

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CDBRIDGE: A CROSS-OMICS POST-TRAINING BRIDGE STRATEGY FOR CONTEXT-AWARE BIOLOGICAL MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Linking genomic DNA to quantitative, context-specific expression remains a central challenge in computational biology. Current foundation models capture either tissue context or sequence features, but not both. Cross-omics systems, in turn, often overlook critical mechanisms such as alternative splicing and isoform reuse. We present CDBridge, a post-training strategy that unifies pretrained DNA and protein models into a context-aware framework without full retraining. CDBridge operates in two stages: (a) *Seq-context learning*, where a splicing-inspired token merge compresses long genomic regions into isoform-aware representations, and (b) *Env-context learning*, where a conditional decoder injects tissue embeddings to model expression under diverse biological contexts. To benchmark this setting, we introduce GTEx-Benchmark, derived from GTEx and Ensembl, which requires models to capture long-range exon dependencies, resolve isoform reuse, and predict tissue-specific expression levels. Across qualitative and quantitative tasks, CDBridge consistently outperforms prior methods that ignore central dogma constraints or context dependence, offering a scalable and biologically faithful solution for DNA-to-expression modeling.

1 INTRODUCTION

Understanding how genomic DNA sequences give rise to context-specific expression remains a central challenge in computational biology. Here, context involves two complementary aspects: (1) Sequence context, where non-coding regions regulate expression and splicing, allowing a single gene to produce multiple isoforms; and (2) Environmental context, where tissue type or external conditions drastically alter expression levels, even for identical DNA sequences. Accurate modeling of these processes has broad applications, including disease mechanism discovery (Kahles et al., 2018; Nikom & Zheng, 2023; Ueda et al., 2024), drug safety profiling (Ryaboshapkina & Hammar, 2019), and DNA design for synthetic biology (Chen et al., 2025; Yang et al., 2025).

Despite rapid progress, as shown in Table 1, existing methods fall short of bridging DNA to expression in a truly context-aware manner. For example, single-cell foundation models, such as scGPT (Cui et al., 2024), scFoundation (Hao et al., 2024), capture tissue-specific representations but operate on gene IDs, ignoring the underlying DNA sequence that drives expression. In contrast, specialist sequence-to-expression models like Enformer (Avsec et al., 2021), AlphaGenome (Avsec et al., 2025), and Isoformer (Garau-Luis et al., 2024), attempt to incorporate DNA but typically operate on pre-cropped fragments or average across dynamic isoform usage, failing to capture the system’s full complexity. Furthermore, while large-scale sequence foundation models (Zhou et al., 2024; Lin et al., 2022; Ji et al., 2021; Zhou et al., 2023; Nguyen et al., 2024b; Dalla-Torre et al., 2023), such as Evo (Nguyen et al., 2024a), LucaOne (He et al., 2024), have advanced DNA and protein modeling across the central dogma, they primarily target qualitative tasks. Consequently, the quantitative nature of expression, which is the ultimate determinant of phenotype, remains largely unaddressed. This gap raises a fundamental question: *How can we map the whole DNA sequence to context-aware quantitative expression?*

Answering this question requires addressing two key challenges: (1) **Sequence length mismatch**, as genes often span hundreds of kilobases while their protein products consist of only a few hundred

054
 055
 056
 057
Table 1: Comparison of model capabilities across input modalities and design aspects. CDBBridge
 is the only framework that supports full cross-omics alignment, tissue-aware reasoning, and expression
 modeling. General indicates that the model supports various tasks, while Specialist indicates the
 model is designed for seq2express regression tasks. ✓ indicates support, ✗ indicates not supported.

Model	Venue	Type	DNA	RNA	Protein	Central Dogma	Express	Tissue-Aware
scGPT (Cui et al., 2024)	Nat. Methods	General	✗	✗	✗	✗	✓	✓
scFoundation (Hao et al., 2024)	Nat. Methods	General	✗	✗	✗	✗	✓	✓
GeneCompass (Yang et al., 2024)	Cell Research	General	✗	✗	✗	✗	✓	✓
DNABERT2 (Zhou et al., 2024)	ICLR	General	✓	✗	✗	✗	✗	✗
NTv2 (Dalla-Torre et al., 2023)	Nat. Mach. Intell.	General	✓	✗	✗	✗	✗	✗
HyenaDNA (Nguyen et al., 2024b)	NeurIPS	General	✓	✗	✗	✗	✗	✗
Evo (Nguyen et al., 2024a)	bioXiv	General	✓	✗	✗	✓	✗	✗
Evo2 (Brixi et al., 2025)	bioXiv	General	✓	✗	✗	✓	✗	✗
CD-GPT (Zhu et al., 2024)	bioXiv	General	✓	✓	✓	✓	✗	✗
CaLM (Outeiral & Deane, 2024)	Nat. Mach. Intell.	General	✓	✓	✓	✓	✗	✗
LucaOne (He et al., 2024)	Nat. Mach. Intell.	General	✓	✓	✓	✓	✗	✗
Enformer (Avsec et al., 2021)	Nat. Methods	Specialist	✓	✗	✗	✗	✓	✗
AlphaGenome (Avsec et al., 2025)	bioXiv	Specialist	✓	✗	✗	✗	✓	✗
Isoformer (Garau-Luis et al., 2024)	NeurIPS	Specialist	✓	✓	✓	✗	✓	✗
CDBBridge (Ours)	Ours	General	✓	✓	✓	✓	✓	✓

071
 072 amino acids; and (2) **Context mapping ambiguity**, since alternative splicing and isoform reuse
 073 create inherently one-to-many relationships between DNA and proteins.

074 To overcome these challenges, we propose CDBBridge, a context-aware post-training bridge strategy
 075 that unifies pretrained DNA and protein models within a single framework. Unlike prior approaches,
 076 CDBBridge integrates both sequence-level and tissue-level contexts, enabling simultaneous qualitative
 077 and quantitative modeling. The framework proceeds in two stages: (1) Seq-context learning, where
 078 a cross-omics connector with cross-attention maps DNA embeddings to protein representations,
 079 supported by a splicing-inspired adaptive token merge that selectively compresses non-informative
 080 regions while preserving functional signals; and (2) Env-context learning, where a conditional decoder
 081 injects tissue embeddings to model tissue-specific expression, selectively activating Stage 1 outputs
 082 under given contexts.

083 To rigorously evaluate central dogma modeling, we introduce GTEx-Benchmark, constructed from
 084 GTEx and Ensembl. In contrast to existing benchmarks like Enformer or Isoformer, GTEx-Benchmark
 085 forces models to resolve long-range dependencies by identifying critical exons across vast genomic
 086 distances, managing exon reuse across multiple isoforms, and predicting tissue-specific expression
 087 levels. This creates a challenging and biologically faithful evaluation for central dogma modeling.

088 Our contributions are threefold:

- 090 • A *context-aware, two-stage bridge strategy* that enables cross-omics alignment with minimal
 091 paired supervision, supporting both qualitative functional tasks (e.g., protein segmentation) and
 092 quantitative expression-level prediction under varied contexts.
- 093 • An *adaptive token-merge mechanism* that mimics biological splicing by selectively merging
 094 genomic sequences, reducing length disparity and highlighting informative regions for efficient
 095 and interpretable modeling.
- 096 • A *new benchmark (GTEx-Benchmark)* for tissue-aware central dogma modeling, covering both
 097 qualitative cross-omics alignment and quantitative tissue-specific prediction tasks. **CDBBridge**
 098 **improves the average tissue-specific expression prediction by over 55% (relative R^2 gain**
 099 **compared to AlphaGenome), while also achieving state-of-the-art performance on three cross-**
 100 **omics downstream tasks.**

101 2 METHOD

104 We introduce CDBBridge, a context-aware two-stage post-training framework that bridges single-
 105 omics DNA and protein foundation models under the guidance of the central dogma. By implicitly
 106 leveraging RNA as a biological mediator, CDBBridge aligns cross-modal representations through
 107 both sequence-level interaction and tissue-specific context modeling. A left-to-right overview of the
 architecture is illustrated in Figure 1. Then we introduce our framework from stage 1 to stage 2.

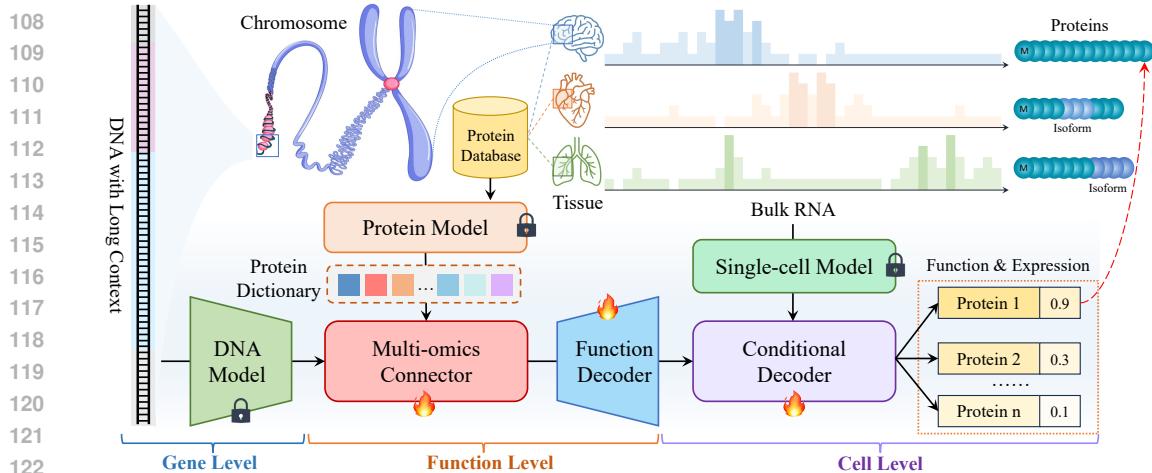


Figure 1: **Overview of the CDBridge framework** for context-aware cross-omics modeling of the central dogma. CDBridge operates in two post-training stages built on frozen DNA and protein foundation models, which consists of two stages: (1) *Seq-context learning*, which identifies informative regions from long genomic sequences and maps them to protein-related functional representations. (2) *Env-context learning*, a conditional decoder that incorporates tissue embeddings to compose functional features into tissue-specific representations for gene expression prediction.

