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ABSTRACT

In this paper we investigate image classification with computational resource lim-
its at test time. Two such settings are: 1. anytime classification, where the net-
work’s prediction for a test example is progressively updated, facilitating the out-
put of a prediction at any time; and 2. budgeted batch classification, where a fixed
amount of computation is available to classify a set of examples that can be spent
unevenly across “easier” and “harder” inputs. In contrast to most prior work, such
as the popular Viola and Jones algorithm, our approach is based on convolution-
al neural networks. We train multiple classifiers with varying resource demands,
which we adaptively apply during test time. To maximally re-use computation
between the classifiers, we incorporate them as early-exits into a single deep con-
volutional neural network and inter-connect them with dense connectivity. To fa-
cilitate high quality classification early on, we use a two-dimensional multi-scale
network architecture that maintains coarse and fine level features all-throughout
the network. Experiments on three image-classification tasks demonstrate that our

framework substantially improves the existing state-of-the-art in both settings.

1 INTRODUCTION

Recent years have witnessed a surge in demand for applications of visual object recognition, for
instance, in self-driving cars (Bojarski et al. [2016) and content-based image search (Wan et al.,
2014). This demand has in part been fueled through the promise generated by the astonishing
progress of convolutional networks (CNNs) on visual object recognition benchmark competition
datasets, such as ILSVRC (Deng et al.| [2009) and COCO (Lin et al., 2014)), where state-of-the-art
models may have even surpassed human-level performance (He et al.|, 2015 [2016).

However, the requirements of such competitions differ from real-
world applications, which tend to incentivize resource-hungry mod-
els with high computational demands at inference time. For exam-
ple, the COCO 2016 competition was won by a large ensemble of
computationally intensive CNNsﬂ— a model likely far too compu-
tationally expensive for any resource-aware application. Although
much smaller models would also obtain decent error, very large,
computationally intensive models seem necessary to correctly clas-
sify the hard examples that make up the bulk of the remaining mis-
classifications of modern algorithms. To illustrate this point, Fig-
ure [T shows two images of horses. The left image depicts a horse
in canonical pose and is easy to classify, whereas the right image is
taken from a rare viewpoint and is likely in the tail of the data dis-
tribution. Computationally intensive models are needed to classify

Figure 1: Two images containing
a horse. The left image is canon-
ical and easy to detect even with
a small model, whereas the right
image requires a computational-
ly more expensive network archi-
tecture. (Copyright Pixel Addict
and Doyle (CC BY-ND 2.0).)

such tail examples correctly, but are wasteful when applied to canonical images such as the left one.

In real-world applications, computation directly translates into power consumption, which should
be minimized for environmental and economical reasons, and is a scarce commodity on mobile

'http://image-net.org/challenges/talks/2016/GRMI-COCO-slidedeck.pdf


http://image-net.org/challenges/talks/2016/GRMI-COCO-slidedeck.pdf

Published as a conference paper at ICLR 2018

devices. This begs the question: why do we choose between either wasting computational resources
by applying an unnecessarily computationally expensive model to easy images, or making mistakes
by using an efficient model that fails to recognize difficult images? l1deally, our systems should
automatically use small networks when test images are easy or computational resources limited, and
use big networks when test images are hard or computation is abundant.

Such systems would be beneficial in at least two settings with computational constraints at test-
time: anytime prediction, where the network can be forced to output a prediction at any given point
in time; and budgeted batch classification, where a fixed computational budget is shared across a
large set of examples which can be spent unevenly across “easy” and “hard” examples. A practical
use-case of anytime prediction is in mobile apps on Android devices: in 2015, there existed 24, 093
distinct Android devicesﬂ each with its own distinct computational limitations. It is infeasible to
train a different network that processes video frame-by-frame at a fixed framerate for each of these
devices. Instead, you would like to train a single network that maximizes accuracy on all these de-
vices, within the computational constraints of that device. The budget batch classification setting is
ubiquitous in large-scale machine learning applications. Search engines, social media companies,
on-line advertising agencies, all must process large volumes of data on limited hardware resources.
For example, as of 2010, Google Image Search had over 10 Billion images indexeﬂ which has like-
ly grown to over 1 Trillion since. Even if a new model to process these images is only 1/10s slower
per image, this additional cost would add 3170 years of CPU time. In the budget batch classification
setting, companies can improve the average accuracy by reducing the amount of computation spent
on “easy” cases to save up computation for “hard” cases.

Motivated by prior work in computer vision on resource-efficient recognition (Viola & Jones,|2001)),
we aim to develop CNNss that “slice” the computation and process these slices one-by-one, stopping
the evaluation once the CPU time is depleted or the classification sufficiently certain (through “early
exits”). Unfortunately, the architecture of CNNs is inherently at odds with the introduction of early
exits. CNNs learn the data representation and the classifier jointly, which leads to two problems
with early exits: 1. The features in the last layer are extracted directly to be used by the classifier,
whereas earlier features are not. The inherent dilemma is that different kinds of features need to be
extracted depending on how many layers are left until the classification. 2. The features in different
layers of the network may have different scale. Typically, the first layers of a deep nets operate on a
fine scale (to extract low-level features), whereas later layers transition (through pooling or strided
convolution) to coarse scales that allow global context to enter the classifier. Both scales are needed
but happen at different places in the network.

