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ABSTRACT

Linking genomic DNA to quantitative, context-specific expression remains a cen-
tral challenge in computational biology. Current foundation models capture either
tissue context or sequence features, but not both. Cross-omics systems, in turn,
often overlook critical mechanisms such as alternative splicing and isoform reuse.
We present CDBridge, a post-training strategy that unifies pretrained DNA and
protein models into a context-aware framework without full retraining. CDBridge
operates in two stages: (a) Seq-context learning, where a splicing-inspired token
merge compresses long genomic regions into isoform-aware representations, and
(b) Env-context learning, where a conditional decoder injects tissue embeddings
to model expression under diverse biological contexts. To benchmark this set-
ting, we introduce GTEx-Benchmark, derived from GTEx and Ensembl, which
requires models to capture long-range exon dependencies, resolve isoform reuse,
and predict tissue-specific expression levels. Across qualitative and quantitative
tasks, CDBridge consistently outperforms prior methods that ignore central dogma
constraints or context dependence, offering a scalable and biologically faithful
solution for DNA-to-expression modeling.

1 INTRODUCTION

Understanding how genomic DNA sequences give rise to context-specific expression remains a
central challenge in computational biology. Here, context involves two complementary aspects:
(1) Sequence context, where non-coding regions regulate expression and splicing, allowing a single
gene to produce multiple isoforms; and (2) Environmental context, where tissue type or external
conditions drastically alter expression levels, even for identical DNA sequences. Accurate modeling
of these processes has broad applications, including disease mechanism discovery (Kahles et al.,
2018; Nikom & Zheng, 2023; Ueda et al., 2024), drug safety profiling (Ryaboshapkina & Hammar,
2019), and DNA design for synthetic biology (Chen et al., 2025; Yang et al., 2025).

Despite rapid progress, as shown in Table 1, existing methods fall short of bridging DNA to expression
in a truly context-aware manner. For example, single-cell foundation models, such as scGPT (Cui
et al., 2024), scFoundation (Hao et al., 2024), capture tissue-specific representations but operate
on gene IDs, ignoring the underlying DNA sequence that drives expression. In contrast, specialist
sequence-to-expression models like Enformer (Avsec et al., 2021), AlphaGenome (Avsec et al.,
2025), and Isoformer (Garau-Luis et al., 2024), attempt to incorporate DNA but typically operate
on pre-cropped fragments or average across dynamic isoform usage, failing to capture the system’s
full complexity. Furthermore, while large-scale sequence foundation models (Zhou et al., 2024; Lin
et al., 2022; Ji et al., 2021; Zhou et al., 2023; Nguyen et al., 2024b; Dalla-Torre et al., 2023), such as
Evo (Nguyen et al., 2024a), LucaOne (He et al., 2024), have advanced DNA and protein modeling
across the central dogma, they primarily target qualitative tasks. Consequently, the quantitative nature
of expression, which is the ultimate determinant of phenotype, remains largely unaddressed. This
gap raises a fundamental question: How can we map the whole DNA sequence to context-aware
quantitative expression?

Answering this question requires addressing two key challenges: (1) Sequence length mismatch, as
genes often span hundreds of kilobases while their protein products consist of only a few hundred
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Table 1: Comparison of model capabilities across input modalities and design aspects. CDBridge
is the only framework that supports full cross-omics alignment, tissue-aware reasoning, and expression
modeling. General indicates that the model supports various tasks, while Specialist indicates the
model is designed for seq2express regression tasks. ✓indicates support, ✗indicates not supported.

Model Venue Type DNA RNA Protein Central Dogma Express Tissue-Aware
scGPT (Cui et al., 2024) Nat. Methods General ✗ ✗ ✗ ✗ ✓ ✓
scFoundation (Hao et al., 2024) Nat. Methods General ✗ ✗ ✗ ✗ ✓ ✓
GeneCompass (Yang et al., 2024) Cell Research General ✗ ✗ ✗ ✗ ✓ ✓

DNABERT2 (Zhou et al., 2024) ICLR General ✓ ✗ ✗ ✗ ✗ ✗
NTv2 (Dalla-Torre et al., 2023) Nat. Mach. Intell. General ✓ ✗ ✗ ✗ ✗ ✗
HyenaDNA (Nguyen et al., 2024b) NeurIPS General ✓ ✗ ✗ ✗ ✗ ✗
Evo (Nguyen et al., 2024a) bioXiv General ✓ ✗ ✗ ✓ ✗ ✗
Evo2 (Brixi et al., 2025) bioXiv General ✓ ✗ ✗ ✓ ✗ ✗

CD-GPT (Zhu et al., 2024) bioXiv General ✓ ✓ ✓ ✓ ✗ ✗
CaLM (Outeiral & Deane, 2024) Nat. Mach. Intell. General ✓ ✓ ✓ ✓ ✗ ✗
LucaOne (He et al., 2024) Nat. Mach. Intell. General ✓ ✓ ✓ ✓ ✗ ✗

Enformer (Avsec et al., 2021) Nat. Methods Specialist ✓ ✗ ✗ ✗ ✓ ✗
AlphaGenome (Avsec et al., 2025) bioXiv Specialist ✓ ✗ ✗ ✗ ✓ ✗
Isoformer (Garau-Luis et al., 2024) NeurIPS Specialist ✓ ✓ ✓ ✗ ✓ ✗
CDBridge (Ours) Ours General ✓ ✓ ✓ ✓ ✓ ✓

amino acids; and (2) Context mapping ambiguity, since alternative splicing and isoform reuse
create inherently one-to-many relationships between DNA and proteins.

To overcome these challenges, we propose CDBridge, a context-aware post-training bridge strategy
that unifies pretrained DNA and protein models within a single framework. Unlike prior approaches,
CDBridge integrates both sequence-level and tissue-level contexts, enabling simultaneous qualitative
and quantitative modeling. The framework proceeds in two stages: (1) Seq-context learning, where
a cross-omics connector with cross-attention maps DNA embeddings to protein representations,
supported by a splicing-inspired adaptive token merge that selectively compresses non-informative
regions while preserving functional signals; and (2) Env-context learning, where a conditional decoder
injects tissue embeddings to model tissue-specific expression, selectively activating Stage 1 outputs
under given contexts.

