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Abstract

In this paper, we present a novel approach
to unsupervised commonsense reasoning that
outperforms conventional perplexity evalua-
tion. Specifically, we propose the use of non-
replacement confidence (NRC), which is evalu-
ated by a pre-trained token corruption discrim-
inator. We show that NRC is a more consis-
tent metric for commonsense reasoning, as it
allows for equal synonym positiveness and neg-
ative sample learning. Our experiments using
the ELECTRA discriminator demonstrate that
NRC significantly outperforms perplexity on
both tuple and sentence-level commonsense
knowledge databases. Moreover, we show that
NRC sets a new unsupervised state-of-the-art
(SOTA) on seven commonsense question an-
swering tasks, outperforming even complex
reasoning systems. In supervised learning, we
find that NRC is the most successful metric for
applying pre-trained knowledge on annotated
data for inference. In fact, without negative
samples, NRC achieves between 82.8% and
90.0% of the performance of supervised meth-
ods, significantly outperforming other metrics
under weaker supervision. To further improve
the performance of NRC, we propose a new
scenario in which the discriminator is first pre-
trained on positive samples and then the NRC
evaluation of negative samples is incorporated
to tune the confidence. This approach signifi-
cantly outperforms conventional fine-tuning by
an average of 2.0 accuracy points. In summary,
our research indicates that NRC is a superior
metric compared to perplexity when it comes
to learning commonsense knowledge under var-
ious supervision settings.!

1 Introduction

Commonsense reasoning is the underlying basis of
machines for human-like natural language under-
standing. Commonsense knowledge endows nat-
ural language processing (NLP) systems with the

'Our code is released at github.com/KomeijiForce/
ELECTRA-NRC
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Figure 1: The differences between the generative and
discriminative evaluation of factual consistency.

awareness of implicit background for how human
inference deals with the physical world. External
commonsense knowledge created by humans has
been successfully applied to refine NLP systems
like dialogue (Zhou et al., 2021) and generation
(Chakrabarty et al., 2021).

For unsupervised commonsense reasoning, per-
plexity has long been applied to estimate how a
piece of expression is consistent with common
facts. Originating from the statistical language
model, text with higher perplexity is estimated to
have less probability to appear in natural language,
and thus less consistent with facts. This idea is
further strengthened by the emergence of large pre-
train neural language models (PLMs), which in-
troduce deep Transformer encoders and more ad-
vanced training objectives, like masked language
modeling (MLM) (Devlin et al., 2019).

While PLM-based perplexity shows potential for
commonsense understanding and has become the
basic component of many more advanced unsuper-
vised methods (Shwartz et al., 2020; Bosselut et al.,
2021; Niu et al., 2021), the diversity of PLMs also
suggests perplexity is no longer the only way to
estimate how texts are consistent with facts. Be-
sides generative PLMs that predict unseen words,
ELECTRA (Clark et al., 2020) uses a discriminator
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pre-trained to detect token corruption in context.
This training objective is named replaced token
detection (RTD), which takes texts corrupted by
MLM as input and predicts whether each token is
corrupted or not.

The RTD training objective is more consistent
with commonsense reasoning for two reasons as
shown in Figure 1. 1. RTD discriminator al-
lows positive synonyms to share equal positive-
ness. (Equal Synonym Positiveness) For gener-
ative probability, all candidates in the dictionary
share a probability distribution sum up to 1. Con-
sequently, if a word, unfortunately, has many syn-
onyms in the dictionary, most of its generative prob-
ability will be taken by those synonyms. 2. RTD
discriminator is pre-trained on negative samples.
(Negative Sample Learning) In commonsense rea-
soning, models always face non-sense expressions
that distract the reasoning. However, pre-trained
generators only learn positive samples and thus be-
come inapt at evaluating unseen negative samples.
In contrast, the RTD discriminator naturally classi-
fies corrupted tokens that turn texts into factually
inconsistent.

To validate and probe the advantages of the
RTD discriminator, we derive a metric called non-
replacement confidence (NRC) from its training
objective. We apply NRC for supervised and un-
supervised commonsense reasoning and compare
its performance with conventional perplexity-based
inference. NRC outperforms the best perplexity-
based methods on tuple and sentence-level com-
monsense knowledge databases, together with 7
commonsense question answering tasks. NRC even
outperforms previous complex systems to set the
new unsupervised state-of-the-art (SOTA) on all
question answering datasets. To validate claimed
advantages, we use a synonym replacement attack
to show the ELECTRA discriminator how to re-
act to words with synonyms. NRC is more robust
against synonym replacement attacks than PPL. We
also explore how negative samples created by the
ELECTRA generator affect knowledge capturing.
In comparison with PPL, NRC shows a higher ca-
pability to learn from knowledge sources and mask
rate plays a critical role in the qualifying of cap-
tured knowledge.

The advantages of the ELECTRA discrimina-
tor are notable, and they motivate us to delve
deeper into the potential of NRC for supervised
learning. Our experimental results indicate that

by pre-training the ELECTRA discriminator solely
on positive samples from the training dataset, we
can achieve a performance ranging from 82.8% to
90.0% compared to supervised methods trained on
the entire dataset. Then, we use the NRC differ-
ences between positive and negative samples to
tune those discriminators, their performance out-
performs direct fine-tuning by 2.0 accuracy scores
on average. As the backbone model in the current
SOTA model (Xu et al., 2021, 2022), DeBERTaV3
(He et al., 2021), is also an RTD-based PLM, our
discovery shows the potential to further boost the
supervised SOTAZ.
Our contributions are summarized as follows:

* We suggest using a pre-trained discriminator
objective as an alternative to pre-trained gener-
ators for commonsense reasoning. Our study
shows that the NRC metric, derived from the
RTD objective, is more appropriate for the
task as it supports equal synonym positive-
ness and negative sample learning.

