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ABSTRACT

Conceptual counterfactuals refer to hypothetical scenarios involving changes in a
high-level conceptual representation. In the realm of XAI, conceptual Counterfac-
tual Explanations (CEs) allow for more meaningful and interpretable modifications.
For instance, instead of explaining image predictions through superficial pixel-level
changes, the focus shifts to alterations in the underlying semantics. In this work,
we propose representing input data as semantic graphs to achieve more descriptive,
accurate, and human-aligned explanations. Furthermore, we introduce a model-
agnostic GNN-powered method to efficiently compute counterfactuals. We begin
by representing images as scene graphs and obtain appropriate representations
through GNNs to bypass solving the NP-hard graph similarity problem for all input
pairs, an integral part of the CE computation process. We apply our method to
widely-used datasets and compare our CEs with previous state-of-the-art explana-
tion models based on semantics, including both white and black-box approaches.
We outperform both approaches quantitatively and qualitatively, as validated by
human subjects, specifically when the graphs contain numerous edges, highlighting
the significance of capturing intricate relationships. Given the model-agnostic
nature of our approach and the generalizability of the graph representation, this
method is successfully extended to diverse modalities and classifiers, including
non-neural models. Additionally, it is proven consistent across generated anno-
tations, at least in the case of scene graph generation. Our approach is, to our
knowledge, the first to emphasize semantic graphs as a vehicle for CEs, allowing
the transition from low-level features to concepts. It uniquely leverages graph
matching GNNs as a XAI tool achieving efficient approximation and significant
acceleration in comparison to the exact Graph Edit Distance (GED) algorithm. It is
widely applicable and easily extensible, producing actionable explanations.

1 INTRODUCTION

The pervasiveness of deep learning applications combined with our lack of knowledge about the inner
workings of black-box AI systems has recently brought the importance of eXplainable AI (XAI) to a
critical juncture Arrieta et al. (2020). Cultivating trust between humans and machines necessitates
that individuals can comprehend and exert control over opaque systems, if not avoid them completely
Rudin (2019). One of the most instinctive forms of reasoning triggered in humans is counterfactual
thinking, i.e. imagining alternative scenarios that would have led to a change of outcome. To this
end, many recent XAI ventures are centered upon counterfactuals given their informative nature and
accessibility Guidotti (2022). Despite widespread human adoption of the provided explanation being
a desirable characteristic, it is insufficient in itself. Focusing on visual classifiers, many previous
feature attribution-based works emphasize finding, highlighting, and modifying impactful areas of an
image that lead to a different classification result, in a counterfactual manner (Goyal et al., 2019; Zhao
et al., 2021; Vandenhende et al., 2022; Augustin et al., 2022) or not (Ribeiro et al., 2016; Selvaraju
et al., 2017; Adebayo et al., 2018). No matter how attractive these approaches may seem, they often
do not showcase the whole truth. For example, marking just pixels corresponding to a bird’s wing to
justify class prediction as in Goyal et al. (2019) or Vandenhende et al. (2022), not only disregards the
existence of numerous other differences between bird species but also does not meaningfully explain
what edits need to be made to guarantee the transition to the other class.

In the interest of more complete, realistic, and actionable CEs, we leverage a high-level
representation of input data. Following the claim that ‘there is no explanation without
semantics’, as has been theoretically and experimentally proven (Browne & Swift, 2020),
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Figure 1: Graph edits as CEs
for predicted classes A and B.
Colored nodes denote the mini-
mum number of concepts to be
inserted, deleted or substituted
to perform the A →B transition.
Edge types are omitted.

we base our method on a semantic standpoint, avoiding the task
of assigning meaning to individual layers of a neural network or
isolated pixel areas within images. Building upon recent works
that represent images as sets of concepts or attributes (Filandrianos
et al., 2022; Abid et al., 2022; Dervakos et al., 2023), we go one
step further and additionally model relations between depicted
concepts as a graph. For instance, in Fig 1 (top) we present the
graph corresponding to a Parakeet Auklet, which consists of bird
parts and their respective attributes. The graph representation
enables us to tap into the inherent structure of the data and preserve
valuable semantic information. These semantics can align with
external ontological knowledge, establishing that concepts such as
’white’ and ’black’ as colors are more closely related to descriptors
like ’striped’ than to specific bird parts like ’leg’. The general
nature of the graph structure makes this framework applicable to
any modality with accompanying annotations and thus extensible
to corresponding predictors, i.e. audio classifiers. Despite its
dependence on annotations, our method maintains consistency in
drawing global conclusions, regardless of the annotation tool.

In terms of our CE process, similar to the Semantic Counterfactuals (SC) of Dervakos et al. (2023),
we focus on counterfactual retrieval of the most semantically similar instance in the target class but
define similarity through graph edit distance (GED) computation. Once the counterfactual image is
obtained, the explanation can be served to humans as in Fig. 1 (bottom graph). Since CEs are sampled
from the existing data distribution and calculated considering all necessary edits from query to target
image, our explanations are always actionable. Despite its merits, however, GED does belong in the
NP-hard complexity class. To this end, we offer building a graph similarity Graph Neural Network
(GNN) model to approximate it; thus effectively computing it using only about half of the input pairs
and ultimately calculating only one edit path per query image after retrieval. Finally, the proposed
method is black-box, eliminating the need for peeking inside the classifier. The versatility of our
framework is a significant advantage, as it allows for post-hoc explanations of virtually any model
capable of labeling instances, without compromising its performance when explaining a specific
model.

To summarize, the contributions of our method can be grouped as such: a) more interpretable
and semantically meaningful CEs because of semantic graphs, b) increased flexibility due to its
model-agnostic nature, combined with competence against other black- and white-box techniques,
c) improved efficiency through GNN approximation of GED, and d) actionability. Our approach
is the first to employ graphs and GNNs for counterfactual retrieval; presented results are assessed
across four diverse datasets (images and audio) with three neural classifiers and one experiment on
explaining human decision, involving two human surveys, and four experiments with quantitative and
qualitative guarantees, achieving superior performance and runtime compared to SOTA algorithms.

2 RELATED WORK

Counterfactual explanations In visual classifier interpretability, recent research has increasingly
favored counterfactual approaches. Pixel-level edit methods focus on marking and altering significant
image areas to influence the model’s predictions (Goyal et al., 2019; Vandenhende et al., 2022;
Augustin et al., 2022); some even leveraging advanced generative techniques. Contrary to other feature
extraction counterfactual methods, the Counterfactual Visual Explanations (CVE) of Vandenhende
et al. (2022) attempt to enforce semantically consistent area exchanges through an auxiliary model
for semantic similarity prediction between local regions. Their semantics-centered approach lies
closest to ours, which is geared towards human-interpretable concept edits (Filandrianos et al., 2022;
Abid et al., 2022; Dervakos et al., 2023). Abid et al. (2022) propose conceptual CEs in the event of
a misclassification. Their method requires white-box access to the model and therefore suffers in
the same way as the majority of visual CEs. In contrast, our approach emphasizes a model-agnostic
perspective. We adopt the definition of concepts as objects or relations linked with ontological
knowledge, semantically enriching the model as in previous works (Alirezaie et al., 2018; Zhao et al.,
2021). In contrast to Filandrianos et al. (2022) who leverage Set Edit Distance as a proxy, ignoring
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Figure 2: Outline of our method (for image classifiers). The depicted stages directly correspond to
Sec. 3 paragraphs. Class labels predicted by given classifier are: A - query, B - target, Cx, Cy - any
class, others - random class instances. Graph G′

(B) corresponds to counterfactual image I ′(B).

edges of the semantic graph, and SC (Dervakos et al., 2023) who extend the previous approach by
rolling up the edges into concepts, sacrificing crucial object relation information, we use the more
accurate GED. We build upon SC by introducing semantic graphs for increased expressivity, and use
GNNs for the acceleration of GED calculation. While our method is also domain-agnostic, this paper
centers on the visual domain and later extends to other modalities. Finally, our approach has the key
novelty that it harnesses the capabilities of GNNs to provide CEs, in contrast to existing literature that
focuses on the inverse task of explaining GNNs themselves (Bajaj et al., 2021; Lucic et al., 2022).

Graph similarity Given the computational complexity of methods such as graph edit distance
(GED) (Sanfeliu & Fu, 1983), using approximation algorithms is a practical choice. Fankhauser et al.
(2011) introduced a GED approximation that combines the Jonker-Volgenant assignment algorithm
with a bipartite heuristic leading to significant speedup, which we adopt for the fast computation
of GED during training. Considering neural approaches, the ones relevant to our work leverage
GNNs (Bai et al., 2019a;b; Li et al., 2019; Ranjan et al., 2022). These techniques commonly involve
training two identical GNNs using graph pairs as input and their similarity to compute loss. As our
paper focuses on embedding extraction to facilitate CEs instead of the similarity itself, we draw
inspiration from previous approaches in implementing our GNN model, by adopting the ideas of
Siamese GNNs, graph-to-graph proximity training and Multi-Dimensional Scaling as loss (Bai et al.,
2019b) to preserve inter-graph distances in the embedding space.

