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Abstract
In this paper, we present a novel approach001
to unsupervised commonsense reasoning that002
outperforms conventional perplexity evalua-003
tion. Specifically, we propose the use of non-004
replacement confidence (NRC), which is evalu-005
ated by a pre-trained token corruption discrim-006
inator. We show that NRC is a more consis-007
tent metric for commonsense reasoning, as it008
allows for equal synonym positiveness and neg-009
ative sample learning. Our experiments using010
the ELECTRA discriminator demonstrate that011
NRC significantly outperforms perplexity on012
both tuple and sentence-level commonsense013
knowledge databases. Moreover, we show that014
NRC sets a new unsupervised state-of-the-art015
(SOTA) on seven commonsense question an-016
swering tasks, outperforming even complex017
reasoning systems. In supervised learning, we018
find that NRC is the most successful metric for019
applying pre-trained knowledge on annotated020
data for inference. In fact, without negative021
samples, NRC achieves between 82.8% and022
90.0% of the performance of supervised meth-023
ods, significantly outperforming other metrics024
under weaker supervision. To further improve025
the performance of NRC, we propose a new026
scenario in which the discriminator is first pre-027
trained on positive samples and then the NRC028
evaluation of negative samples is incorporated029
to tune the confidence. This approach signifi-030
cantly outperforms conventional fine-tuning by031
an average of 2.0 accuracy points. In summary,032
our research indicates that NRC is a superior033
metric compared to perplexity when it comes034
to learning commonsense knowledge under var-035
ious supervision settings.1036

1 Introduction037

Commonsense reasoning is the underlying basis of038

machines for human-like natural language under-039

standing. Commonsense knowledge endows nat-040

ural language processing (NLP) systems with the041

1Our code is released at github.com/KomeijiForce/
ELECTRA-NRC
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Figure 1: The differences between the generative and
discriminative evaluation of factual consistency.

awareness of implicit background for how human 042

inference deals with the physical world. External 043

commonsense knowledge created by humans has 044

been successfully applied to refine NLP systems 045

like dialogue (Zhou et al., 2021) and generation 046

(Chakrabarty et al., 2021). 047

For unsupervised commonsense reasoning, per- 048

plexity has long been applied to estimate how a 049

piece of expression is consistent with common 050

facts. Originating from the statistical language 051

model, text with higher perplexity is estimated to 052

have less probability to appear in natural language, 053

and thus less consistent with facts. This idea is 054

further strengthened by the emergence of large pre- 055

train neural language models (PLMs), which in- 056

troduce deep Transformer encoders and more ad- 057

vanced training objectives, like masked language 058

modeling (MLM) (Devlin et al., 2019). 059

While PLM-based perplexity shows potential for 060

commonsense understanding and has become the 061

basic component of many more advanced unsuper- 062

vised methods (Shwartz et al., 2020; Bosselut et al., 063

2021; Niu et al., 2021), the diversity of PLMs also 064

suggests perplexity is no longer the only way to 065

estimate how texts are consistent with facts. Be- 066

sides generative PLMs that predict unseen words, 067

ELECTRA (Clark et al., 2020) uses a discriminator 068
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pre-trained to detect token corruption in context.069