* To explore unsupervised commonsense rea-
soning, we conducted experiments on NRC
using tuple and sentence-level commonsense
knowledge databases and evaluated it on 7
commonsense question answering tasks. Our
results show that NRC outperforms perplexity
and even outperforms other complex systems,
achieving the new SOTA on all datasets.

* In supervised commonsense reasoning, we
discovered that pre-training the ELECTRA
discriminator on only positive samples re-
sulted in a performance of 82.8% to 90.0%,
compared to fully supervised methods. When
incorporating negative samples, NRC showed
an average increase in accuracy of 2.0 points
compared to direct fine-tuning, which can be
attributed to the learning of differences among
samples.

2 Background

2.1 Commonsense Knowledge

Commonsense knowledge, also known as back-
ground knowledge, is the underlying basis of logic
in the inference of humans. As commonsense
knowledge is rarely expressed in textual contents

*We cannot apply confidence tuning for DeBERTaV3 be-
cause its generator has not been released yet.



(Gordon and Durme, 2013), many datasets (Bol-
lacker et al., 2008; Nickel et al., 2011; Yang et al.,
2015; Liet al., 2016) have been handcrafted to train
NLP systems and endow them with the ability to
make a physical world-based inference.

Following the storage system in databases, com-
monsense knowledge is generally formalized as
atuple (LT, RT,REL), e.g. ConceptNet (Speer
and Havasi, 2012; Speer et al., 2017). Here, LT,
RT, REL respectively refer to the left term, the
right term, and the relationship between two terms.
While tuples are efficient for storage, they are in-
competent to represent relationships with more
than 2 terms. Thus, Wang et al. create a sentence-
level commonsense dataset, which validates the
integrity of commonsense in a real context. This
dataset also includes commonsense explanations
for facts, which further expands the coverage of
knowledge. Other commonsense knowledge bases
are also introduced in recent years like ATOMIC
(Sap et al., 2019; Hwang et al., 2021) for If-Then
relationships. TransOMCS (Zhang et al., 2020) re-
trieve ConceptNet-like tuples from syntactic struc-
tures.

2.2 Commonsense Reasoning with PLMs

Large-scale pre-trained language models like
BERT (Devlin et al., 2019) have drawn the most
attention from the NLP community since their intro-
duction. PLMs show their potential to significantly
boost performance on NLP tasks across fields.
Since PLMs have been trained on a large-scale
corpus to learn interdependency between compo-
nents, mining from PLMs for commonsense knowl-
edge becomes a new method to create knowledge
databases (Petroni et al., 2019; Alghanmi et al.,
2021; Kassner et al., 2021). LAMA (Petroni et al.,
2019) makes the first try to gather knowledge from
PLMs by generative prompts. Later works follow
this process to provide partial information in the
commonsense knowledge tuple and require PLMs
to complete the rest of the tuple.

The commonsense knowledge and understand-
ing of PLMs inspire researchers to directly apply
PLMs for downstream inference without super-
vised fine-tuning. Commonsense question answer-
ing (Roemmele et al., 2011; Zellers et al., 2018;
Talmor et al., 2019, 2022; Kocijan et al., 2020) is
commonly used to test the unsupervised inference
ability of PLMs. Similar to commonsense reason-
ing, prompts are applied to transform the question-

answer pair into a syntactically plausible sentence.
PLM-based perplexity is calculated for those trans-
formed sentences and the sentence with the low-
est perplexity is used to select the corresponding
question-answer pair (Trinh and Le, 2018; Bosse-
lut et al., 2021; Tamborrino et al., 2020). Besides
direct reasoning on answer candidates, researchers
have also tried to sample extra candidates from
generators and use pre-trained semantic similar-
ity evaluator for answer selection. (Shwartz et al.,
2020; Niu et al., 2021; Bosselut et al., 2021)

Current mainstream PLMs, BERT or GPT2, ap-
ply the conventional perplexity metric to use the
probability of generating components based on the
context. This will incorporate surface forms like
word frequency as perturbance to the inference.
Answer-Level Calibration (Kumar, 2022) models
context-independent biases in terms of the probabil-
ity of a choice without the associated context, and
removes them using an unsupervised estimate of
similarity with the full context for question answer-
ing tasks. Pointwise Mutual Information (Holtz-
man et al., 2021) factors out the probability of
specific surface forms and introduce scoring-by-
premise to measure the probability of the premise
given the hypothesis. Based on the nature of com-
monsense reasoning, we propose a pre-trained dis-
criminator, like ELECTRA, to be an alternative for
better performance.

3 PLM-based Metric

3.1 Perplexity

Casual Language Model GPT?2 (Radford et al.,
2019) is a PLM pre-trained for text generation,
which can also be applied for inference based on
the perplexity of selection candidates. The training
objective, CLM, is optimized based on context-
based next-word prediction.