3 METHOD

Since the majority of our experiments are conducted with visual classifiers, we will illustrate our
framework within this domain. Given a query image I(A) belonging to a class A, a conceptual CE
entails finding another image I ′(B) ̸= I(A) belonging to a class B ̸= A, so that the shortest edit path
between I(A) and I ′(B) is minimized. Even though there are different notions of distance between
images, we select a conceptual representation, employing scene graphs to represent objects and
interactions within images. To this end, the problem of image similarity ultimately reduces to a graph
similarity challenge. However, graph edits (insertions, deletions, substitutions) as a deterministic
measure of similarity between two graphs G(A) and G′

(B) is an NP-hard problem. Optimal edit
paths can be found through tree search algorithms with the requirement of exponential time. When
searching for a counterfactual graph to G(A) among a set of N graphs, GED needs to be calculated
N − 1 times. To minimize the computational burden, we use lightweight GNN architectures that
accelerate the graph proximity procedure by mapping all N graphs to the same embedding space.
By retrieving the closest embedding to G(A) that belongs to a different class B ̸= A, GED should be
computed only once per query during the retrieval stage. Concretely, we approximate the following
optimization problem for semantic graphs extracted from any input modality:

GED(min|G(A),G′
(B)|), such that A ̸= B (1)

Ground Truth Construction As our overall approach does not rely on pre-annotated graph
distances and semantic relationships, we propose a technique to construct well-defined ground truth
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instances. The graph structure of data imposes the requirement of defining an absolute similarity
metric between graph pairs for the training stage. GED is regarded as the optimal choice despite
its computational complexity; computing GED for only N/2 pairs to construct the training set is
adequate for achieving high quality representations, as validated experimentally. To further facilitate
GED calculation, we exploit a suboptimal algorithm utilizing a bipartite heuristic that accelerates an
already effective in practice LSAP-based algorithm for GED (Jonker & Volgenant, 1987; Fankhauser
et al., 2011). Consequently, semantic information of nodes and edges should guide graph edits based
on their conceptual similarity. Thus, we choose to deploy the technique proposed in SC (Dervakos
et al., 2023) to assign operation costs based on conceptual edit distance, as instructed by the shortest
path between two concepts within the WordNet hierarchy (Miller, 1995).

GNN Training To accelerate the retrieval of the most similar graph G′
(B) to graph G(A), we build a

siamese GNN component for graph embedding extraction based on inter-graph proximity. The GNN
comprises two identical node embedding units that receive a random graph pair (G(Cx),G′

(Cy)
) as

input (Cx, Cy can be any class). The extracted node representations are pooled to produce global
graph embeddings (hG(Cx)

,hG′
(Cy)

). Embedding units consist of stacked GNN layers, described by
either GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017) or GIN (Xu et al., 2018). We
formalize GCN graph embedding computation in Eq. 2 (omitting class notation for simplicity):

hG =
1

n

n∑
i=1

(uK−1
i +

∑
j∈N (i)

uK−1
j ) (2)

where ui is the representation of node i, N (i) is the neighborhood of i, n is the number of nodes for
G and K is the number of GCN layers. To preserve the similarity of vectors (hG(Cx)

,hG′
(Cy)

), we
adopt the dimensionality reduction technique of Multi-Dimensional Scaling (Williams, 2000), as
proposed in Bai et al. (2019b). The model is trained transductively to minimize the loss function L:

L = E(
∥∥∥(hG(Cx)

− hG′
(Cy)

∥∥∥2
2
−GED(G(Cx),G

′
(Cy)

)) (3)

Graphs are embedded in a lower dimensional space by choosing a random subset of N !
2(N−2)! pairs

with varying cardinality p. The node features initialization is significant with regard to semantic
similarity preservation; thus, we use GloVe representations (Pennington et al., 2014) of node labels.

Ranking Stage and Counterfactual Retrieval Once graph embeddings have been extracted, they
are compared using cosine similarity as a metric in order to produce rankings. For each query image
I(A) and subsequently its scene graph G(A), we obtain the instance G′

(B) with the highest rank given
the constraint that I ′(B) belongs in a class B ̸= A. Image I ′(B) is proposed as a counterfactual
explanation of I(A) since it constitutes the instance with the minimum graph edit path from it, which
is classified in a different target category B. Specifically, we retrieve a scene graph G′

(B) as:

G′
(B) = Gi

(B), argmax
i

(
hGi

(B)
· hG(A)∥∥∥hGi

(B)

∥∥∥∥∥hG(A)

∥∥ ) if A ̸= B, i = 1, ..., N (4)

The choice of target class B is strongly correlated with the characteristics of the dataset in use and
the goal of the explanation itself. To be precise, if the data instances have ground truth labels, the
target class could be defined as the most commonly confused one compared to the source image class,
as in Vandenhende et al. (2022). Another valid choice would be to arbitrarily pick B to facilitate a
particular application, i.e. explanation of classifier mistakes, in which case B is the true class of the
query image, as in Abid et al. (2022). We utilize the first approach when class labels are available;
otherwise, when no ground truth classification labels exist, we propose defining the target class as the
one with the most highly ranked instance classified differently than source image I(A).

4 EXPERIMENTS

In the following experiments, we present results involving p ∼ N/2 training graph pairs and the
GCN variant unless mentioned otherwise. We produce graph representations using a single Tesla
K80 GPU, while all other computations are done on CPU. We utilize PyG (Fey & Lenssen, 2019) for
the implementation of the GNN and DGL (Wang et al., 2019) for approximate GED label calculation.
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Evaluation comprises quantitative metrics, as well as human-in-the-loop experiments. Quantitative
results are extracted by comparing the ranks retrieved based on our obtained graph embeddings to the
ground truth ranks retrieved by GED, thus reporting average Precision@k (P@k) and NDCG@k. In
this case, all top-k GED retrieved results are considered relevant and equally weighted for NDCG
computation. We also design two variants of these metrics which exclusively regard the top-1 GED
result as relevant and the rest as irrelevant, denoting them as ’binary’. Comparison between different
CE methods is achieved through average number of edits. Edits are defined as node/edge insertions,
deletions, and substitutions with different concepts. To ensure a fair comparison, edits for all methods
are calculated post-hoc through GED, as it provides a complete and comprehensive definition of edit
distance. This is necessary because direct comparison with pixel-based methods is not feasible due to
the different definitions of units of information (significant rectangular areas vs concepts).

The human evaluation highlights several aspects of our contributions. First, comparison with prior
state-of-the-art is necessary to validate the quality of our retrieved CEs. To this end, we ask our
evaluators to select among two counterfactual alternatives of a query image. Those alternatives
involve an image retrieved from our framework versus an image retrieved either by SC (Dervakos
et al., 2023) or CVE (Vandenhende et al., 2022). Moreover, we evaluate the understandability of
our CEs by replicating the machine-teaching human experiment of CVE, adjusted to accommodate
our graph-based explanations: we design three teaching stages, pre-learning, learning, and testing,
and we equally divide our annotators into two independent learning stage variants, namely ’visually-
informed’ and ’blind’. During pre-learning, we present 10 images and ask annotators to classify them
in anonymized classes A and B, or select ’I do not know’. In the ’visually-informed’ learning stage,
we showcase 10 different counterfactual image pairs retrieved from our method, accompanied by their
scene graphs and the graph edits performed to transit from query class A to target class B. On the
other hand, the annotators of the ’blind’ learning stage are only provided with scene graph pairs and
graph edits but no images. This way, we aim to measure the reliance of humans on concepts present
on graphs rather than visual information. Finally, in the testing stage, we assess how informative
our CEs were for humans in order to discriminate between classes A and B, by evaluating their
classification of each image (same as pre-learning). In all cases, our annotators are student volunteers
of engineering backgrounds. More details regarding human experiments are provided in Appendix A.

Experiment objectives Comparison with CVE showcases the abilities of our model-agnostic
approach compared to theirs, which requires white-box model access and relies on pixel-level edits.
On the other hand, comparison with SC demonstrates the power of graph representations compared
to set-level edits in the black-box conceptual setting. An important clarification is that SC proposes
the use of roles only in the corresponding experiments of Sec. 4.3, meaning that for Sec. 4.1, 4.2 they
rely solely on depicted concepts. More details are provided in Appendix C, D, E.

4.1 COUNTERFACTUALS ON CUB

We apply our approach on the Caltech-UCSD Birds (CUB) (Wah et al., 2011) dataset. CUB does not
provide ground truth scene graphs; nonetheless, they can easily be constructed by leveraging given
structured annotations. In summary, we create a central node to represent the bird and establish ’has’
edges connecting it to all its parts. Each part is then linked to its respective attributes using edges
labeled with the corresponding feature type (color, shape, etc.). To achieve consistency with CVE we
utilize ResNet50 (He et al., 2015) as the classifier under explanation.

