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ABSTRACT

Recent advances in learning from demonstrations (LfD) with deep neural net-
works have enabled learning complex robot skills that involve high dimensional
perception such as raw image inputs. LfD algorithms generally assume learn-
ing from single task demonstrations. In practice, however, it is more efficient
for a teacher to demonstrate a multitude of tasks without careful task set up,
labeling, and engineering. Unfortunately in such cases, traditional imitation
learning techniques fail to represent the multi-modal nature of the data, and of-
ten result in sub-optimal behavior. In this paper we present an LfD approach
for learning multiple modes of behavior from visual data. Our approach is
based on a stochastic deep neural network (SNN), which represents the under-
lying intention in the demonstration as a stochastic activation in the network.
We present an efficient algorithm for training SNNs, and for learning with vi-
sion inputs, we also propose an architecture that associates the intention with a
stochastic attention module. Furthermore, we demonstrate our method on real
robot visual object reaching tasks, and show that it can reliably learn the mul-
tiple behavior modes in the demonstration data. Video results are available at
https://vimeo.com/240212286/fd401241b9.

1 INTRODUCTION

A key problem in robotic control is to simplify the problem of programming a complex behavior.
Traditional control engineering approaches, which rely on accurate manual modeling of the sys-
tem environment, are very challenging to apply in modern robotic applications where most sensory
inputs come from images and other high-dimensional signals such as tactile feedback.

In contrast, imitation learning, or learning from demonstration (LfD) approaches (Schaal et al.,
2003) aim to directly learn a control policy from mentor or expert demonstrations. The key ad-
vantages of LfD are simplicity and data-efficiency, and indeed, LfD has been successfully used for
learning complex robot skills such as locomotion (Schaal et al., 2005), driving (Pomerleau, 1989;
Ross et al., 2011), flying (Abbeel & Ng, 2004), and manipulation (Mülling et al., 2013; Chebotar
et al., 2016; Pastor et al., 2009). Recently, advances in deep representation learning (Goodfellow
et al., 2016) have facilitated LfD methods with high dimensional perception, such as mapping raw
images directly to controls (Giusti et al., 2016). These advances are capable of learning generaliz-
able skills (Levine et al., 2015), and offer a promising approach for modern industrial challenges
such as pick and place tasks (Correll et al., 2016).

One challenge in LfD, however, is learning different modes of the same task. For example, consider
learning to pick up an object from a pile. The demonstrator can choose to pick up a different object
each time, yet we expect LfD to understand that these are similar demonstrations of the same pick-
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up skill, only with a different intention in mind. Moreover, we want the learned robot behavior to
display a similar multi-modal1 nature.

Standard approaches for LfD with image inputs, such as learning with deep neural networks
(NNs) (Pomerleau, 1989; Giusti et al., 2016; Levine et al., 2015), are not suitable for learning multi-
modal behaviors. In their essence, NNs learn a deterministic mapping from observation to control,
which cannot represent the inherently multi-modal latent intention in the demonstrations. In prac-
tice, this manifests as an ‘averaging’ of the different modes in the data (Bishop, 1994), leading to an
undesirable policy.

A straightforward approach for tackling the multi-modal problem in LfD is to add a label for each
mode in the data. Thus, in the pick-up task above, the demonstrator would also explicitly specify the
object she intends to pick-up beforehand. Such an approach has several practical shortcomings: it
requires the demonstrator to record more data, and requires the possible intentions to be specified in
advance, making it difficult to use the same recorded data for different tasks. More importantly, such
a solution is conceptually flawed – it solves an algorithmic challenge by placing additional burden
on the client.

In this work, we propose an approach for LfD with multi-modal demonstrations that does not require
any additional data labels. Our method is based on a stochastic neural network model, which rep-
resents the latent intention as a random activation in the network. We propose a novel and efficient
learning algorithm for training stochastic networks, and present a network architecture suitable for
LfD with raw image inputs, where the intention takes the form of a stochastic attention over features
in the image.

We show that our method can reliably reproduce behavior with multiple intentions in real-robot
object reaching tasks. Moreover, in scenarios where multiple intentions exist in the demonstration
data, the stochastic neural networks perform better than their deterministic counterparts.

2 RELATED WORK
In this work we focus on a direct imitation learning approach, known as behavioral cloning (Pomer-
leau, 1989). This approach does not require any model of the task dynamics, and does not require
additional queries of the mentor or robot execution rollouts beyond the collected demonstrations
(though such can be used to improve performance (Ross et al., 2011)). An alternative approach
is inverse reinforcement learning (IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart et al.,
2008), where a reward model that explains the demonstrated behavior is sought. Recently, model-
free IRL approaches that can learn complex behavior policies from high-dimensional data were
proposed (Finn et al., 2016; Ho & Ermon, 2016). These approaches, however, rely on taking ad-
ditional policy rollouts as a fundamental step of the method, which, in realistic robot applications,
requires substantial resources.

Multi-task IRL learns from unlabeled demonstrations generated by varying intentions or objec-
tives (Babes et al., 2011; Dimitrakakis & Rothkopf, 2012). Dimitrakakis & Rothkopf (2012) propose
a Bayesian approach for inferring the intention of an agent performing a series of tasks in a dynamic
environment. Babes et al. (2011) propose an EM for clustering the unlabeled demonstrations and
then application of IRL for inferring the intention of a given cluster. Both approaches have been
shown promising results on relatively simple low dimensional problems. Several recent works on
multi-task IRL (Hausman et al., 2017; Wang et al., 2017; Li et al., 2017) extended the generative ad-
versarial imitation learning (GAIL) algorithm (Ho & Ermon, 2016) to high dimensional multi-modal
demonstrations. Our approach, in comparison, does not require taking additional robot rollouts.

Recently, Rahmatizadeh et al. (2017) proposed a method for learning multi-modal policies from raw
visual inputs, using mixture density networks (Bishop, 1994) for generating outputs from a mixture
of Gaussians distribution. Their training method requires labeling each task with a specific signal.
While the modes, or intentions in our work can be seen as different tasks, we do not require any
labeling of the intention in the demonstrations.