L £ CELoss(PLMg(w1.;_1), One-hot(w;))

where CELoss is the cross-entropy loss, and One-
hot refers to the one-hot encoding. 6, w respec-
tively refer to PLM parameters and words. The
inference procedure also takes next-word predic-
tion for perplexity (PPL) calculation.

n

1
PPL = ﬁ Z(— log(p(wZ]PLMg, wl:i—l)))
=1



where n is the length of the sentence. GPT2 calcu-
lates PPL by scoring answer choices and selecting
a candidate with the lowest perplexity.

Masked Language Model MLM is the training
objective for most bidirectional PLMs like BERT
and RoBERTa (Liu et al., 2019). MLM is similar
to CLM as it also uses word retrieval as the training
objective but leverages the bidirectional context for
the prediction. During the inference, the likelihood
of each word is calculated by a mask-and-predict
procedure.

3.2 Replaced Token Detection

RTD differs from the word retrieval-targeted train-
ing procedure above as it sets binary classification
as the objective. The PLM involves a discriminator
which discerns replaced words in the sentence by
an MLM-based generator.

£ £ BCELoss([PLMg(w1n))i, f5(w;))

where fp is a Boolean function that returns whether
w; 1s corrupted by the replacement or not.

We then derive the Non-Replacement Confi-
dence metric from the training objective.

n

NRC — iz<— log([PLMj (w1:)]:))

3.3 Metric Comparison

PPL and NRC are both calculated based on nega-
tive log probability. While PPL evaluates the likeli-
hood of a sentence, NRC reflects the confidence of
contextual integrity. Thus, lower PPL and higher
NRC on legal language indicate more human-like
choices.

Commonsense reasoning expects to understand
the underlying interdependency between abstract
concepts rather than their surface forms. Thus,
evaluating confidence in the piece of commonsense
knowledge should include not only words in the
original sentence but their contextual synonyms as
well.

> p(Cip(w|Cy)

wesyn(w;)

pCS(wlzn) =

where pcg is the commonsense-targeted confi-
dence. C; = w1:—1;i+1:n refers to the context for

w; and syn returns the contextual synonyms of w;.
As w; € syn(w;), pcs(wig) > p(wiy,) = PPL
when the number of synonym candidates is more
than 1, indicating that perplexity always under-
estimates the commonsense-targeted confidence.
The underestimation becomes more severe when
w; is a low-frequency word. Furthermore, as
> wedictP(w)) = 1 (dict is the whole dictio-
nary for token selection), the correlation between
confidence on synonym candidates is —1. This
indicates —% > 0 while —Wiwj) <
0,w; € syn(w;) during the gradient updating.
Thus, p(w = w;),w; € syn(w;) is decreased by
_Wiwﬂ’ which is contrary to the nature that
a word supports the appearance probability of its
synonyms.

In contrast to PPL, NRC evaluates the confidence
of each candidate individually, without requiring
them to share the same distribution. This means
that there is no bias towards high-frequency words
or underestimation due to underlying synonym can-
didates. Additionally, PLMs project contextually
similar components to near positions in the latent
space (Devlin et al., 2019), which changes the cor-
relation between synonym candidates to positive.
As aresult, NRC provides a more accurate evalua-
tion of the confidence of commonsense knowledge
in a given context.

Another advantage of NRC comes from the pre-
training process of ELECTRA. During the pre-
training, the ELECTRA generator corrupts tokens
which makes the input to the discriminator similar
to the negative samples during testing. In contrast,
pre-trained generators only take legal texts as the
input and thus discern nonfactual expressions be-
cause they have not seen them during pre-training.

We use experiments to further explore the cor-
rectness of our theoretical analysis. In § 4.1, 4.2,
we provide a rough view of how much better are
NRC than PPL. In § 5.1, we use a synonym replace-
ment attack to explore how NRC and PPL react to
words with different frequencies. In § 5.2, 5.3, we
explore how the further pre-training on in-domain
and out-of-domain positive question-answer pairs
affects the inference performance.

We also compare the time complexity of differ-
ent metrics. Our NRC is O(1) (counting the num-
ber of PLM forwarding) as efficient as the CLM-
based inference since the discriminator does not
use mask tokens to calculate the metric, which lim-
its the efficiency of MLM-based inference to O(n).



Metric ConceptNet SemEvaly SemEvalg
PPLGpT2-XL 65.4 78.1 58.1
PPLGpT2-M 49.6 50.1 40.3
PPLgERrT 66.2 76.2 54.4
PPLRoBERT: 69.9 79.9 62.4
NRC 71.2 80.5 64.3

Table 1: Experiment results on tuple and sentence-level
commonsense reasoning. Bold: The best performance
on the dataset. Underline: The result is significantly
better than the second-best result. (o« = 0.01)

4 Unsupervised Inference

To mitigate the unfair comparison caused by the
parameter scales, this paper compares large mod-
els with the same number of layers and hid-
den sizes, namely BERTLyg, ROBERTap e,
GPT2\edium and ELECTRA ;¢ (24-layer, 1024-
hidden size). We also include GPT2xy arpe (48-
layer, 1600-hidden size) for further comparison.

4.1 Commonsense Probing

Tuple-level Probing ConceptNet® uses deep neu-
ral networks to retrieve commonsense candidates
from corpus, which are validated by human anno-
tators. We use the test dataset from (Li et al., 2016)
which requires models to discern between true com-
monsense tuples and adversarial fake ones.