Table 1: Average number of
node, edge & total edits on
CUB. Bold for best results.

Node↓ Edge↓ Total↓
CVE 8.43 4.70 13.13
SC 8.07 3.66 11.73

Ours 6.16 4.34 10.5

Quantitative results We examine the agreement between the coun-
terfactual images I ′(B) retrieved by each method (CVE, SC, ours)
and the ground truth GED, which serves as the golden standard.
Our approach outperforms CVE for every ranking metric (Tab. 2).
Regarding SC, metrics are only valid for k = 1 since it produces a
single CE instead of a rank. Therefore, P@1 for SC is 0.022, much
lower than ours. In addition, we observe that our approach leads to
the lowest number of overall edits: In Tab. 1, we can see that our
method produces 10.5 node/edge distortions on average, which is
about 1 less edit than SC and 2 fewer edits than CVE, strengthening
the claim that our CEs correspond to minimum-cost edits.
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Table 2: Comparison of counterfactual retrieval results with ground truth GED rankings on CUB.

P@k↑ NCDG@k↑ P@k (binary)↑ NCDG@k (binary)↑
k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

CVE 0.019 0.069 0.103 0.639 0.702 0.730 0.019 0.043 0.112 0.110 0.172 0.264
Ours 0.194 0.247 0.341 0.645 0.717 0.737 0.194 0.306 0.488 0.227 0.281 0.361

Figure 3: CE results between classes Rusty →
Brewer Blackbird. Colored numbers denote
best results (lower values).

Qualitative results for CUB are presented in Fig.
3 for three images of class A (Rusty Blackbird), ac-
companied by the number of edits and GED needed
to transition to class B (Brewer Blackbird). Overall,
our approach produces the fewest concept edits. SC
leads to clear fallacies like suggesting CEs with ad-
ditional birds (SC, left), or with a portion of the bird
in view (SC, middle); thus leading to unnecessary
costly edits - deletions and additions respectively. In
contrast, our model mitigates such errors by utilizing
graphs, where concept instances are uniquely tied
to nodes, and their interconnections strongly guide
graph similarity through GED, ultimately producing
a more accurate and expressive notion of distance
than flat unstructured sets. CVE generally fails in
finding CEs conceptually similar to the query I(A),
as highlighted by the elevated number of edits. This
pixel-level approach avoids SC’s mistakes to an ex-
tent by implicitly taking visual features like zoom
into account. However, it offers no semantic guaran-
tees, unlike our well-defined GED-based approach.

Table 3: Human Evaluation prefer-
ence; Win% = % times our method
was preferred, Lose% for vice-versa,
Tie% when equally preferred.

Ours Win% Lose% Tie%
SC 48.86 19.32 31.82

CVE 48.42 26.27 25.31

Table 4: Human test accuracy scores
for correct classification of samples in
classes A and B.

Experiment Test acc.%↑
Ours (visually-informed) 93.88

Ours (blind) 89.28
CVE 82.1

Human evaluation Analyzing the results from the com-
parative human survey (Tab. 3), we deduce that our CEs
are more human-interpretable than both SC and CVE by
a landslide: annotators prefer our CEs at nearly twice the
rate of the CVE alternative. Compared to SC, despite the
increased amount of undecided annotators, our CEs were
preferred 2.6 times more frequently. This observation proves
that despite the closeness of the two concept-based methods,
ours is more intuitive to humans, confirming the meaningful
addition of linking concepts as part of a graph. As for the
machine-teaching experiment, we obtain the test set accuracy
scores (Tab. 4), as the ratio of correctly human-classified test
images over the total number of test images. Our visually-
informed accuracy clearly outperforms reported scores of
CVE, highlighting that concept-based CEs are more power-
ful in guiding humans towards understanding discriminative
concepts between counterfactual classes compared to non-
conceptual pixel-level CEs. The ”blind” results show an ex-
pected accuracy decrease compared to the visually-informed
one, but still outperform those obtained by CVE. The higher accuracy of concept-based over visual
CEs affirms the significance humans place on higher-level features for classification.

Actionability concerns CVE may lead to non-actionable CEs, despite training on visual semantic
preservation. To illustrate with an example, we observe the following: CVE suggests that the sole
addition of a striped pattern in a Gray Catbird’s wing is adequate to classify it as a Mockingbird.
However, by exhaustively generating all annotated attribute combinations of this new bird instance,
we easily find several occurring attribute pairs that are not representative of the Mockingbird class;
namely, no other Mockingbird has an eyering head pattern and grey breast color. This strongly
contrasts with CEs retrieved by our method. Actionability dictates the prescription of attainable goals
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achieved through CEs that accurately represent the underlying data distribution (Poyiadzi et al., 2020).
To this end, our approach not only selects CEs drawn from the existing target class distribution but
also considers all edits needed to convert query to counterfactual image. Therefore, we formalize
a more holistic approach to the distance and path between counterfactual pairs and simultaneously
leverage existing relations between depicted objects, both visual (relations on the image) and semantic
(relations mapped to WordNet synsets). More details are presented in Appendix E.3.

4.2 TOWARDS CONCEPTUAL COUNTERFACTUALS

We focus our analysis on conceptual counterfactuals since the previous sections exhibited the
indisputable merits of relevant approaches by outperforming the SOTA pixel-level method of CVE in
every aspect. In the interest of extending our method to a less controlled dataset, we employ Visual
Genome (VG) (Krishna et al., 2017), a dataset containing over 108k human-annotated scene graphs,
describing varying scenes of multiple objects and their in-between interactions. We construct two
manageable subsets of 500 scene graphs each, which correspond to ∼125k possible training graph
pairs for our GNN models. The first subset is randomly selected and denoted as VG-RANDOM, while
the second one is chosen to favor higher graph densities and less isolated nodes, so as to highlight the
expressive power of object interconnections. We denote this second subset as VG-DENSE. Details
are provided in Appendix B. VG instances lack ground truth classification labels, allowing us to
test our counterfactual retrieval method without the hard definition of a specific target class. We
assign ground truth labels using a pre-trained Places365 classifier Zhou et al. (2017), and regard as
counterfactual classes the closest ones in rank.

Table 5: Average number of node, edge & total edits on VG.

VG-DENSE VG-RANDOM
Node↓ Edge↓ Total↓ Node↓ Edge↓ Total↓

SC 4.91 7.29 12.2 12.15 7.52 19.67
Ours 4.95 7.15 12.11 12.18 7.54 19.72

Quantitative Results We first com-
pare the average number of edits for
our method and SC, as displayed in
Tab. 5. Initially, numerical results be-
tween the two methods seem similar.
However, it is visible that our method
exhibits superior performance in sce-
narios with dense relations (VG-DENSE) as enforced by the lower number of edge edits compared
to SC. Since SC disregards high-level relations (by rolling up roles into their concepts) it returns
instances with significantly greater semantic distance, as reinforced by Table 13 in the Appendix.

Regarding CE approximation to ground truth GED, results for our approach are presented in the
rows of Tab. 6 denoted as GCN-70K. As for SC, we report that they achieve P@1 scores of 0.246 on
VG-DENSE and 0.204 on VG-RANDOM, compared to 0.248 and 0.214 retrieved by our method.
We deduce that GED approximation is satisfactory for both methods, with ours taking the lead.
The closeness of overall results places great significance in human perception for this experiment;
therefore, the following qualitative results demonstrate the advantages of our approach.

Figure 4: Qualitative results: VG-DENSE (left 3 columns) and VG-RANDOM (right 3 columns).

Qualitative results Through the examination of counterfactual images retrieved for VG-DENSE in
Fig. 4(left), there is a clear indication that by considering the complex relations between concepts, our
method leads to more detail-oriented results. Specifically, in the 1st column, our approach not only

7



Under review as a conference paper at ICLR 2023

retrieves an image with ’man’, ’board’, and ’water’ concepts, but also containing the relation ’man on
board’. In the 3rd column, we take the relation of toppings into consideration and retrieve the pizza,
while SC simply retrieves an image with concepts similar in nature, like ’bun’ and ’bread’ or ’meat’
and ’sausage’. Results on VG-RANDOM (Fig. 4 (right)) follow the same logic. In columns 4 and 5,
our method retrieves the focal points of the images since it considers relations between palm trees and
elephants respectively. Taking into account the sparsity of the underlying graphs, however, in some
cases the importance of concepts trumps the underlying structure, as in the 6th column. This fact is
reflected in the elevated number of edits of our method for VG-RANDOM, however not always true
for GED, showcasing the importance of semantic context. Corresponding graphs are in Appendix E.

