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ABSTRACT

We present 3C-GAN: a novel multiple generators structures, that contains one
conditional generator that generates a semantic part of an image conditional on its
input label, and one context generator generates the rest of an image. Compared
to original GAN model, this model has multiple generators and gives control over
what its generators should generate. Unlike previous multi-generator models use
a subsequent generation process, that one layer is generated given the previous
layer, our model uses a process of generating different part of the images together.
This way the model contains fewer parameters and the generation speed is faster.
Specifically, the model leverages the label information to separate the object from
the image correctly. Since the model conditional on the label information does
not restrict to generate other parts of an image, we proposed a cost function that
encourages the model to generate only the succinct part of an image in terms
of label discrimination. We also found an exclusive prior on the mask of the
model help separate the object. The experiments on MNIST, SVHN, and CelebA
datasets show 3C-GAN can generate different objects with different generators
simultaneously, according to the labels given to each generator.

1 INTRODUCTION

Recently Generative adversarial network (GAN) is gaining much attention because it has shown
promising results for generating natural images (Goodfellow et al. (2014); Goodfellow (2016)). Still,
it is limited in generating globally coherent, or high-resolution images. Therefore, to have GAN
generate better quality images is the main research topic. There have been many works tackling this
topic, including using novel network structures, (Radford et al. (2015)), Denton et al. (2015)), using
novel objective functions for training ( Zhao et al. (2016), Arjovsky et al. (2017), Gulrajani et al.
(2017)), using multi-stage network generation (Im et al. (2016), Kwak & Zhang (2016), Yang et al.
(2017)), applying 3D structure information for image generation( Wang & Gupta (2016)).

Another main research avenue of GAN is to make a generator more controllable, that is, the gener-
ator can generate the image given the criterion we want. Conditional GAN serves this purpose by
ensuring the generation is conditional on the given criterion (Odena et al. (2016), Mansimov et al.
(2015), Reed et al. (2016a), Kaneko et al. (2017), Zhu et al. (2016)). Specifically, in these condi-
tional models, the generator not only accepts the noise code, but also a conditional code, either from
a one-hot representation of class labels, or a sentence embedding from a text, or an image, such
that this given side information encodes the criterion, and the generated images are conditional on
that. Aside from the conditional model, that is a supervised approach, there are models employed
an unsupervised approach. InfoGAN (Chen et al. (2016)) does not need any labels: it discovered
the high-level meaning of the image purely from data, and assign the meanings to its noise code.
For example, for MNIST dataset, InfoGAN model learn to have one code control the width of the
generated digits, and one code controls the rotation of the digits. As an unsupervised approach,
InfoGAN discovered the criteria that we might think is useful for the dataset.

Both the supervised and unsupervised models are one-generator approach, there is another multi-
generators approach that also aims to make the model more controllable (Kwak & Zhang (2016)
Yang et al. (2017)). They generate images part-by-part, such that each part has its semantic mean-
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ing, and combing all parts results in a realistic image. Since a part of an image has some persistent
characteristics, these model learn which parts of the data should be generated together in an unsu-
pervised way. In addition, the model of Yang et al. (2017) includes a transformer network that learns
an affine transformation for the foreground in an image. Since each part of an image is generated by
different generators, these model provide a high-level meaning of the generation for each generator
and possess a finer control over original GAN.

We develop a model that also aims to improve the controllability over original GAN. Specifically,
our model is a multi-generators approach, where one generator is a ”context” generator that does
not take any conditional labels as input, and another is a conditional generator that takes its label
information. The conditional generator generates the part of the image that is related to its labels,
whereas the context generator generates the other part of the image. Both generators learn where
to generate (a mask), and what to generate (an appearance). The context generator shared its input
codes with the conditional generator so it ”knows” what context it is on when generating its own
part. However, there is no restriction for the conditional generator to not generate the context. We
propose a cost function on the label discrimination to penalize the conditional generator to do so.
In addition, we proposed an exclusive prior on the mask such that any pixels in an image should be
generated from one generator only. All in all, our contributions can be listed as follows.