To create prompts for tuples in the test dataset
that can be represented in natural language, we fol-
lowed the methodology outlined in LAMA (Petroni
et al., 2019). The full list of prompts can be found
in Appendix C. Next, we utilize PLM-based met-
rics to distinguish between different prompts and
evaluated the accuracy of our approach. Specifi-
cally, we evaluate PPL and NRC on templatized
tuples and select the top 50% of tuples as positive
results.

The classification accuracy is presented in Ta-
ble 1, NRC significantly outperforms both CLM
and MLM-based PPL on commonsense tuple rea-
soning. As transformed tuple relationships are
simple in syntactic structures, we attributed the
discriminating ability to the understanding of com-
monsense, which supports the superiority of NRC
in commonsense validation.

3https://conceptnet.io/

Sentence-level Probing SemEval2020* collects
natural language statements related to common-
sense expression. We experiment with two reason-
ing subtasks. A: Select a statement that is against
the commonsense. B: Select a reason to support
the selection in A. We continue evaluating and se-
lecting statements and explanations according to
different metrics.

Table 1 also shows experiment results on
sentence-level commonsense reasoning using var-
ious metrics. NRC performs significantly better
than PPL on both differentiating and explanation,
indicating its superior capability for sentence-level
commonsense evaluation. PPLgggrT, 1S cOmpet-
itive for differentiating but lags behind NRC in
explanation since it requires a more complex in-
ference ability. Overall, the comparison supports
NRC as a more competent metric for commonsense
reasoning.

4.2 Commonsense Question Answering

Baselines Besides perplexity, we also include
previous trials for knowledge extraction (ALC (Ku-
mar, 2022), PMIpc (Holtzman et al., 2021)) and
more complex baselines (Self-Talk (Shwartz et al.,
2020), CGA (Bosselut et al., 2021), SEQA (Niu
etal., 2021), ArT (Wang and Zhao, 2022)). Since
SEQA used annotated NLI data for training, we
follow (Wang and Zhao, 2022) to report the re-
sult from the original paper as SEQAn and w/o
NLI data version from (Wang and Zhao, 2022) as
SEQAoyig. More detailed descriptions of baselines
can be found in Appendix B.

Datasets We conduct experiments on a wide
range of datasets to reach a more general con-
clusion. We test different methods on 7 datasets,
including 2 phrase selection datasets { Common-
senseQA (CSQA), AI2 Reasoning Challenge
(ARC)}, 2 entailment datasets {Choice of Plau-
sible Alternatives (COPA), Situations With Adver-
sarial Generations (SWAG)}, and 3 context-based
datasets {StoryClozeTest (SCT), SociallQA (SQA),
CosmosQA (CQA)}. Specific descriptions and in-
stances from those datasets are presented in Ap-
pendix A. For Phrase Selection, COPA, and SQA,
we transform question-answer pairs by templates
(Ma et al., 2021) to achieve comparable baselines
with previous works.

*https://github.com/wangcunxiang/SemEval2020-Task4-
Commonsense-Validation-and-Explanation
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Method Tre, Phrase Selection Entailment Context-Based Avg,
CSQA ARCg ARCc COPA Swag SCT SQA CQA
Self-Talk - 32.4 - - 68.6 - 70.4 47.5 36.1 -
CGA - - - - 72.2 - 71.5 454 422 -
SEQAOrig. - - - - 54.4 - 54.9 36.6 - -
SEQANLI - - - - 79.4* - 83.2* 47.5% 56.1F -
ArT - - - - 69.8 - 71.6 473 - -
ALC - 49.7 - - 81.6 - - 45.1 - -
PMlIpc - 50.3 51.5 33.0 77.0 - - - - -
PPLgproxi. A 42.6 50.8 28.8 73.6 65.3 70.6 45.5 355 516
PPLgprom A 38.5 44 .4 24.9 68.4 59.7 54.0 443 27.0 450
Q 40.6 37.2 26.7 64.2 44.5 63.5 39.6 329 437
PPLggrT A 28.0 37.1 22.7 61.2 63.4 58.2 40.4 30.7 427
QA 32.8 36.8 23.7 64.2 64.1 61.2 38.5 20.6 439
Q 49.3 40.5 35.6 70.6 48.1 61.5 39.7 38.6 48.0
PPLropERT: A 39.8 44.2 27.1 68.4 71.0 67.3 45.5 36.1 499
QA 49.0 45.5 31.8 75.2 74.5 71.7 46.2 36.5 53.8
Q 51.2 46.8 38.6 82.6 24.5 65.0 40.6 41.2  48.8
NRC A 45.0 479 37.1 71.2 77.4 74.7 46.1 419 552
QA 54.1 52.1 39.8 78.4 75.4 77.1 47.7 443 58.6

Table 2: Results on Unsupervised Commonsense Reasoning. Underline: A significant improvement compared to
the best perplexity-based method. Bold: The best performance among unsupervised models (SEQAny is excluded
because it requires NLI data for training). *: This result is obtained by an NLI-based zero-shot inference.

Phrase Selection We have adopted the approach
of previous studies (Brown et al., 2020; Shwartz
et al., 2020; Niu et al., 2021) to evaluate different
targeted components (Question (Q), Answer (A),
Question+Answer (QA)) for inference. The selec-
tion results are presented in Table 2. Our findings
show that NRC outperforms PPL based on PLM
with the same scale by a significant margin (4.8,
6.6, 4.2 accuracy score), which highlights NRC’s
superiority in using commonsense for inference.
For the easy part of ARC (ARCE), large-scale mod-
els like GPT2xr. appear to be able to compensate
for bias in the metric. However, as the questions be-
come more challenging in ARCc, the gap between
NRC and PPL widens to 6.8 accuracy scores, un-
derscoring the inherent differences between NRC
and PPL in commonsense reasoning ability. NRC
also outperforms Self-Talk, ALC, and PMIpc to
set the new SOTA.