We propose a novel network architecture that addresses both of these problems through careful
design changes, allowing for resource-efficient image classification. Our network uses a cascade of
intermediate classifiers throughout the network. The first problem, of classifiers altering the internal
representation, is addressed through the introduction of dense connectivity (Huang et al.,[2017). By
connecting all layers to all classifiers, features are no longer dominated by the most imminent early-
exit and the trade-off between early or later classification can be performed elegantly as part of the
loss function. The second problem, the lack of coarse-scale features in early layers, is addressed by
adopting a multi-scale network structure. At each layer we produce features of all scales (fine-to-
coarse), which facilitates good classification early on but also extracts low-level features that only
become useful after several more layers of processing. Our network architecture is illustrated in
Figure[2] and we refer to it as Multi-Scale DenseNet (MSDNet).

We evaluate MSDNets on three image-classification datasets. In the anytime classification setting,
we show that it is possible to provide the ability to output a prediction at any time while maintain
high accuracies throughout. In the budget batch classification setting we show that MSDNets can be
effectively used to adapt the amount of computation to the difficulty of the example to be classified,
which allows us to reduce the computational requirements of our models drastically whilst perform-
ing on par with state-of-the-art CNNs in terms of overall classification accuracy. To our knowledge
this is the first deep learning architecture of its kind that allows dynamic resource adaptation with a
single model and obtains competitive results throughout.

2Source: https://opensignal.com/reports/2015/08/android-fragmentation/
Shttps://en.wikipedia.org/wiki/Google_Images
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Figure 2: Illustration of the first four layers of an MSDNet with three scales. The horizontal direction cor-
responds to the layer direction (depth) of the network. The vertical direction corresponds to the scale of the
feature maps. Horizontal arrows indicate a regular convolution operation, whereas diagonal and vertical arrows
indicate a strided convolution operation. Classifiers only operate on feature maps at the coarsest scale. Connec-
tions across more than one layer are not drawn explicitly: they are implicit through recursive concatenations.

2 RELATED WORK

We briefly review related prior work on computation-efficient networks, memory-efficient networks,
and resource-sensitive machine learning, from which our network architecture draws inspiration.

Computation-efficient networks. Most prior work on (convolutional) networks that are compu-
tationally efficient at test time focuses on reducing model size after training. In particular, many
studies propose to prune weights (LeCun et al., |1989; |[Hassibi et al., |1993; |L1 et al., [2017) or quan-
tize weights (Hubara et al.| 2016} Rastegari et al.| 2016)) during or after training. These approaches
are generally effective because deep networks often have a substantial number of redundant weights
that can be pruned or quantized without sacrificing (and sometimes even improving) performance.
Prior work also studies approaches that directly learn compact models with less parameter redundan-
cy. For example, the knowledge-distillation method (Bucilua et al., 2006; Hinton et al.,2014) trains
small student networks to reproduce the output of a much larger teacher network or ensemble. Our
work differs from those approaches in that we train a single model that trades off computation for
accuracy at test time without any re-training or finetuning. Indeed, weight pruning and knowledge
distillation can be used in combination with our approach, and may lead to further improvements.

Resource-efficient machine learning. Various prior studies explore computationally efficient vari-
ants of traditional machine-learning models (Viola & Jones, 2001} |Grubb & Bagnell,2012; Karayev
et al., 2014} [Trapeznikov & Saligrama, 2013} |Xu et al., [2012; 2013 |[Nan et al., 2015; |Wang et al.,
2015)). Most of these studies focus on how to incorporate the computational requirements of com-
puting particular features in the training of machine-learning models such as (gradient-boosted)
decision trees. Whilst our study is certainly inspired by these results, the architecture we explore
differs substantially: most prior work exploits characteristics of machine-learning models (such as
decision trees) that do not apply to deep networks. Our work is possibly most closely related to
recent work on FractalNets (Larsson et al., 2017), which can perform anytime prediction by pro-
gressively evaluating subnetworks of the full network. FractalNets differ from our work in that they
are not explicitly optimized for computation efficiency and consequently our experiments show that
MSDNets substantially outperform FractalNets. Our dynamic evaluation strategy for reducing batch
computational cost is closely related to the the adaptive computation time approach (Graves 2016
Figurnov et al., 2016), and the recently proposed method of adaptively evaluating neural networks
(Bolukbasi et al.,|[2017). Different from these works, our method adopts a specially designed net-
work with multiple classifiers, which are jointly optimized during training and can directly output
confidence scores to control the evaluation process for each test example. The adaptive computation
time method (Graves| 2016) and its extension (Figurnov et al., 2016) also perform adaptive eval-
uation on test examples to save batch computational cost, but focus on skipping units rather than
layers. In (Odena et al.,|2017), a “composer’model is trained to construct the evaluation network
from a set of sub-modules for each test example. By contrast, our work uses a single CNN with
multiple intermediate classifiers that is trained end-to-end. The Feedback Networks (Zamir et al.,
2016)) enable early predictions by making predictions in a recurrent fashion, which heavily shares
parameters among classifiers, but is less efficient in sharing computation.