2.1 STAGE 1: MULTI-OMICS CONNECTOR FOR LONG-SHORT RANGE BRIDGING

The first stage of CDBridge tackles two core challenges in cross-modal representation alignment: (i) the intrinsic mismatch in sequence length, where a full-length DNA sequence ($\sim 10^4$ tokens) encodes one or more relatively short protein sequences ($\sim 10^2$ tokens); and (ii) the semantic gap between modality-specific pretraining objectives: DNA embeddings capture genome-wide contextual signals, while protein embeddings focus on functional amino acid chains from localized coding regions, which can be seen in the Figure 2(a).

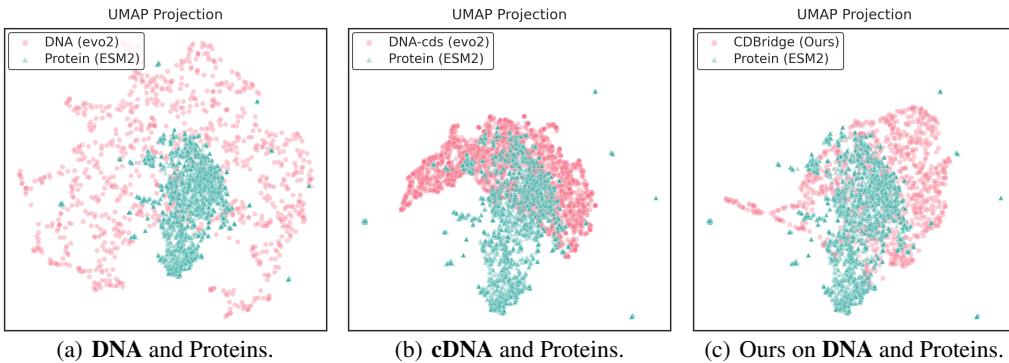


Figure 2: **Illustration of the challenges** in aligning DNA and protein representations across modalities. (a) Even with advanced models such as Evo2 and ESM2, alignment remains challenging due to the inherent one-to-many mapping between long DNA sequences and their shorter protein counterparts. (b) Manually segmenting DNA into coding regions reduces input ambiguity, but fails to resolve the representation gap, as existing DNA models are pretrained on full-genome data lacking isoform-specific supervision. (c) By introducing an adaptive token-merging strategy, CDBridge effectively reduces the modality gap and enhances alignment between DNA and protein embeddings.

Framework. To bridge these gaps, we design a seq-context-aware cross-omics connector that projects the full DNA embedding space into a functionally meaningful protein space using a cross-attention mechanism. Let $\mathbf{X}_{\text{DNA}} \in \mathbb{R}^{L \times d}$ be the DNA embedding sequence produced by a frozen DNA encoder, where L is the token length and d the embedding dimension. We further introduce

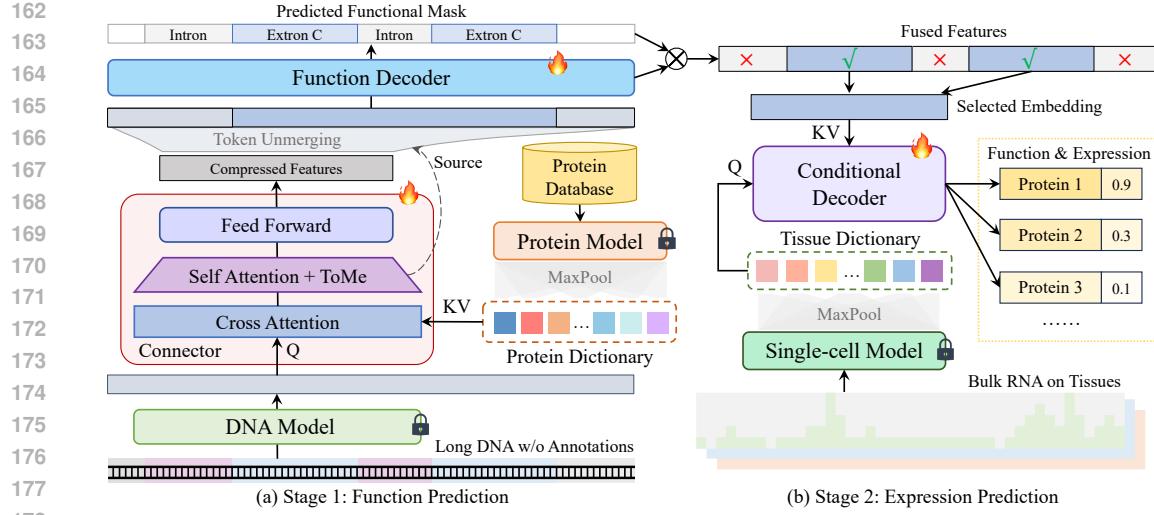


Figure 3: **Two-stage training pipeline of CDBridge.** (a) **Stage 1:** Taking the raw DNA sequences with long contexts as input, whose embedding features are extracted from an existing DNA foundation model (Nguyen et al., 2024a), the multi-omic connector aggregates protein knowledge with cross-attention from the protein dictionary and compresses the fused features with ToMe-Attention (Bolya et al., 2023) while the function decoder predicts the protein functions with token-wise masks. (b) **Stage 2:** After selecting the fused embedding with the predicted masks, the conditional decoder achieves cell-level prediction of expressions of certain proteins with the tissue dictionary.

a learnable token dictionary $\mathcal{T}_{\text{prot}} \in \mathbb{R}^{M \times d}$, initialized from k -means clustered protein embeddings across the training dataset. These tokens serve as prototypes, which are treated as keys and values in the cross-attention module:

$$\text{Attn}(\mathbf{X}_{\text{DNA}}, \mathcal{T}_{\text{prot}}, \mathcal{T}_{\text{prot}}) = \text{softmax} \left(\frac{\mathbf{X}_{\text{DNA}} \mathcal{T}_{\text{prot}}^\top}{\sqrt{d}} \right) \mathcal{T}_{\text{prot}}.$$

Token Compression via Merge and Recover. To efficiently handle the long-range dependencies in genomic sequences, we propose a biologically inspired token compression strategy based on ToMe (Bolya et al., 2023), mimicking transcript splicing mechanisms. This technique allows us to focus computation on functionally relevant regions by adaptively merging non-critical tokens, thereby reducing sequence length while preserving semantic fidelity.

Given a DNA embedding sequence $\mathbf{X}_{\text{DNA}} = [\mathbf{x}_1, \dots, \mathbf{x}_L] \in \mathbb{R}^{L \times d}$, we begin by randomly partitioning the token indices into two disjoint sets, A and B . For each token $i \in A$, we compute cosine similarity with all tokens $j \in B$ and identify its most similar partner:

$$j^*(i) = \arg \max_{j \in B} \frac{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}.$$

If the similarity exceeds a threshold τ , the pair $(i, j^*(i))$ is selected for merging. τ is determined by the pre-set merge ratio, which is randomly sampled from the Gaussian distribution for each input during training. The two tokens are merged via direct averaging:

$$\tilde{\mathbf{x}}_i = \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_{j^*(i)}),$$

where the index i is the surviving token, discarding $j^*(i)$. This yields a compressed sequence $\tilde{\mathbf{X}}_{\text{DNA}} = \{\tilde{\mathbf{x}}_i \mid i \in \mathcal{S}\} \in \mathbb{R}^{L' \times d}$ with $L' < L$. We maintain a mapping function $\pi : \{1, \dots, L\} \rightarrow \mathcal{S} \cup \{\text{NULL}\}$, where $\pi(l) = l$ if token l survives, and $\pi(l) = i$ if token l was merged into token i . In the unmerge phase, each discarded token is reconstructed by assigning it the embedding of its surviving partner. The reconstructed sequence $\hat{\mathbf{X}}_{\text{DNA}} = \{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_L\}$ is obtained as:

$$\hat{\mathbf{x}}_l = \begin{cases} \tilde{\mathbf{x}}_i & \text{if } \pi(l) = l \text{ (token survived),} \\ \tilde{\mathbf{x}}_{\pi(l)} & \text{if } \pi(l) \neq l \text{ (token was merged),} \end{cases}$$

216 which is then processed by a lightweight Transformer decoder to predict functional regions. This
 217 *merge-and-recover* procedure can be interpreted as a variant of MAE(He et al., 2022), where the
 218 masked regions are adaptively selected based on inter-token similarity. Compared to standard MAE,
 219 this strategy is saliency-aware, preserves positional alignment, and enables token-level supervision,
 220 making it especially well-suited for genomic sequences where functional signals are sparse and
 221 localized. The alignment results are shown in Figure 2. It can be seen that our method shows a better
 222 alignment for the global DNA embeddings and the protein embeddings, even exceeds the pre-cropped
 223 cDNA and protein embeddings.

224 225 2.2 STAGE 2: CONDITIONAL DECODER FOR CONTEXT-AWARE EXPRESSION MODELING

226 While Stage 1 focuses on capturing the structural alignment between DNA and protein through
 227 token-level interactions, Stage 2 addresses the variability of gene expression across diverse cellular
 228 environments. Specifically, this stage introduces a tissue-aware conditional decoder designed to
 229 model the variability of gene expression, capturing the regulatory plasticity that arises from these
 230 contextual factors.

232 **Tissue Dictionary as Conditional Context.** To incorporate relevant biological context, we con-
 233 struct a *Tissue dictionary* $T_{Envir} \in \mathbb{R}^{C \times M \times d}$ by leveraging a single-cell foundation model(Cui et al.,
 234 2024). Here, C represents the number of tissue types, M is the pre-set number of cell tokens, and d
 235 denotes the dimensionality of the embedding. Specifically, bulk RNA expression data is first passed
 236 through the single-cell foundation model and then pooled to generate global embeddings represented
 237 by M tokens. Each tissue is represented by a vector $\mathbf{t}_c \in \mathbb{R}^{M \times d}$ capturing its cell state. During
 238 training, tissue labels are supplied as conditional inputs for expression inference, enabling the model
 239 to learn differential regulation patterns across distinct biological environments.

240 **Avoiding Information Leakage from the Context.** The tissue embedding is constructed via mean
 241 pooling over approximately 19k genes, without isolating expression values of the target gene or its
 242 neighbors. This aggregation effectively dilutes individual gene-level signals. To further verify this,
 243 we conducted a control experiment in which the model was trained and tested using only the tissue
 244 embedding as input (excluding DNA features). In this setting, the R^2 value dropped to nearly zero
 245 (see Table 4), confirming that the tissue embedding serves solely as a conditioning signal rather than
 246 as an independent predictive feature.