Entailment NRC has once again demonstrated
its superiority over PPL with an impressive perfor-
mance on COPA and Swag (7.4 and 2.9, respec-
tively). This has been validated by the large Swag
dataset, confirming NRC’s excellence in common-
sense understanding. Furthermore, NRC’s excep-

tional performance outshines complex systems for
COPA, pushing the boundaries of the state-of-the-
art. However, it is worth noting that the question
part of Swag may not be very useful for NRC, as
these questions are not answer-dependent from the
perspective of ELECTRA. Instead, NRC prefers to
use the answer portion of the dataset for inference.
Nevertheless, when evaluating the entire question-
answer pair, NRC consistently outperforms PPL.

Context-based The NRC model has demon-
strated superior performance compared to PPL-
based models, particularly on a large scale like
GPT2xpage- This gap widens on datasets with
longer context, such as SCT and CQA, indicating
NRC’s ability to comprehend complex contexts and
the interdependencies between terms. While SEQA
appears to hold the current SOTA on context-based
selection, recent research (Wang and Zhao, 2022)
has shown that its reasoning abilities stem from
pre-training on NLI tasks. When NLI pre-training
is removed, SEQA’s performance drops sharply.
Therefore, NRC currently sets the new state-of-the-
art on all seven commonsense question answering
tasks, surpassing several complex reasoning sys-
tems and the large GPT2-XL model.



Method Accuracy (1) Affected Ratio ({)
PPLGpT2-M 47.2 30.4
PPLgERrT 58.0 30.2
PPLROBERT2 64.4 25.6
NRC 72.4 224

Table 3: Affect of synonym replacement on different
inference methods. Accuracy is the ratio of correct
selections after the replacement. Affect Ratio refers to
the ratio of previous correct selections that are turned
into faults by the replacement.
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Figure 2: Improvements gained from further pre-
training on question-answer pairs.

S Further Analysis

5.1 Equal Synonym Positiveness

We validate the advantage of NRC-based infer-
ence when facing words with multiple synonyms
by testing the accuracy of answer selection after
synonym replacement. For implementation, we
sample synonyms from Wordnet in NLTK to cor-
rupt 10% words in each question and answer text
of the COPA dataset.

The results of our experiments are presented in
Table 3. Our NRC retains the highest performance
compared to other metrics and still keeps a large
margin. Also, NRC is the least likely to be affected
by the replacement. Thus, the superiority of NRC
over PPL facing synonyms is verified.

5.2 Negative Sample Learning

We explore the effect of negative sample learn-
ing in this section. We follow the idea in ELEC-
TRA to compare the model performances trained
by different steps. Thus, we further pre-train PLMs
on question-answer pairs formalized as Q[SEP]A.
These question-answer pairs can be seen as a new
knowledge source. We test on CSQA to investigate
how different pre-training methods obtain knowl-
edge.

’ --#--70.05 — & -70.10 —— 70.15

1,000 2,000 3,000 4,000

n Further Pre-training Steps

Figure 3: Improvements gained from further pre-
training of ELECTRA with different mask rates r.

We use a question generator” to generate ques-
tions about noun chunks in the Wikipedia corpus.
We train each PLM for 4000 steps with batch
size 32 and report the best performance among
models saved for each 800 steps. In Figure 2,
we demonstrate the reasoning performance of lan-
guage models on each step. We can observe that
pre-trained generators obtain the understanding of
question-answer in 800 steps but fail to further im-
prove their performances. In comparison, the pre-
trained discriminator steadily obtains knowledge in
3200 steps to capture the knowledge from question-
answer pairs. It is also worth mentioning that GPT2
achieves high improvement in 800 but then begins
to perform worse. This indicates GPT2 can quickly
capture the question-answer syntactic structure but
is poor at obtaining knowledge. We attribute this to
the uni-direction of GPT2, which limits its ability
in building connections between components.

We further explore the effect of negative sam-
ples in Figure 3 by changing the mask rate during
training. rq.15 is the mask rate in the initial training
configuration. The results show that lowering mask
rates lead to poorer performances, which verifies
the benefit of negative samples in pre-training for
commonsense knowledge capturing.

5.3 Supervised Confidence Tuning

Inspired by the prominent performance of RTD-
based further pre-training on out-of-domain data,
we propose confidence tuning for supervised learn-
ing. Based on the negative augmentation property
of the pre-training process, we are first interested in
training a supervised model without negative sam-
ples, which cost the energy of annotators to create
adversely.

Shttps://huggingface.co/mrm8488/t5-base-finetuned-
question-generation-ap
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Method CSQA ARCg ARCc
PPLGpT2-M 55.0 48.2 27.7
PPLBERT 50.5 43.3 279
PPLRoBERT.  59.1 44.2 32.6
NRC 73.0 59.9 45.1

Table 4: Performance of PLMs further pre-trained on
positive in-domain samples.

Method CSQA ARCg ARCc
FT w/ Neg. 81.1 71.5 54.5
CT w/o Neg. 73.0 59.9 45.1
CT w/ Neg. 83.2 73.6 56.5

Table 5: Comparison between fine-tuning and confi-
dence tuning.

