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Abstract

Coronary CT angiography has become a preferred technique for the detection and
diagnosis of coronary artery disease, but image artifacts due to cardiac motion
frequently interfere with evaluation. Several motion compensation approaches have
been developed which deal with motion estimation based on 3-D/3-D registration
of multiple heart phases. The scan range required for multi-phase reconstruction
is a limitation in clinical practice. In this paper, the feasibility of single-phase,
image-based motion estimation by convolutional neural networks (CNNs) is inves-
tigated. First, the required data for supervised learning is generated by a forward
model which introduces simulated axial motion to artifact-free CT cases. Sec-
ond, regression networks are trained to estimate underlying 2D motion vectors
from axial coronary cross-sections. In a phantom study with computer-simulated
vessels, CNNs predict the motion direction and the motion strength with average
accuracies of 1.08◦ and 0.06 mm, respectively. Motivated by these results, clinical
performance is evaluated based on twelve prospectively ECG-triggered clinical
cases and achieves average accuracies of 20.66◦ and 0.94 mm. Transferability and
generalization capabilities are demonstrated by motion estimation and subsequent
compensation on six clinical cases with real cardiac motion artifacts.

1 Introduction

High quality CT imaging of the coronary arteries is a clinically important and challenging task.
Hardware constraints restrict the temporal resolution of reconstructed CT image volumes and coro-
nary motion artifacts frequently limit the diagnosis of coronary artery disease (CAD) or cause
misinterpretations [1].

Motion vector field (MVF) estimation and subsequent motion compensated filtered back-projection
(MC-FBP) [2; 3] are the key components of several motion compensation algorithms. Most of them
deal with 3-D/3-D registration of multiple heart phases [4; 5]. This procedure requires an extended
temporal scan range which corresponds to increased radiation doses. A motion estimation method for
short scans has been introduced by Rohkohl et al. [6]. It is based on iterative minimization of motion
artifact measures (MAMs) in a single reconstruced image volume. This iterative single-phase motion
estimation method and the existing registration-based multi-phase approaches rely on raw projection
data, respectively. This study addresses the question of how well motion estimation can be done from
a single reconstructed CT image based on the coronary artifact shape.
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Motion leads to differently shaped blurring artifacts depending on the angular reconstruction range
and the motion trajectory during the acquisition (see Figure 1). A deep-learning approach is chosen
for the image-based motion vector estimation, since feasibility of accurate motion artifact recognition
and quantification at the coronary arteries by convolutional neural networks (CNNs) has already
been shown in [7] and [8]. We utilize the proposed forward model from [8] for the introduction of
simulated motion to artifact-free CT cases. On the basis of the resulting motion-perturbed image
data, CNNs are trained for estimation of underlying motion vectors. Finally, the network behavior is
analyzed to quantify the potential and limitations of single-phase, image-based motion estimation in
clinical practice.

Figure 1: Examples of motion artifacts in the right coronary artery (RCA) are highlighted in four
step-and-shoot cases. Arc-shaped blurring and intensity undershoots are typical artifact patterns.

2 Material

The forward models from [7; 8] require artifact-free CT cases as reference point determining the
no motion state. As a first step, a phantom study is performed. Then, the transferability to clinical
data is controlled based on twelve step-and-shoot cases. In the following, we detail the design of the
computer-simulated vessels and the pre-processing of the clinical data.

Phantom data A binary mask including three computer-simulated coronary arteries is created. Each
vessel is modeled as a 3D cylinder whereby the centerline is oriented along the z-axis. The radii are
set to 2, 3 and 4 voxels with an image resolution of 0.4 mm per voxel. Ray-driven forward projection
[9] and subsequent high-pass filtering delivers the projection data required for application of the
forward model. Projection geometry and corresponding ECG-data are adopted from clinical data.

Clinical data Twelve prospectively ECG-triggered clinical data sets without coronary motion ar-
tifacts are collected by visual control. Acquisition was performed with a 256-slice CT scanner
(Brilliance iCT, Philips Healthcare, Cleveland, OH, USA) and a gantry rotation speed of 0.272 sec
per turn. The gating window for aperture-weighted cardiac reconstruction (AWCR) [10; 11] is chosen
at mid-diastolic quiescent cardiac phase. The coronary centerline of each reconstructed CT image
volume is segmented using the Comprehensive Cardiac Analysis Software (IntelliSpace Portal 9.0,
Philips Healthcare, Cleveland, Oh, USA).