Why GCN? Comparison of GNN models in terms of ranking metrics is provided in Tab. 6. Three
GNN variants (GAT, GIN, GCN) are trained using p = N/2 =70k scene graph pairs. The GCN-based
counterfactual model consistently approaches GED the closest, with a binary P@4 of 49.0% and
P@1 of 24.8% for VG-DENSE and slightly worse results on VG-RANDOM. This ablation study
affirms using GCN for the GNN-based similarity component of our approach. We further report that
GNNs outperformed other prominent deterministic methods, like graph kernels; results of which
can be found in the Appendix D. The reported findings grant us the security that our counterfactual
explanations are trustworthy, even when applied to complex scene graphs.

Table 6: Ranking results on the two VG variants for different graph-based models.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
Models k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

VG-DENSE
GIN-70K 0.162 0.199 0.268 0.659 0.669 0.695 0.162 0.244 0.380 0.201 0.257 0.340
GAT-70K 0.178 0.252 0.316 0.700 0.706 0.720 0.178 0.304 0.436 0.216 0.271 0.352
GCN-70K 0.248 0.295 0.372 0.742 0.734 0.747 0.248 0.364 0.490 0.280 0.330 0.405

VG-RANDOM
GAT-70K 0.184 0.244 0.288 0.696 0.696 0.713 0.184 0.292 0.380 0.112 0.174 0.266
GIN-70K 0.030 0.041 0.065 0.569 0.586 0.628 0.030 0.046 0.068 0.222 0.277 0.357
GCN-70K 0.214 0.249 0.300 0.697 0.701 0.715 0.214 0.300 0.418 0.250 0.302 0.380

4.3 EXTENDABILITY OF GRAPH-BASED COUNTERFACTUALS

The flexibility of our approach is proven under two separate scenarios: a) the application on unanno-
tated images, b) the expansion into other modalities. For direct comparison to SC we provide global
CEs by averaging overall graph triple edits (additions, deletions, substitutions).

Figure 5: Graph edits (triples inserted/ deleted) to
implement the ’pedestrian’ → ’driver’ transition.

Unannotated datasets We replicate Dervakos
et al. (2023)’s experiment on explaining the clas-
sification of web-crawled images into the cate-
gories ’driver’ and ’pedestrian’. Here, the au-
thors served as manual classifiers; thus, we ex-
plain a non-neural classifier (details in Appendix
H). By employing the SOTA scene graph gen-
erator (SGG) of Cong et al. (2023) we extract
global edits from generated graphs for the tran-
sition from ’pedestrian’ to ’driver’, as presented
in Figure 5(left). Their relevance is verified by
our common sense. For instance, people wear
helmets when driving - addition of (helmet, on,
head) and (man, on, bike) - and cover the bike
seat with their body - deletion of (seat, on, bike).
To validate our method’s consistency across other
annotation techniques, we replace the SGG with a
captioning to graph-extraction-from-text pipeline, employing BLIP (Li et al., 2022) and Unified VSE
(Wu et al., 2019) in that order. We confirm that resulting edits (Figure 5 (right)) semantically resemble
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the ones produced using the SGG annotation process. The contribution of the graph structure is
not lost in this experiment either. More accurate local edits are once again achieved through the
consideration of the multiplicity of objects and relations.

Table 7: Global edits
for COVID-19 Nega-
tive → Positive.

Concepts Norm.
Counts

’Sneezing’ 1.0
’RunnyNose’ 0.78
’DryThroat’ 0.35
’Fever’ 0.34
’Dizziness’ 0.31

Audio classification While our primary focus is on images, we demonstrate
our method’s model-agnostic nature by applying it to other modalities, such
as audio features following Dervakos et al. (2023). We provide CEs for the
IEEE COVID-19 sensor informatics competition winner 1 trained on a subset
of the Coswara Dataset, which predicts COVID-19 from cough audio. Our
implementation relies on the Smarty4covid dataset Zarkogianni et al. (2023).
Our analysis aligns with findings from the SC paper: It reveals that the
most frequent alterations pertain to symptom-related concepts, particularly
respiratory symptoms in Tab. 7, and uncovers the reported gender bias of
the training dataset which includes more COVID-positive women than men.
Note that presented edits are all additions and in the form (’User’, ’symptom’,
X) where X is an element of Tab. 7. A longer list is in Appendix G.

4.4 EFFICIENCY OF GRAPH-BASED COUNTERFACTUALS

Time Performance for Counterfactual Retrieval We exper-
imentally confirm that our method allows for efficient counter-
factual retrieval. In Tab. 8, we report execution times for coun-
terfactual computation on the complete sets of graphs using GED
(Fankhauser et al., 2011) versus our GNN-powered approach. We
further report retrieval and inference time of our method. Even by
adding times for all GCN-N/2 operations, we significantly relieve
the computational burden of calculating the ground truth GED
for all graph pairs, especially for larger graphs.

Figure 6: P@k of GCN variant
for different training pairs p.

Table 8: Time (sec) for counterfactual calculation. Training
time is reported due to the transductivity of the GNN method.

GED↓ GCN-N/2
(train)↓

GCN-N/2
(retr.)↓

GCN-N/2
(infer.)↓

CUB 46220 32691 0.033 0.060
VG-DENSE 13982 12059 0.033 0.063

VG-RANDOM 18787 16271 0.029 0.099

Performance-complexity trade-off In Fig. 6, we examine how precision varies using different
numbers of training pairs p. The consistency of behavior exhibited over 70K pairs concludes our
claim that N/2 training pairs are adequate for appropriate graph embedding using GCN.

5 CONCLUSION

In this paper, we proposed a new model-agnostic approach for counterfactual computation based
on conceptual semantics and their respective relations. We leveraged the expressive power of scene
graphs for image representation and suggested counterfactual retrieval by GED calculation. To this
end, we used a GNN-based similarity model to accelerate the retrieval process, which would otherwise
rely on solving an NP-hard problem for all input graph pairs. Comparison with previous counterfactual
models proved that our explanations correspond to minimal edits and are more human interpretable,
especially when interactions between concepts are dense, while still ensuring actionability. We further
confirmed the applicability of our framework on image datasets with no annotations at all, utilizing
scene generation techniques, as well as on audio data. As future work, we plan to explore potential
limitations such as robustness and the impact of low quality annotations, in the setting of conceptual
CEs, as well as further improve efficiency by employing unsupervised GNN methods for reduced
training time, or by ensuring inductivity and in turn offline training.

1https://healthcaresummit.ieee.org/data-hackathon/ieee-covid-19-sensor-informatics-challenge/
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REPRODUCIBILITY STATEMENT

All the experiments detailed in this work are entirely reproducible. You can find an overview of our
method in Section 3. The experimental configurations are outlined in Section 4, including further
details in Section C of the Appendix, which also includes specific hyperparameters used for the GNN
component. We have made the complete code available in a zip file, accompanied by a comprehensive
README to guide its usage. Furthermore, additional data and results can be accessed through an
anonymous URL, provided within the README.
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A HUMAN EVALUATION DETAILS

A.1 PARTICIPANTS AND CONSENT

We distributed an information sheet describing the goals and stages of our human surveys to software
engineering students online. We clarified that their participation would be voluntary and without any
form of compensation. We additionally distributed the following form to obtain annotators’ consent
in the form of a checklist. We used the same form both for the machine teaching as well as the
counterfactual preference experiment. The 33 people who ultimately participated were young adults
of ages 19-25 both male and female, without any knowledge of bird species.

Figure 7: Screenshot of the consent form for human evaluation. Our annotators fill out this form
before they proceed with annotations.

Our human survey was completely anonymous and we did not record any type of personal data from
our annotators.

A.2 1ST EXPERIMENT: COMPARATIVE HUMAN SURVEY

In Fig. 8, we present a screenshot of the platform we provided to our evaluators for the comparative
user survey. Users are asked to select a sample to annotate, as shown in the panel of Fig. 9. We ensured
that our evaluators can clearly view the images and their details by providing ’zoom-in’/’zoom-out’
tools, as well as the ability to navigate within the image with the ’pan’ and ’move’ options.

An annotator can click on any sample to be annotated, thus moving to a screen such as the one of
Figure 9. The source image is presented on the left, and the two alternative options (ours versus a
counterfactual image of CVE (Vandenhende et al., 2022) or SC (Dervakos et al., 2023)) are placed
in the middle and the rightmost column. These options are shuffled in each sample, so that no bias
towards each choice is created. Only one of the options (”Image 1”, ”Image 2” or ”Can’t tell”) can be
selected for each sample.

In this first human experiment, our annotators can evaluate as many samples as they wish; however,
they cannot update an existing annotation. All 33 annotators participated in this experiment.