1. We are the first one showing that by applying label information, the model and the cost function
we proposed, we can have a generator to learn to generate the part of the image only related to the
label.

2. We show that a simpler multi-generators structure, without using Recurrent Neural Net to generate
different part of the image subsequently, works to generate images part-by-part simultaneously.

2 METHOD

The algorithm we proposed is based on Wasserstein GAN, conditional GAN, and model an image
with a layered structure, we introduce them in the background section.

2.1 BACKGROUND

2.1.1 WASSERSTEIN GAN

A generative adversarial network (GAN) consists of two neural networks trained simultaneously
and in opposition to one another. Assume a real sample x follows an unknown distribution pdata.
The generator network G takes as input a random code vector z and output the fake data xf , such
that xf = G(z), whereas the discriminator network D takes as input either a training sample or a
synthesized sample from G and outputs a probability that the input is real or fake. The discrimina-
tor is trained to maximize the probability of assigning the correct source to both training samples
and samples from G, where the generator is trained to minimize the probability that D assigns its
generated sample as fake. The objective function is

min
θG

max
θD

(
Exr∼pdata(xr)[logD(x; θD)] + Ez∼pz(z)[log(1−D(G(z; θG); θD))]

)
(1)

, where D and G are parameterized by θD and θG respectively.

Compared to original GAN, Wasserstein GAN is more stable and resilient to hyper-parameters
changes (Arjovsky et al. (2017)). Another advantage over original GAN is the cost function of
it decreases steadily among training. Wasserstein GAN also has two networks D and G that are
trained simultaneously and adversarially. The main difference is instead outputting a probability, D
outputs a real value. The objective function becomes:

min
θG

max
θD

(
Exr∼pdata(xr)[D(xr; θD)]− Ez∼pz(z)[D(G(z; θG); θD)]

)
(2)

The difference between the first and the second term is the estimated Wasserstein distance (W ).
While D maximizes the distance, G minimizes it. Importantly, D needs to be a 1-Lipschitz function
so that the estimation is accurate. A penalty term involves the first-order derivative of D is added to
the objective function to encourage this requirement. Readers can find the details of it in Gulrajani
et al. (2017).
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2.1.2 CONDITIONAL GAN

Conditional GAN is an extension of GAN that makes it conditional on the prior information of
the data, and here we focus on a type of the conditional GAN that is conditional on image labels
or attributes. More specifically, we applied the conditional GAN model proposed in Odena et al.
(2016) (AC-GAN). Here we briefly introduce this model. Assume a real sample x and its label lx
follows an unknown distribution Pdata. The label is represented as a one-hot representation. The
generator G takes as input a random code vector zu concatenated with a one-hot representation of
a random label zl to generate a fake sample, such that zc = [zu, zl],xf = G(zc). To encourage G
to generate a sample that is conditional on zl, we have an auxiliary classifier C, such that D and C
share all layers except the last layer. While D outputs the Wasserstein distance mentioned above,
C takes the input sample and its label, and outputs a cross-entropy loss between the label and the
probability distribution over the class labels. The objective function becomes:

min
θG

max
θD

min
θC

(
Ex∼pdata(x)[D(x; θD)]− Ezc∼pzc (zc)[D(G(zc; θG); θD)]

)
+(

Ex,lx∼pdata(x,lx)[− logC(lx|x; θC)] + Ezu,zl∼pzc (zu,zl)[− logC(zl|G(zc; θG); θC)]
)

(3)

Where the first two terms correspond to the Wasserstein distance in equation 2, the third term cor-
responds to the cross-entropy loss for a real image (Lrc), and the fourth term corresponds to the
cross-entropy loss for the fake image (Lfc ).