To our knowledge, this is the first LfD approach that can handle multiple modes in the demonstra-
tions and: (1) does not require additional robot rollouts, (2) does not require a label for the mode,
and (3) can work with raw image inputs.

1In this paper, multi-modal refers to a distribution that contains multiple modes. In robotics literature, multi-
modal can also refer to policies that act on different input modalities such as vision and sound. We emphasize
that this is not the setting in this paper.
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The stochastic neural network model we use here is related to recently proposed generative models
such as (conditional) variational autoencoders (VAEs) (Kingma & Welling, 2014; Sohn et al., 2015),
and generative adversarial nets (GANs) (Goodfellow et al., 2014; Mirza & Osindero, 2014). We
opted for stochastic neural networks since GANs are known to have problems learning multi-modal
distributions (Arora & Zhang, 2017), and conditional VAEs (Pillai & Leonard, 2017) require training
an additional encoding network, which proved to be difficult in our experimental domain.

Very recently, in the context of multi-modal video prediction, Fragkiadaki et al. (2017) proposed
the K-best loss for training stochastic neural networks, which is similar to our proposed training
algorithm. In that work, stochastic neural networks with K-best loss were also shown to outperform
conditional VAEs on some domains. Our contribution, compared to the work of Fragkiadaki et al.
(2017), is providing a formal mathematical treatment of this method, proposing optimistic sampling
which significantly improves its performance, and showing its importance in a real world robotic
imitation learning domain.

3 PRELIMINARIES

We first introduce some preliminary concepts for presenting our methods, and then present our
problem formulation of imitation learning with multi-modal behaviors in expert demonstrations.

Learning from Demonstration To explicitly formulate the problem of imitation learning, let X
and U denote the observation and action spaces of the robot, and let xt ∈ X and ut ∈ U de-
note an observation and a control command for the robot at time t. Given a data-set D of N
trajectories T i with length T (for simplifying notations we drop the subscript i in Ti), where a
demonstrated task is recorded in the form of sequential pairs of observations and actions T i ={
〈xi1, ui1〉, . . . , 〈xiT , uiT 〉

}N
i=1

, LfD aims to learn a policy P : X → P(U) that is parametrized by
feature weight vector θ ∈ Θ, such that it reliably performs the task. Here P(U) represents the space
of probability distributions defined on the action space U . Since each observation is associated with
an action label, the imitation learning policy can be found by solving the maximum-likelihood (ML)
objective: θ∗ ∈ arg maxθ∈Θ

1
N

∑N
i=1 logP (ui1:T |xi1:T , θ), where we abbreviated the sequence of

actions as u1:T
.
= u1, . . . , uT , and the sequence of observations as x1:T

.
= x1, . . . , xT . This ob-

jective function is the empirical average of the conditional log likelihood, which is a consistent
estimator of the expected conditional log likelihood: E [logP (u1:T |x1:T , θ)]. If, for example, the
policy is Gaussian with parametrized mean vector f(x; θ) and an identity co-variance matrix, then
the above supervised learning problem is equivalent to an `2 regression problem with objective
function 1

N

∑N
i=1

∑T
t=1 ‖uit − f(xit; θ)‖22.

Stochastic Neural Networks Multilayer perceptrons (MLPs) are general purpose function ap-
proximators for nonlinear regression in feedforward neural networks (NNs) (Goodfellow et al.,
2016). Parametrized by the NN weights θ, the output of the MLP, f(x; θ), is often interpreted as the
sufficient statistics of the conditional probability P (u|x; θ), if the conditional probability belongs
to the exponential family (conditioned on the input x). For example, if P (u|x; θ) is parametrized
as an isotropic Gaussian distribution, it can be represented by N (u|f(x; θ), I). The parameters θ
are typically learned by maximizing the expected log likelihood function. However, since the MLP
activation functions are all deterministic, by nature the model P (u|x; θ) is a unimodal distribution.

For many structured prediction problems, we are interested in a conditional distribution that is multi-
modal. To satisfy the multi-modality requirement, a common approach is to make the hidden vari-
ables in the NN stochastic. Sigmoid belief nets (SBNs) (Neal, 1992) are an early example of this
idea, using binary stochastic hidden variables. However, inference in SBNs is generally intractable,
and costly to compute in practice. Recently, Tang & Salakhutdinov (2013) introduced the stochastic
feedforward neural network (SNN) for modeling the multi-modal conditional distribution P (u|x; θ).
Unlike SBNs, SNNs add to the deterministic NN latent features a stochastic latent variable z, and de-
compose the conditional distribution as: P (u|x; θ) =

∑
z P (u|x, z; θ)P (z). It is also assumed that

P (u|x, z, θ) and P (z) can be easily computed, for example, as in (Tang & Salakhutdinov, 2013),
where z is represented by Bernoulli random variable nodes in the network. For learning the pa-
rameters θ, Tang & Salakhutdinov (2013) proposed a generalized EM algorithm, where importance
sampling is used in the E-step, and error back-propagation is used in the M-step.

Problem Formulation In this work, we consider an imitation learning setting, where the mentor
demonstrations of a particular task consist of multiple behaviors. In particular, we assume that the
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demonstrator can perform the task in several different strategies, which we term as intentions. As
a concrete example, consider the task of picking up an object from a pile of different objects in
the scene (see Figure 1(a) for an example). In this case, the data-set of mentor demonstrations
consists of a list of trajectories, where the target object in each trajectory is inherently decided by
the demonstrator, and not explicitly labeled. Our goal is to learn a stochastic policy that accurately
mimics the mentor’s policy, and accurately displays the multiple intentions demonstrated in the data.

4 MULTI MODAL LFD WITH SNNS

In this section, we first present our LfD formulation based on the SNN model for learning multiple
intentions, and then propose a sampling based algorithm for learning the SNN parameters. We then
present a particular SNN architecture that is suitable for vision-based inputs, where the stochastic
intention takes the form of an attention over image features.