A.3 2ND EXPERIMENT: MACHINE-TEACHING HUMAN SURVEY

We once again employ the same platform as for the previous human experiment. However, this time
each annotator can only evaluate one single sample; we enforce this restriction to clearly evaluate the
contribution of the learning phase, excluding situations that an annotator could have become more
’competent’ after passing many times through the learning phase.
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Figure 8: Screenshot of the platform provided for human evaluation.

Figure 9: Annotation panel with instructions and image navigation tools provided to the evaluators
for CUB.

The experimental workflow is adopted from Vandenhende et al. (2022), therefore we include all the
three stages (pre-learning, learning and testing).

Pre-learning stage In the pre-learning stage, users are presented with unlabeled images from the
test set to get familiarized with the nature of the images they will be tasked to classify later on. Fig.
10 is provided as an example of the pre-learning screen. The annotators become aware that the
classification to the anonymized classes A and B cannot be performed without passing through the
learning stage, therefore selecting ”I don’t know” is the expected option. In Fig. 10, we can explicitly
see the three options for image classification, namely ”Class A”, ”Class B” or ”I don’t know”. Only
one can be selected at a time, as in Vandenhende et al. (2022).

Learning stage The learning stage comprises the heart of this human experiment. As mentioned
in the main paper, we perform two variants of it to measure the degree of reliance on concepts,
according to human perception. A user can either participate in the ”visually-informed” or the ”blind”
experiment, but not both. This is necessary so that we exclude the possibility of evaluating the same
data sample in each of the experiments and thus eliminate the possibility of having some knowledge
transfer across the two variants of this experiment. Annotators are divided into equal subgroups (17
in the ”visually-informed” variant and 16 in the ”blind” one).

In the visually-informed variant, annotators are presented with training images from anonymized
classes A and B, together with their scene graphs, as shown in Figures 11, 12, 13. Of course, training
and test images do not overlap. Annotators are again provided with ’zoom-in’/’zoom-out’, ’pan’,
’move’ tools, etc. to navigate within the images and the accompanying scene graphs.

Training images on the left always belong to class A, while images on the right always belong to
class B. Scene graphs on the right also contain the edits needed to perform the A → B transition,
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Figure 10: Pre-Learning stage instructions for CUB machine teaching experiment. Choices are ”Class
A”, ”Class B” or ”I don’t know”.

with green nodes representing concept additions, blue nodes indicating concept substitutions (both
source and target concepts of the substitution are shown), and red nodes denoting concept deletions.
The rest of the nodes imply that the corresponding concepts remain the same between the two classes.

A user implicitly focuses on the most frequent insertions, substitutions, and deletions performed
throughout the training stage to understand the discriminative features between class A and class B.
Associating such concepts with the images helps mapping graph edits to visual differences so that the
user learns to separate classes visually and conceptually.

In the blind variant of the learning stage, only scene graphs are provided, but no training images.
Also, the graph edits are presented to the users via colored nodes. This learning variant is a direct
analogy to the machine-teaching learning stage implemented by Vandenhende et al. (2022): in their
case, pixels corresponding to discriminative regions that act as explanations are provided, while the
rest of the bird image is blurred out. Therefore, annotators need to learn solely from the explanation
and mentally connect the corresponding concepts to existing visual regions of the testing images.
In our case, the derived explanations correspond to graph edits, therefore annotators have to learn
the discriminative concepts that are added, substituted, or deleted to perform the A → B transition.
However, since our learning setting is performed without any visual clue, we regard our blind learning
stage as being more difficult than the learning stage that Vandenhende et al. (2022) implement; our
annotators have to connect concepts with image regions, thus performing cross-modal grounding in
order to learn discriminative features.

Throughout the blind learning stage, we are able to measure the reliance on concepts rather than
pixels to learn to classify images of unknown classes. This experiment is important in order to
highlight how meaningful and informative conceptual explanations are to humans, so that they can
approximate a zero-shot classification setting.

Testing stage In the testing stage, users are provided with the same images as in the pre-learning
stage. No scene graphs are provided. Based on the previous stage, annotators should have learned
visual and conceptual differences between classes; therefore, they are tasked to assign an appropriate
class to each test image, by selecting either ”class A” or ”class B” for each of them. Contrary to the
pre-learning stage, the option ”I don’t know” is not provided.

After this stage, an accuracy score is extracted per user, based on their correct selections in the testing
stage. We then extract an average accuracy per user, which we report in Tab. 4 of the main paper. Our
average accuracy for the visually-informed experiment is 93.88%, indicating that in most cases users
are highly capable of recognizing the key concepts that separate the two given bird classes, grounding
them with visual information. As for the blind experiment, the average testing accuracy is 89.28%.
Being rather close to the visually-informed accuracy percentage, we can safely assume that concepts
are more than adequate towards teaching discriminative characteristics to humans, even if they lack
association with purely visual information. Both visually-informed and blind accuracy scores clearly
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Figure 11: Example of the visually-informed learning stage.

Figure 12: Example of the visually-informed learning stage.
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Figure 13: Example of the visually-informed learning stage.

outperform the accuracy scores reported in CVE, demonstrating that conceptual explanations are
more meaningful and informative to humans compared to pixel-level explanations.

Figure 14: Distribution of test accuracy for ma-
chine teaching human evaluation experiments.

Accuracy score distribution In Fig. 14, we
present a more detailed analysis of the accuracy
scores achieved by human subjects during the
testing phase of the machine teaching experi-
ment. It is apparent that scores peak at 0.9 and
1.0; thus, explanations produced by our method
are highly human-interpretable and beneficial
to perform classification. Comparison between
’visually-informed’ and ’blind’ results reveals
that the decrease in test accuracy for the exper-
iment without a visual aid is gradual.

Applicability of machine-teaching experi-
ment The machine-teaching experiment is pur-
posely run exclusively on the CUB dataset. To
highlight the merits of the learning phase: anno-
tators have no knowledge of bird species, there-

fore they can highly benefit from learning discriminative bird attributes, and then apply this new
knowledge in the testing phase. For example, none of the annotators knows the difference between a
Parakeet Auklet and a Least Auklet. Nevertheless, after the learning stage, they are able to recognize
the basic discriminative attributes, which will help them classify instances of the test phase. On
the other hand, Visual Genome contains images of common everyday scenes, rendering a similar
experiment rather redundant in such instances. For example, a human already knows key concepts
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that discriminate a kitchen from a bedroom, therefore the learning stage would be of no value, even if
the scene labels are anonymized. We can view this scenario as an analog to data leakage.

Moreover, there is always a possibility that some concepts can be misleading. In such cases, we
expect visual classifiers to present a bias towards such concepts, while this is not the case for humans.
For example, a TV can be present in both kitchens and bedrooms. However, in a hypothetical
scenario that selected bedroom images have TVs, but kitchen images do not, the graphs that serve as
explanations would contain many ”add TV” nodes. Therefore, a human expects to classify images
containing TVs in one class, and images that do not contain TVs in the other (as a visual classifier
would do if trained on such data). But when finally humans are presented with real test images, they
will not be misled by the presence or the absence of TVs, but rather rely on their commonsense to
perform classification. Thus, not only is the learning stage redundant, but the obvious existing bias
”add TV” is not reflected in the final classification; in this case, the counterfactual explanation itself
would be of no value to humans.

B GRAPH STATISTICS

In Table 9 we present some statistics regarding the graphs of the datasets used in our work. VG-
DENSE and VG-RANDOM contain 500 graphs each, CUB contains 422 graphs, D/P-SGG and
D/P-CAPTION denote the web-crawled datasets of Section 4.3 with 259 graphs each and SMARTY
denotes the COVID-19 classification dataset with 548 graphs. Table 10 contains additional statistics
about datasets utilized only in the appendix. These are GQA (Hudson & Manning, 2019) with 500
graphs mentioned in Sec. D.3 and Action Genome (AG) (Ji et al., 2020) with 300 graphs mention
in Sec. F. The size and density of input data should be considered when viewing results in the
experimental section.

Table 9: Statistics regarding graphs of different datasets used in the main paper.

VG-
DENSE

VG-
RANDOM CUB D/P-

SGG
D/P-

CAPTION SMARTY

Mean

density 0.199 0.061 0.037 0.128 0.247 0.234
edges 9.042 8.768 27.519 9.367 1.756 4.398
nodes 7.252 14.566 28.519 9.733 3.197 5.398

isolated nodes 0.47 3.37 0 0.323 0.901 0

Max

density 0.467 0.667 0.111 1.0 0.5 0.333
edges 36 27 53 18 4 15
nodes 15 20 54 18 5 16

isolated nodes 3 12 0 3 4 0

Min

density 0.144 0.013 0.019 0.046 0.05 0.062
edges 5 5 8 1 1 2
nodes 6 4 9 2 2 3

isolated nodes 0 0 0 0 0 0

C EXPERIMENTAL SETTINGS

In addition to details regarding resources used for the experimental setup mentioned in the main
paper, we further report specific training configurations for GNN models. All presented results were
achieved using single-layer GNNs of a dimension of 2048, built as explained in Sec. 3 of the main
paper. For reproducibility purposes, we report that these models were optimized for a batch size of 32
and trained for 50 epochs, without the use of dropout. The employed optimizer was Adam without
weight decay. The respective learning rate varied among GNN variants. To be precise, we used a
learning rate of 0.04 for GCN and 0.02 for GAT and GIN. GAT and GIN also have model-specific
hyperparameters - attention heads and the learnable parameter epsilon respectively. Best results were
achieved by leveraging 8 attention heads and setting epsilon to non-learnable.