Related network architectures. Our network architecture borrows elements from neural fabrics
(Saxena & Verbeek, 2016) and others (Zhou et al., 2015} |Jacobsen et al., |2017; |[Ke et al., 2016)
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Figure 3: Relative accuracy of the intermediate classifier (/eff) and the final classifier (right) when introducing
a single intermediate classifier at different layers in a ResNet, DenseNet and MSDNet. All experiments were
performed on the CIFAR-100 dataset. Higher is better.

to rapidly construct a low-resolution feature map that is amenable to classification, whilst also
maintaining feature maps of higher resolution that are essential for obtaining high classification
accuracy. Our design differs from the neural fabrics (Saxena & Verbeek, 2016) substantially in
that MSDNets have a reduced number of scales and no sparse channel connectivity or up-sampling
paths. MSDNets are at least one order of magnitude more efficient and typically more accurate
— for example, an MSDNet with less than 1 million parameters obtains a test error below 7.0%
on CIFAR-10 (Krizhevsky & Hinton, 2009), whereas |Saxena & Verbeek| (2016) report 7.43% with
over 20 million parameters. We use the same feature-concatenation approach as DenseNets (Huang
et al., 2017), which allows us to bypass features optimized for early classifiers in later layers of
the network. Our architecture is related to deeply supervised networks (Lee et al., 2015) in that
it incorporates classifiers at multiple layers throughout the network. In contrast to all these prior
architectures, our network is specifically designed to operate in resource-aware settings.

3 PROBLEM SETUP

We consider two settings that impose computational constraints at prediction time.

Anytime prediction. In the anytime prediction setting (Grubb & Bagnell, 2012), there is a finite
computational budget B > 0 available for each test example x. The computational budget is nonde-
terministic, and varies per test instance. It is determined by the occurrence of an event that requires
the model to output a prediction immediately. We assume that the budget is drawn from some joint
distribution P(x, B). In some applications P(B) may be independent of P(x) and can be estimated.
For example, if the event is governed by a Poisson process, P(B) is an exponential distribution. We
denote the loss of a model f(x) that has to produce a prediction for instance x within budget B by
L(f(x),B). The goal of an anytime learner is to minimize the expected loss under the budget dis-
tribution: L(f) = E [L(f(x), B) p(x,p)- Here, L(-) denotes a suitable loss function. As is common
in the empirical risk minimization framework, the expectation under P(x, B) may be estimated by
an average over samples from P(x, B).

Budgeted batch classification. In the budgeted batch classification setting, the model needs to
classify a set of examples D;est = {X1,...,Xps} within a finite computational budget B > 0 that
is known in advance. The learner aims to minimize the loss across all examples in D;.s; within a
cumulative cost bounded by B, which we denote by L(f(Dies:), B) for some suitable loss function

L(+). It can potentially do so by spending less than % computation on classifying an “easy” example

whilst using more than % computation on classifying a “difficult” example. Therefore, the budget
B considered here is a soft constraint when we have a large batch of testing samples.

4 MULTI-SCALE DENSE CONVOLUTIONAL NETWORKS

A straightforward solution to the two problems introduced in Section 3]is to train multiple networks
of increasing capacity, and sequentially evaluate them at test time (as in [Bolukbasi et al.| (2017)).
In the anytime setting the evaluation can be stopped at any point and the most recent prediction is
returned. In the batch setting, the evaluation is stopped prematurely the moment a network classifies
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the test sample with sufficient confidence. When the resources are so limited that the execution is
terminated after the first network, this approach is optimal because the first network is trained for
exactly this computational budget without compromises. However, in both settings, this scenario is
rare. In the more common scenario where some test samples can require more processing time than
others the approach is far from optimal because previously learned features are never re-used across
the different networks.

An alternative solution is to build a deep network with a cascade of classifiers operating on the
features of internal layers: in such a network features computed for an earlier classifier can be
re-used by later classifiers. However, naively attaching intermediate early-exit classifiers to a state-
of-the-art deep network leads to poor performance.