This training objective is named replaced token070

detection (RTD), which takes texts corrupted by071

MLM as input and predicts whether each token is072

corrupted or not.073

The RTD training objective is more consistent074

with commonsense reasoning for two reasons as075

shown in Figure 1. 1. RTD discriminator al-076

lows positive synonyms to share equal positive-077

ness. (Equal Synonym Positiveness) For gener-078

ative probability, all candidates in the dictionary079

share a probability distribution sum up to 1. Con-080

sequently, if a word, unfortunately, has many syn-081

onyms in the dictionary, most of its generative prob-082

ability will be taken by those synonyms. 2. RTD083

discriminator is pre-trained on negative samples.084

(Negative Sample Learning) In commonsense rea-085

soning, models always face non-sense expressions086

that distract the reasoning. However, pre-trained087

generators only learn positive samples and thus be-088

come inapt at evaluating unseen negative samples.089

In contrast, the RTD discriminator naturally classi-090

fies corrupted tokens that turn texts into factually091

inconsistent.092

To validate and probe the advantages of the093

RTD discriminator, we derive a metric called non-094

replacement confidence (NRC) from its training095

objective. We apply NRC for supervised and un-096

supervised commonsense reasoning and compare097

its performance with conventional perplexity-based098

inference. NRC outperforms the best perplexity-099

based methods on tuple and sentence-level com-100

monsense knowledge databases, together with 7101

commonsense question answering tasks. NRC even102

outperforms previous complex systems to set the103

new unsupervised state-of-the-art (SOTA) on all104

question answering datasets. To validate claimed105

advantages, we use a synonym replacement attack106

to show the ELECTRA discriminator how to re-107

act to words with synonyms. NRC is more robust108

against synonym replacement attacks than PPL. We109

also explore how negative samples created by the110

ELECTRA generator affect knowledge capturing.111

In comparison with PPL, NRC shows a higher ca-112

pability to learn from knowledge sources and mask113

rate plays a critical role in the qualifying of cap-114

tured knowledge.115

The advantages of the ELECTRA discrimina-116

tor are notable, and they motivate us to delve117

deeper into the potential of NRC for supervised118

learning. Our experimental results indicate that119

by pre-training the ELECTRA discriminator solely 120

on positive samples from the training dataset, we 121

can achieve a performance ranging from 82.8% to 122

90.0% compared to supervised methods trained on 123

the entire dataset. Then, we use the NRC differ- 124

ences between positive and negative samples to 125

tune those discriminators, their performance out- 126

performs direct fine-tuning by 2.0 accuracy scores 127

on average. As the backbone model in the current 128

SOTA model (Xu et al., 2021, 2022), DeBERTaV3 129

(He et al., 2021), is also an RTD-based PLM, our 130

discovery shows the potential to further boost the 131

supervised SOTA2. 132

Our contributions are summarized as follows: 133

• We suggest using a pre-trained discriminator 134

objective as an alternative to pre-trained gener- 135

ators for commonsense reasoning. Our study 136

shows that the NRC metric, derived from the 137

RTD objective, is more appropriate for the 138

task as it supports equal synonym positive- 139

ness and negative sample learning. 140

• To explore unsupervised commonsense rea- 141

soning, we conducted experiments on NRC 142

using tuple and sentence-level commonsense 143

knowledge databases and evaluated it on 7 144

commonsense question answering tasks. Our 145

results show that NRC outperforms perplexity 146

and even outperforms other complex systems, 147

achieving the new SOTA on all datasets. 148

• In supervised commonsense reasoning, we 149

discovered that pre-training the ELECTRA 150

discriminator on only positive samples re- 151

sulted in a performance of 82.8% to 90.0%, 152

compared to fully supervised methods. When 153

incorporating negative samples, NRC showed 154

an average increase in accuracy of 2.0 points 155

compared to direct fine-tuning, which can be 156

attributed to the learning of differences among 157

samples. 158

2 Background 159

2.1 Commonsense Knowledge 160

Commonsense knowledge, also known as back- 161

ground knowledge, is the underlying basis of logic 162

in the inference of humans. As commonsense 163

knowledge is rarely expressed in textual contents 164

2We cannot apply confidence tuning for DeBERTaV3 be-
cause its generator has not been released yet.
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(Gordon and Durme, 2013), many datasets (Bol-165