To rigorously evaluate central dogma modeling, we introduce GTEx-Benchmark, constructed from
GTEx and Ensembl. In contrast to existing benchmarks like Enformer or Isoformer, GTEx-Benchmark
forces models to resolve long-range dependencies by identifying critical exons across vast genomic
distances, managing exon reuse across multiple isoforms, and predicting tissue-specific expression
levels. This creates a challenging and biologically faithful evaluation for central dogma modeling.

Our contributions are threefold:

• A context-aware, two-stage bridge strategy that enables cross-omics alignment with minimal
paired supervision, supporting both qualitative functional tasks (e.g., protein segmentation) and
quantitative expression-level prediction under varied contexts.

• An adaptive token-merge mechanism that mimics biological splicing by selectively merging
genomic sequences, reducing length disparity and highlighting informative regions for efficient
and interpretable modeling.

• A new benchmark (GTEx-Benchmark) for tissue-aware central dogma modeling, covering both
qualitative cross-omics alignment and quantitative tissue-specific prediction tasks. CDBridge
improves the average tissue-specific expression prediction by over 55% (relative R2 gain
compared to AlphaGenome), while also achieving state-of-the-art performance on three cross-
omics downstream tasks.

2 METHOD

We introduce CDBridge, a context-aware two-stage post-training framework that bridges single-
omics DNA and protein foundation models under the guidance of the central dogma. By implicitly
leveraging RNA as a biological mediator, CDBridge aligns cross-modal representations through
both sequence-level interaction and tissue-specific context modeling. A left-to-right overview of the
architecture is illustrated in Figure 1. Then we introduce our framework from stage 1 to stage 2.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

M

Protein
Dictionary

Bulk RNATissue

Multi-omics
Connector

D
N
A
w
ith
Long

Context

Conditional
Decoder

Function 
Decoder

Single-cell Model
Protein 1 0.9

Function Level

Protein 2 0.3

Gene Level Cell Level

!

!

Protein n 0.1!

Function & Expression

DNA 
Model

Protein Model

Protein
Database

Chromosome

M

M

Proteins

Isoform

Isoform

……

…

Figure 1: Overview of the CDBridge framework for context-aware cross-omics modeling of the
central dogma. CDBridge operates in two post-training stages built on frozen DNA and protein foun-
dation models, which consists of two stages: (1) Seq-context learning, which identifies informative
regions from long genomic sequences and maps them to protein-related functional representations.
(2) Env-context learning, a conditional decoder that incorporates tissue embeddings to compose
functional features into tissue-specific representations for gene expression prediction.

2.1 STAGE 1: MULTI-OMICS CONNECTOR FOR LONG-SHORT RANGE BRIDGING

The first stage of CDBridge tackles two core challenges in cross-modal representation alignment: (i)
the intrinsic mismatch in sequence length, where a full-length DNA sequence (∼104 tokens) encodes
one or more relatively short protein sequences (∼102 tokens); and (ii) the semantic gap between
modality-specific pretraining objectives: DNA embeddings capture genome-wide contextual signals,
while protein embeddings focus on functional amino acid chains from localized coding regions,
which can be seen in the Figure 2(a).

(a) DNA and Proteins. (b) cDNA and Proteins. (c) Ours on DNA and Proteins.

Figure 2: Illustration of the challenges in aligning DNA and protein representations across modal-
ities. (a) Even with advanced models such as Evo2 and ESM2, alignment remains challenging
due to the inherent one-to-many mapping between long DNA sequences and their shorter protein
counterparts. (b) Manually segmenting DNA into coding regions reduces input ambiguity, but fails to
resolve the representation gap, as existing DNA models are pretrained on full-genome data lacking
isoform-specific supervision. (c) By introducing an adaptive token-merging strategy, CDBridge
effectively reduces the modality gap and enhances alignment between DNA and protein embeddings.

Framework. To bridge these gaps, we design a seq-context-aware cross-omics connector that
projects the full DNA embedding space into a functionally meaningful protein space using a cross-
attention mechanism. Let XDNA ∈ RL×d be the DNA embedding sequence produced by a frozen
DNA encoder, where L is the token length and d the embedding dimension. We further introduce
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Figure 3: Two-stage training pipeline of CDBridge. (a) Stage 1: Taking the raw DNA sequences
with long contexts as input, whose embedding features are extracted from an existing DNA foundation
model (Nguyen et al., 2024a), the multi-omic connector aggregates protein knowledge with cross-
attention from the protein dictionary and compresses the fused features with ToMe-Attention (Bolya
et al., 2023) while the function decoder predicts the protein functions with token-wise masks. (b)
Stage 2: After selecting the fused embedding with the predicted masks, the conditional decoder
achieves cell-level prediction of expressions of certain proteins with the tissue dictionary.

a learnable token dictionary Tprot ∈ RM×d, initialized from k-means clustered protein embeddings
across the training dataset. These tokens serve as prototypes, which are treated as keys and values in
the cross-attention module:

Attn(XDNA, Tprot, Tprot) = softmax

(
XDNAT ⊤

prot√
d

)
Tprot.

Token Compression via Merge and Recover. To efficiently handle the long-range dependencies
in genomic sequences, we propose a biologically inspired token compression strategy based on
ToMe (Bolya et al., 2023), mimicking transcript splicing mechanisms. This technique allows us to
focus computation on functionally relevant regions by adaptively merging non-critical tokens, thereby
reducing sequence length while preserving semantic fidelity.

Given a DNA embedding sequence XDNA = [x1, . . . ,xL] ∈ RL×d, we begin by randomly partition-
ing the token indices into two disjoint sets, A and B. For each token i ∈ A, we compute cosine
similarity with all tokens j ∈ B and identify its most similar partner:

j∗(i) = argmax
j∈B

⟨xi,xj⟩
∥xi∥ · ∥xj∥

.

If the similarity exceeds a threshold τ , the pair (i, j∗(i)) is selected for merging. τ is determined by
the pre-set merge ratio, which is randomly sampled from the Gaussian distribution for each input
during training. The two tokens are merged via direct averaging:

x̃i =
1

2
(xi + xj∗(i)),

where the index i as the surviving token, discarding j∗(i). This yields a compressed sequence
X̃DNA = {x̃i | i ∈ S} ∈ RL′×d with L′ < L. We maintain a mapping function π : {1, . . . , L} →
S ∪ {NULL}, where π(l) = l if token l survives, and π(l) = i if token l was merged into token i.
In the unmerge phase, each discarded token is reconstructed by assigning it the embedding of its
surviving partner. The reconstructed sequence X̂DNA = {x̂1, . . . , x̂L} is obtained as:

x̂l =

{
x̃l if π(l) = l (token survived),
x̃π(l) if π(l) ̸= l (token was merged),
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which is then processed by a lightweight Transformer decoder to predict functional regions.This
merge-and-recover procedure can be interpreted as a variant of MAE(He et al., 2022), where the
masked regions are adaptively selected based on inter-token similarity. Compared to standard MAE,
this strategy is saliency-aware, preserves positional alignment, and enables token-level supervision,
making it especially well-suited for genomic sequences where functional signals are sparse and
localized. The alignment results are shown in Figure 2. It can be seen that our method shows a better
alignment for the global DNA embeddings and the protein embeddings, even exceeds the pre-cropped
cDNA and protein embeddings.