There are two reasons why intermediate early-exit classifiers hurt the performance of deep neural
networks: early classifiers lack coarse-level features and classifiers throughout interfere with the
feature generation process. In this section we investigate these effects empirically (see Figure [3)
and, in response to our findings, propose the MSDNet architecture illustrated in Figure

Problem: The lack of coarse-level features. Traditional neural networks learn features of fine
scale in early layers and coarse scale in later layers (through repeated convolution, pooling, and
strided convolution). Coarse scale features in the final layers are important to classify the content
of the whole image into a single class. Early layers lack coarse-level features and early-exit clas-
sifiers attached to these layers will likely yield unsatisfactory high error rates. To illustrate this
point, we attache(ﬂ intermediate classifiers to varying layers of a ResNet (He et al) 2016) and a
DenseNet (Huang et al.,|2017) on the CIFAR-100 dataset (Krizhevsky & Hintonl [2009). The blue
and red dashed lines in the left plot of Figure [3| show the relative accuracies of these classifiers.
All three plots gives rise to a clear trend: the accuracy of a classifier is highly correlated with its
position within the network. Particularly in the case of the ResNet (blue line), one can observe a
visible “staircase” pattern, with big improvements after the 2nd and 4th classifiers — located right
after pooling layers.

Solution: Multi-scale feature maps. To address this issue, MSDNets maintain a feature repre-
sentation at multiple scales throughout the network, and all the classifiers only use the coarse-level
features. The feature maps at a particular layelﬂ and scale are computed by concatenating the re-
sults of one or two convolutions: 1. the result of a regular convolution applied on the same-scale
features from the previous layer (horizontal connections) and, if possible, 2. the result of a strided
convolution applied on the finer-scale feature map from the previous layer (diagonal connections).
The horizontal connections preserve and progress high-resolution information, which facilitates the
construction of high-quality coarse features in later layers. The vertical connections produce coarse
features throughout that are amenable to classification. The dashed black line in Figure [3|shows that
MSDNets substantially increase the accuracy of early classifiers.

Problem: Early classifiers interfere with later classifiers. The right plot of Figure |3| shows the
accuracies of the final classifier as a function of the location of a single intermediate classifier,
relative to the accuracy of a network without intermediate classifiers. The results show that the
introduction of an intermediate classifier harms the final ResNet classifier (blue line), reducing its
accuracy by up to 7%. We postulate that this accuracy degradation in the ResNet may be caused by
the intermediate classifier influencing the early features to be optimized for the short-term and not
for the final layers. This improves the accuracy of the immediate classifier but collapses information
required to generate high quality features in later layers. This effect becomes more pronounced
when the first classifier is attached to an earlier layer.

Solution: Dense connectivity. By contrast, the DenseNet (red line) suffers much less from this
effect. Dense connectivity (Huang et al., [2017) connects each layer with all subsequent layers and
allows later layers to bypass features optimized for the short-term, to maintain the high accuracy
of the final classifier. If an earlier layer collapses information to generate short-term features, the
lost information can be recovered through the direct connection to its preceding layer. The final
classifier’s performance becomes (more or less) independent of the location of the intermediate

“We select six evenly spaced locations for each of the networks to introduce the intermediate classifier.
Both the ResNet and DenseNet have three resolution blocks; each block offers two tentative locations for the
intermediate classifier. The loss of the intermediate and final classifiers are equally weighted.

Here, we use the term “layer” to refer to a column in Figure
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Figure 4: The output x{ of layer £ at the s™ scale in a MSDNet. Herein, |[...] denotes the concatenation
operator, hi(-) a regular convolution transformation, and hj(-) a strided convolutional. Note that the outputs
of hy and hj have the same feature map size; their outputs are concatenated along the channel dimension.

classifier. As far as we know, this is the first paper that discovers that dense connectivity is an
important element to early-exit classifiers in deep networks, and we make it an integral design choice
in MSDNets.

4.1 THE MSDNET ARCHITECTURE

The MSDNet architecture is illustrated in We present its main components below. Addi-
tional details on the architecture are presented in Appendix [A]

First layer. The first layer (¢=1) is unique as it includes vertical connections in Figure[2] Its main
purpose is to “seed” representations on all S scales. One could view its vertical layout as a miniature
“S-layers” convolutional network (S=3 in Figure[2)). Let us denote the output feature maps at layer
¢ and scale s as x; and the original input image as x;. Feature maps at coarser scales are obtained
via down-sampling. The output x{ of the first layer is formally given in the top row of Figure

Subsequent layers. Following Huang et al|(2017), the output feature maps x; produced at subse-
quent layers, £ > 1, and scales, s, are a concatenation of transformed feature maps from all previous
feature maps of scale s and s — 1 (if s > 1). Formally, the /-th layer of our network outputs a set of
features at S scales {x},...,x7}, given in the last row of Figure[4]

Classifiers. The classifiers in MSDNets also follow the dense connectivity pattern within the coars-
est scale, .S, i.e., the classifier at layer ¢ uses all the features [xf e ,Xf ] Each classifier consists
of two convolutional layers, followed by one average pooling layer and one linear layer. In prac-
tice, we only attach classifiers to some of the intermediate layers, and we let f;(-) denote the k™
classifier. During testing in the anytime setting we propagate the input through the network until the
budget is exhausted and output the most recent prediction. In the batch budget setting at test time,
an example traverses the network and exits after classifier fj if its prediction confidence (we use
the maximum value of the softmax probability as a confidence measure) exceeds a pre-determined
threshold 6. Before training, we compute the computational cost, C, required to process the net-
work up to the k" classifier. We denote by 0 < ¢ < 1 a fixed exit probability that a sample that
reaches a classifier will obtain a classification with sufficient confidence to exit. We assume that q is
constant across all layers, which allows us to compute the probability that a sample exits at classifier
kas: g, = z(1 — q)F~'q, where z is a normalizing constant that ensures that Y, p(qx) = 1. At test
time, we need to ensure that the overall cost of classifying all samples in D;.s; does not exceed our
budget B (in expectation). This gives rise to the constraint |Dycst| D, qxCr < B. We can solve this
constraint for ¢ and determine the thresholds 6 on a validation set in such a way that approximately
|Dyest|qr validation samples exit at the k™ classifier.