Last but not least, an important hyperparameter of the GNN models is the number of training pairs,
denoted as p. As explained, optimal models used p ≈ N/2, which varies among datasets. Specifically,
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Table 10: Statistics regarding graphs of different datasets in the appendix.

AG GQA

Mean

density 0.189 0.241
edges 13.227 8.144
nodes 8.84 6.66

isolated nodes 1.173 1.366

Max

density 0.45 1.0
edges 51 20
nodes 17 12

isolated nodes 2 15

Min

density 0.1 0.125
edges 4 5
nodes 5 4

isolated nodes 0 0

the parameter p is set to 70K for datasets with 500 graphs, 50K for datasets with 422 graphs, and
25K for datasets with 300 graphs. However, we also conducted ablations on the number of training
pairs, setting p to values reported in Fig. 5 of the main paper. In those cases, we explored using 16%,
40%, and 80% of the existent graph pairs, in addition to the ”golden” 50%.

Regarding graph kernels that were employed for comparison, we report that the Pyramid Match
kernel was used with its default settings. The settings include leveraging labels, a histogram level L
of 4, and hypercube dimensions d of 6.

The classifier in our CUB experiments (ResNet-50) was chosen in alignment to experiments performed
in the works compared and recreated here. As for the choice of the Places365 instead of a pretrained
ImageNet classifier, it was conscious. Despite the latte being potentially more widely recognized and
researched, it is trained on the ImageNet dataset, which primarily consists of foreground objects. In
Visual Genome, the majority of instances depict scenes, providing substantial background. Although
some instances focus more on specific objects, they are still situated within a particular environment.
In contrast, ImageNet classifiers face challenges with such inputs, as only about 3% of the target
classes in the corresponding dataset pertain to broader scenes. Classifiers for the rest of the datasets
are explained in detail in the following sections.

The code for all experiments is provided within the zip file of the supplementary material, accompa-
nied by comprehensive instructions.

D QUANTITATIVE EXPERIMENTS

D.1 GRAPH KERNELS

Graph kernels are kernel functions used on graphs that measure similarity in polynomial time,
providing an efficient and widely applicable alternative to GED. In the context of this paper, we
experimented with several kernels from the GraKeL library (Siglidis et al., 2020), as a baseline
measure for counterfactual retrieval. Our goal is to guarantee that our GNN framework outperforms
such methods. We present results from the best-performing kernel Pyramid Match.

Pyramid Match (PM) kernel The PM (Grauman & Darrell, 2007; Nikolentzos et al., 2017) graph
kernel operates by initially embedding each graph’s nodes in a d-dimensional vector space using the
absolute eigenvectors of the largest eigenvalues of the adjacency matrix. The sets of graph vertices are
compared by mapping the corresponding points in the d-dimensional hypercube to multi-resolution
histograms, using a weighted histogram intersection function. The comparison process occurs in
several levels, corresponding to different regions of the feature space with increasing size. The
algorithm counts new matches at each level - i. e. points in the same region - and weights them
according to the size of the level. The cells/regions double in size in each iteration of the algorithm.
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This procedure is applicable to graphs with node/edge labels; thus, we cannot leverage GloVe
embeddings for initialization. Matches exist only between points with the exact same label. The
overall complexity of the algorithm is O(ndL), which compared to other kernel methods is quite
computationally expensive.

Ranking results for VG using the PM kernel are presented in Tab. 11 (as an extension of Tab. 6
presented in the main paper). It is obvious that PM-kernel lacks the representational capacity offered
by GNNs, especially in comparison to our best performer, GCN-70K.

Table 11: Ranking results on the two VG variants for graph kernels vs our best performing GNN.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
Models k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

VG-DENSE
PM-kernel 0.132 0.134 0.174 0.651 0.657 0.678 0.132 0.186 0.258 0.191 0.248 0.331
GCN-70K 0.248 0.295 0.372 0.742 0.734 0.747 0.248 0.364 0.490 0.280 0.330 0.405

VG-RANDOM
PM-kernel 0.000 0.003 0.011 0.547 0.571 0.620 0.000 0.002 0.014 0.098 0.161 0.254
GCN-70K 0.214 0.249 0.300 0.697 0.701 0.715 0.214 0.300 0.418 0.250 0.302 0.380

D.2 AVERAGE GED

In addition to the average number of edits metric and the ranking metrics using the ground truth
GED as the golden standard, we present the average GED of the top-1 counterfactual results. This
supplementary measure serves to explicitly enhance comprehension of the significance of semantic
context. Notably, within the main paper, our qualitative results illustrate scenarios where, despite an
equal (or lower) number of edits, the GED can at times be higher. This divergence arises because
edits are not uniformly weighted but rather based on their semantic similarity.

Table 12: Average top-1 GED on CUB.

CUB
CVE 257.189
SC 263.795

Ours 211.687

Table 13: Average top-1 GED on VG.

VG-DENSE VG-RANDOM
Normal Refined Normal Refined

SC 105.92 128.669 161.368 186.770
Ours 104.368 122.411 159.722 180.674

Table 14: Refined average number of node, edge & total edits on VG.

VG-DENSE VG-RANDOM
Node↓ Edge↓ Total↓ Node↓ Edge↓ Total↓

SC 4.73 7.65 12.38 11.96 7.48 19.44
Ours 5.07 6.96 12.03 12.37 7.52 19.89

For the VG dataset, we present results comparing ”Normal” and ”Refined” outcomes, as shown in
Table 13. In this context, ”Refined” denotes presenting averages exclusively when the two methods
yield distinct counterfactuals. We adopted this approach due to the observation that 75% of CEs for
VG-DENSE and 73% for VG-RANDOM were identical between methods, creating an impression of
increased result proximity. To provide a comprehensive view, we also furnish more refined average

20



Under review as a conference paper at ICLR 2023

number of edits results in Table 14. Notably, for the CUB dataset, such an analysis is unnecessary;
nonetheless, we include the average top-1 GED in Table 12.

D.3 ADDITIONAL DATASETS

Ranking results for GQA The analysis performed on Visual Genome (VG) is extended on the
GQA dataset (Hudson & Manning, 2019). In fact, GQA comprises a variant of VG focusing on com-
positional question-answering involving real-world scenes. Since GQA images and accompanying
scene graphs are very similar to the ones involved in our VG analysis, the obtained results verify
the findings reported for VG without offering other novel insights. In Tab. 15 we present per-model
results for 70K training pairs. GCN remains the most powerful architecture compared to the other
ones, an observation validating the findings reported for the rest of the datasets.

Table 15: Ranking results on GQA for different graph models.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

PM 0.060 0.104 0.046 0.652 0.653 0.676 0.104 0.146 0.202 0.165 0.223 0.310
GIN-70K 0.156 0.244 0.285 0.697 0.699 0.721 0.156 0.274 0.392 0.195 0.252 0.335
GAT-70K 0.126 0.172 0.222 0.663 0.675 0.693 0.126 0.214 0.302 0.177 0.235 0.320
GCN-70K 0.188 0.286 0.341 0.725 0.730 0.740 0.188 0.332 0.478 0.221 0.276 0.356

Figure 15: Comparison of the GCN performance
measured in P@k for different number of training
pairs p for GQA.

Performance-complexity trade-off for GQA
In Fig. 15 we present the performance analysis
for different numbers of training pairs p on the
GQA dataset, focusing on our best-performing
model (GCN). Once again, N/2 ∼ 70K pairs
are adequate for learning proper representations
of scene graphs, validating our initial claim that
GED does not have to be computed for more
than N/2 graph pairs to obtain a satisfactory
approximation.

Ranking results for Action Genome are pre-
sented in Tab. 16, while number of edits for
Action Genome is presented in Tab. 17, both
for N/2 = 25K.

Table 16: Ranking results on AG.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

GCN-25K 0.167 0.212 0.266 0.695 0.702 0.718 0.167 0.26 0.41 0.211 0.266 0.348

Table 17: Average number of node, edge & total edits on AG.