lacker et al., 2008; Nickel et al., 2011; Yang et al.,166

2015; Li et al., 2016) have been handcrafted to train167

NLP systems and endow them with the ability to168

make a physical world-based inference.169

Following the storage system in databases, com-170

monsense knowledge is generally formalized as171

a tuple (LT,RT,REL), e.g. ConceptNet (Speer172

and Havasi, 2012; Speer et al., 2017). Here, LT ,173

RT , REL respectively refer to the left term, the174

right term, and the relationship between two terms.175

While tuples are efficient for storage, they are in-176

competent to represent relationships with more177

than 2 terms. Thus, Wang et al. create a sentence-178

level commonsense dataset, which validates the179

integrity of commonsense in a real context. This180

dataset also includes commonsense explanations181

for facts, which further expands the coverage of182

knowledge. Other commonsense knowledge bases183

are also introduced in recent years like ATOMIC184

(Sap et al., 2019; Hwang et al., 2021) for If-Then185

relationships. TransOMCS (Zhang et al., 2020) re-186

trieve ConceptNet-like tuples from syntactic struc-187

tures.188

2.2 Commonsense Reasoning with PLMs189

Large-scale pre-trained language models like190

BERT (Devlin et al., 2019) have drawn the most191

attention from the NLP community since their intro-192

duction. PLMs show their potential to significantly193

boost performance on NLP tasks across fields.194

Since PLMs have been trained on a large-scale195

corpus to learn interdependency between compo-196

nents, mining from PLMs for commonsense knowl-197

edge becomes a new method to create knowledge198

databases (Petroni et al., 2019; Alghanmi et al.,199

2021; Kassner et al., 2021). LAMA (Petroni et al.,200

2019) makes the first try to gather knowledge from201

PLMs by generative prompts. Later works follow202

this process to provide partial information in the203

commonsense knowledge tuple and require PLMs204

to complete the rest of the tuple.205

The commonsense knowledge and understand-206

ing of PLMs inspire researchers to directly apply207

PLMs for downstream inference without super-208

vised fine-tuning. Commonsense question answer-209

ing (Roemmele et al., 2011; Zellers et al., 2018;210

Talmor et al., 2019, 2022; Kocijan et al., 2020) is211

commonly used to test the unsupervised inference212

ability of PLMs. Similar to commonsense reason-213

ing, prompts are applied to transform the question-214

answer pair into a syntactically plausible sentence. 215

PLM-based perplexity is calculated for those trans- 216

formed sentences and the sentence with the low- 217

est perplexity is used to select the corresponding 218

question-answer pair (Trinh and Le, 2018; Bosse- 219

lut et al., 2021; Tamborrino et al., 2020). Besides 220

direct reasoning on answer candidates, researchers 221

have also tried to sample extra candidates from 222

generators and use pre-trained semantic similar- 223

ity evaluator for answer selection. (Shwartz et al., 224

2020; Niu et al., 2021; Bosselut et al., 2021) 225

Current mainstream PLMs, BERT or GPT2, ap- 226

ply the conventional perplexity metric to use the 227

probability of generating components based on the 228

context. This will incorporate surface forms like 229

word frequency as perturbance to the inference. 230

Answer-Level Calibration (Kumar, 2022) models 231

context-independent biases in terms of the probabil- 232

ity of a choice without the associated context, and 233

removes them using an unsupervised estimate of 234

similarity with the full context for question answer- 235

ing tasks. Pointwise Mutual Information (Holtz- 236

man et al., 2021) factors out the probability of 237

specific surface forms and introduce scoring-by- 238

premise to measure the probability of the premise 239

given the hypothesis. Based on the nature of com- 240

monsense reasoning, we propose a pre-trained dis- 241

criminator, like ELECTRA, to be an alternative for 242

better performance. 243

3 PLM-based Metric 244

3.1 Perplexity 245

Casual Language Model GPT2 (Radford et al., 246

2019) is a PLM pre-trained for text generation, 247

which can also be applied for inference based on 248

the perplexity of selection candidates. The training 249

objective, CLM, is optimized based on context- 250

based next-word prediction. 251

L ≜ CELoss(PLMθ(w1:i−1),One-hot(wi)) 252

where CELoss is the cross-entropy loss, and One- 253

hot refers to the one-hot encoding. θ, w respec- 254

tively refer to PLM parameters and words. The 255

inference procedure also takes next-word predic- 256

tion for perplexity (PPL) calculation. 257

PPL =
1

n

n∑
i=1

(− log(p(wi|PLMθ, w1:i−1))) 258

3



where n is the length of the sentence. GPT2 calcu-259

lates PPL by scoring answer choices and selecting260

a candidate with the lowest perplexity.261

Masked Language Model MLM is the training262

objective for most bidirectional PLMs like BERT263

and RoBERTa (Liu et al., 2019). MLM is similar264

to CLM as it also uses word retrieval as the training265

objective but leverages the bidirectional context for266

the prediction. During the inference, the likelihood267

of each word is calculated by a mask-and-predict268

procedure.269

3.2 Replaced Token Detection270

RTD differs from the word retrieval-targeted train-271

ing procedure above as it sets binary classification272

as the objective. The PLM involves a discriminator273

which discerns replaced words in the sentence by274

an MLM-based generator.275

L ≜ BCELoss([PLMθ(w1:n)]i, fB(wi))276

where fB is a Boolean function that returns whether277

wi is corrupted by the replacement or not.278

We then derive the Non-Replacement Confi-279

dence metric from the training objective.280

NRC =
1

n

n∑
i=1

(− log([PLMθ(w1:n)]i))281

3.3 Metric Comparison282

PPL and NRC are both calculated based on nega-283

tive log probability. While PPL evaluates the likeli-284

hood of a sentence, NRC reflects the confidence of285

contextual integrity. Thus, lower PPL and higher286

NRC on legal language indicate more human-like287

choices.288

Commonsense reasoning expects to understand289

the underlying interdependency between abstract290

concepts rather than their surface forms. Thus,291

evaluating confidence in the piece of commonsense292

knowledge should include not only words in the293

original sentence but their contextual synonyms as294

well.295

pCS(w1:n) =
∑

w∈syn(wi)

p(Ci)p(w|Ci)296

where pCS is the commonsense-targeted confi-297

dence. Ci = w1:i−1;i+1:n refers to the context for298

wi and syn returns the contextual synonyms of wi. 299

As wi ∈ syn(wi), pCS(w1:n) > p(w1:n) = PPL 300

when the number of synonym candidates is more 301

than 1, indicating that perplexity always under- 302

estimates the commonsense-targeted confidence. 303

The underestimation becomes more severe when 304

wi is a low-frequency word. Furthermore, as 305∑
w∈dict(p(w)) = 1 (dict is the whole dictio- 306

nary for token selection), the correlation between 307

confidence on synonym candidates is −1. This 308

indicates − ∂L
∂p(w=wi)

> 0 while − ∂L
∂p(w=wj)

< 309

0, wj ∈ syn(wi) during the gradient updating. 310

Thus, p(w = wj), wj ∈ syn(wi) is decreased by 311

− ∂L
∂p(w=wj)

, which is contrary to the nature that 312

a word supports the appearance probability of its 313

synonyms. 314

In contrast to PPL, NRC evaluates the confidence 315

of each candidate individually, without requiring 316

them to share the same distribution. This means 317

that there is no bias towards high-frequency words 318

or underestimation due to underlying synonym can- 319

didates. Additionally, PLMs project contextually 320

similar components to near positions in the latent 321

space (Devlin et al., 2019), which changes the cor- 322

relation between synonym candidates to positive. 323

As a result, NRC provides a more accurate evalua- 324

tion of the confidence of commonsense knowledge 325

in a given context. 326

Another advantage of NRC comes from the pre- 327

training process of ELECTRA. During the pre- 328

training, the ELECTRA generator corrupts tokens 329

which makes the input to the discriminator similar 330

to the negative samples during testing. In contrast, 331

pre-trained generators only take legal texts as the 332

input and thus discern nonfactual expressions be- 333

cause they have not seen them during pre-training. 334

We use experiments to further explore the cor- 335

rectness of our theoretical analysis. In § 4.1, 4.2, 336

we provide a rough view of how much better are 337

NRC than PPL. In § 5.1, we use a synonym replace- 338

ment attack to explore how NRC and PPL react to 339

words with different frequencies. In § 5.2, 5.3, we 340

explore how the further pre-training on in-domain 341

and out-of-domain positive question-answer pairs 342

affects the inference performance. 343

We also compare the time complexity of differ- 344

ent metrics. Our NRC is O(1) (counting the num- 345

ber of PLM forwarding) as efficient as the CLM- 346

based inference since the discriminator does not 347

use mask tokens to calculate the metric, which lim- 348

its the efficiency of MLM-based inference to O(n). 349
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Metric ConceptNet SemEvalA SemEvalB

PPLGPT2-XL 65.4 78.1 58.1

PPLGPT2-M 49.6 50.1 40.3
PPLBERT 66.2 76.2 54.4
PPLRoBERTa 69.9 79.9 62.4
NRC 71.2 80.5 64.3

Table 1: Experiment results on tuple and sentence-level
commonsense reasoning. Bold: The best performance
on the dataset. Underline: The result is significantly
better than the second-best result. (α = 0.01)