2.2 STAGE 2: CONDITIONAL DECODER FOR CONTEXT-AWARE EXPRESSION MODELING

While Stage 1 focuses on capturing the structural alignment between DNA and protein through
token-level interactions, Stage 2 addresses the variability of gene expression across diverse cellular
environments. Specifically, this stage introduces a tissue-aware conditional decoder designed to
model the variability of gene expression, capturing the regulatory plasticity that arises from these
contextual factors.

Tissue Dictionary as Conditional Context. To incorporate relevant biological context, we con-
struct a Tissue dictionary TEnvir ∈ RC×M×d by leveraging a single-cell foundation model(Cui et al.,
2024). Here, C represents the number of tissue types, M is the pre-set number of cell tokens, and d
denotes the dimensionality of the embedding. Specifically, bulk RNA expression data is first passed
through the single-cell foundation model and then pooled to generate global embeddings represented
by M tokens. Each tissue is represented by a vector tc ∈ RM×d capturing its cell state. During
training, tissue labels are supplied as conditional inputs for expression inference, enabling the model
to learn differential regulation patterns across distinct biological environments.

Avoiding Information Leakage from the Context. The tissue embedding is constructed via mean
pooling over approximately 19k genes, without isolating expression values of the target gene or its
neighbors. This aggregation effectively dilutes individual gene-level signals. To further verify this,
we conducted a control experiment in which the model was trained and tested using only the tissue
embedding as input (excluding DNA features). In this setting, the R2 value dropped to nearly zero
(see Table 4), confirming that the tissue embedding serves solely as a conditioning signal rather than
as an independent predictive feature.

Conditional Decoder Architecture. The conditional decoder is a Transformer module that takes
the tissue vectors as queries and performs cross-attention over the compressed DNA representations
X̃DNA obtained from Stage 1. The output of the Decoder includes M tokens, each representing the
candidate isoform-related protein embeddings, which is formulated as:

{p̂m}Mm=1 ∼ p
(
{pm}Mm=1 | X̃DNA, tc

)
.

The decoder outputs enable two types of predictions: (1) isoform-aware protein embeddings, enabling
regularization through contrastive loss, and (2) a scalar regression output estimating the quantitative
expression level of the target protein under tissue condition c. This dual objective ensures both qualita-
tive semantic alignment and quantitative expression estimation. Unlike typical expression models that
treat cells as unordered gene sets, our decoder preserves gene-level context and sequence semantics
while modeling tissue-dependent effects, yielding fine-grained and generalizable predictions.

3 EXPERIMENTS

We evaluate CDBridge across multiple biologically grounded tasks to assess its performance, general-
izability, and interpretability.

3.1 DATASET CONSTRUCTION.

We construct the GTEx-Benchmark based on the GTEx v8 resource (Consortium, 2020), which
provides matched genomic, transcriptomic, and proteomic annotations across 40 human tissues.
For each protein-coding gene, we retrieve the DNA sequence and corresponding protein sequence
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Table 2: Expression prediction performance with R2(↑) and Spearman(↑) across five specific tissues,
along with averaged results over the full dataset. The best results in bold. Models are grouped into:
(i) auxiliary sequence-only baselines, (ii) specialist expression baselines, and (iii) our cross-omics
bridge. Isoformer (Official) relies on a TSS-aligned data setting and is thus not directly comparable
to our unaligned, long-sequence protocol.

Model Brain Heart Kidney Liver Stomach Average
R2 Spear R2 Spear R2 Spear R2 Spear R2 Spear R2 Spear

Auxiliary Sequence-only Baselines
DNABERT2 (Zhou et al., 2024) -0.004 0.317 -0.005 0.304 -0.004 0.317 -0.001 0.328 0.001 0.333 -0.004 0.317
NTv2 (Dalla-Torre et al., 2023) -0.012 0.238 -0.003 0.317 -0.135 0.176 -0.023 0.291 0.005 0.306 -0.012 0.289
Evo2-7B (Brixi et al., 2025) 0.021 0.324 0.018 0.318 0.024 0.328 0.017 0.312 0.023 0.325 0.021 0.324
LucaOne (He et al., 2024) 0.006 0.320 -0.001 0.300 0.007 0.324 -0.003 0.314 0.002 0.318 0.001 0.309
Specialist Expression Baselines
Enformer (Avsec et al., 2021) 0.139 0.124 0.133 0.118 0.117 0.092 0.127 0.122 0.124 0.108 0.127 0.122
AlphaGenome (Avsec et al., 2025) 0.234 0.442 0.260 0.404 0.229 0.380 0.221 0.438 0.242 0.410 0.248 0.438
Isoformer (Official) (Garau-Luis et al., 2024) 0.505 – 0.525 – 0.560 – 0.530 – 0.515 – 0.530 0.720
Isoformer (w/o TSS Align.) (Garau-Luis et al., 2024) -0.328 0.301 -0.303 0.269 -0.366 0.264 -0.268 0.312 -0.291 0.278 -0.315 0.309
Proposed Cross-omics Bridge Model
CDBridge (Ours) 0.421 0.708 0.346 0.657 0.327 0.594 0.382 0.631 0.410 0.673 0.387 0.618

from Ensembl (Cunningham et al., 2022), and pair them with tissue-specific RNA expression values
and protein function annotations. We utilize a strict split of 80% training, 10% validation, and
10% testing based on gene IDs to prevent data leakage. To ensure sequence manageability, genes
with DNA sequences longer than 200k base pairs are excluded. These ultra-long genes constitute
only a small long-tail portion (around 2% of genes in our statistics). The resulting dataset enables
evaluation on a wide range of biologically meaningful tasks, including Tissue-conditioned protein
expression prediction, Coding region segmentation, and Isoform-level protein retrieval. More details
are illustrated in the Appendix A.1.