Loss functions. During training we use cross entropy loss functions L( fx) for all classifiers and
minimize a weighted cumulative loss: ﬁ > (x.p)ep 2k WeL(fk). Herein, D denotes the training

set and wy, >0 the weight of the k-th classifier. If the budget distribution P(B) is known, we can use
the weights wy, to incorporate our prior knowledge about the budget B in the learning. Empirically,
we find that using the same weight for all loss functions (i.e., setting V& : wy = 1) works well in
practice.

Network reduction and lazy evaluation. There are two straightforward ways to further reduce the
computational requirements of MSDNets. First, it is inefficient to maintain all the finer scales until
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the last layer of the network. One simple strategy to reduce the size of the network is by splitting it
into S blocks along the depth dimension, and only keeping the coarsest (S — i + 1) scales in the i
block (a schematic layout of this structure is shown in[Figure 9). This reduces computational cost for
both training and testing. Every time a scale is removed from the network, we add a transition layer
between the two blocks that merges the concatenated features using a 1x 1 convolution and cuts the
number of channels in half before feeding the fine-scale features into the coarser scale via a strided
convolution (this is similar to the DenseNet-BC architecture of Huang et al.| (2017)). Second, since
a classifier at layer £ only uses features from the coarsest scale, the finer feature maps in layer ¢ (and
some of the finer feature maps in the previous S —2 layers) do not influence the prediction of that
classifier. Therefore, we group the computation in “diagonal blocks” such that we only propagate
the example along paths that are required for the evaluation of the next classifier. This minimizes
unnecessary computations when we need to stop because the computational budget is exhausted.
We call this strategy lazy evaluation.

5 EXPERIMENTS

We evaluate the effectiveness of our approach on three image classification datasets, i.e., the CIFAR-
10, CIFAR-100 (Krizhevsky & Hintonl |2009) and ILSVRC 2012 (ImageNet; |Deng et al.| (2009))
datasets. Code to reproduce all results is available at https://anonymous—url, Details on
architectural configurations of MSDNets are described in Appendix

Datasets. The two CIFAR datasets contain 50, 000 training and 10, 000 test images of 32x32 pixels;
we hold out 5, 000 training images as a validation set. The datasets comprise 10 and 100 classes,
respectively. We follow He et al.| (2016) and apply standard data-augmentation techniques to the
training images: images are zero-padded with 4 pixels on each side, and then randomly cropped
to produce 32x32 images. Images are flipped horizontally with probability 0.5, and normalized
by subtracting channel means and dividing by channel standard deviations. The ImageNet dataset
comprises 1,000 classes, with a total of 1.2 million training images and 50,000 validation images.
We hold out 50,000 images from the training set to estimate the confidence threshold for classifiers
in MSDNet. We adopt the data augmentation scheme of [He et al.| (2016) at training time; at test
time, we classify a 224 x 224 center crop of images that were resized to 256 x 256 pixels.

Training Details. We train all models using the framework of |Gross & Wilber| (2016). On the two
CIFAR datasets, all models (including all baselines) are trained using stochastic gradient descent
(SGD) with mini-batch size 64. We use Nesterov momentum with a momentum weight of 0.9
without dampening, and a weight decay of 10~%. All models are trained for 300 epochs, with an
initial learning rate of 0.1, which is divided by a factor 10 after 150 and 225 epochs. We apply the
same optimization scheme to the ImageNet dataset, except that we increase the mini-batch size to
256, and all the models are trained for 90 epochs with learning rate drops after 30 and 60 epochs.

5.1 ANYTIME PREDICTION

In the anytime prediction setting, the model maintains a progressively updated distribution over
classes, and it can be forced to output its most up-to-date prediction at an arbitrary time.