Training w/o Negative Samples We run the
same pre-training process on the CSQA training
dataset and test the performance of different genera-
tive PLMs for comparison. The experiment results
are presented in Table 4. While all PLMs benefit
from the application of data created by humans,
the gap between the performance of generative and
discriminative PLMs remains large. The genera-
tive models are still inept at applying knowledge
learned during pre-training even using the human-
annotated datasets because of the unseen negative
answers in the test dataset.

In comparison, the RTD training objective helps
the ELECTRA discriminator to capture the com-
monsense knowledge embodied in the training data
as the corrupted tokens turn the question-answer
pairs to nonfactual, which are similar to negative
samples in the test dataset. Table 5 further com-
pares our training result to fine-tuning w/o negative
samples. Remarkably, RTD pre-training reaches
82.8% (ARC¢)~ 90.0% (CSQA) of the supervised
performance among the 3 datasets.

Training w/ Negative Samples Based on the fur-
ther pre-trained discriminator, we tune it on nega-
tive samples with the application of cross entropy
loss on the probability distribution P(4;|Q) =

xp(NRC(Q[SEP]4;))
Zi- ip(NRC(Q[SEP] ) Table 5 shows the perfor-

mance of our multi-stage learning method. Here
we also fine-tune the ELECTRA discriminator
already further pre-trained on positive question-
answer pairs to make the comparison fair. Learn-
ing the confidence differences between positive
and negative samples boost the supervised learn-

IDPLROBERTa

The woman dyed her hair because
PPLgegrr
The woman dyed her hair because
NRC
The woman dyed her hair because
she wanted a new look.
she wanted to blend in.
coffee shop
Where do most people | make  coffee ?
office
Where do most people ~make = coffee ?
table
Where do most people make coffee ?
washing
Where do most people make coffee ?
kitchen
Where do most people make coffee ?

Figure 4: A case study on the reasoning of NRC.

ing results by 2.1, 2.1, 2.0 accuracy scores on the
three datasets. Our confidence tuning also achieves
improvement in cross-dataset transfer learning, es-
pecially in transferring the knowledge learned on
the challenging ARC dataset.

5.4 Case Study

We provide cases to specify the observation in
statistics. The first case on COPA shows the limited
understanding of PPL on the low-frequency phrase
dyed her hair. NRC instead successfully leverages
the semantics of the phrase to select the right an-
swer. The second case on CommonsenseQA shows
NRC to infer based on Where and make coffee and
selects the answer supported by both key phrases,
verifying its reasoning to be highly interpretable.

6 Conclusion

We propose a novel method to apply the training
objective of a pre-trained discriminator rather than
a generator for commonsense reasoning. The met-
ric Non-Replacement Confidence, derived from the
replaced token detection learning objective, bet-
ter estimates textual consistency to facts by allow-
ing equal synonym positiveness and negative sam-
ple learning. Unsupervised experiments verify the
advantages of NRC over perplexity on common-
sense knowledge probing and question answering.
We further utilize the discovery in unsupervised
learning and apply confidence tuning to supervised
learning, which reaches desirable performance on
learning with or without negative labels.



Limitation

Firstly, although NRC has shown impressive per-
formance in unsupervised learning, the results still
lag behind those achieved by supervised methods.
NRC achieves between 82.8% and 90.0% of the
performance of supervised methods under weaker
supervision, indicating that there is still room for
improvement to close the performance gap. Sec-
ondly, our study utilizes the existing ELECTRA
models to evaluate the NRC metric, and the limited
scale of these models restricts our ability to thor-
oughly compare the performance of NRC across a
wider range of model scales. As larger and more
powerful language models continue to be devel-
oped, it will be crucial to assess the performance
of NRC with these models to better understand
the metric’s efficacy in various contexts and exam-
ine its scalability when applied to different model
architectures.
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A Dataset Information and Statistics

The statistics of datasets in our experiments are
presented in Table 6.

Dataset Npgy Na Lg La  Le
CSQA 1140 5 132 1.5 -
ARCg 2376 4 196 3.7 -
ARCc¢ 1172 4 206 5.0 -
COPA 500 2 6.1 5.0 -
Swag 20005 4 124 11.2 -
SCT 1571 2 89 74 264
SQA 3525 3 11.2 50 196
CQA 6510 4 12.0 7.4 439

Table 6: Statistics of datasets in our experiments.
Ninst, Na: Number of instances and answer candidates.
Lqg, LA, Lc: Average length of the question, answer,
and context.

CSQAS provides remarkable resources for
commonsense-targeted question answering since it
builds question-answer pairs based on ConceptNet.
The annotators create adversarial choices based on
the subgraphs in ConceptNet. Specifically, neg-
ative choices are sampled from terms related to
the question in ConceptNet, making differentiating
confusing for models without strong commonsense
understanding.

ARC’ is a commonsense question answering
challenge that also selects phrases for science ques-
tions. The difficulty of questions is at the grade-
school level and the dataset is split into the easy
part (ARCg) and the challenging part (ARCc).

COPA3? is a simple commonsense-targeted ques-
tion answering dataset. COPA is interested in en-
tailing a sentence by choosing a possible cause or
effect of it.

Swag’ is a large-scale commonsense question
answering dataset with more than 20, 000 test data.
The question is formulated as entailment that aims
to satisfy the contextual integrity in commonsense.

StoryClozeTest'? (SCT) is a story entailment
dataset that collects 5-sentence stories with multi-
ple ending candidates. We use the first three sen-
tences as context and the fourth as the question.