Figure 4: Spearman correlation of gene-expression
prediction across five tissues. Each bar reports
the Spearman correlation between predicted and
ground-truth isoform-level expression in a spe-
cific tissue. Model performance on unseen tis-
sues closely mirrors that on tissues observed dur-
ing training, indicating robust cross-tissue general-
ization and suggesting that the learned tissue em-
beddings capture transferable regulatory patterns
rather than overfitting to specific training tissues.

Comparison with other methods. Table 1
presents a comparison of representative mod-
els across input modalities, biological reason-
ing capabilities, and task types. DNABERT-
2 (Zhou et al., 2024) is a single-omics model
trained exclusively on DNA sequences, focus-
ing on sequence-level representations. Evo2
(Brixi et al., 2025) incorporates aspects of the
central dogma during training, enhancing se-
quence modeling, yet it remains fundamentally
single-omics. Building upon these, LucaOne
(He et al., 2024)supports multi-omics inputs
spanning DNA, RNA, and protein, offering
broader coverage. However, these foundational
sequence models lack the capacity for tissue-
conditioned reasoning or quantitative expression
prediction. In contrast, specialist models such
as Enformer (Avsec et al., 2021) and Isoformer
(Garau-Luis et al., 2024) are explicitly designed
for expression prediction. However, they rely
on fixed-dimension output heads and therefore
structurally cannot perform zero-shot prediction
on unseen tissues without retraining new heads.
Concurrently, AlphaGenome (Avsec et al., 2025)
is designed for nucleotide-level quantitative prediction from long DNA contexts across multiple omics.
Nevertheless, it emphasizes static averaged outputs for each DNA input, overlooking tissue-dependent
variations. Uniquely, CDBridge enables comprehensive cross-modal alignment while performing
quantitative expression modeling conditioned on tissue contexts. This capability positions CDBridge
as a versatile biological foundation model, capable of fine-grained, environment-aware inference
across multiple molecular modalities.
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3.2 TISSUE-AWARE GENE EXPRESSION PREDICTION

We evaluate CDBridge on the challenging task of tissue-conditioned isoform-level expression pre-
diction using the GTEx dataset, comparing it against general representative sequence-only models
(auxiliary sequence baselines) and specialist models designed for expression prediction. The features
of the auxiliary sequence baselines are frozen and followed by a trainable layer for expression
regression. Two evaluation settings are considered: (i) seen-tissue (Table 2), where tissues appear
during training but test DNA sequences are unseen; and (ii) unseen-tissue (Figure 4), where entire
tissue types as well as the test DNA sequences are held out to simulate zero-shot generalization.
Specifically, we employ a leave-tissue-out protocol: the model is trained on 90% of tissues and
evaluated exclusively on genes from the 10% held-out, unseen tissue types.

From Table 2, sequence-only models such as DNABERT-2 and Evo2 show limited performance since
they lack explicit modeling of tissue-specific regulatory signals. While Enformer, AlphaGenome, and
Isoformer incorporate expression prediction, they rely on tissue-specific classifiers trained solely on
DNA inputs, limiting their ability to generalize to unseen tissues. In contrast, CDBridge consistently
achieves superior R2 and Spearman scores across diverse tissues, with particularly strong gains in
contexts where regulation is highly tissue-dependent. Figure 4 further demonstrates that CDBridge
sustains robust performance even under unseen-tissue conditions. It is a setting unsupported by
Enformer or Isoformer, validating its ability to capture transferable context patterns through its
two-stage, context-aware architecture.

3.3 CROSS-OMICS DOWNSTREAM TASK.

We evaluate the multi-omics representation capacity of CDBridge through three challenging down-
stream tasks: coding region segmentation, isoform retrieval, and DNA–protein association. Full
protocols are provided in Section A.2, and results are summarized in Table 3.

Coding Region Segmentation. This task evaluates whether the model can identify which DNA
segments code proteins, a key step for genome annotation and clinical variant interpretation. As
shown in Table 3, single-omics models such as DNABERT-2 and Evo2 perform relatively poorly
due to their inability to disambiguate coding signals from long genomic sequences, while LucaOne
benefits from multi-omics embeddings to achieve better alignment. CDBridge outperforms them,
demonstrating its ability to capture Isoformer-related protein signals for fine-grained token-level
tasks.

Isoform Retrieval. Given a set of candidate isoforms, this task assesses the ability to retrieve the
top-K blueactivated isoforms from DNA sequences with different conditions. It is important for
disease mechanism discovery. As expected, unimodal DNA models perform poorly. LucaOne, while
benefiting from multi-omics embeddings, still provides only moderate performance due to the absence
of fine-grained isoform-level modeling. In contrast, CDBridge achieves the best results, leveraging
cross-modal alignment and tissue-aware conditioning to capture tissue-specific isoform usage patterns
accurately.

Central Dogma. This binary classification task evaluates if a DNA-protein pair is functionally
associated, relevant to disease mechanism discovery and drug target identification. The Central
Dogma dataset from LucaOne is used. DNABERT-2 lacks the capacity to incorporate protein
information, yielding weak performance. Evo2 and LucaOne performs better, benefiting from joint
modeling , but lack task specialization. CDBridge achieves the highest performance by leveraging
multi-omics conditioning and structured alignment.

3.4 INTERPRETABLE ANALYSIS

Adaptive merge salient regions. We visualize the token merging behavior by overlaying the merging
heatmap with known exon/intron annotations. The experiment is conducted on held-out test samples,
where we visualize the top 100 most frequently reused tokens during the adaptive token merging stage.
As shown in Figure 5, without explicit masking for merging, the model consistently retains tokens
corresponding to coding regions (exons), while aggressively merging tokens in non-coding regions
(introns or intergenic). This behavior suggests that CDBridge effectively allocates computation to
biologically significant regions in a data-driven and interpretable manner.
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Table 3: Comprehensive evaluation across three biological tasks (best bold, second-best underlined).

