapplicable to entropy estimation.

Table 4: Entropy upper bounds using a VAE encoder versus the reported entropy

Model Reported entropy qA, diag. Σ qA, full Σ qB , diag. Σ qB , full Σ
GAN -82 25595 25857 234 334
WGAN GP -75 25057 25471 198 302
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