4.1 THE SNN FORMULATION

We model the intention of the demonstrator using a random vector z ∈ RM with probability
distribution P(z). For example, P(z) could be a unit normal distribution N (0, I), or a vector
of independent multinomial probabilities. Here we assume that throughout a single trajectory,
the intention does not change, and the intention is independent of the observations2. Therefore,
the conditional data likelihood is obtained by marginalizing out the random variable of intention:
P (u1:T |x1:T ; θ) =

∑
z P (u1:T |x1:T , z; θ)P (z). SNNs can be viewed as directed graphical models

(see Figure 4 in the appendix for a diagram) where at each time t ∈ {1, . . . , T}, the generative pro-
cess starts from an observation xt, combines with a latent intention z, which is the same throughout
the trajectory, and then generates an action ut. We also make the standard assumption that, given
the intention z at each trajectory, the demonstrator policy is memory-less (a.k.a. Markov), which
implies the following equality: P (u1:T |x1:T , z; θ) =

∏T
t=1 P (ut|xt, z; θ).

Given an intention z, we model the action probability as logP (u|z, x; θ) ∝ −d(f(x, z; θ), u),where
f is a deterministic NN that takes as input both the observation x and the intention z, and d is some
distance metric. One immediate example is when d(a, b) = ‖a − b‖2, one obtains P (u|z, x; θ)
as a normal distribution N (u|f(x, z; θ), σ2) for some MLP mean predictor f(x, z; θ) and constant
variance term σ2. In our experiments, we found the `1 distance function to work well. Note that
when the intention variable z is fixed, the output action follows a unimodal distribution. However,
since z is a random vector that is input to a nonlinear NN computation, the distribution of f(x, z; θ),
and thereby the output distribution P (u1:T |x1:T ; θ), can take a multi-modal form.

4.2 THE MONTE CARLO LEARNING ALGORITHM

We first describe a basic Monte Carlo (MC) sampling algorithm for learning the parameters θ ∈ Θ
of the SNN model in Section 4.1. Let z1, . . . , zN denote N samples of z, where zi ∼ P (z).
For each given parameter θ, sequence of observations x1:T , and sequence of actions u1:T , let
r(z;x1:T , u1:T , θ) = P (u1:T |x1:T , z; θ) be the reward function, which associates an intention with
the data likelihood given it. The reason we use this terminology is to later connect the likelihood
maximization problem with risk-sensitive optimization concepts that will be key in our approach. A
Monte Carlo approximation of the likelihood is given by,

P (u1:T |x1:T ; θ) = Ez∼P [r(z;x1:T , u1:T , θ)] ≈
1

N

N∑
i=1

r(zi;x1:T , u1:T , θ). (1)

A direct approach for computing θ would be to directly maximize 1
N

∑N
i=1 log r(zi;x1:T , u1:T , θ),

which is a MC estimate of Ez∼P [log r(z;x1:T , u1:T , θ)], with gradient-based optimization. By
Jensen’s inequality, the above term is a lower bound of the data log likelihood logP (u1:T |x1:T ; θ),
corresponding to a maximum-likelihood approach. While the estimator of the gradient is unbiased
and consistent to Ez∼P [∇θ log r(z;x1:T , u1:T , θ)], in practice, such an approach suffers from ex-
tremely high variance (with respect to intention z). To justify this observation, consider the sum

2By assuming an input-independent intention, our generation model P (u|x) is similar to the generation
model in a conditional VAE (Sohn et al., 2015), or conditional GAN (Mirza & Osindero, 2014), although
our training method is different. We found the input-independent model to be sufficient for our experiments.
Extending our method to observation-dependent intention is possible, along the lines of (Tang & Salakhutdinov,
2013), and deferred to future work.
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of probabilities in (1). Since each sampled intention zi is given an equal weight in explaining the
observed sequence of actions, even sampled intentions that are very different from the ones that
generated the data (i.e., have high cost) are expected to produce a high likelihood.

4.3 INTENTION-DRIVEN LEARNING IN SNNS

To reduce variance in training SNNs, in this section we introduce a sampling strategy whose gradient
updates focuses only on the most correct underlying intentions – the intentions that have the highest
reward. We analyze the bias and variance trade-offs of this new sampling gradient estimate, and
show that the variance of our proposed approximation is lower than that of a naive MC approach.

For any given threshold α ∈ [0, 1], let qα(θ) denote the (upper) α−quantile of the reward func-
tion qα(θ)

.
= maxw

{∑
z:r(z;x1:T ,u1:T ,θ)≥w P (z) ≤ α

}
. This associates with the α−quantile of the

underlying intention with highest likelihood probability. We define an intention-driven probability
distribution as follows:

Qα(z|u1:T , x1:T ; θ) =
P (z)

α
1 {r(z;x1:T , u1:T , θ) ≥ qα(θ)} .

This quantity can be interpreted as a weighted distribution that only samples from the α% of the
most correct underlying intentions (i.e., the intentions that best explain the mentor demonstrations).
The expected reward induced by the intention-driven distribution is given by:

Ez∼Qα [r(z;x1:T , u1:T , θ)] = E [r(z;x1:T , u1:T , θ) |r(z;x1:T , u1:T , θ) ≥ qα(θ) ] , (2)

which is equal to the conditional likelihood function of the α% most correct intentions. In the
financial risk literature, this metric is known as the expected shortfall (Rockafellar & Uryasev, 2000),
and is typically used to evaluate the risky tail distribution of financial assets. While our setting is
completely different, we will use tools developed for expected shortfall estimation in our approach.

By definition of Qα, one has the following inequality.