3 Method

CNNs are trained for motion estimation in axial coronary cross-sections. The required data for
supervised learning is generated using an extended forward model for simulated motion introduction.
Subsection 3.1 details the data generation process including motion vector field (MVF) creation and
patch sampling. Data augmentation and data separation strategies as well as the supervised learning
setups are described in Subsection 3.2.

3.1 Data generation

Forward model The forward models from [7; 8] enable the generation of CT image data with
controlled motion at the coronary arteries. They are based on the motion compensated filtered
back-projection (MC-FBP) algorithm [3] taking artifact-free CT images and synthetic MVFs as input.
In principle, arbitrary motion trajectories can be simulated by this approach by adjusting the synthetic
MVF. For simplicity, we restrict the model to constant linear motion in the axial plane.
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Therefore, minor adaptations of the simulated MVF with constant linear motion from [8] are
performed. In the forward model, the displacement ~d~c : [0%, 100%]× Ω → R3 of each voxel
~ν ∈ Ω ⊂ R3 at time point tcc ∈ [0%, 100%] in millimeters is calculated by:

~d~c(tcc, ~ν) = s ·m~c(~ν) · ~δ~c(tcc, α) (1)

As described in [8], tcc is measured in percent cardiac circle, Ω denotes the field of view,
m~c : Ω → [0, 1] is a weighting mask which limits the motion to the area of the currently
processed centerline point ~c ∈ Ω and ~δ~c determines the motion direction. For our purposes,
~δ~c : [0%, 100%]× (−180◦, 180◦] is adapted to:

~δ~c(tcc, α) =
60bpm
HRmean

· ~ρ~c(α)

‖~ρ~c(α)‖2
·


−0.5 if tcc < r − 10%
(tcc−r)
20% if r − 10% ≤ tcc ≤ r + 10%

+0.5 if tcc > r + 10%

(2)

The parameter HRmean denotes the patients mean heart rate during acquisition and r is the reference
cardiac phase during AWCR. The motion direction determined by ~ρ~c(α) is limited to the axial plane,
i.e. the z-coordinate is set to zero. The x-coordinate and the y-coordinate are chosen so that α
corresponds to the angle between mean reconstruction direction of the currently processed centerline
point ~c and motion direction. The mean reconstruction direction is defined by the gantry rotation
angle at the reference heart phase r and is constant for each voxel reconstructed by the same circular
scanning shoot. It has to be noted, that the system rotation direction is equal for all cases. This is
important, since the reverse rotational directions would lead to a flipping of the artifact shapes.

The papers [7; 8] investigate the feasibility of motion artifact recognition and quantification by
utilizing the parameter s for target value assignment. Compared to these works, our forward model
has an additional (angular) degree of freedom α, i.e. each MVF is now defined by a parameter tuple
(s, α). The so-called target motion strength s ∈ R+ scales the length of each displacement vector in
the MVF and therefore determines the motion width. On the basis of the velocity measurements at the
coronary arteries by Vembar et al. [12], the target motion strength s is limited to the interval [0, 10]
in the following experiments. The newly introduced angle parameter α ∈ (−180◦, 180◦] determines
the in-plane motion direction. Both parameters s and α are randomly sampled from uniform
distributions in the following experiments. The corresponding Cartesian coordinates x = s cos(α)
and y = s sin(α) are defined as ground-truth labels for the supervised learning task.

The extended forward model enables the generation of multiple motion-perturbed CT image volumes
with controlled motion level and motion direction at a specific coronary centerline point ~c. For each
centerline point ~c and parameter setting (s, α), one 2D image patch is sampled as input data for
supervised learning.

Patch sampling: An image patch of size 80 × 80 pixels is sampled from the axial plane with an
image resolution of 0.4 × 0.4 mm2 per pixel. The centerline point ~c defines the patch center and
the patch is spanned by two orthogonal vectors which are constructed with respect to the mean
reconstruction direction of the centerline point. By this procedure, the information about the angular
reconstruction range is embedded in the patch orientation.