248 **Conditional Decoder Architecture.** The conditional decoder is a Transformer module that takes
 249 the tissue vectors as queries and performs cross-attention over the compressed DNA representations
 250 $\tilde{\mathbf{X}}_{DNA}$ obtained from Stage 1. The output of the Decoder includes M tokens, each representing the
 251 candidate isoform-related protein embeddings, which is formulated as:

$$252 \quad \{\hat{\mathbf{p}}_m\}_{m=1}^M \sim p\left(\{\mathbf{p}_m\}_{m=1}^M \mid \tilde{\mathbf{X}}_{DNA}, \mathbf{t}_c\right).$$

254 The decoder outputs enable two types of predictions: (1) isoform-aware protein embeddings, enabling
 255 regularization through contrastive loss, and (2) a scalar regression output estimating the quantitative
 256 expression level of the target protein under tissue condition c . This dual objective ensures both qualita-
 257 tive semantic alignment and quantitative expression estimation. Unlike typical expression models that
 258 treat cells as unordered gene sets, our decoder preserves gene-level context and sequence semantics
 259 while modeling tissue-dependent effects, yielding fine-grained and generalizable predictions.

261 262 3 EXPERIMENTS

263 We evaluate CDBridge across multiple biologically grounded tasks to assess its performance, general-
 264 ization, and interpretability.

266 267 3.1 DATASET CONSTRUCTION.

268 We construct the GTEx-Benchmark based on the GTEx v8 resource (Consortium, 2020), which
 269 provides matched genomic, transcriptomic, and proteomic annotations across 40 human tissues.
 For each protein-coding gene, we retrieve the DNA sequence and corresponding protein sequence

270 Table 2: Expression prediction performance with $R^2(\uparrow)$ and Spearman(\uparrow) across five specific tissues,
 271 along with averaged results over the full dataset. The best results in **bold**. Models are grouped into:
 272 (i) auxiliary sequence-only baselines, (ii) specialist expression baselines, and (iii) our cross-omics
 273 bridge. Isoformer (Official) relies on a TSS-aligned data setting and is thus not directly comparable
 274 to our unaligned, long-sequence protocol.

Model	Brain		Heart		Kidney		Liver		Stomach		Average	
	R^2	Spear										
<i>Auxiliary Sequence-only Baselines</i>												
DNABERT2 (Zhou et al., 2024)	-0.004	0.317	-0.005	0.304	-0.004	0.317	-0.001	0.328	0.001	0.333	-0.004	0.317
NTv2 (Dalla-Torre et al., 2023)	-0.012	0.238	-0.003	0.317	-0.135	0.176	-0.023	0.291	0.005	0.306	-0.012	0.289
Evo2-7B (Brixi et al., 2025)	0.021	0.324	0.018	0.318	0.024	0.328	0.017	0.312	0.023	0.325	0.021	0.324
LucaOne (He et al., 2024)	0.006	0.320	-0.001	0.300	0.007	0.324	-0.003	0.314	0.002	0.318	0.001	0.309
<i>Specialist Expression Baselines</i>												
Enformer (Avsec et al., 2021)	0.139	0.124	0.133	0.118	0.117	0.092	0.127	0.122	0.124	0.108	0.127	0.122
AlphaGenome (Avsec et al., 2025)	0.234	0.442	0.260	0.404	0.229	0.380	0.221	0.438	0.242	0.410	0.248	0.438
Isoformer (Official) (Garau-Luis et al., 2024)	0.505	—	0.525	—	0.560	—	0.530	—	0.515	—	0.530	0.720
Isoformer (w/o TSS Align.) (Garau-Luis et al., 2024)	-0.328	0.301	-0.303	0.269	-0.366	0.264	-0.268	0.312	-0.291	0.278	-0.315	0.309
<i>Proposed Cross-omics Bridge Model</i>												
CDBridge (Ours)	0.421	0.708	0.346	0.657	0.327	0.594	0.382	0.631	0.410	0.673	0.387	0.618

287 from Ensembl (Cunningham et al., 2022), and pair them with tissue-specific RNA expression values
 288 and protein function annotations. We utilize a strict split of 80% training, 10% validation, and
 289 10% testing based on gene IDs to prevent data leakage. To ensure sequence manageability, genes
 290 with DNA sequences longer than 200k base pairs are excluded. These ultra-long genes constitute
 291 only a small long-tail portion (around 2% of genes in our statistics). The resulting dataset enables
 292 evaluation on a wide range of biologically meaningful tasks, including Tissue-conditioned protein
 293 expression prediction, Coding region segmentation, and Isoform-level protein retrieval. More details
 294 are illustrated in the Appendix A.1.

297 **Comparison with other methods.** Table 1
 298 presents a comparison of representative mod-
 299 els across input modalities, biological reason-
 300 ing capabilities, and task types. *DNABERT-
 301 2* (Zhou et al., 2024) is a single-omics model
 302 trained exclusively on DNA sequences, focus-
 303 ing on sequence-level representations. *Evo2*
 304 (Brixi et al., 2025) incorporates aspects of the
 305 central dogma during training, enhancing se-
 306 quence modeling, yet it remains fundamentally
 307 single-omics. Building upon these, *LucaOne*
 308 (He et al., 2024) supports multi-omics inputs
 309 spanning DNA, RNA, and protein, offering
 310 broader coverage. However, these foundational
 311 sequence models lack the capacity for tissue-
 312 conditioned reasoning or quantitative expression
 313 prediction. In contrast, specialist models such
 314 as *Enformer* (Avsec et al., 2021) and *Isoformer*
 315 (Garau-Luis et al., 2024) are explicitly designed
 316 for expression prediction. However, they rely
 317 on fixed-dimension output heads and therefore
 318 structurally cannot perform zero-shot prediction
 319 on unseen tissues without retraining new heads.
 320 Concurrently, AlphaGenome (Avsec et al., 2025)
 321 is designed for nucleotide-level quantitative prediction
 322 from long DNA contexts across multiple omics.
 323 Nevertheless, it emphasizes static averaged outputs
 324 for each DNA input, overlooking tissue-dependent
 325 variations. Uniquely, *CDBridge* enables com-
 326 prehensive cross-modal alignment while per-
 327 forming quantitative expression modeling condi-
 328 tioned on tissue contexts. This capability pos-
 329 tions *CDBridge* as a versatile biological founda-
 330 tion model, capable of fine-grained, environment-aware inference
 331 across multiple molecular modalities.

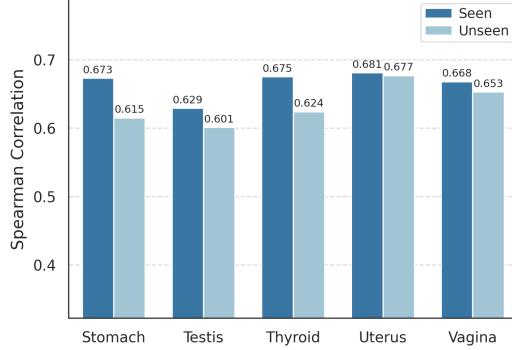


Figure 4: Spearman correlation of gene-expression prediction across five tissues. Each bar reports the Spearman correlation between predicted and ground-truth isoform-level expression in a specific tissue. Model performance on unseen tissues closely mirrors that on tissues observed during training, indicating robust cross-tissue generalization and suggesting that the learned tissue embeddings capture transferable regulatory patterns rather than overfitting to specific training tissues.

324 3.2 TISSUE-AWARE GENE EXPRESSION PREDICTION
325

326 We evaluate CDBridge on the challenging task of tissue-conditioned isoform-level expression pre-
327 dictions using the GTEx dataset, [comparing it against general representative sequence-only models](#)
328 ([auxiliary sequence baselines](#)) and specialist models designed for expression prediction. The features
329 of the auxiliary sequence baselines are frozen and followed by a trainable layer for expression
330 regression. Two evaluation settings are considered: (i) seen-tissue (Table 2), where tissues appear
331 during training but test DNA sequences are unseen; and (ii) unseen-tissue (Figure 4), where entire
332 tissue types as well as the test DNA sequences are held out to simulate zero-shot generalization.
333 Specifically, we employ a leave-tissue-out protocol: the model is trained on 90% of tissues and
334 evaluated exclusively on genes from the 10% held-out, unseen tissue types.

335 From Table 2, sequence-only models such as DNABERT-2 and Evo2 show limited performance since
336 they lack explicit modeling of tissue-specific regulatory signals. While Enformer, AlphaGenome, and
337 Isoformer incorporate expression prediction, they rely on tissue-specific classifiers trained solely on
338 DNA inputs, limiting their ability to generalize to unseen tissues. In contrast, CDBridge consistently
339 achieves superior R^2 and Spearman scores across diverse tissues, with particularly strong gains in
340 contexts where regulation is highly tissue-dependent. Figure 4 further demonstrates that CDBridge
341 sustains robust performance even under unseen-tissue conditions. It is a setting unsupported by
342 Enformer or Isoformer, validating its ability to capture transferable context patterns through its
343 two-stage, context-aware architecture.

344 3.3 CROSS-OMICS DOWNSTREAM TASK.
345

346 We evaluate the multi-omics representation capacity of CDBridge through three challenging down-
347 stream tasks: coding region segmentation, isoform retrieval, and DNA–protein association. Full
348 protocols are provided in Section A.2, and results are summarized in Table 3.

349 *Coding Region Segmentation.* This task evaluates whether the model can identify which DNA
350 segments code proteins, a key step for genome annotation and clinical variant interpretation. As
351 shown in Table 3, single-omics models such as DNABERT-2 and Evo2 perform [relatively poorly](#)
352 due to their inability to disambiguate coding signals from long genomic sequences, while LucaOne
353 benefits from multi-omics embeddings to achieve better alignment. CDBridge outperforms them,
354 demonstrating its ability to capture Isoformer-related protein signals for fine-grained token-level
355 tasks.

356 *Isoform Retrieval.* Given a set of candidate isoforms, this task assesses the ability to retrieve the
357 top- K [blueactivated](#) isoforms from DNA sequences with different conditions. It is important for
358 disease mechanism discovery. As expected, unimodal DNA models perform poorly. LucaOne, while
359 benefiting from multi-omics embeddings, still provides only moderate performance due to the absence
360 of fine-grained isoform-level modeling. In contrast, CDBridge achieves the best results, leveraging
361 cross-modal alignment and tissue-aware conditioning [to capture tissue-specific isoform usage patterns](#)
362 [accurately](#).