P (u1:T |x1:T ; θ) = E[r(z;x1:T , u1:T , θ)] ≤ EQα [r(z;x1:T , u1:T , θ)] ≤
1

α
P (u1:T |x1:T ; θ). (3)

We propose to maximize Ez∼Qα [r(z;x1:T , u1:T , θ)] using Monte Carlo sampling techniques. In-
tuitively, since the support of Qα is limited to the most likely z values, estimating it using sam-
pling has lower variance than estimating the original likelihood. We will further elaborate on
this point technically later in the section. However, this comes at the cost of adding a bias∑
z:Qα(z)=0 P (u1:T |x1:T , z; θ)P (z). Empirically, we have found this procedure to work well.

To sample from Qα, we use empirical quantile estimation (Glynn, 1996). Let zord1 , . . . , zordN
denote the MC samples z1, . . . , zN sorted in descending order, according to the reward func-
tion r(z;x1:T , u1:T , θ). Let Nα = bαNc be the number of samples corresponding to the
α−quantile. Then we have the following empirical estimate: Ez∼Qα [r(z;x1:T , u1:T , θ)] ≈

1
Nα

∑Nα
i=1 r(z

ord
i ;x1:T , u1:T , θ). It has been shown in Theorem 1 of Glynn (1996) that under stan-

dard assumptions, the above expression is a consistent estimator of Ez∼Qα [r(z;x1:T , u1:T , θ)] with
order O(N−1/2), which we have shown above to be a lower bound to the likelihood function. For
the special case of Nα = 1 (when α = 1/N ), we can replace the sorting operation with a simple
min operation, yielding a simple and intuitive algorithm – we choose the sampled z with the lowest
error for updating the parameters θ.

In practice, maximizing the log-likelihood of the data is known to work well (Goodfellow et al.,
2016). In our case, we correspondingly maximize Ez∼Qα [log r(z;x1:T , u1:T , θ)], which, by the
Jensen inequality3, is a lower bound on logEz∼Qα [r(z;x1:T , u1:T , θ)]. We therefore obtain the
following gradient estimate GN,α(θ) := 1

Nα

∑Nα
i=1∇θ log r(zordi ;x1:T , u1:T , θ). We term this sam-

pling technique as intention-driven sampling (IDS). Pseudocode is given in Algorithm 1.

Optimistic Sampling: To predict actions at test time, we first sample z in the beginning of the
episode and fix it, and then use the NN to predict ut = f(xt, z) at every time step. While we
could sample z from P (z), this might result in a z value that has a low likelihood to reproduce the

3Since log is a monotonic function, all the order statistics of r(z;x1:T , u1:T , θ), including the quantile
qα(θ), will not be affected.
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demonstrations, i.e., a z that has low reward. We observed this to be problematic in practice, and
therefore devise an alternative approach, which we term optimistic sampling. We propose to store a
set of the K most recent z values that obtained the highest reward during training, and at inference
time sample a z uniformly from this set. This corresponds to sampling z from Qα(z), averaged over
the training data. Optimistic sampling dramatically improves the prediction performance in practice.

Analysis: By Theorem 4.2 of Hong & Liu (2009), GN,α(θ) is a consistent gradient estimator
of the lower bound with asymptotic bias of O(N−1/2). In Appendix 8, we deduce the following
expression for the variance of GN,α(θ):

VIDS ≈
1

α2N
Var(∇θ(log r(z1;x1:T , u1:T , θ)−qα(θ))1{log r(z1;x1:T , u1:T , θ)≥qα(θ)}).4 (4)

When Nα = N , i.e., α = 1, we obtain the variance of standard MC sampling , i.e.,
VMC = 1

N Var(∇θ log r(z;x1:T , u1:T , θ)). On the other hand, when α → 1/N the variance
is bounded in O(1/N2). This result is due to the fact that (i) |∇θ(log r(z1;x1:T , u1:T , θ)−
qα(θ))|1{log r(z1;x1:T , u1:T , θ) ≥ qα(θ)} is bounded by a constant that is O(α),5 (ii)
Var(1{log r(z1;x1:T , u1:T , θ) ≥ qα(θ)}) = α · (1 − α), and (iii) therefore VIDS = O(α · (1 −
α)/(α2N) · α2) = O(N−2). Therefore, one can treat α as a nob to trade-off bias (see (3)) and
variance (see (4)) in IDS.

Algorithm 1: IDS
Input: A minibatch of K samples {ut, xt, . . . , ut+K , xt+K} from the same demonstration

trajectory T i
Output: An update direction for θ, and a sample from Qα

1 Sample z1, . . . , zN ∼ P (z)
2 Set z∗ = arg maxzi P (ut:t+K |xt:t+K , zi; θ)
3 return ∇θ logP (ut:t+K |xt:t+K , z∗; θ), and z∗

Comparison to SNNs: Broadly speaking, generalized EM algorithms (Tang & Salakhutdinov,
2013) can be seen as designing an importance sampling weight to reshape the sampling distri-
bution, in order to lower the variance of the gradient estimate, by using entropy maximization
or posterior distribution matching (more details can be found in Appendix 7). For the specific
SNN algorithm of Tang & Salakhutdinov (2013) applied to our NN architecture, the importance
weights correspond to a soft-max over the reward defined above. In IDS the importance weight is
w(z) = 1

α1{r(z;x1:T , u1:T , θ) ≥ qα(θ)}, which for Nα = 1 amounts to replacing the soft-max
with a hard max. Interestingly, these two similar algorithms were developed from very different
first principles. In practice, however, the IDS algorithm integrates naturally with optimistic sam-
pling, which leads to significantly better performance, as we show in our experiments.

4.4 INTENTION DRIVEN SNN ARCHITECTURE FOR STOCHASTIC VISUAL ATTENTION

In this section we present Intention-SNN (henceforth I-SNN), an architecture that implements the
stochastic intention as an attention over particular features in the image. This architecture is suit-
able for LfD domains where the visual observation contains information about multiple possible
intentions, as in the object pick up task in Section 5.