Baselines. There exist several baseline approaches for anytime prediction: FractalNets (Larsson
et al.l 2017), deeply supervised networks (Lee et al. [2015), and ensembles of deep networks of
varying or identical sizes. FractalNets allow for multiple evaluation paths during inference time,
which vary in computation time. In the anytime setting, paths are evaluated in order of increasing
computation. In our result figures, we replicate the FractalNet results reported in the original paper
(Larsson et al.,2017) for reference. Deeply supervised networks introduce multiple early-exit classi-
fiers throughout a network, which are applied on the features of the particular layer they are attached
to. Instead of using the original model proposed in |Lee et al.| (2015)), we use the more competitive
ResNet and DenseNet architectures (referred to as DenseNet-BC in Huang et al.|(2017)) as the base
networks in our experiments with deeply supervised networks. We refer to these as ResNet”'C and
DenseNet'C, where M C' stands for multiple classifiers. Both networks require about 1.3 x 103
FLOPs when fully evaluated; the detailed network configurations are presented in the supplemen-
tary material. In addition, we include ensembles of ResNets and DenseNets of varying or identical
sizes. At test time, the networks are evaluated sequentially (in ascending order of network size) to
obtain predictions for the test data. All predictions are averaged over the evaluated classifiers. On
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Figure 5: Accuracy (fop-1) of anytime prediction models as a function of computational budget on the ImageNet
(left) and CIFAR-100 (right) datasets. Higher is better.

ImageNet, we compare MSDNet against a highly competitive ensemble of ResNets and DenseNets,
with depth varying from 10 layers to 50 layers, and 36 layers to 121 layers, respectively.

Anytime prediction results are presented in Figure[5] The left plot shows the top-1 classification
accuracy on the ImageNet validation set. Here, for all budgets in our evaluation, the accuracy of
MSDNet substantially outperforms the ResNets and DenseNets ensemble. In particular, when the
budget ranges from 0.1 x 10'° to 0.3 x 10'® FLOPs, MSDNet achieves ~ 4% —8% higher accuracy.

We evaluate more baselines on CIFAR-100 (and CIFAR-10; see supplementary materials). We
observe that MSDNet substantially outperforms ResNetsM® and DenseNetsMC at any computational
budget within our range. This is due to the fact that after just a few layers, MSDNets have produced
low-resolution feature maps that are much more suitable for classification than the high-resolution
feature maps in the early layers of ResNets or DenseNets. MSDNet also outperforms the other
baselines for nearly all computational budgets, although it performs on par with ensembles when
the budget is very small. In the extremely low-budget regime, ensembles have an advantage because
their predictions are performed by the first (small) network, which is optimized exclusively for the
low budget. However, the accuracy of ensembles does not increase nearly as fast when the budget is
increased. The MSDNet outperforms the ensemble as soon as the latter needs to evaluate a second
model: unlike MSDNets, this forces the ensemble to repeat the computation of similar low-level
features repeatedly. Ensemble accuracies saturate rapidly when all networks are shallow.

5.2 BUDGETED BATCH CLASSIFICATION

In budgeted batch classification setting, the predictive model receives a batch of M instances and a
computational budget B for classifying all M instances. In this setting, we use dynamic evaluation:
we perform early-exiting of “easy” examples at early classifiers whilst propagating “hard” examples
through the entire network, using the procedure described in Section

Baselines. On ImageNet, we compare the dynamically evaluated MSDNet with five ResNets (He
et al., | 2016) and five DenseNets (Huang et al.,|2017), AlexNet (Krizhevsky et al.,2012), and Google-
LeNet (Szegedy et al.,[2015); see the supplementary material for details. We also evaluate an ensem-
ble of the five ResNets that uses exactly the same dynamic-evaluation procedure as MSDNets at test
time: “easy” images are only propagated through the smallest ResNet-10, whereas “hard” images
are classified by all five ResNet models (predictions are averaged across all evaluated networks in
the ensemble). We classify batches of M =128 images.

On CIFAR-100, we compare MSDNet with several highly competitive baselines, including ResNet-
s (He et al., 2016), DenseNets (Huang et al., [2017) of varying sizes, Stochastic Depth Networks
(Huang et al., 2016), Wide ResNets (Zagoruyko & Komodakis| [2016) and FractalNets (Larsson
et al.,|2017). We also compare MSDNet to the ResNet™ and DenseNet™C models that were used
in Sectio using dynamic evaluation at test time. We denote these baselines as ResNet"C /
DenseNet"" with early-exits. To prevent the result plots from becoming too cluttered, we present
CIFAR-100 results with dynamically evaluated ensembles in the supplementary material. We clas-
sify batches of M =256 images at test time.

Budgeted batch classification results on ImageNet are shown in the left panel of Figure [/} We
trained three MSDNets with different depths, each of which covers a different range of compu-
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Figure 7: Accuracy (top-1) of budgeted batch classification models as a function of average computational
budget per image the on ImageNet (left) and CIFAR-100 (right) datasets. Higher is better.

tational budgets. We plot the performance of each MSDNet as a gray curve; we select the best
model for each budget based on its accuracy on the validation set, and plot the corresponding ac-
curacy as a black curve. The plot shows that the predictions of MSDNets with dynamic evaluation
are substantially more accurate than those of ResNets and DenseNets that use the same amount of
computation. For instance, with an average budget of 1.7 x 10° FLOPs, MSDNet achieves a top-1
accuracy of ~75%, which is ~6% higher than that achieved by a ResNet with the same number of
FLOPs. Compared to the computationally efficient DenseNets, MSDNet uses ~2—3x times fewer
FLOPs to achieve the same classification accuracy. Moreover, MSDNet with dynamic evaluation
allows for very precise tuning of the computational budget that is consumed, which is not possible
with individual ResNet or DenseNet models. The ensemble of ResNets or DenseNets with dynamic
evaluation performs on par with or worse than their individual counterparts (but they do allow for
setting the computational budget very precisely).