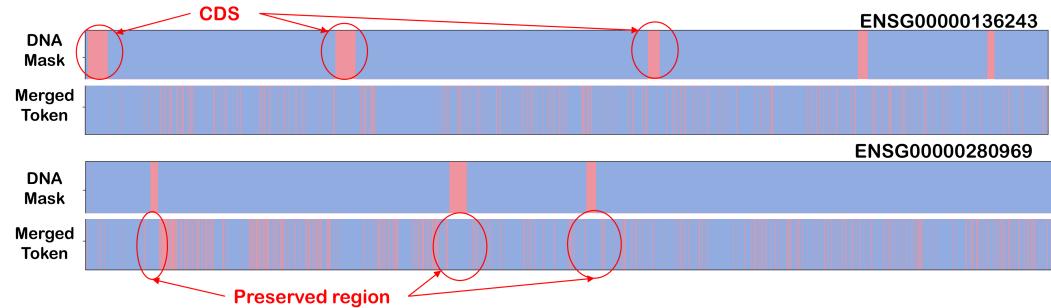
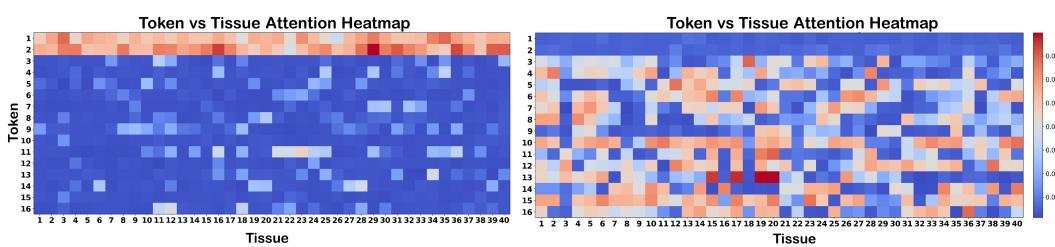
363 *Central Dogma.* This binary classification task evaluates if a DNA–protein pair is functionally
364 associated, relevant to disease mechanism discovery and drug target identification. The Central
365 Dogma dataset from LucaOne is used. DNABERT-2 lacks the capacity to incorporate protein
366 information, yielding weak performance. Evo2 and LucaOne performs better, benefiting from joint
367 modeling, but lack task specialization. CDBridge achieves the highest performance by leveraging
368 multi-omics conditioning and structured alignment.

370 3.4 INTERPRETABLE ANALYSIS
371

372 *Adaptive merge salient regions.* We visualize the token merging behavior by overlaying the merging
373 heatmap with known exon/intron annotations. The experiment is conducted on held-out test samples,
374 where we visualize the top 100 most frequently reused tokens during the adaptive token merging stage.
375 As shown in Figure 5, without explicit masking for merging, the model consistently retains tokens
376 corresponding to coding regions (exons), while aggressively merging tokens in non-coding regions
377 (introns or intergenic). This behavior suggests that CDBridge effectively allocates computation to
biologically significant regions in a data-driven and interpretable manner.

378 Table 3: Comprehensive evaluation across three biological tasks (best **bold**, second-best underlined).
379

380 Model	381 Coding Region Segmentation			382 Isoform Retrieval		383 Central Dogma		
	384 Acc ↑	385 AUC ↑	386 F1 ↑	387 Acc ↑	388 MRR ↑	389 Acc ↑	390 AUC ↑	391 F1 ↑
382 <i>Single-omics General models</i>								
383 NTV2-500M (Dalla-Torre et al., 2023)	0.814	0.529	0.134	0.145	0.229	0.572	0.597	0.415
384 DNABERT-2 (Zhou et al., 2024)	0.851	0.612	0.382	0.132	0.227	0.574	0.598	0.482
385 Evo2 (Brixi et al., 2025)	0.993	0.848	0.597	0.191	0.278	0.672	0.725	0.518
386 <i>Muti-omics General models</i>								
387 LucaOne (He et al., 2024)	0.993	0.859	0.613	0.259	0.354	0.714	0.767	0.545
388 CDBridge (Ours)	0.995	0.993	0.635	0.337	0.436	0.742	0.792	0.568

392 Figure 5: **Token merging aligns with functional regions.** The merging process selectively retains
393 tokens associated with coding regions, while non-coding segments are predominantly merged. This
394 pattern arises without explicit exon masks in the loss, indicating that CDBridge learns to allocate
395 computation to biologically salient regions in a data-driven and interpretable manner.
396404
405 *Tissue-aware activations.* The activated tokens under different conditions are visualized in Figure 6.
406 The first gene sample activates tokens predominantly associated with the first two isoforms, and the
407 activation patterns shift based on tissue type, reflecting expression differences. Similarly, the second
408 gene shows consistent activation in tokens 4–16 across tissues, but with varying intensities. These
409 patterns indicate that CDBridge is capable of modeling the tissue-specific regulatory contexts.410 3.5 ABLATION STUDY
411412 To understand the contribution of each component in our two-stage CDBridge framework, we conduct
413 systematic ablation experiments along both segmentation and expression pathways (Table 4). The
414 first stage includes a ToMe module and a protein clustering module, with or without learning. The
415 second stage evaluates the presence of tissue-specific clustering during expression prediction.416 In the segmentation task, removing the entire Stage 1 (*i.e.*, no ToMe or protein clustering) leads to a
417 significant drop in performance (AUC = 0.848, F1 = 0.600), matching the Evo2 baseline. Introducing
418 ToMe alone slightly improves segmentation, suggesting the benefit of adaptive compression. Adding428 Figure 6: **Tissue-specific token activations.** Each panel displays the token activation magnitude for
429 specific isoforms (rows) across various tissue contexts (columns). CDBridge selectively activates
430 isoform-associated tokens, with varying intensity across tissues, reflecting its capacity to model
431 tissue-aware gene expression across different DNA regions.

432
 433 **Table 4: Ablation study of CDBridge components.** Each row represents a different configuration of
 434 Stage 1 (segmentation) and Stage 2 (expression prediction). ✓ indicates the corresponding component
 435 is enabled. Segmentation performance is measured by AUC and F1, while expression prediction is
 436 evaluated using R^2 and Spearman correlation. Numbers in $(+\Delta)$ show relative improvements over
 437 the baseline.

438	Stage 1			Stage 2	Segmentation		Expression	
	ToMe Attn.	Fixed Clust	Learned Clust		AUC \uparrow	F1 \uparrow	$R^2 \uparrow$	Spear \uparrow
439	✗	✗	✗	✗	0.848	0.600	0.021	0.324
440	✓	✗	✗	✗	0.882 $(+0.034)$	0.601 $(+0.001)$	0.205 $(+0.184)$	0.457 $(+0.133)$
441	✓	✓	✗	✗	0.990 $(+0.142)$	0.602 $(+0.002)$	0.212 $(+0.191)$	0.483 $(+0.159)$
442	✓	✗	✓	✗	0.993$(+0.145)$	0.635$(+0.035)$	0.215 $(+0.194)$	0.483 $(+0.159)$
443	✗	✗	✗	✓	—	—	0.020 (-0.001)	0.128 (-0.196)
444	✓	✗	✓	✓	0.993$(+0.145)$	0.635$(+0.035)$	0.387$(+0.366)$	0.618$(+0.294)$

445 a non-learnable protein cluster yields moderate gains, while learning the protein cluster jointly with
 446 ToMe provides the best segmentation performance. For the expression task, disabling tissue condi-
 447 tioning results in poor generalization ($R^2 = 0.020$, Spearman = 0.128), confirming that incorporating
 448 single-cell models for tissue-aware modeling will not introduce information leakage. Enabling all
 449 components achieves a strong improvement ($R^2 = 0.387$, Spearman = 0.618), validating the design
 450 of the two-stage architecture.

4 RELATED WORK

454 **Pretrained Biological Language Models.** Recent years have witnessed rapid progress in large-scale
 455 pretrained models for biological sequences. On the molecular level, protein language models such as
 456 ESM (Rives et al., 2021), Evo (Meier et al., 2021), and AlphaFold (Jumper et al., 2021) have shown
 457 impressive performance in protein structure prediction, function classification, and representation
 458 learning. On the genomic side, models like Enformer (Avsec et al., 2021) and Nucleotide Trans-
 459 former (Dalla-Torre et al., 2023) leverage long-range attention to model cis-regulatory elements and
 460 gene expression from raw DNA sequences. While these models excel within their own modalities,
 461 they are typically trained independently and lack mechanisms for aligning representations across the
 462 molecular hierarchy from DNA to protein, limiting their utility in tasks that require reasoning over
 463 the central dogma.

464 **Multi-omics Modeling of the Central Dogma.** To bridge across DNA, RNA, and protein, multi-
 465 omics models such as CD-GPT (Zhu et al., 2024), GENA-LM (Ji et al., 2023), Life-Code (Liu et al.,
 466 2025), and LucaOne (He et al., 2024) have been proposed to unify biological sequences in a shared
 467 embedding space. These models usually decompose input sequences into functional segments (e.g.,
 468 coding vs non-coding) and attempt modality alignment via paired training. Some focus on *qualitative*
 469 *modeling* like function transfer, while others explore *quantitative prediction* of gene expression.
 470 However, most overlook crucial biological context: (1) splicing and regulatory mechanisms often
 471 cause one gene to yield multiple proteins, and (2) the same DNA may lead to different expression
 472 outcomes depending on the cellular or environmental context. These factors make DNA-to-protein
 473 alignment inherently ambiguous and context-dependent, a challenge under-addressed in existing
 474 models. **In contrast to unified multi-omics foundation models like GENA-LM and LucaOne, which**
 475 **require end-to-end multi-omics pretraining, CDBridge operates as a post-training bridge that augments**
 476 **frozen single-omics DNA and protein encoders with tissue-aware cross-omics reasoning, avoiding**
 477 **expensive retraining while retaining the flexibility of modular single-omics backbones.**

478 **Multimodal Connectors and Bridge Strategies.** Given the high cost of collecting large-scale
 479 multimodal datasets, a promising direction is to bridge pretrained single-omics models through
 480 lightweight post-training alignment. Existing efforts in general multimodal AI (Radford et al., 2021;
 481 Chen et al., 2024; Xue et al., 2024; Li et al., 2023; Alayrac et al., 2022) have shown success in
 482 domains like vision-language, but biology poses unique challenges such as extreme sequence length
 483 disparities and complex one-to-many mappings (e.g., splicing, RNA editing). Few biological models
 484 have explored connector-based strategies that are both context-aware and biologically grounded. In
 485 this work, we propose CDBridge, a post-training bridge framework that incorporates both sequence
 486 and cellular context, aligning existing DNA and protein models to support realistic, condition-aware
 487 biological tasks.