Our I-SNN architecture is presented in Figure 1, and is comprised of three modules. The first module
is a standard multi-layer (fully) convolutional neural network (CNN) feature extractor (Goodfellow
et al., 2016), followed by a spatial softmax layer. The CNN maps the input image onto C feature
maps. The spatial softmax, introduced by Levine et al. (2015), calculates for each feature map in
its input the corresponding (x, y) position in the image where this feature is most active. Let φc,i,j
denote the activation of feature map c at coordinate (i, j). The spatial softmax output for that feature
is (fc,x, fc,y), where fc,x =

∑
i,j exp(φc,i,j) · i/

∑
i′,j′ exp(φc,i′,j′), and fc,y =

∑
i,j exp(φc,i,j) ·

j/
∑
i′,j′ exp(φc,i′,j′). Thus, the output of the spatial softmax is of dimensions C × 2.

4Here qα(θ)) is the α−quantile of the log reward function.
5Intuitively, when the threshold α approaches 1/N , the quantile qα(θ) increases (up to the maximum value

of log reward) at rate O(α), leaving less and less room for log rewards above the quantile. Concretely, the
random variable | log r(z1;x1:T , u1:T , θ)− qα(θ)|1{log r(z1;x1:T , u1:T , θ) ≥ qα(θ)} converges to 0 at rate
O(α). Consequently, this random variable is bounded by O(α). Analogous arguments can be applied for the
case with gradients as well, more technical details can be found in Section 4 of Hong & Liu (2009).
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Figure 1: (a) 6-DOF IRB-120 robot and an example of a task configuration; (b) A schematic diagram
of the I-SNN architecture.

The second module applies a stochastic soft attention over the spatial softmax features. We use a
MLP to map the M -dimensional random intention vector z onto a C-dimensional vector w. We
then apply a softmax to obtain the attention weight vector a ∈ RC , ac = exp(wc)/

∑
c′ exp(wc′)

(Xu et al., 2015). The attention weight is multiplied with the spatial softmax output to obtain the
attention-modulated feature activations: f ′c,x = fc,x · ac, and f ′c,y = fc,y · ac, which are input to the
control network along with the robot’s d-dimensional vector of current pose. The control network is
a standard MLP mapping RC×2+d to P (u).

The intuition behind this architecture is that the stochastic intention can ‘select’ which features
are relevant for making a control decision, by giving them higher weights in the attention. When
multiple objects are in the scene, each object would naturally be represented by different features,
therefore the intention in this architecture can correspond to attending to a particular object6.

5 EXPERIMENTS

We demonstrate the effectiveness of our approach on learning a reaching task with the IRB-120 robot
(Figure 1b), where mentor trajectories are collected in the form of sequential image-action pairs.
The main questions we seek to answer are: (1) Can our IDS learn to effectively reproduce multiple
intentions in the demonstrations? (2) How does IDS approach compare to a standard deterministic
NN approach for LfD? (3) How does training an I-SNN using IDS compare with training it using
the SNN algorithm7 of Tang & Salakhutdinov (2013)?

To maintain a fair comparison, we evaluated deterministic NN policies with identical structure as
I-SNN except for the stochastic intention module (cf. Section 4.4, and Figure 1).

5.1 SNN IMPLEMENTATION DETAILS

In all our experiments we used the following parameters for the SNN training, which we found to
work well consistently across different domains:(1) Loss function: we represent the output distribu-
tion as logP (u|h, x; θ) ∝ −‖f(x, h; θ)−u‖1, where f(x, h; θ) is the output of the control network,
as described in Section 4.4. This corresponds to an L1 regression loss, which we found to perform
better than the popular L2 loss in our experiments. (2) Monte Carlo samples: we chose N = 5,

6We note that this architecture is not directly applicable for cases where two objects have exactly the same
appearance, and therefore the same feature activation function. Such cases can be handled by adding spatial
information to the features or the attention module, which will be investigated in future work.

7We also investigated using a conditional VAE (CVAE), however, despite extensive experimentation, we
could not get the CVAE to work. We attribute this to the fact that the recognition network in a CVAE needs to
map the image to a latent variable distribution that ‘explains’ the observed action. This mapping is complex,
as it needs to understand from the image what goal the demonstration is aiming towards. Our approach, on the
other hand, does not require a recognition module for reducing variance during training.

7
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which we found to work well. Higher values resulted in degraded performance at test time, due to
the higher bias (see Section 4). (3) Intention variable dimension: we chose z ∈ R5 for all experi-
ments. We did not observe this parameter to be sensitive, and dimensions from 2 to 10 performed
similarly. (4) P(z): a 5-dimensional vector of independent uniform multinomials in {0 : 4}.

5.2 REAL WORLD ROBOT REACHING TASK

In this task, depicted in Figure 1(a), the objective is to navigate the end-effector of robot to reach a
point above one of 3 objects in the scene – a soap box, a blue electronic box and a measuring cup.
We used a 6-DOF IRB-120 robot where the control is a 3-dimensional Cartesian vector applied to
the the end effector ut = (d~xt, d~yt, d~zt). The observations consists of (1) a 480× 640 RGB image
of the scene (further cropped and resized to 64× 64 resolution) using a point-grey camera mounted
at a fixed angle; (2) the 3 dimensional end-effector Cartesian pose (see Figure 1 for more details).

Data Collection: We denote a specific scene arrangement of object placements and initial end-
effector pose as a task configuration. Task configurations were randomly generated by arbitrarily
placing the three objects on the work bench and randomly initializing the end-effector pose. Once
a task configuration is generated, the position of the objects remain fixed for the entire episode.
For each task configuration we collect 3 demonstrations, each generated by a human navigating the
end-effector using a 3DConnexion space-mouse to reach one of the objects. At each time step t, the
observation ot together with the Cartesian control signal ut (see above) are recorded. We collected
demonstrations from 468 different task configurations, for a total of 1404 demonstration trajectories.