The right panel of Figure [/|shows our results on CIFAR-100. The results show that MSDNets con-
sistently outperform all baselines across all budgets. Notably, MSDNet performs on par with a 110-
layer ResNet using only 1/10th of the computational budget and it is up to ~ 5 times more efficient
than DenseNets, Stochastic Depth Networks, Wide ResNets, and FractalNets. Similar to results in
the anytime-prediction setting, MSDNet substantially outperform ResNets™“ and DenseNets" ¢
with multiple intermediate classifiers, which provides further evidence that the coarse features in the
MSDNet are important for high performance in earlier layers.

Visualization. To illustrate the ability of our ap-
proach to reduce the computational requirements
for classifying “easy” examples, we show twelve
randomly sampled test images from two Ima-
geNet classes in Figure [f] The top row shows
“easy” examples that were correctly classified ! %
and exited by the first classifier. The bottom row (a) Red wine (b) Voleano

shows “hard” examples that would have been in- Figure 6: Sampled images from the ImageNet classes
correctly classified by the first classifier but were Red wine and Volcano. Top row: images exited from
passed on because 1ts uncertainty was too hlgh the first classifier of a MSDNet with correct predic-
The figure suggests that early classifiers recog- ti.on; Bottom row: im:flges failed to be correctly cl.as—
nize prototypical class examples, whereas the last sified at the first classifier but were correctly predict-
classifier recognizes non-typical images. ed and exited at the last layer.

“casy”

“hard”

5.3 MORE COMPUTATIONALLY EFFICIENT DENSENETS

Here, we discuss an interesting finding during our exploration of the MSDNet architecture. We
found that following the DenseNet structure to design our network, i.e., by keeping the number of
output channels (or growth rate) the same at all scales, did not lead to optimal results in terms of the
accuracy-speed trade-off. The main reason for this is that compared to network architectures like
ResNets, the DenseNet structure tends to apply more filters on the high-resolution feature maps in
the network. This helps to reduce the number of parameters in the model, but at the same time, it
greatly increases the computational cost. We tried to modify DenseNets by doubling the growth rate
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Figure 8: Test accuracy of DenseNet* on CIFAR-100 under the anytime learning setting (/eft) and the budgeted
batch setting (right).

after each transition layer, so that more filters are applied to low-resolution feature maps. It turns
out that the resulting network, which we denote as DenseNet*, significantly outperform the original
DenseNet in terms of computational efficiency.

We experimented with DenseNet* in our two settings with test time budget constraints. The left
panel of Figure[§]shows the anytime prediction performance of an ensemble of DenseNets* of vary-
ing depths. It outperforms the ensemble of original DenseNets of varying depth by a large margin,
but is still slightly worse than MSDNets. In the budgeted batch budget setting, DenseNet* also
leads to significantly higher accuracy over its counterpart under all budgets, but is still substantially
outperformed by MSDNets.

6 CONCLUSION

We presented the MSDNet, a novel convolutional network architecture, optimized to incorporate
CPU budgets at test-time. Our design is based on two high-level design principles, to generate and
maintain coarse level features throughout the network and to inter-connect the layers with dense
connectivity. The former allows us to introduce intermediate classifiers even at early layers and
the latter ensures that these classifiers do not interfere with each other. The final design is a two
dimensional array of horizontal and vertical layers, which decouples depth and feature coarseness.
Whereas in traditional convolutional networks features only become coarser with increasing depth,
the MSDNet generates features of all resolutions from the first layer on and maintains them through-
out. The result is an architecture with an unprecedented range of efficiency. A single network can
outperform all competitive baselines on an impressive range of computational budgets ranging from
highly limited CPU constraints to almost unconstrained settings.

As future work we plan to investigate the use of resource-aware deep architectures beyond object
classification, e.g. image segmentation (Long et al.,2015). Further, we intend to explore approaches
that combine MSDNets with model compression (Chen et al., 2015} [Han et al., 2015), spatially
adaptive computation (Figurnov et al., 2016) and more efficient convolution operations (Chollet,
2016; |[Howard et al.,|2017) to further improve computational efficiency.
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A DETAILS OF MSDNET ARCHITECTURE AND BASELINE NETWORKS

We use MSDNet with three scales on the CIFAR datasets, and the network reduction method intro-
duced in [4.1]is applied. gives an illustration of the reduced network. The convolutional
layer functions in the first layer, h3, denote a sequence of 3x3 convolutions (Conv), batch normaliza-
tion (BN; loffe & Szegedyl| (2015)), and rectified linear unit (ReL.U) activation. In the computation
of hj, down-sampling is performed by applying convolutions using strides that are powers of two.
For subsequent feature layers, the transformations hj and hj are defined following the design in
DenseNets (Huang et al.,|2017): Conv(1l x 1)-BN-ReLU-Conv(3 x 3)-BN-ReLU. We set the num-
ber of output channels of the three scales to 6, 12, and 24, respectively. Each classifier has two
down-sampling convolutional layers with 128 dimensional 3 x 3 filters, followed by a 2 x 2 average
pooling layer and a linear layer.