486 **5 CONCLUSION**
 487

488 We present CDBridge, a biologically grounded and context-aware framework that bridges single-
 489 omics foundation models through a two-stage design inspired by the central dogma. By leverag-
 490 ing ToMe-based token compression to capture isoform-aware coding structures and introducing a
 491 conditional decoder to model tissue-specific regulation, CDBridge enables fine-grained, condition-
 492 dependent protein expression modeling directly from DNA. Our approach integrates both structural
 493 semantics and environmental context, outperforming existing models that either ignore genomic
 494 continuity or lack regulatory awareness. CDBridge not only establishes a scalable method for
 495 DNA-to-protein reasoning but also opens new avenues for complex biological systems.

496 **Limitations** Despite its promise, CDBridge still exhibits several constraints. First, the framework
 497 relies on high-quality isoform annotations and tissue-resolved expression atlases; incomplete or
 498 noisy metadata can propagate errors through both stages. Second, [limited by the scarcity of publicly](#)
 499 [accessible fine-grained contextual data](#), our conditional decoder currently models tissue context as a
 500 categorical variable, leaving unaccounted finer-grained factors such as developmental stage, disease
 501 state, and microenvironmental cues. Third, while ToMe compression mitigates sequence length,
 502 end-to-end training on whole-genome inputs remains computationally demanding, limiting scalability
 503 to large cohorts or non-human genomes with less curated references. [Future work could relax](#)
 504 [the reliance on curated isoform annotations by incorporating transcript assembly or junction-level](#)
 505 [supervision, and extend the conditional decoder to model continuous or spatially resolved contexts](#)
 506 [\(e.g., developmental time, disease severity, or spatial micro-environments\).](#)

507 **Reproducibility Statement.** We have made significant efforts to ensure the reproducibility of our
 508 work. Detailed descriptions of the model architecture, training objectives, and evaluation protocols are
 509 provided in Sections 3 and 4 of the main text, with additional implementation details, hyperparameters,
 510 and dataset statistics included in the Appendix and supplemental materials. Upon acceptance, we
 511 will publicly release the full GTEx-Benchmark dataset splits and preprocessing scripts, as well as the
 512 CDBridge codebase and pretrained models, to enable end-to-end reproduction of all experiments.
 513 This will ensure that other researchers can directly validate our results and extend our framework to
 514 new settings.

516 **517 REFERENCES**

518 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 519 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 520 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
 521 2022. [9](#)

522 Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
 523 Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene
 524 expression prediction from sequence by integrating long-range interactions. *Nature methods*, 18
 525 (10):1196–1203, 2021. [1](#), [2](#), [6](#), [9](#)

526 Žiga Avsec, Natasha Latysheva, Jun Cheng, Guido Novati, Kyle R Taylor, Tom Ward, Clare Bycroft,
 527 Lauren Nicolaisen, Eirini Arvaniti, Joshua Pan, et al. Alphagenome: advancing regulatory variant
 528 effect prediction with a unified dna sequence model. *bioRxiv*, pp. 2025–06, 2025. [1](#), [2](#), [6](#)

529 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
 530 Hoffman. Token merging: Your vit but faster. In *International Conference on Learning Represen-
 531 tations (ICLR)*, 2023. [4](#)

532 Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang, Gabriel A
 533 Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and design
 534 across all domains of life with evo 2. *BioRxiv*, pp. 2025–02, 2025. [2](#), [6](#), [8](#), [18](#), [19](#)

535 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 536 contrastive learning of visual representations. In *International conference on machine learning*, pp.
 537 1597–1607. PMLR, 2020. [17](#)

540 Xingyu Chen, Shihao Ma, Runsheng Lin, Jiecong Lin, and Bo Wang. Ctrl-dna: Controllable cell-
 541 type-specific regulatory dna design via constrained rl. *arXiv preprint arXiv:2505.20578*, 2025.
 542 1
 543

544 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 545 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 546 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision*
 547 and pattern recognition

548 and pattern recognition

549 pp. 24185–24198, 2024. 9

550 GTEX Consortium. The gtex consortium atlas of genetic regulatory effects across human tissues.
 551 *Science*, 369(6509):1318–1330, 2020. 5, 14

552

553 Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang.
 554 scgpt: toward building a foundation model for single-cell multi-omics using generative ai. *Nature*
 555 *Methods*, 21(8):1470–1480, 2024. 1, 2, 5, 15, 16, 17, 18

556 Fiona Cunningham, James E Allen, Jamie Allen, Jorge Alvarez-Jarreta, M Ridwan Amode, Irina M
 557 Armean, Olanrewaju Austine-Orimoloye, Andrey G Azov, If Barnes, Ruth Bennett, et al. Ensembl
 558 2022. *Nucleic acids research*, 50(D1):D988–D995, 2022. 6, 14

559 Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
 560 Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
 561 Sirelkhatim, et al. The nucleotide transformer: Building and evaluating robust foundation models
 562 for human genomics. *bioRxiv*, pp. 2023–01, 2023. 1, 2, 6, 8, 9, 19

563 Juan Jose Garau-Luis, Patrick Bordes, Liam Gonzalez, Maša Roller, Bernardo de Almeida, Christo-
 564 pher Blum, Lorenz Hexemer, Stefan Laurent, Maren Lang, Thomas Pierrot, et al. Multi-modal
 565 transfer learning between biological foundation models. *Advances in Neural Information Process-
 566 ing Systems*, 37:78431–78450, 2024. 1, 2, 6

567 Minsheng Hao, Jing Gong, Xin Zeng, Chiming Liu, Yucheng Guo, Xingyi Cheng, Taifeng Wang,
 568 Jianzhu Ma, Xuegong Zhang, and Le Song. Large-scale foundation model on single-cell transcrip-
 569 toomics. *Nature methods*, 21(8):1481–1491, 2024. 1, 2

570 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 571 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 572 *vision and pattern recognition*, pp. 16000–16009, 2022. 5

573

574 Yong He, Pan Fang, Yongtao Shan, Yuanfei Pan, Yanhong Wei, Yichang Chen, Yihao Chen, Yi Liu,
 575 Zhenyu Zeng, Zhan Zhou, et al. Lucaone: Generalized biological foundation model with unified
 576 nucleic acid and protein language. *bioRxiv*, pp. 2024–05, 2024. 1, 2, 6, 8, 9, 14, 16, 19

577 Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
 578 encoder representations from transformers model for dna-language in genome. *Bioinformatics*, 37
 579 (15):2112–2120, 2021. 1

580

581 Zhihan Ji, Hongyu Zhang, Jiani Huang, et al. Gena-lm: Multi-modal pre-training for the central
 582 dogma. *bioRxiv*, 2023. 9

583

584 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, and Michael Figurnov. Highly accurate
 585 protein structure prediction with alphafold. In *Proceedings of the National Academy of Sciences*
 586 (*PNAS*), pp. 102–109, 2021. 9

587 André Kahles, Kjønig-Van Lehmann, Nora C Toussaint, Matthias Hüser, Stefan G Stark, Timo
 588 Sachsenberg, Oliver Stegle, Oliver Kohlbacher, Chris Sander, Samantha J Caesar-Johnson, et al.
 589 Comprehensive analysis of alternative splicing across tumors from 8,705 patients. *Cancer cell*, 34
 590 (2):211–224, 2018. 1

591

592 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 593 pre-training with frozen image encoders and large language models. In *International conference*
 594 *on machine learning*, pp. 19730–19742. PMLR, 2023. 9

594 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
 595 dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
 596 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022. 1, 18
 597 18

598 Johannes Linder, Divyanshi Srivastava, Han Yuan, Vikram Agarwal, and David R Kelley. Predicting
 599 rna-seq coverage from dna sequence as a unifying model of gene regulation. *Nature Genetics*, 57
 600 (4):949–961, 2025. 19, 20

602 Zicheng Liu, Siyuan Li, Zhiyuan Chen, Fang Wu, Chang Yu, Qirong Yang, Yucheng Guo, Yujie
 603 Yang, Xiaoming Zhang, and Stan Z Li. Life-code: Central dogma modeling with multi-omics
 604 sequence unification. *arXiv preprint arXiv:2502.07299*, 2025. 9

605 Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives. Language
 606 models enable zero-shot prediction of the effects of mutations on protein function. In *Advances in
 607 Neural Information Processing Systems*, 2021. 9

609 Eric Nguyen, Michael Poli, Matthew G. Durrant, Brian Kang, Dhruva Katrekar, David B. Li, Liam J.
 610 Bartie, Armin W. Thomas, Samuel H. King, Garyk Brixi, Jeremy Sullivan, Madelena Y. Ng, Ashley
 611 Lewis, Aaron Lou, Stefano Ermon, Stephen A. Baccus, Tina Hernandez-Boussard, Christopher
 612 Ré, Patrick D. Hsu, and Brian L. Hie. Sequence modeling and design from molecular to genome
 613 scale with evo. *Science*, 386(6723):eado9336, 2024a. doi: 10.1126/science.ado9336. URL
 614 <https://www.science.org/doi/abs/10.1126/science.ado9336>. 1, 2, 4

615 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
 616 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
 617 genomic sequence modeling at single nucleotide resolution. In *Advances in neural information
 618 processing systems*, volume 36, 2024b. 1, 2

619 David Nikom and Sika Zheng. Alternative splicing in neurodegenerative disease and the promise of
 620 rna therapies. *Nature Reviews Neuroscience*, 24(8):457–473, 2023. 1

621 622 Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use
 623 in protein engineering. *Nature Machine Intelligence*, 6(2):170–179, 2024. 2

624 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 625 Girish Sastry, Amanda Askell, Pam Mishkin, Jack Clark, et al. Learning transferable visual
 626 models from natural language supervision. In *International Conference on Machine Learning*, pp.
 627 8748–8763. PMLR, 2021. 9