4 Unsupervised Inference350

To mitigate the unfair comparison caused by the351

parameter scales, this paper compares large mod-352

els with the same number of layers and hid-353

den sizes, namely BERTLarge, RoBERTaLarge,354

GPT2Medium and ELECTRALarge (24-layer, 1024-355

hidden size). We also include GPT2XLarge (48-356

layer, 1600-hidden size) for further comparison.357

4.1 Commonsense Probing358

Tuple-level Probing ConceptNet3 uses deep neu-359

ral networks to retrieve commonsense candidates360

from corpus, which are validated by human anno-361

tators. We use the test dataset from (Li et al., 2016)362

which requires models to discern between true com-363

monsense tuples and adversarial fake ones.364

To create prompts for tuples in the test dataset365

that can be represented in natural language, we fol-366

lowed the methodology outlined in LAMA (Petroni367

et al., 2019). The full list of prompts can be found368

in Appendix C. Next, we utilize PLM-based met-369

rics to distinguish between different prompts and370

evaluated the accuracy of our approach. Specifi-371

cally, we evaluate PPL and NRC on templatized372

tuples and select the top 50% of tuples as positive373

results.374

The classification accuracy is presented in Ta-375

ble 1, NRC significantly outperforms both CLM376

and MLM-based PPL on commonsense tuple rea-377

soning. As transformed tuple relationships are378

simple in syntactic structures, we attributed the379

discriminating ability to the understanding of com-380

monsense, which supports the superiority of NRC381

in commonsense validation.382

3https://conceptnet.io/

Sentence-level Probing SemEval20204 collects 383

natural language statements related to common- 384

sense expression. We experiment with two reason- 385

ing subtasks. A: Select a statement that is against 386

the commonsense. B: Select a reason to support 387

the selection in A. We continue evaluating and se- 388

lecting statements and explanations according to 389

different metrics. 390

Table 1 also shows experiment results on 391

sentence-level commonsense reasoning using var- 392

ious metrics. NRC performs significantly better 393

than PPL on both differentiating and explanation, 394

indicating its superior capability for sentence-level 395

commonsense evaluation. PPLRoBERTa is compet- 396

itive for differentiating but lags behind NRC in 397

explanation since it requires a more complex in- 398

ference ability. Overall, the comparison supports 399

NRC as a more competent metric for commonsense 400

reasoning. 401

4.2 Commonsense Question Answering 402

Baselines Besides perplexity, we also include 403

previous trials for knowledge extraction (ALC (Ku- 404

mar, 2022), PMIDC (Holtzman et al., 2021)) and 405

more complex baselines (Self-Talk (Shwartz et al., 406

2020), CGA (Bosselut et al., 2021), SEQA (Niu 407

et al., 2021), ArT (Wang and Zhao, 2022)). Since 408

SEQA used annotated NLI data for training, we 409

follow (Wang and Zhao, 2022) to report the re- 410

sult from the original paper as SEQANLI and w/o 411

NLI data version from (Wang and Zhao, 2022) as 412

SEQAOrig. More detailed descriptions of baselines 413

can be found in Appendix B. 414

Datasets We conduct experiments on a wide 415

range of datasets to reach a more general con- 416

clusion. We test different methods on 7 datasets, 417

including 2 phrase selection datasets {Common- 418

senseQA (CSQA), AI2 Reasoning Challenge 419

(ARC)}, 2 entailment datasets {Choice of Plau- 420

sible Alternatives (COPA), Situations With Adver- 421

sarial Generations (SWAG)}, and 3 context-based 422

datasets {StoryClozeTest (SCT), SocialIQA (SQA), 423

CosmosQA (CQA)}. Specific descriptions and in- 424

stances from those datasets are presented in Ap- 425

pendix A. For Phrase Selection, COPA, and SQA, 426

we transform question-answer pairs by templates 427

(Ma et al., 2021) to achieve comparable baselines 428

with previous works. 429

4https://github.com/wangcunxiang/SemEval2020-Task4-
Commonsense-Validation-and-Explanation
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Method Trg. Phrase Selection Entailment Context-Based Avg.
CSQA ARCE ARCC COPA Swag SCT SQA CQA

Self-Talk - 32.4 - - 68.6 - 70.4 47.5 36.1 -
CGA - - - - 72.2 - 71.5 45.4 42.2 -
SEQAOrig. - - - - 54.4 - 54.9 36.6 - -
SEQANLI - - - - 79.4∗ - 83.2∗ 47.5∗ 56.1∗ -
ArT - - - - 69.8 - 71.6 47.3 - -

ALC - 49.7 - - 81.6 - - 45.1 - -
PMIDC - 50.3 51.5 33.0 77.0 - - - - -

PPLGPT2-XL A 42.6 50.8 28.8 73.6 65.3 70.6 45.5 35.5 51.6

PPLGPT2-M A 38.5 44.4 24.9 68.4 59.7 54.0 44.3 27.0 45.0

PPLBERT

Q 40.6 37.2 26.7 64.2 44.5 63.5 39.6 32.9 43.7
A 28.0 37.1 22.7 61.2 63.4 58.2 40.4 30.7 42.7
QA 32.8 36.8 23.7 64.2 64.1 61.2 38.5 29.6 43.9

PPLRoBERTa

Q 49.3 40.5 35.6 70.6 48.1 61.5 39.7 38.6 48.0
A 39.8 44.2 27.1 68.4 71.0 67.3 45.5 36.1 49.9
QA 49.0 45.5 31.8 75.2 74.5 71.7 46.2 36.5 53.8

NRC
Q 51.2 46.8 38.6 82.6 24.5 65.0 40.6 41.2 48.8
A 45.0 47.9 37.1 71.2 77.4 74.7 46.1 41.9 55.2
QA 54.1 52.1 39.8 78.4 75.4 77.1 47.7 44.3 58.6

Table 2: Results on Unsupervised Commonsense Reasoning. Underline: A significant improvement compared to
the best perplexity-based method. Bold: The best performance among unsupervised models (SEQANLI is excluded
because it requires NLI data for training). ∗: This result is obtained by an NLI-based zero-shot inference.