In the phantom study, the forward model with subsequent patch sampling is applied 2000 times
per simulated vessel, thus, delivering a total amount of 6 000 samples as data base. Figure 2 shows
coronary cross-sectional patches for varying parameter settings (s, α). Depending on the motion angle
α, differently shaped blurring artifacts occur. Orthogonal motion (α = ±90◦) leads to banana-shaped
artifacts while parallel motion (α = 0◦ or α = 180◦) causes bird-shaped blurring.

In the clinical study, the forward model with subsequent patch sampling is applied 2000 times per
step-and-shoot case. By this procedure, a total amount of 24 000 samples is collected as data base for
supervised learning. It has to be noted that merely centerline segments with a maximal inclination
of 45 degree to the z-axis are included to assure cross-section characteristics. The gray values are
clipped to the relevant intensity range with a window/level setting of 900/200 HU and normalized to
the interval [-1,1]. Figure 3 shows an example patch for varying parameter settings (s, α). Compared
to the corresponding phantom semicircle plot in Figure 2 artifact shapes are visually more difficult
to distinguish. Especially in case α = 0◦, increasing motion levels are hard to recognize. Visibility
of blurring artifacts and intensity undershoots are strongly influenced by surrounding background
intensities.
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Figure 2: Computer-simulated vessels are motion-perturbed using the forward model with different
parameter settings (s, α). For each setting a coronary cross-sectional image patch is sampled as input
data for supervised learning. The angle parameter α determines the artifact shape while the artifact
size is controlled by the motion strength parameter s. In general, most severe motion artifacts occur
in case of orthogonal motion (α = ±90◦).
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Figure 3: A clinical CT case is locally motion-perturbed at one coronary centerline point by the
forward model with different parameter settings (s, α). The sampled coronary cross-sectional image
patches show typical artifact pattern like arc-shaped blurring and intensity undershoots. In contrast to
the phantom study, varying background intensities lead to lower visibility of the blurring artifacts.

3.2 Supervised Learning

Data separation Figure 4 illustrates two setups of separating the phantom data in training and
validation subsets. In the angle partitioning, all samples with α ∈

⋃1
i=−2[35

◦ + i · 90◦, 55◦ + i · 90◦]
are assigned for validation. The complementary set is used for training, i.e. angle interpolation
capabilities are tested by this setting. In the same manner, all samples with 5 ≤ s ≤ 7 are assigned
for validation during strength partitioning.
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Figure 4: The phantom data is separated in training and validation subsets with respect to the
parameters α and s. In both experimental setups interpolation capabilities are tested.

Table 1: Quantitative comparison of the validation results in the phantom and the clinical study.
Data (x, y) error: εx,y α error: εα s error: εs
Phantom (angle partitioning) 0.088± 0.078 1.084◦ ± 3.861◦ 0.062± 0.062
Phantom (strength partitioning) 0.086± 0.051 0.559◦ ± 0.450◦ 0.053± 0.042
Clinical 1.497± 1.200 20.659◦ ± 30.985◦ 0.942± 0.924

Due to the patch similarity of adjacent centerline points, the clinical data is case-wise separated
for training and validation with a ratio of 10 : 2. In this way, robustness of the trained networks is
evaluated with regard to unknown variations in the background intensities.

Data augmentation The data basis during network training is extended by online data augmentation.
Symmetry properties are exploited for horizontal and vertical patch mirroring. The target labels
x, y are adapted accordingly. This procedure quadruples the amount of background variations in
the clinical study. Additionally, cropping is performed as label-preserving augmentation strategy.
Sub-patches of size 60× 60 pixels are randomly selected in order to build translation invariance into
the networks. This allows for slight variations in the in-plane coronary positions. During validation,
the center patch is cropped and no mirroring is performed.