628 629 Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry
 630 Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning
 631 to 250 million protein sequences. In *Proceedings of the National Academy of Sciences (PNAS)*, pp.
 632 422–431, 2021. 9

633 Maria Ryaboshapkina and Mårten Hammar. Tissue-specific genes as an underutilized resource in
 634 drug discovery. *Scientific reports*, 9(1):7233, 2019. 1

635 636 Mahoko Takahashi Ueda, Jun Inamo, Fuyuki Miya, Mihoko Shimada, Kensuke Yamaguchi, and Yuta
 637 Kochi. Functional and dynamic profiling of transcript isoforms reveals essential roles of alternative
 638 splicing in interferon response. *Cell Genomics*, 4(10), 2024. 1

639 Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj
 640 Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mmm (blip-3): A family of open large multimodal
 641 models. *arXiv preprint arXiv:2408.08872*, 2024. 9

642 643 Xiaodong Yang, Guole Liu, Guihai Feng, Dechao Bu, Pengfei Wang, Jie Jiang, Shubai Chen,
 644 Qimeng Yang, Hefan Miao, Yiyang Zhang, et al. Genecompass: deciphering universal gene
 645 regulatory mechanisms with a knowledge-informed cross-species foundation model. *Cell Research*,
 646 34(12):830–845, 2024. 2

647 Zhao Yang, Bing Su, Chuan Cao, and Ji-Rong Wen. Regulatory dna sequence design with reinforce-
 648 ment learning. *arXiv preprint arXiv:2503.07981*, 2025. 1

648 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Effi-
649 cient foundation model and benchmark for multi-species genome. *arXiv preprint arXiv:2306.15006*,
650 2023. 1

651 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2:
652 Efficient foundation model and benchmark for multi-species genome. In *International Conference*
653 *on Learning Representations (ICLR)*, 2024. 1, 2, 6, 8, 19

654 Xiao Zhu, Chenchen Qin, Fang Wang, Fan Yang, Bing He, Yu Zhao, and Jianhua Yao. Cd-gpt: a
655 biological foundation model bridging the gap between molecular sequences through central dogma.
656 *bioRxiv*, pp. 2024–06, 2024. 2, 9

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A GTEX-BENCHMARK 703

704 We introduce **GTEX-Benchmark**, a comprehensive dataset designed to evaluate models of the
705 Central Dogma through both qualitative and quantitative tasks. Our goal is to provide a cross-omics
706 benchmark that adheres to biological principles, specifically the DNA → RNA → protein flow—and
707 captures tissue-specific regulatory complexity.

708 For each protein-coding gene, we extract genomic DNA sequences and their corresponding protein
709 products from Ensembl (Cunningham et al., 2022), and pair them with tissue-resolved RNA expression
710 profiles from GTEx-v8 (Consortium, 2020). Additionally, we include protein-level annotations such as
711 coding region mappings to support functional analysis. This enables two key task types: (1) *qualitative*
712 *alignment*, such as isoform-level protein retrieval given DNA; and (2) *quantitative prediction*, such as
713 tissue-specific gene expression modeling. To broaden evaluation, we also incorporate the Central
714 Dogma subset from LucaOne (He et al., 2024), which provides curated DNA–protein pairs with
715 explicit alignment.

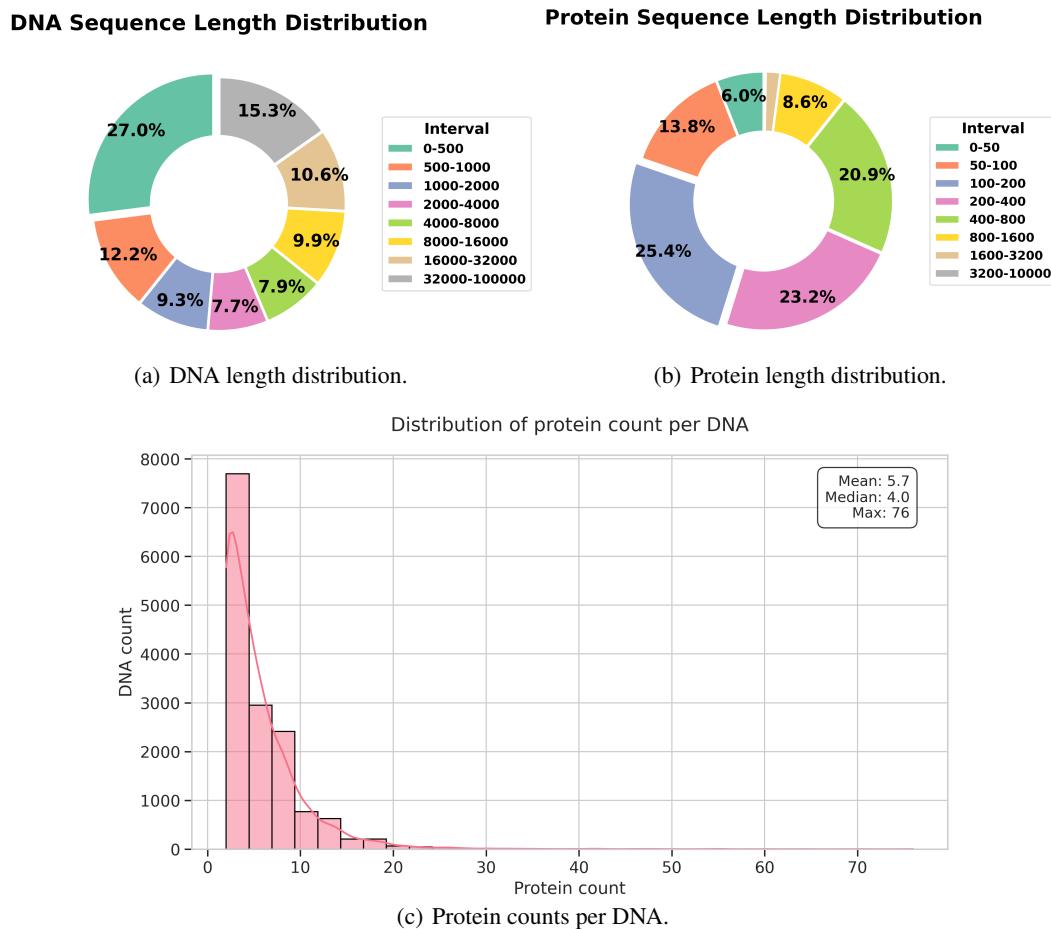


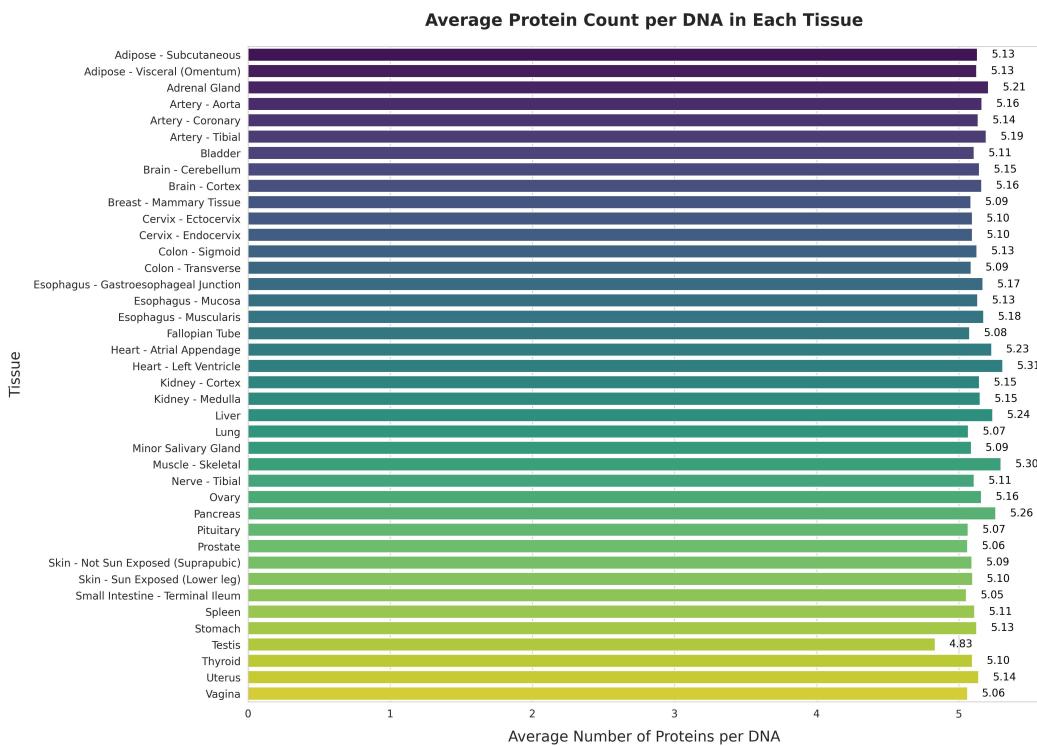
Figure 7: Sequence statistics of the GTEx-Benchmark dataset.

A.1 DATA STATISTICS

Sequence Distribution. GTEx-Benchmark comprises over 19,000 human genes, each containing both coding and non-coding DNA regions. Owing to alternative splicing, a single genomic sequence can give rise to multiple transcript variants, resulting in diverse protein isoforms with distinct functional roles. To ensure computational tractability, we exclude genes with DNA sequences longer than 200,000 nucleotides. We divided the dataset into training set, validation set, and test set in the proportions of 80%, 10%, and 10%, respectively. Figure 7 illustrates key statistics of the dataset: (a) the distribution of DNA sequence lengths, (b) the distribution of protein sequence lengths, and (c)

756 the number of protein isoforms associated with each gene. These figures underscore the substantial
 757 sequence and isoform-level heterogeneity that models must handle when reasoning across omics
 758 layers.

759 *Tissue-aware expression preprocessing.* The GTEx project provides gene expression measurements
 760 across 49 human tissues, enabling context-dependent modeling. To ensure comparability, we nor-
 761 malize transcript-level expression values using TPM (Transcripts Per Million) and apply a log
 762 transformation, $\log(\text{TPM} + 1)$, for numerical stability during training. We define a transcript as
 763 *activated* in a given tissue if its TPM exceeds 0.1. Based on this threshold, we compute the number
 764 of activated protein isoforms per gene across tissues. As shown in Figure 8, the average number
 765 of activated isoforms per gene is approximately five, underscoring the complexity introduced by
 766 tissue-specific expression and splicing.