Phrase Selection We have adopted the approach430

of previous studies (Brown et al., 2020; Shwartz431

et al., 2020; Niu et al., 2021) to evaluate different432

targeted components (Question (Q), Answer (A),433

Question+Answer (QA)) for inference. The selec-434

tion results are presented in Table 2. Our findings435

show that NRC outperforms PPL based on PLM436

with the same scale by a significant margin (4.8,437

6.6, 4.2 accuracy score), which highlights NRC’s438

superiority in using commonsense for inference.439

For the easy part of ARC (ARCE), large-scale mod-440

els like GPT2XL appear to be able to compensate441

for bias in the metric. However, as the questions be-442

come more challenging in ARCC, the gap between443

NRC and PPL widens to 6.8 accuracy scores, un-444

derscoring the inherent differences between NRC445

and PPL in commonsense reasoning ability. NRC446

also outperforms Self-Talk, ALC, and PMIDC to447

set the new SOTA.448

Entailment NRC has once again demonstrated449

its superiority over PPL with an impressive perfor-450

mance on COPA and Swag (7.4 and 2.9, respec-451

tively). This has been validated by the large Swag452

dataset, confirming NRC’s excellence in common-453

sense understanding. Furthermore, NRC’s excep-454

tional performance outshines complex systems for 455

COPA, pushing the boundaries of the state-of-the- 456

art. However, it is worth noting that the question 457

part of Swag may not be very useful for NRC, as 458

these questions are not answer-dependent from the 459

perspective of ELECTRA. Instead, NRC prefers to 460

use the answer portion of the dataset for inference. 461

Nevertheless, when evaluating the entire question- 462

answer pair, NRC consistently outperforms PPL. 463

Context-based The NRC model has demon- 464

strated superior performance compared to PPL- 465

based models, particularly on a large scale like 466

GPT2XLarge. This gap widens on datasets with 467

longer context, such as SCT and CQA, indicating 468

NRC’s ability to comprehend complex contexts and 469

the interdependencies between terms. While SEQA 470

appears to hold the current SOTA on context-based 471

selection, recent research (Wang and Zhao, 2022) 472

has shown that its reasoning abilities stem from 473

pre-training on NLI tasks. When NLI pre-training 474

is removed, SEQA’s performance drops sharply. 475

Therefore, NRC currently sets the new state-of-the- 476

art on all seven commonsense question answering 477

tasks, surpassing several complex reasoning sys- 478

tems and the large GPT2-XL model. 479
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Method Accuracy (↑) Affected Ratio (↓)

PPLGPT2-M 47.2 30.4
PPLBERT 58.0 30.2
PPLRoBERTa 64.4 25.6
NRC 72.4 22.4

Table 3: Affect of synonym replacement on different
inference methods. Accuracy is the ratio of correct
selections after the replacement. Affect Ratio refers to
the ratio of previous correct selections that are turned
into faults by the replacement.

GPT2 BERT RoBERTa ELECTRA

1,000 2,000 3,000 4,000

5

10

n Further Pre-training Steps

∆Accuracy

Figure 2: Improvements gained from further pre-
training on question-answer pairs.

5 Further Analysis480

5.1 Equal Synonym Positiveness481

We validate the advantage of NRC-based infer-482

ence when facing words with multiple synonyms483

by testing the accuracy of answer selection after484

synonym replacement. For implementation, we485

sample synonyms from Wordnet in NLTK to cor-486

rupt 10% words in each question and answer text487

of the COPA dataset.488

The results of our experiments are presented in489

Table 3. Our NRC retains the highest performance490

compared to other metrics and still keeps a large491

margin. Also, NRC is the least likely to be affected492

by the replacement. Thus, the superiority of NRC493

over PPL facing synonyms is verified.494

5.2 Negative Sample Learning495

We explore the effect of negative sample learn-496

ing in this section. We follow the idea in ELEC-497

TRA to compare the model performances trained498

by different steps. Thus, we further pre-train PLMs499

on question-answer pairs formalized as Q[SEP]A.500

These question-answer pairs can be seen as a new501

knowledge source. We test on CSQA to investigate502

how different pre-training methods obtain knowl-503

edge.504

r0.05 r0.10 r0.15

1,000 2,000 3,000 4,000

5

10

n Further Pre-training Steps

∆Accuracy

Figure 3: Improvements gained from further pre-
training of ELECTRA with different mask rates r.

We use a question generator5 to generate ques- 505

tions about noun chunks in the Wikipedia corpus. 506

We train each PLM for 4000 steps with batch 507

size 32 and report the best performance among 508

models saved for each 800 steps. In Figure 2, 509

we demonstrate the reasoning performance of lan- 510

guage models on each step. We can observe that 511

pre-trained generators obtain the understanding of 512

question-answer in 800 steps but fail to further im- 513

prove their performances. In comparison, the pre- 514

trained discriminator steadily obtains knowledge in 515

3200 steps to capture the knowledge from question- 516

answer pairs. It is also worth mentioning that GPT2 517

achieves high improvement in 800 but then begins 518

to perform worse. This indicates GPT2 can quickly 519

capture the question-answer syntactic structure but 520

is poor at obtaining knowledge. We attribute this to 521

the uni-direction of GPT2, which limits its ability 522

in building connections between components. 523

We further explore the effect of negative sam- 524

ples in Figure 3 by changing the mask rate during 525

training. r0.15 is the mask rate in the initial training 526

configuration. The results show that lowering mask 527

rates lead to poorer performances, which verifies 528

the benefit of negative samples in pre-training for 529

commonsense knowledge capturing. 530

5.3 Supervised Confidence Tuning 531

Inspired by the prominent performance of RTD- 532

based further pre-training on out-of-domain data, 533

we propose confidence tuning for supervised learn- 534

ing. Based on the negative augmentation property 535

of the pre-training process, we are first interested in 536

training a supervised model without negative sam- 537

ples, which cost the energy of annotators to create 538

adversely. 539

5https://huggingface.co/mrm8488/t5-base-finetuned-
question-generation-ap
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Method CSQA ARCE ARCC

PPLGPT2-M 55.0 48.2 27.7
PPLBERT 50.5 43.3 27.9
PPLRoBERTa 59.1 44.2 32.6
NRC 73.0 59.9 45.1

Table 4: Performance of PLMs further pre-trained on
positive in-domain samples.