Model Coding Region Segmentation Isoform Retrieval Central Dogma
Acc ↑ AUC ↑ F1 ↑ Acc ↑ MRR ↑ Acc ↑ AUC ↑ F1 ↑

Random 0.617 0.269 0.002 0.010 0.181 0.503 0.499 0.502
Single-omics General models
NTv2-500M (Dalla-Torre et al., 2023) 0.814 0.529 0.134 0.145 0.229 0.572 0.597 0.415
DNABERT-2 (Zhou et al., 2024) 0.851 0.612 0.382 0.132 0.227 0.574 0.598 0.482
Evo2 (Brixi et al., 2025) 0.993 0.848 0.597 0.191 0.278 0.672 0.725 0.518
Muti-omics General models
LucaOne (He et al., 2024) 0.993 0.859 0.613 0.259 0.354 0.714 0.767 0.545
CDBridge (Ours) 0.995 0.993 0.635 0.337 0.436 0.742 0.792 0.568

Figure 5: Token merging aligns with functional regions. The merging process selectively retains
tokens associated with coding regions, while non-coding segments are predominantly merged. This
pattern arises without explicit exon masks in the loss, indicating that CDBridge learns to allocate
computation to biologically salient regions in a data-driven and interpretable manner.

Tissue-aware activations. The activated tokens under different conditions are visualized in Figure 6.
The first gene sample activates tokens predominantly associated with the first two isoforms, and the
activation patterns shift based on tissue type, reflecting expression differences. Similarly, the second
gene shows consistent activation in tokens 4–16 across tissues, but with varying intensities. These
patterns indicate that CDBridge is capable of modeling the tissue-specific regulatory contexts.

3.5 ABLATION STUDY

To understand the contribution of each component in our two-stage CDBridge framework, we conduct
systematic ablation experiments along both segmentation and expression pathways (Table 4). The
first stage includes a ToMe module and a protein clustering module, with or without learning. The
second stage evaluates the presence of tissue-specific clustering during expression prediction.

In the segmentation task, removing the entire Stage 1 (i.e., no ToMe or protein clustering) leads to a
significant drop in performance (AUC = 0.848, F1 = 0.600), matching the Evo2 baseline. Introducing
ToMe alone slightly improves segmentation, suggesting the benefit of adaptive compression. Adding

Figure 6: Tissue-specific token activations. Each panel displays the token activation magnitude for
specific isoforms (rows) across various tissue contexts (columns). CDBridge selectively activates
isoform-associated tokens, with varying intensity across tissues, reflecting its capacity to model
tissue-aware gene expression across different DNA regions.
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Table 4: Ablation study of CDBridge components. Each row represents a different configuration of
Stage 1 (segmentation) and Stage 2 (expression prediction). ✓ indicates the corresponding component
is enabled. Segmentation performance is measured by AUC and F1, while expression prediction is
evaluated using R2 and Spearman correlation. Numbers in (+∆) show relative improvements over
the baseline.

Stage 1 Stage 2 Segmentation Expression
ToMe Attn. Fixed Clust Learned Clust Tissue Clust AUC ↑ F1 ↑ R2 ↑ Spear ↑

✗ ✗ ✗ ✗ 0.848 0.600 0.021 0.324
✓ ✗ ✗ ✗ 0.882(+0.034) 0.601(+0.001) 0.205(+0.184) 0.457(+0.133)

✓ ✓ ✗ ✗ 0.990(+0.142) 0.602(+0.002) 0.212(+0.191) 0.483(+0.159)

✓ ✗ ✓ ✗ 0.993(+0.145) 0.635(+0.035) 0.215(+0.194) 0.483(+0.159)

✗ ✗ ✗ ✓ – – 0.020(-0.001) 0.128(-0.196)

✓ ✗ ✓ ✓ 0.993(+0.145) 0.635(+0.035) 0.387(+0.366) 0.618(+0.294)

a non-learnable protein cluster yields moderate gains, while learning the protein cluster jointly with
ToMe provides the best segmentation performance. For the expression task, disabling tissue condi-
tioning results in poor generalization (R2= 0.020, Spearman = 0.128), confirming that incorporating
single-cell models for tissue-aware modeling will not introduce information leakage. Enabling all
components achieves a strong improvement (R2 = 0.387, Spearman = 0.618), validating the design
of the two-stage architecture.

4 RELATED WORK

Pretrained Biological Language Models. Recent years have witnessed rapid progress in large-scale
pretrained models for biological sequences. On the molecular level, protein language models such as
ESM (Rives et al., 2021), Evo (Meier et al., 2021), and AlphaFold (Jumper et al., 2021) have shown
impressive performance in protein structure prediction, function classification, and representation
learning. On the genomic side, models like Enformer (Avsec et al., 2021) and Nucleotide Trans-
former (Dalla-Torre et al., 2023) leverage long-range attention to model cis-regulatory elements and
gene expression from raw DNA sequences. While these models excel within their own modalities,
they are typically trained independently and lack mechanisms for aligning representations across the
molecular hierarchy from DNA to protein, limiting their utility in tasks that require reasoning over
the central dogma.

Multi-omics Modeling of the Central Dogma. To bridge across DNA, RNA, and protein, multi-
omics models such as CD-GPT (Zhu et al., 2024), GENA-LM (Ji et al., 2023), Life-Code (Liu et al.,
2025), and LucaOne (He et al., 2024) have been proposed to unify biological sequences in a shared
embedding space. These models usually decompose input sequences into functional segments (e.g.,
coding vs non-coding) and attempt modality alignment via paired training. Some focus on qualitative
modeling like function transfer, while others explore quantitative prediction of gene expression.
However, most overlook crucial biological context: (1) splicing and regulatory mechanisms often
cause one gene to yield multiple proteins, and (2) the same DNA may lead to different expression
outcomes depending on the cellular or environmental context. These factors make DNA-to-protein
alignment inherently ambiguous and context-dependent, a challenge under-addressed in existing
models. In contrast to unified multi-omics foundation models like GENA-LM and LucaOne, which
require end-to-end multi-omics pretraining, CDBridge operates as a post-training bridge that augments
frozen single-omics DNA and protein encoders with tissue-aware cross-omics reasoning, avoiding
expensive retraining while retaining the flexibility of modular single-omics backbones.