791 Figure 8: Distribution of the number of activated protein isoforms per gene across tissues in GTEx-
 792 Benchmark.

795 A.2 EVALUATION PROTOCOL AND DOWNSTREAM TASKS

797 To evaluate the generalization and cross-modal reasoning capabilities of CDBridge, we consider
 798 three biologically grounded downstream tasks: *Coding Region Segmentation*, *Protein Retrieval*, and
 799 *DNA–Protein Association Classification*. These tasks are designed to reflect different aspects of the
 800 central dogma, ranging from token-level sequence understanding to modality-spanning alignment
 801 and functional prediction, and follow the same evaluation setup as in Section 3.

802 *Coding Region Segmentation.* Each genomic locus is provided in full length (up to 200 kb), and
 803 the model predicts whether each nucleotide belongs to a canonical coding sequence. Ground-truth
 804 labels are obtained from Ensembl CDS annotations. To reduce label noise at exon–intron junctions,
 805 positions within ± 3 bp of splice boundaries are ignored during metric calculation. We evaluate with
 806 accuracy, AUC, and F1, where AUC is reported both globally (pooled nucleotides) and averaged
 807 across loci, ensuring that performance is not dominated by a few long sequences.

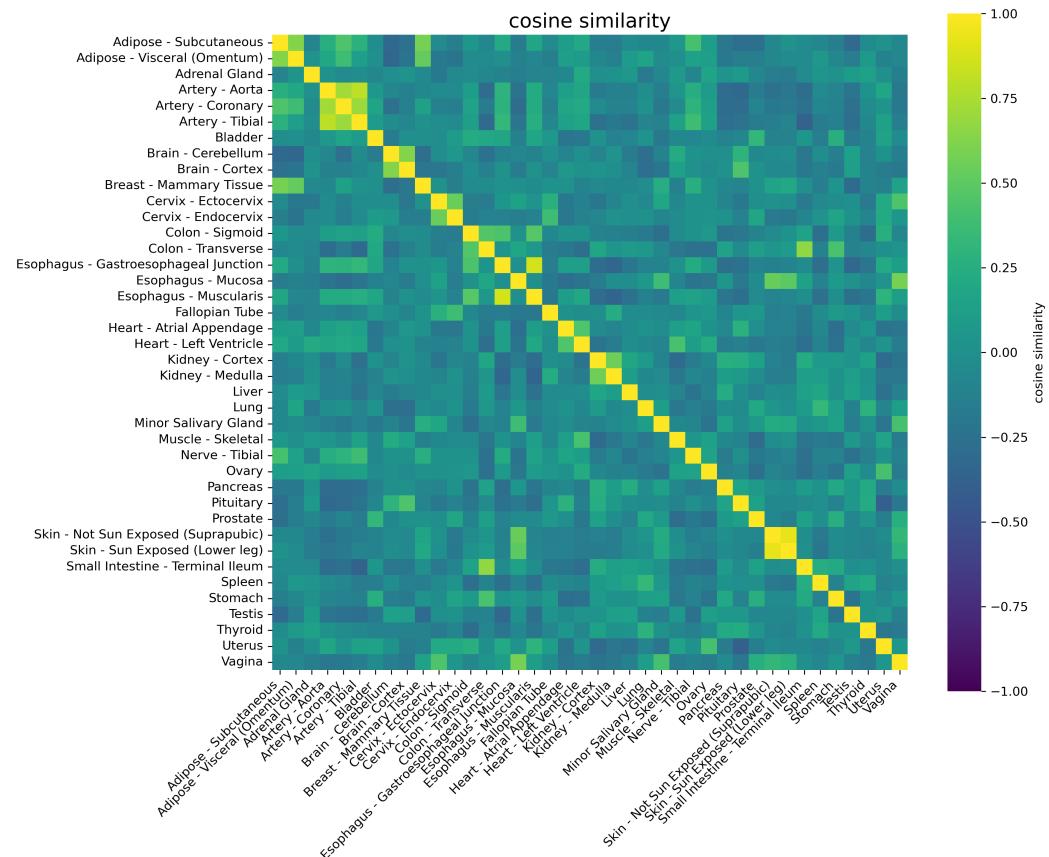
808 *Isoform Retrieval.* We construct gene–tissue pairs from GTEx by selecting genes with at least
 809 two expressed isoforms in a tissue. The tissue is conditioned with scGPT (Cui et al., 2024) and is
 concatenated with DNA embeddings as input. Each query contains a candidate isoform set, and the

810 model is asked to rank them according to predicted expression in the given tissue. Ground-truth
 811 usage is defined by the median TPM across GTEx donors. Performance is measured by Acc@3, the
 812 fraction of cases where the true top isoform falls in the top three predictions, and MRR, the mean
 813 reciprocal rank of the top isoform:
 814

$$815 \quad 816 \quad 817 \quad \text{MRR} = \frac{1}{N} \sum_{i=1}^N \frac{1}{\text{rank}_i}, \quad (1)$$

818 where rank_i is the predicted rank position of the ground-truth top isoform for the i -th gene–tissue
 819 pair, and N is the number of evaluation pairs. This protocol reflects practical applications such as
 820 pinpointing tissue-dominant isoforms for disease mechanism studies, where ranking a few plausible
 821 candidates is more valuable than identifying a single absolute prediction. Compared to standard
 822 expression regression, this setup directly tests whether a model can resolve isoform ambiguity under
 823 changing cellular environments.
 824

825 *DNA–Protein Association (Central Dogma Classification).* we adopt the Central Dogma subset from
 826 LucaOne (He et al., 2024), which links genomic DNA segments to their translated proteins. Positive
 827 pairs are derived from canonical gene–isoform mappings, while negative pairs are generated by
 828 sampling proteins from other genes matched by length and chromosome to avoid trivial cues. The
 829 dataset contains around 20k pairs with class-balanced sampling. We report accuracy, AUC, and
 830 F1. This task requires the model to capture functional correspondence across modalities rather than
 831 simple sequence similarity, and is directly relevant to applications such as drug target validation,
 832 where identifying functionally matched DNA–protein pairs is critical.
 833



854
 855
 856
 857
 858
 859
 860 Figure 9: Cosine similarity heatmap of tissue embeddings generated by scGPT (Cui et al., 2024).
 861 Related tissues (e.g., arteries) cluster together, suggesting biological consistency. **This structure**
 862 **supports the use of scGPT-derived tissue embeddings as conditioning signals in CDBridge, since they**
 863 **preserve biologically meaningful relationships between tissues.**

864 **B DETAILS OF THE METHOD**
865866 **B.1 TISSUE EMBEDDING.**
867

868 To support generalizable cross-tissue prediction, we incorporate tissue embeddings derived from
869 the cell foundation model scGPT (Cui et al., 2024). For each tissue, we extract its representation
870 from scGPT and apply mean-centering across all tissues by subtracting the average embedding
871 across dimensions. This debiasing step enhances inter-tissue contrast and facilitates better context
872 conditioning in downstream tasks. Figure 9 shows the cosine similarity heatmap among the resulting
873 tissue embeddings. As expected, biologically related tissues such as *Artery-Aorta* and *Artery-
874 Coronary*, which belong to the same higher-level anatomical category, exhibit stronger similarity.
875 This structure reveals that scGPT captures semantically meaningful and biologically consistent
876 relationships between tissues, supporting its use as a compact and transferable tissue representation.
877

878 **B.2 MERGE RATIO**
879

880 Merge ratio indicates the percentage of tokens merged during the forward pass. During training, the
881 merge ratio is sampled dynamically for each batch from a clipped Gaussian distribution: $r \sim \mathcal{N}(\mu =$
882 $0.375, \sigma = 0.1)$, clipped to the range $[0.25, 0.50]$. We employ this dynamic sampling strategy as a
883 form of structural data augmentation. By forcing the model to perform segmentation and alignment
884 under varying degrees of compression, we prevent it from overfitting to specific sequence strides or
885 fixed resolutions.
886

887 **B.3 LOSS FUNCTIONS**
888

889 CDBridge adopts a two-stage training paradigm. Stage 1 focuses on qualitative token-level alignment
890 between DNA and protein isoforms, while Stage 2 performs quantitative, tissue-aware prediction
891 of protein expression levels. The overall training objective combines classification and contrastive
892 components.
893

Stage 1: Multi-omics Connector for Long-Short Range Bridging. This stage optimizes two
894 complementary losses:
895

(1) *Multi-label Binary Classification Loss.* To supervise the coding region segmentation, we use a
896 binary cross-entropy loss over the predicted probability of each DNA token coding for any protein
897 isoform. The loss is computed as:
898

$$899 \mathcal{L}_{\text{cls}} = \text{BCEWithLogitsLoss}(y_{\text{pred}}, y_{\text{mask}}),$$

900 where y_{pred} are the model logits and y_{mask} is the binary mask indicating coding tokens for each
901 isoform.
902

(2) *Cross-modal Token-level Contrastive Loss.* To enforce fine-grained alignment between DNA
903 and protein token embeddings, we employ a batch-wise self-supervised contrastive loss inspired by
904 SimCLR (Chen et al., 2020). For each aligned DNA-protein token pair (as defined by the binary mask),
905 we maximize similarity and simultaneously push apart negative DNA samples selected randomly
906 within the same sequence. Specifically:
907

$$908 \mathcal{L}_{\text{align}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(z_i^p, z_i^d)/\tau)}{\exp(\text{sim}(z_i^p, z_i^d)/\tau) + \sum_{k=1}^K \exp(\text{sim}(z_i^p, z_{ik}^{d-})/\tau)},$$

911 where z_i^p and z_i^d are the normalized embeddings of the i -th aligned protein and DNA token, z_{ik}^{d-} are
912 randomly sampled negative DNA embeddings, and τ is a temperature hyperparameter. The similarity
913 function $\text{sim}(\cdot, \cdot)$ is implemented as the dot product of L2-normalized vectors.
914

915 The final loss for Stage 1 is the sum of both components:
916

$$917 \mathcal{L}_{\text{stage1}} = \mathcal{L}_{\text{cls}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}},$$

918 where λ_{align} is a hyperparameter controlling the strength of the global alignment.
919

918 **Stage 2: Tissue-aware Expression Regression.** In the second stage, the model is trained to predict
 919 protein expression levels in a tissue-aware manner. The input is the merged DNA representation from
 920 Stage 1, conditioned on tissue embeddings. The regression task supervises quantitative mapping from
 921 DNA to protein isoform expression values under different tissue conditions.