Method CSQA ARCE ARCC

FT w/ Neg. 81.1 71.5 54.5
CT w/o Neg. 73.0 59.9 45.1
CT w/ Neg. 83.2 73.6 56.5

Table 5: Comparison between fine-tuning and confi-
dence tuning.

Training w/o Negative Samples We run the540

same pre-training process on the CSQA training541

dataset and test the performance of different genera-542

tive PLMs for comparison. The experiment results543

are presented in Table 4. While all PLMs benefit544

from the application of data created by humans,545

the gap between the performance of generative and546

discriminative PLMs remains large. The genera-547

tive models are still inept at applying knowledge548

learned during pre-training even using the human-549

annotated datasets because of the unseen negative550

answers in the test dataset.551

In comparison, the RTD training objective helps552

the ELECTRA discriminator to capture the com-553

monsense knowledge embodied in the training data554

as the corrupted tokens turn the question-answer555

pairs to nonfactual, which are similar to negative556

samples in the test dataset. Table 5 further com-557

pares our training result to fine-tuning w/o negative558

samples. Remarkably, RTD pre-training reaches559

82.8% (ARCC)∼ 90.0% (CSQA) of the supervised560

performance among the 3 datasets.561

Training w/ Negative Samples Based on the fur-562

ther pre-trained discriminator, we tune it on nega-563

tive samples with the application of cross entropy564

loss on the probability distribution P (Ai|Q) =565
exp(NRC(Q[SEP]Ai))∑
j exp(NRC(Q[SEP]Aj))

. Table 5 shows the perfor-566

mance of our multi-stage learning method. Here567

we also fine-tune the ELECTRA discriminator568

already further pre-trained on positive question-569

answer pairs to make the comparison fair. Learn-570

ing the confidence differences between positive571

and negative samples boost the supervised learn-572

she wanted a new look. 

she  wanted  to  blend  in. 

The woman dyed her hair because

The woman dyed her hair because

The woman dyed her hair because

PPLRoBERTa

PPLBERT

NRC

coffee shop

Where do most people make coffee ?

office

Where do most people make coffee ?

table

Where do most people make coffee ?

washing

Where do most people make coffee ?

kitchen

Where do most people make coffee ?

Figure 4: A case study on the reasoning of NRC.

ing results by 2.1, 2.1, 2.0 accuracy scores on the 573

three datasets. Our confidence tuning also achieves 574

improvement in cross-dataset transfer learning, es- 575

pecially in transferring the knowledge learned on 576

the challenging ARCC dataset. 577

5.4 Case Study 578

We provide cases to specify the observation in 579

statistics. The first case on COPA shows the limited 580

understanding of PPL on the low-frequency phrase 581

dyed her hair. NRC instead successfully leverages 582

the semantics of the phrase to select the right an- 583

swer. The second case on CommonsenseQA shows 584

NRC to infer based on Where and make coffee and 585

selects the answer supported by both key phrases, 586

verifying its reasoning to be highly interpretable. 587

6 Conclusion 588

We propose a novel method to apply the training 589

objective of a pre-trained discriminator rather than 590

a generator for commonsense reasoning. The met- 591

ric Non-Replacement Confidence, derived from the 592

replaced token detection learning objective, bet- 593

ter estimates textual consistency to facts by allow- 594

ing equal synonym positiveness and negative sam- 595

ple learning. Unsupervised experiments verify the 596

advantages of NRC over perplexity on common- 597

sense knowledge probing and question answering. 598

We further utilize the discovery in unsupervised 599

learning and apply confidence tuning to supervised 600

learning, which reaches desirable performance on 601

learning with or without negative labels. 602
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Limitation603

Firstly, although NRC has shown impressive per-604

formance in unsupervised learning, the results still605

lag behind those achieved by supervised methods.606

NRC achieves between 82.8% and 90.0% of the607

performance of supervised methods under weaker608

supervision, indicating that there is still room for609

improvement to close the performance gap. Sec-610

ondly, our study utilizes the existing ELECTRA611

models to evaluate the NRC metric, and the limited612

scale of these models restricts our ability to thor-613

oughly compare the performance of NRC across a614

wider range of model scales. As larger and more615

powerful language models continue to be devel-616

oped, it will be crucial to assess the performance617

of NRC with these models to better understand618

the metric’s efficacy in various contexts and exam-619

ine its scalability when applied to different model620

architectures.621
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A Dataset Information and Statistics911

The statistics of datasets in our experiments are912

presented in Table 6.913

Dataset NInst NA LQ LA LC

CSQA 1140 5 13.2 1.5 -
ARCE 2376 4 19.6 3.7 -
ARCC 1172 4 20.6 5.0 -
COPA 500 2 6.1 5.0 -
Swag 20005 4 12.4 11.2 -
SCT 1571 2 8.9 7.4 26.4
SQA 3525 3 11.2 5.0 19.6
CQA 6510 4 12.0 7.4 43.9

Table 6: Statistics of datasets in our experiments.
Ninst, NA: Number of instances and answer candidates.
LQ, LA, LC : Average length of the question, answer,
and context.