Training: We compare using IDS and the SNN algorithm of Tang & Salakhutdinov (2013) (hence-
forth SNN) for training the I-SNN architecture. To reduce the training time, we pre-trained the
weights of the convolutional layers in the Feature Extraction module reusing the weights learned in
the deterministic NN model. For optimization, we also used Adam (Kingma & Ba, 2014), with the
default parameters using 90% of the data set for training and 10% for validation. .

Evaluation: We evaluate each model on 10 randomly generated task configurations, with 20 trials
on each task configuration, for a total of 200 trials. We run the model until it either succeeds
to reach an object or fails. For the IDS algorithm, we used optimistic sampling. For SNN, we
experimented with both optimistic and uniform sampling, however the latter resulted in a better
overall performance.

Table 1 shows the overall success rate for every model across all 200 trials. The deterministic NN
model succeeded in reaching one of the objects only in 3 task configurations (and kept on reaching
that same object for the 20 evaluations in each), and failed on the other 7 task configurations due to
the averaging problem. The stochastic algorithms performed significantly better by learning multiple
modes of the problem. IDS significantly out-performed the SNN algorithm, as we explain below.

We evaluate the mode learning ability by counting, for each task configuration, how many different
objects were reached, as depicted in Table 1 (last four columns). As expected, the deterministic
NN could not reach more than one object. I-SNN trained by SNN algorithm, on the other hand,
could reach two different (but fixed) objects for 6 task configurations, and all three objects for the
rest. The best performance is achieved by I-SNN trained by IDS, reaching all three objects in all
the tasks, thereby demonstrating a strong ability to learn all the modes in the data. In the appendix
(Figure 3), we show a histogram of reaching the different objects that demonstrates that IDS learned
a near-uniform distribution over the modes. Additionally, in the appendix (Figure 5) we visualize
the features that I-SNN attends to, showing that in each episode the model consistently attends to
the same object throughout the execution.

In Figure 2 we explain the superior performance of IDS over SNN. Since IDS focuses only on
the best samples (through the max) compared to SNN which gives weight also to non best sam-
ples (through the soft-max), IDS better ‘tunes’ the network for the best samples. Combined with
optimistic sampling, which draws these best samples during execution, this leads to better results.

6 CONCLUSION

We presented an approach for learning from demonstrations that contain multiple modes of per-
forming the same task. Our method is based on stochastic neural networks, and represents the mode

8
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Table 1: The first column shows the overall success rate for every model calculated over 10 different
task configurations, and 20 trials each, for a total of 200 trials. The last four columns show the
un-normalized distribution of modes learned across 10 task configurations.

Overall Success Rate 1 object 2 objects 3 objects Fail
deterministic NN 30% 3 0 0 7
SNN 60.5% 0 6 4 0
IDS 98.5% 0 0 10 0

SNN
IDS

Epoch

Loss

(a)

Loss

Epoch

SNN
IDS

(b)

Loss

Epoch

SNN
IDS

(c)

Figure 2: Comparison of IDS and SNN algorithms. We plot three different errors during training (on
the training data), for the same model trained using IDS and SNN algorithm. Left: the respective
training loss for each method. Since the max in IDS upper bounds the softmax in SNN, the loss
plot for IDS lower bounds SNN. Middle: the IDS loss on the training data, for both models. Since
the SNN is trained on a different loss function (softmax), its performance is worse. This shows an
important point: if, at test time, we use optimistic sampling to sample z from best samples during
training, we should expect IDS to perform better than SNN. Right: the average log-likelihood loss
during training. The SNN wins here, since the softmax encourages to increase the likelihood of
‘incorrect’ z values. This provides additional motivation for using optimistic sampling.

of performing the task by a stochastic vector – the intention, which is given as input to a feedfor-
ward neural network. We presented a simple and efficient algorithm for training our models, and a
particular implementation suitable for vision-based inputs. As we demonstrated in real-robot exper-
iments, our method can reliably learn to reproduce the different modes in the demonstration data,
and outperforms standard approaches in cases where such different modes exist.

In future work we intend to investigate the extension of this approach to more complex manipulation
tasks such as grasping and assembly, and domains with a very large number of objects in the scene.
An interesting point in our model is tying the features to the intention by an attention mechanism,
and we intend to further investigate recurrent attention mechanisms (Xu et al., 2015) that could offer
better generalization at inference time.
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7 GENERALIZED EM ALGORITHM FOR LEARNING SNNS VIA IMPORTANCE
SAMPLING

We review the work of Tang & Salakhutdinov (2013) as relevant for our setting. For the importance
sampling based approach, instead of maximizing the log likelihood function, consider maximizing
the following evidence lower bound (ELBO):

F (Q, θ)=EQ

[
log

P (u1:T , z|x1:T ; θ)

Q(z|x1:T , u1:T )

]
≤EP (·|x1:T ,u1:T ;θ) [logP (y1:T |x1:T ,θ)]

≤ logP (y1:T |x1:T ,θ),

where F is the Kullback Liebler divergence between P (u1:T |z, x1:T ; θ) and Q(z|u1:T , x1:T ) given
as follows:

F (Q, θ)=−DKL(Q||P (·|x1:T , u1:T ; θ)) + logP (y1:T |x1:T ,θ).

Most importantly, it has also been shown in Theorem 2 of Neal & Hinton (1998) that if Q and
θ form a pair of local maximizer to F , then θ is also a local maximum of the original likelihood
maximization problem. To maximize F w.r.t Q, one has the closed form solution based on Bayes
theorem:

Q∗(z|u1:T , x1:T ; θold) =P (z|y1:T , x1:T , θ)

=
P (y1:T |z, x1:T , θold)P (z)

P (y1:T |x1:T , θold)

≈ P (y1:T |z, x1:T , θold)P (z)
1
N

∑N
i=1 P (y1:T |zj , x1:T , θold)

.

Here, {z1, . . . , zN} is a sequence of latent random variables sampled i.i.d. from the distribution
P (z).