Node↓ Edge↓ Total↓
GCN-25K 4.87 7.99 12.86

D.4 GLOBAL EDITS ON CUB

By aggregating edits from each image participating in the dataset, we can extract global edits: they
describe what needs to be changed in total to explain the transition from one class to the other. These
edits are more meaningful in the form of graph triples, but we can also provide concept or relationship
edits. In Figure 16a, we provide the triple edits to explain the Parakeet Auklet → Least Auklet
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counterfactual transition. Similarly, in Figure 16b we present global edits for concepts appearing on
CUB images. The results align with human perception.

(a) (b)

Figure 16: Triple and concept edits (insertions, deletions, substitutions) to perform Parakeet Auklet
→ Least Auklet transition.

E QUALITATIVE ANALYSIS

E.1 COUNTERFACTUAL GRAPH GEOMETRY ON CUB

Our framework is capable of retrieving counterfactual graphs that not only respect node and edge
semantics, but also graph geometry. This observation corresponds to more accurate retrieval capabili-
ties that focus on semantic information regarding bird species without being significantly distracted
from irrelevant characteristics such as the background. This can be an encouraging characteristic of
our counterfactuals towards more robust explanations, even though this aspect is not analyzed in the
current paper. First, we present a qualitative example of this claim. In Figure 17, we search for the
most similar image to 17a using the method of CVE and ours.

(a) Query image (b) Top-1 retrieved by CVE (c) Top-1 retrieved (ours)

Figure 17: A counterfactual explanation example.

Apparently, both counterfactual images are visually similar, as appearing in Fig. 17b and 17c.
However, the representation power of scene graphs becomes evident in this case. In Fig. 18 we
present the scene graphs corresponding one-to-one to the images of Fig. 17. The most similar graphs
of 18a correspond to the graph of 18b according to CVE and 18c according to our approach. It
is evident that our approach can successfully retrieve graphs that better respect the geometry of
the source image scene graph. Another observation is that our approach manages to retrieve an
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(a) Graph of class Parakeet Auklet corresponding to query
image of Fig. 17a.

(b) Counterfactual graph of target class Least Auklet
corresponding to Fig. 17b (as retrieved by CVE).

(c) Counterfactual graph of target class Least Auklet
for Fig. 17c (as retrieved by our GCN-70K).

Figure 18: Example of scene graph structures of counterfactual graphs for Parakeet Auklet → Least
Auklet class transition.

image without the concepts ’leg’ or ’tail’ which is more accurate compared to the source. Therefore,
structural similarity leads to better semantic consistency.

E.2 GRAPHS OF VISUAL GENOME

In Fig. 19 (VG-DENSE) and 20 (VG-RANDOM) we present the corresponding graphs to counterfac-
tual images of Visual Genome produced by our method and the method of SC Dervakos et al. (2023),
as presented in Fig. 4 of the main paper.

Inspection of VG-DENSE graphs clearly indicates that our method retrieves counterfactual instances
that not only have similar concepts on nodes and edges but are also structurally closer. Suggesting
counterfactual images with emphasis on object interactions leads to more accurate and meaningful
explanations. For instance, in the first column, the relation ’surfer riding board’ translates to ’man
on board’ for our method, whereas for SC (Dervakos et al., 2023) the man is essentially holding the
board (’cord on board’, ’cord on man’).
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(a) Source Graphs

(b) Counterfactual graphs using the method of SC

(d) Counterfactual graphs (ours)

Figure 19: Qualitative Results on graphs for counterfactuals presented in Fig. 4 of the main paper for
VG-DENSE.

In the case of VG-RANDOM where graphs have many isolated nodes and fewer edges, the
comparison is not as straightforward. In columns 1 and 2 of Fig. 20, our method retrieves visually
more similar instances by combining semantics and structure; thus, managing to preserve the main
interacting concept of the image. However, when relations are sparse in the source graph, a greater
amount of similar concepts will lead to better counterfactuals.

E.3 ACTIONABILITY OF EDITS

We present two non-actionable counterfactual explanations produced by CVE and leverage their
method of converting visual CEs into natural language. This approach enables us to precisely
define changes between the query and counterfactual instances, which would be challenging with
purely visual information. Having emphasized the importance of high-level semantics for human-
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(a) Source Graph

(b) Counterfactual (SC)

(d) Counterfactual (ours)

Figure 20: Qualitative Results on graphs for counterfactuals presented in Fig. 4 of the main paper for
VG-RANDOM.

interpretable CEs, we evaluate the inferred explanations based on linguistic cues rather than pixel-level
edits. Both provided examples are deemed successful explanations.

Vandenhende et al. (2022) often propose single edits on the query image (left images of Figs. 21a,
21b) and deem them sufficient for the transition from query to target class. However, as explained in
Sec. 4.1 of the main paper, this approach disregards the rest of the edits needed to be made between
I(A) and I(B) and leads to instances that are in fact out-of-distribution. In the main paper, we gave an
example that corresponds to Fig. 21a. In addition to the combination (’has head pattern::eyering’,
’has breast color::grey’) that was reported in text, we provide several other attribute combinations
that do not exist in any other bird of the target class in Tab. 18. Furthermore, we present one more
example in Fig. 21b. Vandenhende et al. (2022) claim that removal of the brown color from the
crown of the Black billed cuckoo in Fig. 21b (left) is sufficient for it to be classified as a Yellow
billed cuckoo.
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(a) (b)

Figure 21: Counterfactual images from CVE and the proposed explanations using natural language.

Table 18: Out of distribution attribute pairs for target classes.

Gray Catbird → Mockingbird
(’has head pattern::eyering’, ’has breast color::grey’)
(’has head pattern::eyering’, ’has belly color::grey’)
(’has breast color::grey’, ’has nape color::brown’)

(’has breast color::grey’, ’has shape::swallow-like’)
(’has upper tail color::white’, ’has wing shape::pointed-wings’)

(’has breast color::grey’, ’has primary color::brown’)
(’has throat color::grey’, ’has shape::swallow-like’)
(’has belly color::grey’, ’has shape::swallow-like’)
(’has shape::swallow-like’, ’has leg color::black’)

Black billed → Yellow billed Cuckoo
(’has upperparts color::buff’, ’has upper tail color::white’)

(’has back color::white’, ’has head pattern::plain’)
(’has upper tail color::white’, ’has head pattern::plain’)

(’has upper tail color::white’, ’has size::very small (3 - 5 in)’)
(’has upper tail color::white’, ’has back pattern::solid’)

(’has upper tail color::white’, ’has leg color::buff’)
(’has head pattern::plain’, ’has nape color::white’)
(’has nape color::white’, ’has back pattern::solid’)
(’has nape color::white’, ’has tail pattern::solid’)

(’has size::very small (3 - 5 in)’, ’has bill color::grey’)
(’has leg color::buff’, ’has bill color::grey’)

After performing such an edit we
obtain a new bird instance that
retains the same features as the
bird depicted in Fig. 21b (left),
except it no longer has a brown
crown. By generating all pairs
of attributes of this new bird, we
discover that none of the attribute
pairs listed in Tab. 18 are repre-
sentative of any bird in the target
class (Yellow billed cuckoo).

It is straightforward to under-
stand that more examples can
easily be found throughout the
dataset. Given the definition of
target classes used in this ex-
ample (most frequently confused
by the classifier), counterfactual
pairs are generally visually and
semantically close. If we chose
a different definition of the tar-
get class and picked one that is
dissimilar to the query class, we
can deduce that the list of out-
of-distribution attribute combina-
tions would be much longer.

Regarding our method, action-
ability, in the sense of counterfactuals being representative of the data distribution, is inherent.
This guarantee arises from the fact that counterfactuals are actual samples from the target class,
specifically the most similar ones to the query, and that we offer complete explanations.To be precise,
the proposed counterfactual explanations consist of lists of all graph edits needed to transit from
query I(A) to target I(B).

E.4 ADDITIONAL RESULTS

CUB In Fig. 22 we provide some additional visual results of counterfactuals comparing our method
with SC and CVE. Despite the visual similarity of the retrieved counterfactual images given all three
methods, our approach consistently achieves significantly fewer number of total edits.

F APPLICABILITY TO UNANNOTATED DATASETS

Applicability to unannotated datasets is a valid concern given our approach’s dependence on scene
graphs.
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Figure 22: Additional qualitative results of counter-
factuals of the source class Parakeet Auklet belong-
ing to target class Least Auklet. We also provide
number of total edits per method, with colored in-
stances denoting best results.

As previously established, graphs of images can
be obtained either through manual annotations
or automated construction methods. However,
not all datasets have such readily available re-
sources, therefore we invest our efforts around
proving the applicability of our proposed ap-
proach to completely unannotated datasets.

Studying the impact of annotations is an impor-
tant aspect, since an intrinsic characteristic of
semantic explanations is their dependence on
the knowledge of the individual that provides
them. This inherent explainability attribute im-
pacts systems in the same way it does humans.
The knowledge supplied to an explainer will
determine the specificity and scope of the ex-
planations. Selecting the appropriate annotation
technique is a critical step in receiving the de-
sired breadth and depth of explanations.