CSQA6 provides remarkable resources for914

commonsense-targeted question answering since it915

builds question-answer pairs based on ConceptNet.916

The annotators create adversarial choices based on917

the subgraphs in ConceptNet. Specifically, neg-918

ative choices are sampled from terms related to919

the question in ConceptNet, making differentiating920

confusing for models without strong commonsense921

understanding.922

ARC7 is a commonsense question answering923

challenge that also selects phrases for science ques-924

tions. The difficulty of questions is at the grade-925

school level and the dataset is split into the easy926

part (ARCE) and the challenging part (ARCC).927

COPA8 is a simple commonsense-targeted ques-928

tion answering dataset. COPA is interested in en-929

tailing a sentence by choosing a possible cause or930

effect of it.931

Swag9 is a large-scale commonsense question932

answering dataset with more than 20, 000 test data.933

The question is formulated as entailment that aims934

to satisfy the contextual integrity in commonsense.935

StoryClozeTest10 (SCT) is a story entailment936

dataset that collects 5-sentence stories with multi-937

ple ending candidates. We use the first three sen-938

tences as context and the fourth as the question.939

6https://www.tau-nlp.org/commonsenseqa
7https://allenai.org/data/arc
8https://people.ict.usc.edu/ gordon/copa.html
9https://rowanzellers.com/swag/

10https://cs.rochester.edu/nlp/rocstories/

SocialiQA11 (SQA) contains questions about in- 940

teractions of people in social activities. The con- 941

text describes a social circumstance with related 942

aspects, and the question asks the model to select a 943

proper interaction. 944

CosmosQA12 (CQA) is similar to COPA as it 945

also asks the cause and effect of events. The dif- 946

ference is that CosmosQA provides an event back- 947

ground as the context for the question. Also, the 948

answer of CosmosQA is longer than other datasets, 949

which increases the difficulty for inference. 950

B Baselines 951

Answer-Level Calibration (ALC) models 952

context-independent biases in terms of the 953

probability of a choice without the associated 954

context, and removes them using an unsupervised 955

estimate of similarity with the full context. ALC 956

consistently improves over or is competitive with 957

baselines using standard evaluation metrics on a 958

variety of tasks, including commonsense reasoning 959

tasks. 960

Pointwise Mutual Information (PMI) factors 961

out the probability of specific surface forms and 962

introduce scoring-by-premise to measure the prob- 963

ability of the premise given the hypothesis. The 964

authors further propose Domain Conditional PMI 965

(PMIDC) to quantify how much the premise tells us 966

about the hypothesis within a given domain. 967

Self-Talk involves asking language models 968

information-seeking questions to discover addi- 969

tional background knowledge. The approach im- 970

proves the performance of zero-shot language 971

model baselines on commonsense benchmarks and 972

competes with models that obtain knowledge from 973

external knowledge bases. 974

CGA is a neuro-symbolic approach to zero-shot 975

commonsense question answering that formulates 976

the task as inference over dynamically generated 977

commonsense knowledge graphs. CGA generates 978

contextually-relevant symbolic knowledge struc- 979

tures on demand using generative neural com- 980

monsense knowledge models, which provide in- 981

terpretable reasoning paths for its predictions. 982

SEmantic-based Question Answering (SEQA) 983

generates a set of plausible answers with genera- 984

tive models and then selects the correct choice by 985

11https://leaderboard.allenai.org/socialiqa/submissions/public
12https://wilburone.github.io/cosmos/
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Dataset Question Choices

CSQA What island country is ferret popular? own home, north carolina, great britain,
hutch, outdoors

ARCE Which instrument measures atmo-
spheric pressure?

barometer, hygrometer, thermometer, magne-
tometer

ARCC Which characteristic of a cheetah is
more likely to be learned rather than
inherited?

speed, a spotted coat, hunting strategies,
claws that do not retract

COPA The woman tolerated her friend’s diffi-
cult behavior because

the woman knew her friend was going
through a hard time. The woman felt that
her friend took advantage of her kindness.

Swag He is throwing darts at a wall. A woman squats alongside flies side to side
with his gun. A woman throws a dart at a
dartboard. A woman collapses and falls to the
floor. A woman is standing next to him.

SCT Rick grew up in a troubled household...
The incident caused him to turn a new
leaf.

He is happy now. He joined a gang.

SQA kai was bored and had nothing to do so
he played card games. What will Kai
want to do next?

do math homework, do nothing, watch televi-
sion

CQA I was walking home from the store...
What may have happened to the old
man?

He was waiting on the taxi. He was waiting
for the bus. He was waiting on a ride.

Table 7: An instance from each dataset used in our experiments.
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Rel. Prompt

IsA A is a B .
CapableOf A is able to B .
NotCapableOf A is unable to B .
UsedFor A is used to B .
MadeOf A is made of B .
PartOf A is part of B .
HasAttribute A is very B .
HasA A has a B .

Table 8: Prompts used in experiments on ConceptNet.

Method CSQA ARCE ARCC

PPLGPT2-M 35.7 (0.0) 42.8 (-1.1) 27.5 (0.6)
PPLBERT 42.1 (-0.3) 36.3 (-1.5) 27.1 (-0.4)
PPLRoBERTa 45.0 (-0.7) 37.3 (-1.8) 33.2 (-0.5)
NRC 52.3 (0.5) 51.9 (0.2) 39.8 (1.4)

Table 9: Effect of the removal of stop words.

considering the semantic similarity between each986

plausible answer and each choice. SEQA achieves987

the best results in unsupervised settings and demon-988

strates stronger robustness against lexical perturba-989

tions in candidate answers. However, SEQA is a990

zero-shot rather than an unsupervised method be-991

cause its SentenceBERT (Reimers and Gurevych,992

2019) requires pre-training on NLI datasets as993

pointed out in (Wang and Zhao, 2022).994

All-round Thinker (ArT) generates highly re-995

lated knowledge by focusing on key parts in the996

given context in an association way, similar to hu-997

man thinking, and includes a reverse thinking mech-998

anism for causal reasoning.999

C Prompts and Preprocessing1000

The prompts we used in experiments on Concept-1001

Net are listed in Table 8. For SemEvalB, we use1002

the prompt "A" is not true because B. to select an1003

explanation for unreal commonsense expression.1004

Prompts for question answering follow the previ-1005

ous configuration (Niu et al., 2021) by attaching1006

the answer after the question.1007

D Normalization1008

Stop Word Removal For models that leverage1009

commonsense to infer, stop words actually add1010

noise to the inference as humans rarely use them1011

for commonsense reasoning. Thus, we remove the1012

scores calculated on stop words and test whether1013

Method CSQA COPA SCT

PPLGPT2-M 33.8 (-1.1) 61.0 (-7.4) 52.5 (-1.5)
PPLBERT 23.0 (-7.7) 59.8 (-1.4) 59.0 (0.8)
PPLRoBERTa 35.2 (4.0) 64.2 (-4.2) 65.4 (-1.9)
NRC 43.9 (-3.5) 74.8 (3.6) 81.5 (6.8)

Table 10: Performance of conditional probability-based
method. Results in bracket are the difference between
answer-based probability.