Multimodal Connectors and Bridge Strategies. Given the high cost of collecting large-scale
multimodal datasets, a promising direction is to bridge pretrained single-omics models through
lightweight post-training alignment. Existing efforts in general multimodal AI (Radford et al., 2021;
Chen et al., 2024; Xue et al., 2024; Li et al., 2023; Alayrac et al., 2022) have shown success in
domains like vision-language, but biology poses unique challenges such as extreme sequence length
disparities and complex one-to-many mappings (e.g., splicing, RNA editing). Few biological models
have explored connector-based strategies that are both context-aware and biologically grounded. In
this work, we propose CDBridge, a post-training bridge framework that incorporates both sequence
and cellular context, aligning existing DNA and protein models to support realistic, condition-aware
biological tasks.
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5 CONCLUSION

We present CDBridge, a biologically grounded and context-aware framework that bridges single-
omics foundation models through a two-stage design inspired by the central dogma. By leverag-
ing ToMe-based token compression to capture isoform-aware coding structures and introducing a
conditional decoder to model tissue-specific regulation, CDBridge enables fine-grained, condition-
dependent protein expression modeling directly from DNA. Our approach integrates both structural
semantics and environmental context, outperforming existing models that either ignore genomic
continuity or lack regulatory awareness. CDBridge not only establishes a scalable method for
DNA-to-protein reasoning but also opens new avenues for complex biological systems.

Limitations Despite its promise, CDBridge still exhibits several constraints. First, the framework
relies on high-quality isoform annotations and tissue-resolved expression atlases; incomplete or
noisy metadata can propagate errors through both stages. Second, limited by the scarcity of publicly
accessible fine-grained contextual data, our conditional decoder currently models tissue context as a
categorical variable, leaving unaccounted finer-grained factors such as developmental stage, disease
state, and microenvironmental cues. Third, while ToMe compression mitigates sequence length,
end-to-end training on whole-genome inputs remains computationally demanding, limiting scalability
to large cohorts or non-human genomes with less curated references. Future work could relax
the reliance on curated isoform annotations by incorporating transcript assembly or junction-level
supervision, and extend the conditional decoder to model continuous or spatially resolved contexts
(e.g., developmental time, disease severity, or spatial micro-environments).

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of our
work. Detailed descriptions of the model architecture, training objectives, and evaluation protocols are
provided in Sections 3 and 4 of the main text, with additional implementation details, hyperparameters,
and dataset statistics included in the Appendix and supplemental materials. Upon acceptance, we
will publicly release the full GTEx-Benchmark dataset splits and preprocessing scripts, as well as the
CDBridge codebase and pretrained models, to enable end-to-end reproduction of all experiments.
This will ensure that other researchers can directly validate our results and extend our framework to
new settings.
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A GTEX-BENCHMARK

We introduce GTEx-Benchmark, a comprehensive dataset designed to evaluate models of the
Central Dogma through both qualitative and quantitative tasks. Our goal is to provide a cross-omics
benchmark that adheres to biological principles, specifically the DNA → RNA → protein flow—and
captures tissue-specific regulatory complexity.

For each protein-coding gene, we extract genomic DNA sequences and their corresponding protein
products from Ensembl (Cunningham et al., 2022), and pair them with tissue-resolved RNA expression
profiles from GTEx-v8 (Consortium, 2020). Additionally, we include protein-level annotations such as
coding region mappings to support functional analysis. This enables two key task types: (1) qualitative
alignment, such as isoform-level protein retrieval given DNA; and (2) quantitative prediction, such as
tissue-specific gene expression modeling. To broaden evaluation, we also incorporate the Central
Dogma subset from LucaOne (He et al., 2024), which provides curated DNA–protein pairs with
explicit alignment.

(a) DNA length distribution. (b) Protein length distribution.

(c) Protein counts per DNA.

Figure 7: Sequence statistics of the GTEx-Benchmark dataset.

A.1 DATA STATISTICS

Sequence Distribution. GTEx-Benchmark comprises over 19,000 human genes, each containing both
coding and non-coding DNA regions. Owing to alternative splicing, a single genomic sequence can
give rise to multiple transcript variants, resulting in diverse protein isoforms with distinct functional
roles. To ensure computational tractability, we exclude genes with DNA sequences longer than
200,000 nucleotides. We divided the dataset into training set, validation set, and test set in the
proportions of 80%, 10%, and 10%, respectively. Figure 7 illustrates key statistics of the dataset: (a)
the distribution of DNA sequence lengths, (b) the distribution of protein sequence lengths, and (c)
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the number of protein isoforms associated with each gene. These figures underscore the substantial
sequence and isoform-level heterogeneity that models must handle when reasoning across omics
layers.

Tissue-aware expression preprocessing. The GTEx project provides gene expression measurements
across 49 human tissues, enabling context-dependent modeling. To ensure comparability, we nor-
malize transcript-level expression values using TPM (Transcripts Per Million) and apply a log
transformation, log(TPM + 1), for numerical stability during training. We define a transcript as
activated in a given tissue if its TPM exceeds 0.1. Based on this threshold, we compute the number
of activated protein isoforms per gene across tissues. As shown in Figure 8, the average number
of activated isoforms per gene is approximately five, underscoring the complexity introduced by
tissue-specific expression and splicing.

Figure 8: Distribution of the number of activated protein isoforms per gene across tissues in GTEx-
Benchmark.

A.2 EVALUATION PROTOCOL AND DOWNSTREAM TASKS

To evaluate the generalization and cross-modal reasoning capabilities of CDBridge, we consider
three biologically grounded downstream tasks: Coding Region Segmentation, Protein Retrieval, and
DNA–Protein Association Classification. These tasks are designed to reflect different aspects of the
central dogma, ranging from token-level sequence understanding to modality-spanning alignment
and functional prediction, and follow the same evaluation setup as in Section 3.

Coding Region Segmentation. Each genomic locus is provided in full length (up to 200 kb), and
the model predicts whether each nucleotide belongs to a canonical coding sequence. Ground-truth
labels are obtained from Ensembl CDS annotations. To reduce label noise at exon–intron junctions,
positions within ±3 bp of splice boundaries are ignored during metric calculation. We evaluate with
accuracy, AUC, and F1, where AUC is reported both globally (pooled nucleotides) and averaged
across loci, ensuring that performance is not dominated by a few long sequences.

Isoform Retrieval. We construct gene–tissue pairs from GTEx by selecting genes with at least
two expressed isoforms in a tissue. The tissue is conditioned with scGPT (Cui et al., 2024) and is
concatenated with DNA embeddings as input. Each query contains a candidate isoform set, and the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

model is asked to rank them according to predicted expression in the given tissue. Ground-truth
usage is defined by the median TPM across GTEx donors. Performance is measured by Acc@3, the
fraction of cases where the true top isoform falls in the top three predictions, and MRR, the mean
reciprocal rank of the top isoform:

MRR =
1

N

N∑
i=1

1

ranki
, (1)

where ranki is the predicted rank position of the ground-truth top isoform for the i-th gene–tissue
pair, and N is the number of evaluation pairs. This protocol reflects practical applications such as
pinpointing tissue-dominant isoforms for disease mechanism studies, where ranking a few plausible
candidates is more valuable than identifying a single absolute prediction. Compared to standard
expression regression, this setup directly tests whether a model can resolve isoform ambiguity under
changing cellular environments.