The MSDNet used for ImageNet has four scales, respectively producing 16, 32, 64, and 64 feature
maps at each layer. The network reduction is also applied to reduce computational cost. The original
images are first transformed by a 7x7 convolution and a 3x3 max pooling (both with stride 2),
before entering the first layer of MSDNets. The classifiers have the same structure as those used for
the CIFAR datasets, except that the number of output channels of each convolutional layer is set to
be equal to the number of its input channels.

depth

Figure 9: Illustration of an MSDNet with network reduction. The network has .S = 3 scales, and it is divided
into three blocks, which maintain a decreasing number of scales. A transition layer is placed between two
contiguous blocks.

Network architecture for anytime prediction. The MSDNet used in our anytime-prediction ex-
periments has 24 layers (each layer corresponds to a column in Fig. 1 of the main paper), using
the reduced network with transition layers as described in Section 4. The classifiers operate on the
output of the 2x (i+1)" layers, withi=1, ..., 11. On ImageNet, we use MSDNets with four scales,
and the i classifier operates on the (kxi-+3)" layer (withi=1,...,5), where k=4, 6 and 7. For
simplicity, the losses of all the classifiers are weighted equally during training.

Network architecture for budgeted batch setting. The MSDNets used here for the two CIFAR
datasets have depths ranging from 10 to 36 layers, using the reduced network with transition layers

as described in Section 4. The k™ classifier is attached to the (Z,’;zl i)™ layer. The MSDNets used
for ImageNet are the same as those described for the anytime learning setting.

ResNetMC and DenseNetMC. The ResNetC has 62 layers, with 10 residual blocks at each spatial
resolution (for three resolutions): we train early-exit classifiers on the output of the 4" and 8"
residual blocks at each resolution, producing a total of 6 intermediate classifiers (plus the final
classification layer). The DenseNetC consists of 52 layers with three dense blocks and each of
them has 16 layers. The six intermediate classifiers are attached to the 6™ and 12" layer in each
block, also with dense connections to all previous layers in that block.

B ADDITIONAL RESULTS

B.1 ABLATION STUDY

We perform additional experiments to shed light on the contributions of the three main components
of MSDNet, viz., multi-scale feature maps, dense connectivity, and intermediate classifiers.
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We start from an MSDNet with six intermediate

MSDNets Variants (CIFAR-100)

classifiers and remove the three main components

one at a time. To make our comparisons fair, we ol i
keep the computational costs of the full networks

similar, at around 3.0 x 10® FLOPs, by adapting = 65| v
the network width, i.e., number of output chan- &

nels at each layer. After removing all the three g 60 - .
components in an MSDNet, we obtain a regular  * /" [@—@ waltiple Classitors, Mutt-Scate, Donse Gannectivity
VGG-like convolutional network. We show the 5 & ZZ:::: Mul-Scale,
classification accuracy of all classifiers in a mod- * :

el in the left panel of Figure [[0] Several obser- i 03 06 09 2 5
vations can be made: 1. the dense connectivi- MUL-ADD x10°

ty is crucial for the performance of MSDNet and
removing it hurts the overall accuracy drastically
(orange vs. black curve); 2. removing multi-scale
convolution hurts the accuracy only in the lower
budget regions, which is consistent with our mo-
tivation that the multi-scale design introduces discriminative features early on; 3. the final canonical
CNN (star) performs similarly as MSDNet under the specific budget that matches its evaluation cost
exactly, but it is unsuited for varying budget constraints. The final CNN performs substantially bet-
ter at its particular budget region than the model without dense connectivity (orange curve). This
suggests that dense connectivity is particularly important in combination with multiple classifiers.

Figure 10: Ablation study (on CIFAR-100) of MS-
DNets that shows the effect of dense connectivi-
ty, multi-scale features, and intermediate classifiers.
Higher is better.

B.2 RESULTS oN CIFAR-10

For the CIFAR-10 dataset, we use the same MSDNets and baseline models as we used for CIFAR-
100, except that the networks used here have a 10-way fully connected layer at the end. The results
under the anytime learning setting and the batch computational budget setting are shown in the left
and right panel of Figure [TT] respectively. Similar to what we have observed from the results on
CIFAR-100 and ImageNet, MSDNets outperform all the baselines by a significant margin in both
settings. As in the experiments presented in the main paper, ResNet and DenseNet models with
multiple intermediate classifiers perform relatively poorly.

Anytime prediction on CIFAR-10 Batch computational learning on CIFAR-10
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Figure 11: Classification accuracies on the CIFAR-10 dataset in the anytime-prediction setting (left) and the
budgeted batch setting (right).
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