Given parameter θ, denoted by θold, immediately the posterior distribution Q that maximizes F
is given by: Q∗(z|x1:T , u1:T ) = P (z|x1:T , u1:T ; θold). In this case, the above loss function is
equivalent to the complete data log-likelihood

`∗(θ, θold) := EP (·|u1:T ,x1:T ;θold)

[
log

P (x1:T , z|u1:T ; θ)

P (z|x1:T , u1:T ; θold)

]
,

which is a lower bound of the log likelihood. Furthermore, if θ = θold, then clearly `∗(θold, θold) is
equal to the log-likelihood logP (y1:T |x1:T ,θold).

Tang & Salakhutdinov (2013) present a generalized EM algorithm to train a SNN. In the E-step, the
following approximate posterior distribution is used:

Q̂(z|u1:T , x1:T ; θold) := r̄(z;x1:T ,y1:T , θold)P (z),

where

r̄(z;x1:T ,y1:T , θold) =
r(z;x1:T , u1:T , θold)

1
N

∑N
i=1 r(zi;x1:T , u1:T , θold)

is the the importance sampling weight. Recall that for our distribution model,
r(z;x1:T , u1:T , θold) ∝ exp(−d(f(x, z; θ), u)), therefore we obtain that the importance weights
correspond to a soft-max over the prediction error.

In the M-step, the θ parameters are updated with the gradient vector with respect to the following
optimization: θ ∈ arg maxθ∈Θ

ˆ̀(θ, θold), where

ˆ̀(θ, θold) =
1

N

N∑
i=1

r̄(zi;x1:T ,y1:T , θold) logP (y1:T , zi|x1:T , θ)

is the empirical expected log likelihood, and Q̂ is the posterior distribution from the E-step. Here
we drop the last term in F because in our case Q that does not depend on θ. Correspondingly, the
gradient estimate is given by:

∇θ ˆ̀(θ, θold) =
1

N

N∑
i=1

r̄(zi)∇θ log r(zi;x1:T , u1:T , θ),
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the equality is due to the facts that

logP (y1:T , z|x1:T , θ) = log r(z;x1:T ,y1:T , θ) + logP (z)

and distribution P (z) is independent of θ.

To better understand this estimator, we will analyze the bias and variance of the gradient estimator.
Based on the construction of importance sampling weight, immediately the gradient estimator is
consistent. Furthermore, under certain regular assumptions, the bias is O(N−1/2). (This means the
gradient estimator is asymptotically unbiased.) Furthermore, the variance of this estimator is given
by

VIS(θ, θold)=
1

L

(∫
z

v(z; θ)dP (z)− (∇θ`∗(θ, θold))2

)
,

where the integrand is given by v(z; θ)= r̄(z;x1:T ,y1:T , θold) · (∇θlog r(z;x1:T , u1:T , θ))
2≥0.

8 TECHNICAL PROOF OF THE VARIANCE IN INTENTION-DRIVEN SAMPLING

In this section, we study the variance of the gradient estimate of CVaR(R(z; θ)). This proof fol-
lows analogously from the analysis in Section 4.3 of Hong & Liu (2009) for the case of estimating
asymptotic variance in gradient. Here we use R(z; θ) as the shorthand notation of the log reward
function log r(z;x1:T , y1:T , θ). For any given cut-off level α and sample size n, consider the fol-
lowing update formula of the CVaR gradient estimate

GN =
1

αN

N∑
i=1

∇θR(zi; θ)S(zi),

where S(zi) = 1{R(zi; θ) ≥ qα(θ)}, ∀i, and {z1, . . . , zN} is sampled in an i.i.d. fashion from
P (h). Notice that

α2Var(GN ) =
1

N
Var(∇θR(z1; θ)S(z1) +

(
1− 1

N

)
· Cov(∇θR(z1; θ)S(z1),∇θR(z2; θ)S(z2))

=
1

N
Var(∇θR(z1; θ)S(z1) +

(
1− 1

N

)
·
[
E[∇θR(z1; θ)∇θR(z2; θ)S(z1)S(z2)]

− E[∇θR(z1; θ)S(z1)]2
]
.

The correlation comes from the fact that quantile is defined based on the order statistics of the
reward, see Section 4 of Hong & Liu (2009) for more details. Now notice the following property:

S(z1) · S(z2) =1{R(z1; θ) ≥ qα(θ), R(z2; θ) ≥ qα(θ)}
=1{R(z1; θ) > LdNαe−1:N , R(z2; θ) > LdNαe−1:N}
=1{R(z1; θ) > LdNαe−1:N−2}1{R(z2; θ) > LdNαe−1:N−2}

where Li:N is the i−th order statistic from the N observations of reward {R(zi; θ)}Ni=1. Under the
event that R(z1; θ) > LdNαe−1:N−2 and R(z2; θ) > LdNαe−1:N−2, by the definition of the order
statistic and by the i.i.d. assumption of {z1, . . . , zN}, one can deduce that LdNαe−1:N−2 is indepen-
dent of R(z1; θ) and R(z2; θ). Equipped with this condition, one has the following expression:

E[∇θR(z1; θ)∇θR(z2; θ)S(z1)S(z2)] =E[f2(LdNαe−1:N−2)]

=Var(f(LdNαe−1:N−2)) + E[f(LdNαe−1:N−2)]2,

where f(LdNαe−1:N−2) := E[∇θR(z1; θ)S(z1) | LdNαe−1:N−2] is the conditional expectation of
∇θR(z; θ)S(z) w.r.t. random variable LdNαe−1:N−2. The first equality follows from the fact that
z1, and z2 are i.i.d. random variables that are independent of LdNαe−1:N−2.

On the other hand, following the same lines of analysis, one can also show that

E[∇θR(z1; θ)S(z1)]) = E[f(LdNαe−1:N−1)].
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Therefore, combining all the above analysis together, one has the following expression:

α2Var(GN ) =
1

N
Var(∇θR(z1; θ)S(z1) +

(
1− 1

N

)
·
[

Var(f(LdNαe−1:N−2)) + E[f(LdNαe−1:N−2)]2]

− E[f(LdNαe−1:N−1)]2
]
.