Learning setup The Microsoft Cognitive Toolkit (CNTK v2.0+, Microsoft Research, Redmond, WA,
USA) is used as deep learning framework. A 20-layer ResNet [13] is selected as network architecture.
The number of filters is doubled in each layer yielding {32, 64, 128}. The kernel size of the average
pooling is increased to 15, according to the input data size. The last layer has a linear activation
function and two output neurons to predict x̂ and ŷ. The stochastic gradient descent solver Adam
[14] with an initial learning rate of 0.05, a mini-batch size of 32 and a momentum of 0.8 is used for
network optimization. The learning process is driven by the squared error l = (x− x̂)2 + (y − ŷ)2.
Training is performed over 60 epochs while the learning rate decreases with a factor of five after
every 20th epoch. In the phantom study no regularization is performed. L2 regularization with a
weight of 0.001 is used in the clinical study.

4 Experiments and Results

The following error metrics are introduced for network evaluation:

εx,y =
√
(x− x̂)2 + (y − ŷ)2, εα = min(|α− α̂| , 360◦ − |α− α̂|), εs = |s− ŝ|

The validation results including mean and standard deviation of each error metric are summarized in
Table 1. As expected, more accurate motion vector prediction is achieved during the phantom study.
Several experiments are performed to improve performance on the clinical data. Separation of the
tasks angle prediction and strength prediction by two independent network trainings does not lead to
improved accuracy. Also, a network initialization with the learned weights from the phantom studies
and subsequent fine-tuning on the clinical data provides no advantage over network optimization
from scratch. The following paragraph deals with an error analysis of the network from Table 1 which
is merely trained on clinical data.
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Figure 5: The predicted motion vectors of nine exemplary cross-sectional patches are visualized as
red lines. The corresponding ground truth motion vectors (dashed line) are highlighted in green.
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(a) Polar contour plot of the angle error εα.
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(b) Bar plot of mean and median angle error evaluated
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Figure 6: The angle error εα is calculated for each image patch in the clinical validation data and
visualized with regard to the (s, α) coordinate. High angle errors εα correlate with low s values, i.e.
most accurate prediction of the motion direction is feasible for image patches with severe motion
artifacts.

Error analysis A qualitative error analysis is performed by visual inspection of the validation data.
Example patches with corresponding predicted and ground truth motion vectors are visualized in
Figure 5. Non-visible coronary blurring at the heart wall due to the performed intensity clipping is
identified as one possible source of errors (see Figure 5a-5c) whereas overlapping artifacts at vessel
bifurcations do not seem to confuse the neural network (see Figure 5d, 5e). As illustrated in Figure
5f, the CNN frequently delivers too conservative predictions of the motion strength s. In case of
small or mid-size artifacts the predicted motion direction is less accurate (see Figure 5g). In contrast,
the angle α is predicted with high accuracy in the presence of severe artifacts (see Figure 5h, 5i). A
quantitative analysis of this observation is performed.

The error plots in Figure 6 illustrate the correlation between the accuracy of the predicted motion
direction and the introduced motion strength s. Mean angle errors εα of less than 10◦ are obtained
in the clinical validation data for image patches with s > 5. Visual inspection disconfirms the need
of motion compensation in case of s ∈ [0, 1]. Hence, initial tests for motion estimation and motion
compensation on clinical data with real artifacts are performed.

Motion compensation experiment Six test cases with prospectively-gated acquisition mode and
cardiac motion artifacts at the RCA are included. Based on the proposed deep-learning-based motion
estimation, a motion compensation pipeline is developed. The key processing steps and the results
of the motion compensation experiment are illustrated in Figure 7. In the first step, coronary cross-
sectional patches are sampled as CNN input data with respect to the mean reconstruction direction
according to Subsection 3.1. The approximate location of the coronary artery is selected manually.
For each motion-degraded input patch, one 2D axial motion vector (highlighted in red) is predicted.
The corresponding continuous MVF is calculated according to Equation (1). In our case of linear
motion, the reversing motion trajectory ~d−1

~c is obtained by multiplication with minus one. The
resulting inverse MVF is included in the MC-FBP algorithm. The reconstructed image volume is
locally motion compensated at a limited area around the manually selected center point.
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Figure 7: Coronary cross-sectional patches are sampled as CNN input data with respect to the
mean reconstruction direction. MVFs are created by means of the predicted axial motion vectors.
Subsequent motion compensated reconstruction by MC-FBP leads to reduced artifact levels in most
of the cases.

180°

135°

90°

45°

0°

-45°

-90°

-135°

2

4

6

8

10

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

(a) Polar contour plot of the classification output.
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(b) Polar contour plot of the regression output.