Shttps://www.tau-nlp.org/commonsenseqa
"https://allenai.org/data/arc
8https://people.ict.usc.edu/ gordon/copa.html
*https://rowanzellers.com/swag/
https://cs.rochester.edu/nlp/rocstories/
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SocialiQA!' (SQA) contains questions about in-
teractions of people in social activities. The con-
text describes a social circumstance with related
aspects, and the question asks the model to select a
proper interaction.

CosmosQA!? (CQA) is similar to COPA as it
also asks the cause and effect of events. The dif-
ference is that CosmosQA provides an event back-
ground as the context for the question. Also, the
answer of CosmosQA is longer than other datasets,
which increases the difficulty for inference.

B Baselines

Answer-Level Calibration (ALC) models
context-independent biases in terms of the
probability of a choice without the associated
context, and removes them using an unsupervised
estimate of similarity with the full context. ALC
consistently improves over or is competitive with
baselines using standard evaluation metrics on a
variety of tasks, including commonsense reasoning
tasks.

Pointwise Mutual Information (PMI) factors
out the probability of specific surface forms and
introduce scoring-by-premise to measure the prob-
ability of the premise given the hypothesis. The
authors further propose Domain Conditional PMI
(PMIpc) to quantify how much the premise tells us
about the hypothesis within a given domain.

Self-Talk involves asking language models
information-seeking questions to discover addi-
tional background knowledge. The approach im-
proves the performance of zero-shot language
model baselines on commonsense benchmarks and
competes with models that obtain knowledge from
external knowledge bases.

CGA is a neuro-symbolic approach to zero-shot
commonsense question answering that formulates
the task as inference over dynamically generated
commonsense knowledge graphs. CGA generates
contextually-relevant symbolic knowledge struc-
tures on demand using generative neural com-
monsense knowledge models, which provide in-
terpretable reasoning paths for its predictions.

SEmantic-based Question Answering (SEQA)
generates a set of plausible answers with genera-
tive models and then selects the correct choice by

"https://leaderboard.allenai.org/socialiga/submissions/public
Phttps://wilburone.github.io/cosmos/


https://www.tau-nlp.org/commonsenseqa
https://allenai.org/data/arc
https://people.ict.usc.edu/~gordon/copa.html
https://rowanzellers.com/swag/
https://cs.rochester.edu/nlp/rocstories/
https://leaderboard.allenai.org/socialiqa/submissions/public
https://wilburone.github.io/cosmos/

Dataset Question Choices
CSQA  What island country is ferret popular?  own home, north carolina, great britain,
hutch, outdoors
ARCg  Which instrument measures atmo- barometer, hygrometer, thermometer, magne-
spheric pressure? tometer
ARCc  Which characteristic of a cheetah is speed, a spotted coat, hunting strategies,
more likely to be learned rather than claws that do not retract
inherited?
COPA  The woman tolerated her friend’s diffi- the woman knew her friend was going
cult behavior because through a hard time. The woman felt that
her friend took advantage of her kindness.
Swag He is throwing darts at a wall. A woman squats alongside flies side to side
with his gun. A woman throws a dart at a
dartboard. A woman collapses and falls to the
floor. A woman is standing next to him.
SCT Rick grew up in a troubled household... He is happy now. He joined a gang.
The incident caused him to turn a new
leaf.
SQA kai was bored and had nothing to do so  do math homework, do nothing, watch televi-
he played card games. What will Kai sion
want to do next?
CQA I was walking home from the store... He was waiting on the taxi. He was waiting

What may have happened to the old
man?

for the bus. He was waiting on a ride.

Table 7: An instance from each dataset used in our experiments.
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Rel. Prompt
IsA AisaB.
CapableOf AisabletoB.

NotCapableOf A isunableto B .
UsedFor AlisusedtoB .
MadeOf Aismade of B ..
PartOf Aispartof B.
HasAttribute  Ais very B .
HasA AhasaB.

Table 8: Prompts used in experiments on ConceptNet.

Method CSQA ARCE ARCc
PPLgprom 357 (0.0) 428 (-1.1) 27.5(0.6)
PPLgrrr  42.1(-0.3) 363 (-1.5) 27.1(-0.4)
PPLroperta  45.0 (-0.7) 37.3(-1.8) 33.2(-0.5)
NRC 523(0.5) 51.9(0.2) 39.8(1.4)

Table 9: Effect of the removal of stop words.

considering the semantic similarity between each
plausible answer and each choice. SEQA achieves
the best results in unsupervised settings and demon-
strates stronger robustness against lexical perturba-
tions in candidate answers. However, SEQA is a
zero-shot rather than an unsupervised method be-
cause its SentenceBERT (Reimers and Gurevych,
2019) requires pre-training on NLI datasets as
pointed out in (Wang and Zhao, 2022).

All-round Thinker (ArT) generates highly re-
lated knowledge by focusing on key parts in the
given context in an association way, similar to hu-
man thinking, and includes a reverse thinking mech-
anism for causal reasoning.

C Prompts and Preprocessing

The prompts we used in experiments on Concept-
Net are listed in Table 8. For SemEvalg, we use
the prompt "A" is not true because B. to select an
explanation for unreal commonsense expression.
Prompts for question answering follow the previ-
ous configuration (Niu et al., 2021) by attaching
the answer after the question.