Method CSQA ARCE ARCC

PPLGPT2-M 22.9 (-15.6) 27.8 (-16.6) 24.2 (-0.5)
PPLBERT 43.2 (2.6) 43.6 (6.4) 27.8 (1.1)
PPLRoBERTa 48.8 (-0.5) 40.1 (-5.4) 28.7 (-6.9)
NRC 54.1 (0.0) 52.1 (0.0) 39.8 (0.0)

Table 11: Comparison among unnormalized metrics.

this will boost the performance of PLM-based met- 1014

rics. We sample stop words from the pool pro- 1015

vided by SpaCy to set articles and pronouns as stop 1016

words. 1017

Shown in Table 9, NRC benefits the most from 1018

the removal of stop words, which leads to (sig- 1019

nificant) improvement on all 3 datasets. We thus 1020

conclude that NRC better takes advantage of the 1021

non-trivial components to infer. 1022

Conditional Method Using the conditional prob- 1023

ability of PPL (MutualInfo-QA) is a conventional 1024

way to mitigate the lexical bias in PPL calculation 1025

(Niu et al., 2021). Namely, p(A|Q)
p(A) is used instead 1026

of p(A) for inference. p(A) is divided to reduce 1027

the effect of the lexical property of the answer. We 1028

experiment with MutualInfo-QA on CSQA, COPA, 1029

and SCT datasets. For comparison, we also adapt 1030

NRC to conditional NRC by using confidence as 1031

the probability to calculate p(A|Q)
p(A) . 1032

The results in Table 10 reflect the performance 1033

of conditional probability on three commonsense 1034

question answering datasets. Conditional NRC still 1035

outperforms other conditional metrics on all three 1036

Method CSQA ARCE ARCC

PPLGPT2-M 32.3 (-6.2) 38.9 (-5.5) 25.8 (-3.0)
PPLBERT 36.1 (8.1) 33.9 (-3.2) 24.2 (1.5)
PPLRoBERTa 42.0 (2.2) 38.3 (-5.9) 28.0 (0.9)
NRC 50.5 (5.5) 46.0 (-1.9) 35.4 (-1.7)

Table 12: Comparison among PLMs w/ PMI. Results
in bracket are the difference between answer-based
probability.

14



PPLGPT2-M; PPLBERT; PPLRoBERTa; NRC;

1st 2nd 3rd

20

40

ARCE

1st 2nd 3rd

20

30

40

ARCC

Figure 5: Ranks of PLM-based selection on easy and
challenging ARC.

datasets. On COPA and SCT, NRC significantly1037

benefits from using a conditional version, while1038

PPL only receives a minor improvement or even1039

a drop-down in performance. This shows the re-1040

moval of initial probability is beneficial to NRC1041

since the confidence might vary among different1042

consistent texts. The conditional probability of1043

NRC backfires on CSQA, which can be explained1044

by the length (1.5 on average) of answers on CSQA1045

datasets. As the answer is much shorter than the1046

text used for ELECTRA pre-training, the value of1047

p(A) will add much noise to the inference. In sum-1048

mary, while conditional probability occasionally1049

benefits PPL, it will benefit NRC more unless the1050

answer text is too short.1051

Unnormalized Logit One way to address the1052

constraint where candidate possibilities add up to1053

one is to directly use the logits before applying the1054

softmax layer. We evaluated the impact of using1055

unnormalized logits on model performance in Ta-1056

ble 11. The NRC model was not affected as it does1057

not use a softmax layer. When it comes to perplex-1058

ity, using unnormalized logits led to improved per-1059

formance for BERT, but decreased performance for1060

RoBERTa. For GPT2, the drop in performance was1061

even more significant, with a decrease of over 101062

points. Therefore, we can conclude that while un-1063

normalization may enhance reasoning performance1064

for certain types of perplexity-based reasoning, it1065

is not a universal solution.1066

PMI (Holtzman et al., 2021) introduces scoring-1067

by-premise and factors out the probability of spe-1068

cific surface forms to measure the probability of the1069

premise given the hypothesis. Although PMI was 1070

initially applied only to GPT2, we wanted to investi- 1071

gate its impact on the reasoning abilities of different 1072

PLMs, particularly bidirectional models. As PMI 1073

regularizes the answer probability by p(A|Q)
p(A|Qdomain)

, 1074

we compare the results with answer-targeted rea- 1075

soning. The results of this investigation are pre- 1076

sented in Table 12. The analysis of the table in the 1077

article shows that PMI affects PLMs differently de- 1078

pending on the model architecture and the dataset 1079

used for evaluation. All PLMs show a decrease in 1080

performance in at least one dataset when PMI is 1081

applied. These results suggest that PMI’s effective- 1082

ness in enhancing the reasoning abilities of PLMs 1083

may be model-dependent and dataset-dependent. 1084

E Rank of the Choice 1085

The accuracy only counts the matching between 1086

the golden answer and the first-rank choice. We 1087

show the ranking distribution of selected answers in 1088

Table 5 to further investigate the inference results. 1089

On the easy subsets of ARC, there does not exist 1090

a prominent advantage of NRC according to the 1091

second-rank choice rates. But when the questions 1092

become challenging, the rate of golden answers 1093

in the second rank rises, reflecting the superior 1094

capability of NRC in more challenging question 1095

answering. 1096
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