Figure 8: The predicted artifact probability of the classification network and the predicted artifact
level of the regression network from [8] are calculated for the clinical validation data and visualized
with regard to the underlying (s, α) coordinate. The networks diagnose least severe artifacts in case
of parallel motion (α = 0◦ or α = 180◦). Especially, the output of the regression network is spatially
smooth.

Motion artifact reduction is achieved in four out of six cases. Reduced arc-shaped blurring artifacts and
intensity undershoots can be observed in case one to four. So far, the proposed motion compensation
approach is focused on vessels near the patch center. Therefore, minor motion artifact introduction
can be observed in neighboring anatomy. The bird-shaped blurring artifacts from case five and six
are not removed after motion compensated reconstruction.

It has to be noted that the predicted axial motion vectors in cases five and six appear reasonable for a
human observer. The missing improvement might be caused by the limitation to 2D axial motion
compensation. In fact, more complex trajectories than constant linear motion are possible and motion
in z-direction should also be considered. This assumption is encouraged by the artifact level analysis
in Figure 8. As already mentioned in Section 3.1 bird-shaped blurring artifacts may be caused by
parallel motion (α = 0◦ or α = 180◦), but increasing motion levels do not result in severe artifacts as
in the case of orthogonal motion (α = ±90◦). This visual impression agrees with measured artifact
probabilities (see Figure 8a) and artifact levels (see Figure 8b) of clinical validation patches by the
CNNs from [8]. The present bird-shaped artifacts could merely be caused by unusually large axial
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displacements. More likely is the appearance of turning motion during acquisition which also leads
to bird-shaped artifacts.

Nevertheless, artifact reduction is achieved in most of the test cases, despite limitation to axial motion
and simple linear compensation. This motion compensation experiment demonstrates generalization
capabilities of the trained CNN, since transferability from simulated to real cardiac motion artifacts is
shown.

5 Discussion

We proposed the first single-phase motion estimation approach which works solely on reconstructed
image data. The carefully designed motion model which comprises linear trajectories in the axial
plane, reveals potential and limitations of image-based motion estimation. Due to variations in
noise level, background intensity, vessel structure and contrast agent density, accurate prediction
is substantially more difficult in clinical cases compared to phantom data. The trained CNNs are
remarkably successful in solving this ill-posed problem.

The proposed motion compensation experiment demonstrates that the trained network also achieves
reasonable results on data with real (non-simulated) motion artifacts. This can be considered as proof
of principle. Since solely one back projection step is required for explicit motion vector prediction, our
method offers an advantage with respect to computational effort for image reconstruction compared
to existing approaches. However, total running times and performances are not comparable so far. A
lot of future research is required for establishment of a full 3D motion compensation method. This
comprises model extension to more complex motion, i.e. including motion along the z-axis and
turning motion. The introduced procedure of data generation by a forward model and subsequent
supervised learning is, in principle, extendable to arbitrary non-linear 3D motion trajectories. It
needs to be reviewed to which extent the information content of the reconstructed image volumes is a
limiting factor for estimation of more complex trajectories. The benefit of additional information
provided by 3D input patches as well as transferability to other scanner types and imaging protocols
should be investigated.

The trained networks might also be integrated in existing motion compensation pipelines, e.g. by
defining initial MVFs. A cascade process is conceivable. In a first step, the artifact measures from [8]
could decide whether and where motion correction is required. For remaining patches with mid-size
or severe artifacts, more accurate prediction of the motion direction can be performed. Robustness
might additionally be improved by motion vector smoothing of adjacent centerline points in order to
compensate for scatter and outliers.

6 Conclusions

Typical coronary artifact patterns are introduced in phantom and clinical data by a forward model
which simulates linear, axial motion. The generated image data is used for subsequent supervised
learning of CNNs for estimation of underlying motion vectors. The synthetically motion-perturbed
data allows one to investigate the relationship between motion direction, angular reconstruction range
and resulting artifact shapes. Most accurate prediction of the underlying motion direction is feasible
for cross-sectional image patches with severe artifacts. A motion compensation strategy is developed
to verify generalization capabilities of the trained CNN to motion estimation in clinical practice.
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