In the following experiments, we explore these
concerns by extracting counterfactual explana-
tions via our proposed framework on unanno-
tated datasets. Our framework is able to ex-
plain any classifier in a black-box manner, ei-
ther being a non-neural classifier (humans in the
case of the pedestrian vs driver experiment) or
a convolution-based model (Zhou et al., 2017)
(in the case of Action Genome).

Web images: pedestrian vs driver Dervakos et al. (2023) gather images from Google, Bing,
and Yahoo search engines corresponding to ’people’, ’motorbikes’, and ’bicycles’ keywords and
their combinations, and then manually split them in ’pedestrian’ and ’driver’ classes. Finally, 190
’driver’ images were obtained (63 images of bicycle drivers and 127 of motorcycle drivers) and 69
’pedestrian’ images (31 images of people and parked bicycles, and 38 images of people and parked
motorcycles). Those classes are also adopted by us to highlight the importance of relationships
(as claimed in Dervakos et al. (2023)), as well as extend this claim to support the usage of graphs
over the relationship roll-up of SC. By rolling up the roles and converting them into concepts, we
might unintentionally overlook important details for a given task. For example, when examining an
image depicting a person on a motorbike in a store, alongside another motorbike on the street, by
inspecting the scene graph, it is easy to assume that the scene represents a dealership, with the person
testing the motorbike for potential purchase, without actually driving it. However, as Dervakos et al.
(2023) encode this information with the objects: person, ridingˆmotorbike, motorbike, inˆstore,
and motorbike, onˆroad, they lose the distinction of which motorbike the user is actually riding,
potentially leading to erroneous explanations. Nevertheless, leveraging the information within the
graph allows us to arrive at more accurate conclusions, especially in fields as critical as Explainable
Artificial Intelligence (XAI).

Apart from providing triple edits to explain the ’pedestrian’ vs ’driver’ classification (Figure 5),
we also provide global relationship edits to discover if they are meaningful on their own. Indeed,
relationship edits are meaningful in general, especially since the ’riding’ relationship is inserted
frequently (Figure 23, left plot corresponds to immediately deriving the SGG from the image, while
the plot on the left denotes the edits occurring from captioning and then obtaining the graph from the
caption). Moreover, the relationship ’on’ appears frequently (in the SGG case), again confirming the
action of sitting on a bike/motorcycle in order to drive.

Similarly, we extract global edits for concepts discriminating the pedestrian/driver categories. These
edits are presented in Figure 24. By observing these plots (SGG - left, captioning and graph from text -
right) we conclude that these edits are not really meaningful according to human perception: inserting
wheels does not explain the ’pedestrian’ → ’driver’ transition, since in both classes bike/motorbike
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Figure 23: Relationships inserted/ deleted/substituted to implement the ’pedestrian’ → ’driver’
transition.

wheels may appear as part of these vehicles. The same observation is valid for the rest of the concepts
appearing on these plots, resulting in noisy conceptual edits. To this end, we verify that explanations
are human-dependable, i.e. a human is the final evaluator of any explanation, and while a method is
able to provide semantically meaningful explanations (in this case relationship edits), it is possible
that at the same time the same method provides meaningless explanations (in this case concept edits).
Nevertheless, if the derived explanations are not conceptual, a human cannot verify their validity;
therefore, we can safely claim that human interpretability of explanations is highly tied to semantics.

Figure 24: Concepts inserted/ deleted/substituted to implement the ’pedestrian’ → ’driver’ transition.

Action Genome We test our method in a real-world image dataset extracted from Action Genome
(Ji et al., 2020), a video database depicting human-object relations and actions. It is completely
unannotated and also like VG has no predetermined classes for its instances. AG results are not
presented in the main paper because they offer no new insights compared to other extendability
experiments. However, a brief qualitative analysis was deemed interesting enough to present in
the appendix. We select a subset of 300 individual frames and generate scene graphs following
well-established SGG methods2. After applying our CE method using predictions made by Zhou
et al. (2017), we obtain results comparable to previous experiments. Specifically, the binary retrieval
metrics ranged from 0.17 - 0.41 for P@k and 0.21 - 0.35 for NDCG@k, while overall average
edits were 12.86. This experiment validates the relative ease of obtaining graphs from images and
demonstrates the applicability of our method to AI-generated graphs of varying quality.

In Fig. 25, we offer some qualitative results on the AG dataset. Instances in this custom AG subset
are individual video frames that depict mostly indoor spaces with or without people at a variety of
angles and settings. Due to the lack of control in this case, we have identified specific categories that
are more meaningful to human perception, such as ’kitchen’, ’hall’, and ’living room’.

By observing these examples, we can initially note that automatically generated graphs provide
a satisfactory representation of the images. However, there are missing details and known biases
resulting from imbalanced triple and relation distributions in VG, where the SGG models are trained.
We analyze the counterfactuals while acknowledging the potentially lower quality of the input graphs.
Since this part of the experiments aims to demonstrate the applicability of our method to unannotated

2SGG on Action Genome
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datasets, in-depth analysis is not performed. Nonetheless, we can observe that the retrieved graphs
exhibit structural similarities and share common concepts, which is also visually apparent. For
instance, images featuring kitchens often involve the removal of cabinets located above counters,
while tables are prevalent in hallway depictions.

G APPLICABILITY ON OTHER MODALITIES

Table 19: Global triple edits for
COVID-19 Negative → Positive.

Triple Edits Norm.
Counts

’Sneezing’ 1.0
’RunnyNose’ 0.78
’DryThroat’ 0.35
’Fever’ 0.34
’Dizziness’ 0.31
’Fatigue’ 0.22
’Respiratory’ 0.22
’DryCough’ 0.21
’TasteLoss’ 0.21
’Cough’ 0.16

The process of SMARTY graph generation differs compared
to our previous experiments in a few key ways. In this new
approach, each user or patient was directly connected to their
symptoms and characteristics, which were defined to be au-
dible to a certain extent. Symptom analysis involved treating
certain symptoms as sub-symptoms when necessary, based on
the hierarchical structure presented in Dervakos et al. (2023)’s
SMARTY hierarchy, as opposed to using WordNet for comput-
ing node edit costs. Regarding edges in the graph, a simpler
strategy was adopted due to the limited number of edge types.
Specifically, the approach considered edge swaps between
different edge types, as well as the addition and deletion of
edges, as costly operations. To initialize the GNN similarity
component, custom BioBert (Lee et al., 2020) embeddings
were utilized because the language used in the medical field
is specific and distinct from general language, unlike previous
approaches that relied on simple Glove embeddings. These
changes were made to enhance the accuracy and relevance of
the SMARTY graph generation. Table 20: Global concept edits for

COVID-19 Negative → Positive.

Concept Edits Norm.
Counts

’Sneezing’ 1.0
’RunnyNose’ 0.73
(’Male’, ’Female’) 0.68
’DryThroat’ 0.36
’Fever’ 0.35
’Dizziness’ 0.31
(’Fourties’, ’Twenties’) 0.29
’DryCough’ 0.23
’Fatigue’ 0.23
’Respiratory’ 0.23

In Tables 19, 20 comprehensive global edit lists can be found.
It is important to note that in Table 19, triple edits refer to edge
edits and the concepts adjacent to them. For the sake of read-
ability, we have omitted the head and predicate of the triples,
where all heads are the ’User’ concept and all predicates rep-
resent symptoms or sub-symptoms. Table 20, on the other
hand, focuses on node edits, regardless of edges. Evidently,
there is agreement with Table 19, but there are also additional
noteworthy findings. One of these findings relates to the re-
ported gender bias mentioned in Dervakos et al. (2023), and
another suggests a correlation between COVID-19 positivity
and younger users.

H LIMITATIONS

Our work is subject to certain limitations. First of all, our experiments involving the CUB and VG
datasets are highly dependent on the existing annotations, thus influencing the quality of the derived
conceptual explanations. Specifically, the generated semantics through SGG are influenced by the
training datasets, namely VG. This limitation was addressed through the comparison of our method’s
consistency among two vastly different graph generation methods. Despite the positive results
validated by the similar produced global edits, there is much room for exploration in this domain. We
plan to engage in this venture in our future research. Moreover, pre-trained image classifiers, such as
ResNet50 and Places365 may produce imperfect labels for the images under consideration, which may
influence the resulting counterfactual explanations. CEs are also characterized by known limitations,
such as robustness (Slack et al., 2021). While we have not addressed this particular limitation in
our work, we plan to explore it in our future work. Despite these limitations, we have ensured
actionability guarantees with the aim of improving the quality of the provided counterfactuals.
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(a)

(b)

(c)

Figure 25: Counterfactual examples from AG dataset for query images belonging to the class
”kitchen”. Here, CEs are classified as ”hall” or ”living room”.
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