From the results in Proposition 4.3 to 4.4 of Hong & Liu (2009), with q′α(θ) = ∇θqα(θ) denote the
gradient of the quantile, we have that

Var(f(LdNαe−1:N−2)) =
α(1− α)(q′α(θ))2

N − 1
+O(N−1/2),

and

E[f(LdNαe−1:N−2)]2 − E[f(LdNαe−1:N−1)]2

=O(N−1/2)− 2(1− α)

N − 1
q′α(θ)E[∇θR(z1; θ)1{R(z1; θ) ≥ q′α(θ)}].

Therefore, the variance of GN can be expressed as:

α2Var(GN ) =
1

N
Var(∇θR(z1; θ)S(z1)) +

(
1− 1

N

)
·
[
α(1− α)(q′α(θ))2

N − 1

− 2(1− α)

N − 1
q′α(θ)E[∇θR(z1; θ)S(z1)]

]
+O(N−1/2)

=
1

N

[
E[(∇θR(z1; θ))2S(z1)] + α(q′α(θ))2

−2q′α(θ)E[(∇θR(z1; θ))S(z1)]
]
−
[
E[(∇θR(z1; θ))2S(z1)]

+ α2(q′α(θ))2−2αq′α(θ)E[(∇θR(z1; θ))S(z1)]
]
+O(N−1/2)

=
1

N

[
E[(∇θR(z1; θ)− q′α(θ))2S(z1)]− E[(∇θR(z1; θ)− q′α(θ))S(z1)]2

]
+O(N−1/2)

=
1

N
Var([∇θR(z1; θ)−q′α(θ)]1{R(z1; θ)≥qα(θ)})+O(N−1/2).

This provides the variance of intention-driven sampling gradient estimate.

9 ADDITIONAL MATERIAL

Figure 3: Raw histogram of the learned modes and failure cases for I-SNN architecture trained by
SNN v.s. IDS algorithms.
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Figure 4: (a) Most LfD approaches often learn multimodal representations as a function of current
state (or history of states captured by a recurrent neural network). In such models, task level intention
is not guaranteed to be consistently inferred at every step throughout the task execution; (b) in
contrast I-SNN samples and uniformly commits to the same mode at the task level throughout the
task execution.

Figure 5: Visualization of the stochastic Intention network: every row shows 5 snapshots of a tra-
jectory generated by running the I-SNN trained by the IDS algorithm. Each run was generating by
randomly sampling an intention at the beginning and using it throughout the run. Smaller green
circles show the 32 coordinates outputted by the spatial softmax layer. The larger red circle shows
the top spatial softmax feature that received the highest weight from the soft attention generated by
the Stochastic Intention Network. Note that for each run, the model consistently attends to the same
mode that it randomly selected at the beginning of the run.

10 ADDITIONAL EXPERIMENTS

In this section we present simulation results that compare our IDS approach with a state-of-the-art
CVAE based approach (Sohn et al., 2015).

We consider a simplified task which we term ’Predict the Goal’, depicted in Figure 6. Given an
image with N randomly positioned targets with different colors, the task is to predict the location
(i.e., x-y position) of one of them. For training, we randomly selected one of the targets and provide
its location as the supervisory signal. This task captures the essence of the robotic task in the paper
– image input and a low dimensional multi-modal output (with N modes). It simplifies the image
processing, and the fact that there is no trajectory – this is a single step decision making problem.

For our IDS algorithm, we used the I-SNN architecture as described in Figure 1, with a single conv
layer (and without the additional robot pose input). The output is the 2-dimensional target position.
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Figure 6: Predict the Goal Domain: in an image with N randomly positioned, different colored
targets, the task is to predict the center of one of the targets. The figure shows 9 random instances
of a domain with N = 5 targets. We also plot the training target positions (dark green dots, selected
uniformly among the targets), and the predictions of the trained I-SNN (yellow dots). Note that the
predictions do not have to match the training targets, but have to be centered on some target in the
image.
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Figure 7: Results for Predict the Goal. We compare the CVAE with and without rate annealing,
with different minibatch sizes, and with different sizes of the latent vector z to IDS with the same
parameters.

For the CVAE, the generation network P (u|x, z) is the same I-SNN. For the recognition network
q(z|x, u) we used an MLP mapping the spatial-softmax output and the target position to the mean
and std of z. For the conditional prior network p(z|x) we used an MLP mapping the spatial-softmax
output to the mean and std of z. Following the work of Sohn et al. (2015), we added to the training
loss a term KL(q(z|x, u)‖p(z|x)).

To make the comparison fair, we chose the latent variable z in IDS to be a standard Gaussian, the
same as for the CVAE. All network sizes and training parameters were the same for both methods,
and we did not apply any pretraining of the conv layer.

For evaluating performance, we measure the shortest distance from the prediction to one of the target
positions, on a held-out test set. This error should go to zero if the model predicts one of the targets
accurately.

Our results are reported in Figure 7. We have tried various CVAE parameter settings (such as the
minibatch sizes and dimension of z reported here, which the CVAE was sensitive to, among other
parameters such MLP architectures and learning rates), and also tried annealing the KL term in the
cost. The CVAE works well forN = 2 targets, and with careful tuning also forN = 3, but we could
not get it to work forN = 5 targets. The IDS approach, on the other hand, worked well and robustly
for all values of N we tried. The convergence of IDS in all cases was also an order of magnitude
faster than the CVAE.

17


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	MULTI MODAL LfD WITH SNNs
	The SNN Formulation
	The Monte Carlo Learning Algorithm
	Intention-driven Learning in SNNs
	Intention driven SNN Architecture for Stochastic Visual Attention

	EXPERIMENTS
	SNN Implementation Details
	Real World Robot Reaching Task

	CONCLUSION
	Generalized EM Algorithm for Learning SNNs via Importance Sampling
	Technical Proof of the Variance in Intention-driven Sampling
	Additional Material
	Additional Experiments