D Normalization

Stop Word Removal For models that leverage
commonsense to infer, stop words actually add
noise to the inference as humans rarely use them
for commonsense reasoning. Thus, we remove the
scores calculated on stop words and test whether

Method CSQA COPA SCT

PPLgpraom  33.8(-1.1) 61.0(-7.4) 52.5(-1.5)
PPLEBERT 23.0(-77) 59.8(-1.4) 59.0(0.8)
PPLRoperTa  35.2(4.0) 64.2(-4.2) 65.4(-1.9)
NRC 439 (-3.5) 74.8(3.6) 81.5(6.8)

Table 10: Performance of conditional probability-based
method. Results in bracket are the difference between
answer-based probability.

Method CSQA ARCEg ARCc

PPLgprom 229 (-15.6) 27.8(-16.6) 24.2(-0.5)
PPLgERrT 43.2 (2.6) 43.6 (6.4) 27.8(1.1)
PPLRroBerTa  48.8 (-0.5)  40.1 (-5.4) 28.7(-6.9)
NRC 54.1 (0.0) 52.1(0.0)  39.8(0.0)

Table 11: Comparison among unnormalized metrics.

this will boost the performance of PLM-based met-
rics. We sample stop words from the pool pro-
vided by SpaCly to set articles and pronouns as stop
words.

Shown in Table 9, NRC benefits the most from
the removal of stop words, which leads to (sig-
nificant) improvement on all 3 datasets. We thus
conclude that NRC better takes advantage of the
non-trivial components to infer.

Conditional Method Using the conditional prob-
ability of PPL (Mutuallnfo-QA) is a conventional
way to mitigate the lexical bias in PPL calculation
(Niu et al., 2021). Namely, 2 ;?,LC))) is used instead
of p(A) for inference. p(A) is divided to reduce
the effect of the lexical property of the answer. We
experiment with Mutuallnfo-QA on CSQA, COPA,
and SCT datasets. For comparison, we also adapt
NRC to conditional NRC by using confidence as
the probability to calculate %.

The results in Table 10 reflect the performance
of conditional probability on three commonsense
question answering datasets. Conditional NRC still

outperforms other conditional metrics on all three

Method CSQA ARCg ARCc

PPLgprom  32.3(-6.2) 389(-5.5) 25.8(-3.0)
PPLBERT 36.1 (8.1) 33.9(-3.2) 24.2(1.5)
PPLroerTa  42.0(2.2) 38.3(-59) 28.0(0.9)
NRC 50.5(5.5) 46.0(-1.9) 354 (-1.7)

Table 12: Comparison among PLMs w/ PMI. Results
in bracket are the difference between answer-based
probability.



’ D [ PPLGpr2-M; PPLgErT; D [l PPLRoBERTa} D 0 NRC;

ARCg
| |
40 H .
o 1 O
1st 2nd 3rd
ARCc¢
40 — | | —
30| HH :
20*“ ‘ H‘HH ﬂ‘ﬂm*
1st 2nd 3rd

Figure 5: Ranks of PLM-based selection on easy and
challenging ARC.

datasets. On COPA and SCT, NRC significantly
benefits from using a conditional version, while
PPL only receives a minor improvement or even
a drop-down in performance. This shows the re-
moval of initial probability is beneficial to NRC
since the confidence might vary among different
consistent texts. The conditional probability of
NRC backfires on CSQA, which can be explained
by the length (1.5 on average) of answers on CSQA
datasets. As the answer is much shorter than the
text used for ELECTRA pre-training, the value of
p(A) will add much noise to the inference. In sum-
mary, while conditional probability occasionally
benefits PPL, it will benefit NRC more unless the
answer text is too short.

Unnormalized Logit One way to address the
constraint where candidate possibilities add up to
one is to directly use the logits before applying the
softmax layer. We evaluated the impact of using
unnormalized logits on model performance in Ta-
ble 11. The NRC model was not affected as it does
not use a softmax layer. When it comes to perplex-
ity, using unnormalized logits led to improved per-
formance for BERT, but decreased performance for
RoBERTa. For GPT2, the drop in performance was
even more significant, with a decrease of over 10
points. Therefore, we can conclude that while un-
normalization may enhance reasoning performance
for certain types of perplexity-based reasoning, it
is not a universal solution.

PMI (Holtzman et al., 2021) introduces scoring-
by-premise and factors out the probability of spe-
cific surface forms to measure the probability of the

15

premise given the hypothesis. Although PMI was
initially applied only to GPT2, we wanted to investi-
gate its impact on the reasoning abilities of different
PLMs, particularly bidirectional models. As PMI
regularizes the answer probability by %,
we compare the results with answer-targeted rea-
soning. The results of this investigation are pre-
sented in Table 12. The analysis of the table in the
article shows that PMI affects PLMs differently de-
pending on the model architecture and the dataset
used for evaluation. All PLMs show a decrease in
performance in at least one dataset when PMI is
applied. These results suggest that PMI’s effective-
ness in enhancing the reasoning abilities of PLMs
may be model-dependent and dataset-dependent.

E Rank of the Choice

The accuracy only counts the matching between
the golden answer and the first-rank choice. We
show the ranking distribution of selected answers in
Table 5 to further investigate the inference results.
On the easy subsets of ARC, there does not exist
a prominent advantage of NRC according to the
second-rank choice rates. But when the questions
become challenging, the rate of golden answers
in the second rank rises, reflecting the superior
capability of NRC in more challenging question
answering.