DNA–Protein Association (Central Dogma Classification). we adopt the Central Dogma subset from
LucaOne (He et al., 2024), which links genomic DNA segments to their translated proteins. Positive
pairs are derived from canonical gene–isoform mappings, while negative pairs are generated by
sampling proteins from other genes matched by length and chromosome to avoid trivial cues. The
dataset contains around 20k pairs with class-balanced sampling. We report accuracy, AUC, and
F1. This task requires the model to capture functional correspondence across modalities rather than
simple sequence similarity, and is directly relevant to applications such as drug target validation,
where identifying functionally matched DNA–protein pairs is critical.

Figure 9: Cosine similarity heatmap of tissue embeddings generated by scGPT (Cui et al., 2024).
Related tissues (e.g., arteries) cluster together, suggesting biological consistency. This structure
supports the use of scGPT-derived tissue embeddings as conditioning signals in CDBridge, since they
preserve biologically meaningful relationships between tissues.
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B DETAILS OF THE METHOD

B.1 TISSUE EMBEDDING.

To support generalizable cross-tissue prediction, we incorporate tissue embeddings derived from
the cell foundation model scGPT (Cui et al., 2024). For each tissue, we extract its representation
from scGPT and apply mean-centering across all tissues by subtracting the average embedding
across dimensions. This debiasing step enhances inter-tissue contrast and facilitates better context
conditioning in downstream tasks. Figure 9 shows the cosine similarity heatmap among the resulting
tissue embeddings. As expected, biologically related tissues such as Artery-Aorta and Artery-
Coronary, which belong to the same higher-level anatomical category, exhibit stronger similarity.
This structure reveals that scGPT captures semantically meaningful and biologically consistent
relationships between tissues, supporting its use as a compact and transferable tissue representation.

B.2 MERGE RATIO

Merge ratio indicates the percentage of tokens merged during the forward pass. During training, the
merge ratio is sampled dynamically for each batch from a clipped Gaussian distribution: r ∼ N (µ =
0.375, σ = 0.1), clipped to the range [0.25, 0.50]. We employ this dynamic sampling strategy as a
form of structural data augmentation. By forcing the model to perform segmentation and alignment
under varying degrees of compression, we prevent it from overfitting to specific sequence strides or
fixed resolutions.

B.3 LOSS FUNCTIONS

CDBridge adopts a two-stage training paradigm. Stage 1 focuses on qualitative token-level alignment
between DNA and protein isoforms, while Stage 2 performs quantitative, tissue-aware prediction
of protein expression levels. The overall training objective combines classification and contrastive
components.

Stage 1: Multi-omics Connector for Long-Short Range Bridging. This stage optimizes two
complementary losses:

(1) Multi-label Binary Classification Loss.To supervise the coding region segmentation, we use a
binary cross-entropy loss over the predicted probability of each DNA token coding for any protein
isoform. The loss is computed as:

Lcls = BCEWithLogitsLoss(ypred, ymask),

where ypred are the model logits and ymask is the binary mask indicating coding tokens for each
isoform.

(2) Cross-modal Token-level Contrastive Loss. To enforce fine-grained alignment between DNA
and protein token embeddings, we employ a batch-wise self-supervised contrastive loss inspired by
SimCLR(Chen et al., 2020). For each aligned DNA-protein token pair (as defined by the binary mask),
we maximize similarity and simultaneously push apart negative DNA samples selected randomly
within the same sequence. Specifically:

Lalign = − 1

N

N∑
i=1

log
exp

(
sim(zpi , z

d
i )/τ

)
exp

(
sim(zpi , z

d
i )/τ

)
+
∑K

k=1 exp
(
sim(zpi , z

d−
ik )/τ

) ,
where zpi and zdi are the normalized embeddings of the i-th aligned protein and DNA token, zd−ik are
randomly sampled negative DNA embeddings, and τ is a temperature hyperparameter. The similarity
function sim(·, ·) is implemented as the dot product of L2-normalized vectors.

The final loss for Stage 1 is the sum of both components:

Lstage1 = Lcls + λalignLalign,

where λalign is a hyperparameter controlling the strength of the global alignment.
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Stage 2: Tissue-aware Expression Regression. In the second stage, the model is trained to predict
protein expression levels in a tissue-aware manner. The input is the merged DNA representation from
Stage 1, conditioned on tissue embeddings. The regression task supervises quantitative mapping from
DNA to protein isoform expression values under different tissue conditions.

(1) Tissue-specific Regression Loss. For each protein isoform, we extract its expression value under
the corresponding tissue index and regress from the model’s output. The loss is formulated as:

Lexpr =
1

B ×K

B∑
i=1

K∑
k=1

(ŷik − yik)
2
,

where B is the batch size, K is the number of proteins, ŷik is the predicted expression, and yik is the
ground-truth expression under the sampled tissue.

(2) Global Embedding Consistency Loss. To enhance representational alignment across tissues and
protein isoforms, we added a global contrastive loss to enforce the consistency between the pooled
DNA embedding and the protein representation. This prevents overfitting to token-level patterns and
encourages global biological coherence. We use a symmetric contrastive loss defined as:

Lglobal = − 1

B

B∑
i=1

log
exp

(
sim(zdna

i , zprotein
i )/τ

)
∑B

j=1 exp
(

sim(zdna
i , zprotein

j )/τ
) ,

where zdna
i and zprotein

i denote the pooled (e.g., mean or CLS-token) global embeddings for sample i,
and τ is the temperature.

The total loss for Stage 2 training is the sum of both:

Lstage2 = Lexpr + λglobal · Lglobal,

where λglobal is a hyperparameter controlling the strength of the global alignment.

C MODEL PARAMETERS AND TRAINING SETUP

CDBridge is built on top of powerful pre-trained single-omics models to facilitate tissue-aware
cross-omics bridging. Specifically, we use the 7B Evo2 model (Brixi et al., 2025) as the DNA
encoder, the 650M ESM2 model (Lin et al., 2022) for protein representation, and scGPT (Cui et al.,
2024) to provide tissue embeddings.