922 (1) *Tissue-specific Regression Loss.* For each protein isoform, we extract its expression value under
 923 the corresponding tissue index and regress from the model’s output. The loss is formulated as:
 924

$$925 \quad 926 \quad 927 \quad \mathcal{L}_{\text{expr}} = \frac{1}{B \times K} \sum_{i=1}^B \sum_{k=1}^K (\hat{y}_{ik} - y_{ik})^2,$$

928 where B is the batch size, K is the number of proteins, \hat{y}_{ik} is the predicted expression, and y_{ik} is the
 929 ground-truth expression under the sampled tissue.

930 (2) *Global Embedding Consistency Loss.* To enhance representational alignment across tissues and
 931 protein isoforms, we added a global contrastive loss to enforce the consistency between the pooled
 932 DNA embedding and the protein representation. This prevents overfitting to token-level patterns and
 933 encourages global biological coherence. We use a symmetric contrastive loss defined as:
 934

$$935 \quad 936 \quad 937 \quad \mathcal{L}_{\text{global}} = -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp \left(\text{sim}(z_i^{\text{DNA}}, z_i^{\text{protein}}) / \tau \right)}{\sum_{j=1}^B \exp \left(\text{sim}(z_i^{\text{DNA}}, z_j^{\text{protein}}) / \tau \right)},$$

938 where z_i^{DNA} and z_i^{protein} denote the pooled (e.g., mean or CLS-token) global embeddings for sample i ,
 939 and τ is the temperature.

940 The total loss for Stage 2 training is the sum of both:

$$941 \quad 942 \quad \mathcal{L}_{\text{stage2}} = \mathcal{L}_{\text{expr}} + \lambda_{\text{global}} \cdot \mathcal{L}_{\text{global}},$$

943 where λ_{global} is a hyperparameter controlling the strength of the global alignment.

944 C MODEL PARAMETERS AND TRAINING SETUP

945 CDBridge is built on top of powerful pre-trained single-omics models to facilitate tissue-aware
 946 cross-omics bridging. Specifically, we use the 7B Evo2 model (Brixi et al., 2025) as the DNA
 947 encoder, the 650M ESM2 model (Lin et al., 2022) for protein representation, and scGPT (Cui et al.,
 948 2024) to provide tissue embeddings.

949 **Training Strategy.** The training process is divided into two stages. In Stage 1, both the encoder and
 950 decoder are trainable to learn fine-grained DNA-protein alignment and coding region segmentation.
 951 In Stage 2, we freeze the encoder and decoder components from Stage 1 to preserve the learned
 952 cross-modal alignment. A new tissue-aware decoder is introduced to regress tissue-specific protein
 953 expression levels. This separation ensures that the model retains sequence-level alignment while
 954 learning contextual regulation patterns for expression.

955 **Trainable Components.** CDBridge is built upon pre-trained single-omics models to enable tissue-
 956 aware cross-omics prediction. Specifically, we utilize the 7B Evo2 model (Brixi et al., 2025) as the
 957 DNA encoder, the 650M ESM2 model (Lin et al., 2022) for protein representation and alignment,
 958 and scGPT (Cui et al., 2024) for deriving tissue embeddings. Table 5 summarizes the trainable
 959 components and their parameter counts across both training stages. In Stage 2, the encoder and
 960 decoder from Stage 1 are frozen to preserve learned alignment, and only the tissue-aware decoder
 961 and expression regression layers are updated during training.

962 D MORE ABLATIONS

963 As shown in Table 6, we present additional ablation results evaluating CDBridge’s performance when
 964 integrating features from various pretrained models. As shown in the table below, the combination
 965 of Evo2 and ESM2 achieves the best overall performance across all three tasks. Additionally,

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 5: Trainable parameter counts for key modules.

Module	Params	Notes
ToMe-based cross-omics encoder	~40.4M	<i>Frozen in Stage 2</i>
Transformer decoder (Stage 1)	~ 20.7M	<i>Frozen in Stage 2</i>
Tissue Conditional Decoder (Stage 2)	~ 8.3M	Trainable in Stage 2
Classification Head (Stage 1)	~ 415K	<i>Frozen in Stage 2</i>
Regression Layer (Stage 2)	~ 513K	Trainable in Stage 2

Table 6: More ablation studies and comparison results across GTEx expression prediction and its two sub-tasks, where **bold** denotes the best results.

Model	Coding Region Segmentation			Isoform Retrieval		GTEx Expression	
	Acc \uparrow	AUC \uparrow	F1 \uparrow	Acc \uparrow	MRR \uparrow	$R^2 \uparrow$	Spear \uparrow
Random	0.617	0.269	0.002	0.010	0.181	-13.027	0.005
NTv2-500M (Dalla-Torre et al., 2023)	0.814	0.529	0.134	0.145	0.229	-0.012	0.289
DNABERT-2 (Zhou et al., 2024)	0.851	0.612	0.382	0.132	0.227	-0.004	0.317
Evo2 (Brixi et al., 2025)	0.993	0.848	0.597	0.191	0.278	0.021	0.324
LucaOne (He et al., 2024)	0.993	0.859	0.613	0.259	0.354	0.001	0.309
CDBridge (NTv2, ESM2)	0.912	0.876	0.572	0.197	0.271	0.371	0.579
CDBridge (DNABERT-2, ESM2)	0.935	0.950	0.613	0.304	0.381	0.375	0.583
CDBridge (Evo2, ESM3)	0.993	0.989	0.616	0.339	0.434	0.382	0.607
CDBridge (Evo2, ESM2)	0.995	0.993	0.635	0.337	0.436	0.387	0.618

integrating multiple pretrained features clearly improves upon single-modality baselines. Although ESM-3 employs VQ-quantized features incorporating amino acid sequences, protein structures, and functional annotations (thus excelling at the protein retrieval task), it slightly underperforms ESM-2 in CDS segmentation and expression prediction, likely due to reduced compatibility with DNA-sequence-level detail required by these tasks.

Besides, we performed an additional ablation study comparing the performance of using a fixed clustering mechanism versus our learned clustering mechanism within the full Stage 2 model. This comparison validates the necessity of the learned, data-driven approach for optimal performance. The results are summarized in Table 7. The significant performance improvement observed with the learnable mechanism confirms that data-driven cluster assignment is crucial for effectively integrating sequence and tissue context information.

Table 7: Fixed vs. Learned Clustering on GTEx Expression Prediction.

Clustering Mechanism	R ²	Spearman
Fixed	0.305	0.472
Learnable	0.387	0.618

E COMPARISON WITH ADDITIONAL SOTA BASELINES

To further validate the effectiveness of CDBridge against state-of-the-art sequence-based models, we conducted a comparison with Borzoi (Linder et al., 2025), a recently proposed successor to Enformer. Similar to Enformer, Borzoi shares the fundamental fixed-output architecture designed for predicting epigenomic tracks across the genome.

As summarized in Table 8, while Borzoi demonstrates improved performance compared to Enformer (refer to main text), it remains significantly below CDBridge on our isoform-level, tissue-conditioned benchmark (R^2 of 0.201 vs. 0.387). This performance gap reinforces our observation that fixed-output architectures struggle with the dynamic, context-conditioned modeling required for resolving isoform-specific expression across diverse tissues.

1026 Table 8: Performance comparison with Borzoi on GTEx Expression Prediction.
1027

1028	Model	R ²	Spearman
1029	Borzoi (Linder et al., 2025)	0.201	0.336
1030	CDBridge (Ours)	0.387	0.618

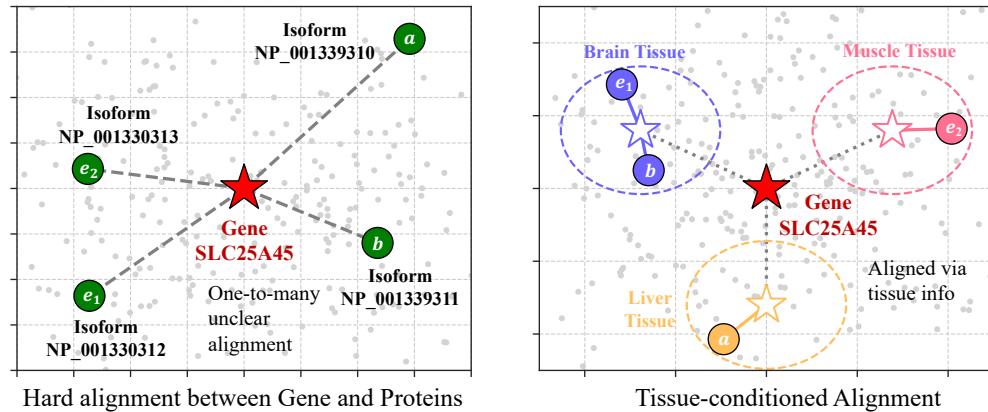
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 10: Tissue context enables meaningful gene–protein alignment. (Left) Without tissue information, SLC25A45 (red) and its four isoforms (green) appear dispersed in different directions and weakly connected. Direct gene-to-isoform alignment is ill-posed in this setting. (Right) Conditioning on tissue context (Brain, Liver, Muscle) resolves this ambiguity by splitting the gene into tissue-specific representations, which form tight clusters with their corresponding isoforms. Solid edges indicate strong, context-aware alignments. The gradient arrow illustrates the transition from an unconditioned to a context-resolved configuration.

F ILLUSTRATIONS FOR CROSS-OMICS ALIGNMENT

Due to alternative splicing in eukaryotes and gene reuse in prokaryotes, the relationship between DNA and proteins is one-to-many. As shown in Figure 10 (Left), a gene can produce multiple isoforms whose expression levels vary across tissues, meaning the same DNA sequence may serve different functions in different contexts. An ideal bridging strategy, as illustrated in Figure 10 (Right), should align DNA to different context-specific centers, enabling tissue-aware interpretation.

G USE OF LLM

We use a large language model (LLM) for minor edits to grammar, phrasing, and readability. The LLM is not involved in designing the method, developing theoretical results, or conducting experiments. All technical contributions, equations, and results are solely the work of the authors.