Training Strategy. The training process is divided into two stages. In Stage 1, both the encoder and
decoder are trainable to learn fine-grained DNA-protein alignment and coding region segmentation.
In Stage 2, we freeze the encoder and decoder components from Stage 1 to preserve the learned
cross-modal alignment. A new tissue-aware decoder is introduced to regress tissue-specific protein
expression levels. This separation ensures that the model retains sequence-level alignment while
learning contextual regulation patterns for expression.

Trainable Components. CDBridge is built upon pre-trained single-omics models to enable tissue-
aware cross-omics prediction. Specifically, we utilize the 7B Evo2 model (Brixi et al., 2025) as the
DNA encoder, the 650M ESM2 model (Lin et al., 2022) for protein representation and alignment,
and scGPT (Cui et al., 2024) for deriving tissue embeddings. Table 5 summarizes the trainable
components and their parameter counts across both training stages. In Stage 2, the encoder and
decoder from Stage 1 are frozen to preserve learned alignment, and only the tissue-aware decoder
and expression regression layers are updated during training.

D MORE ABLATIONS

As shown in Table 6, we present additional ablation results evaluating CDBridge’s performance when
integrating features from various pretrained models. As shown in the table below, the combination
of Evo2 and ESM2 achieves the best overall performance across all three tasks. Additionally,
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Table 5: Trainable parameter counts for key modules.

Module Params Notes
ToMe-based cross-omics encoder ∼40.4M Frozen in Stage 2
Transformer decoder (Stage 1) ∼ 20.7M Frozen in Stage 2
Tissue Conditional Decoder (Stage 2) ∼ 8.3M Trainable in Stage 2
Classification Head (Stage 1) ∼ 415K Frozen in Stage 2
Regression Layer (Stage 2) ∼ 513K Trainable in Stage 2

Table 6: More ablation studies and comparison results across GTEx expression prediction and its two
sub-tasks, where bold denotes the best results.

Model Coding Region Segmentation Isoform Retrieval GTEx Expression
Acc ↑ AUC ↑ F1 ↑ Acc ↑ MRR ↑ R2 ↑ Spear ↑

Random 0.617 0.269 0.002 0.010 0.181 -13.027 0.005
NTv2-500M (Dalla-Torre et al., 2023) 0.814 0.529 0.134 0.145 0.229 -0.012 0.289
DNABERT-2 (Zhou et al., 2024) 0.851 0.612 0.382 0.132 0.227 -0.004 0.317
Evo2 (Brixi et al., 2025) 0.993 0.848 0.597 0.191 0.278 0.021 0.324
LucaOne (He et al., 2024) 0.993 0.859 0.613 0.259 0.354 0.001 0.309
CDBridge (NTv2, ESM2) 0.912 0.876 0.572 0.197 0.271 0.371 0.579
CDBridge (DNABERT-2, ESM2) 0.935 0.950 0.613 0.304 0.381 0.375 0.583
CDBridge (Evo2, ESM3) 0.993 0.989 0.616 0.339 0.434 0.382 0.607
CDBridge (Evo2, ESM2) 0.995 0.993 0.635 0.337 0.436 0.387 0.618

integrating multiple pretrained features clearly improves upon single-modality baselines. Although
ESM-3 employs VQ-quantized features incorporating amino acid sequences, protein structures,
and functional annotations (thus excelling at the protein retrieval task), it slightly underperforms
ESM-2 in CDS segmentation and expression prediction, likely due to reduced compatibility with
DNA-sequence-level detail required by these tasks.

Besides, we performed an additional ablation study comparing the performance of using a fixed
clustering mechanism versus our learned clustering mechanism within the full Stage 2 model. This
comparison validates the necessity of the learned, data-driven approach for optimal performance.
The results are summarized in Table 7. The significant performance improvement observed with the
learnable mechanism confirms that data-driven cluster assignment is crucial for effectively integrating
sequence and tissue context information.

Table 7: Fixed vs. Learned Clustering on GTEx Expression Prediction.

Clustering Mechanism R2 Spearman
Fixed 0.305 0.472
Learnable 0.387 0.618

E COMPARISON WITH ADDITIONAL SOTA BASELINES

To further validate the effectiveness of CDBridge against state-of-the-art sequence-based models, we
conducted a comparison with Borzoi (Linder et al., 2025), a recently proposed successor to Enformer.
Similar to Enformer, Borzoi shares the fundamental fixed-output architecture designed for predicting
epigenomic tracks across the genome.

As summarized in Table 8, while Borzoi demonstrates improved performance compared to Enformer
(refer to main text), it remains significantly below CDBridge on our isoform-level, tissue-conditioned
benchmark (R2 of 0.201 vs. 0.387). This performance gap reinforces our observation that fixed-
output architectures struggle with the dynamic, context-conditioned modeling required for resolving
isoform-specific expression across diverse tissues.
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Table 8: Performance comparison with Borzoi on GTEx Expression Prediction.

Model R2 Spearman
Borzoi (Linder et al., 2025) 0.201 0.336
CDBridge (Ours) 0.387 0.618
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Figure 10: Tissue context enables meaningful gene–protein alignment. (Left) Without tissue
information, SLC25A45 (red) and its four isoforms (green) appear dispersed in different directions and
weakly connected. Direct gene-to-isoform alignment is ill-posed in this setting. (Right) Conditioning
on tissue context (Brain, Liver, Muscle) resolves this ambiguity by splitting the gene into tissue-
specific representations, which form tight clusters with their corresponding isoforms. Solid edges
indicate strong, context-aware alignments. The gradient arrow illustrates the transition from an
unconditioned to a context-resolved configuration.

F ILLUSTRATIONS FOR CROSS-OMICS ALIGNMENT

Due to alternative splicing in eukaryotes and gene reuse in prokaryotes, the relationship between DNA
and proteins is one-to-many. As shown in Figure 10 (Left), a gene can produce multiple isoforms
whose expression levels vary across tissues, meaning the same DNA sequence may serve different
functions in different contexts. An ideal bridging strategy, as illustrated in Figure 10 (Right), should
align DNA to different context-specific centers, enabling tissue-aware interpretation.

G USE OF LLM

We use a large language model (LLM) for minor edits to grammar, phrasing, and readability. The LLM
is not involved in designing the method, developing theoretical results, or conducting experiments.
All technical contributions, equations, and results are solely the work of the authors.
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