2.1.3 LAYERED-STRUCTURE MODELING FOR IMAGES

Since an image is taken from our 3D world, it usually contains a layered structure. Modeling an
image as with a mask is common. An example of that is a two-layered foreground/background
modeling,

x = f �m+ b� (1−m)

, where f is the foreground image, b is the background, m is the mask for the foreground, and � is
element-wise multiplication. This modeling has already been applied in synthesize natural images
(Isola & Liu (2013), Reed et al. (2016b), Yan et al. (2016)). This modeling has also been applied
to videos (Darrell & Pentland (1991), Wang & Adelson (1994), Jojic & Frey (2001), Kannan et al.
(2005), Vondrick et al. (2016).

Recently there are two GAN models also applied the foreground/background layer setting Kwak &
Zhang (2016), Yang et al. (2017), the generation process for them is the second layer (foreground)
is generated subsequently after the first layer (background). In contrast, we model an image as a
context layer and a conditional layer and generate the two layers together.

2.2 CONDTION-CONTEXT-COMPOSITE GAN (3C-GAN)

2.2.1 MODEL DEFINITION

Our model is based on the conditional GAN and Wasserstein GAN. It has one Discriminator D,
one auxiliary classifier C, but two generators G1 and G2. G1 is an ordinary generator, but G2 is
a conditional generator. While G1 generates the context of an image, G2 generates the part of an
image that is conditional on its input label. The final output, (Xf ), is the composite image from G1

and G2. The model definition is shown below.

m1, f1 = G1(zu, zl)

m2, f2 = G2(zu, zv, zl)

mn
1 ,m

n
2 = softmax(m1,m2)

o1 = f1 �mn
1

o2 = f2 �mn
2

xf = Gc(zu, zv, zl) = o1 + o2

Figure 1 shows the architecture of 3C-GAN. A part of input noise codes (zu) that is for context
generation. zu is shared for both G1 and G2 because G2 also needs to know the context to generate.
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Figure 1: The architecture of 3C-GAN. The σ stands for softmax normalization, and the � stands
for element-wise multiplication. Note that classifier network C is reused three times for different
input and label pairs.

The same zu for G1 and G2 inputs enable them to ”communicate” with each other. At the same
time, G2 takes additional input codes (zv) and label codes (zl). zv let G2 has additional power to
control over the conditional part.

We denote Gc as the composite model of G1 and G2. Each generator generates a mask (m1,m2)
and an appearance (f1, f2). The masks generated from G1 and G2 are further normalized by soft-
max. Each appearance element-wisely multiplies by each mask and summed together. This way the
mask controls to generate which part of an image. The composite fake image xf is then given to
discriminator and the optimization is as same as equation 3.

There is an auxiliary classifier C helps the model conditional on its label. As AC-GAN, Both xr
and its label lx pair, and xf , zl pair are given to C to compute the classification loss. The losses
for two pairs are the (Lrc) and (Lfc ) in equation 3, respectively. The loess encourage Gc as a whole
to be conditional on the label; However, they do not encourage G2 to be a conditional generator.
Intuitively, if G2 generates the conditional part, G2 should have to be discriminated as the same
label as Gc; therefore, we proposed an additional classification loss (Lpc ) for the input pair o2, zl,
given the same classifier C. That is:

Lpc = Ezu,zv,zl
[− logC(zl|G2(zu, zv, zl))] (4)

In practice, there is no restriction on the structure of D and G. To have good generating qual-
ity and fast convergence, we applied the structure of DCGAN (Radford et al. (2015)) . To save
computational power, G1 and G2 can share all the layers except the first(bottom) layer, that is a
fully-connected layer computing the 4*4 feature map from the input code.

Besides the basic GAN cost and conditional cost (classifier loss), there are two additional costs that
are essential for our purpose.

2.2.2 LABEL DIFFERENCE COST

In the model defined above, G2 is not restricted to generate the unconditional part of an image, that
is, G2 could take the job G1 does. In the extreme case, G2 could generate all images, that is, mn

1
is zero everywhere. Here we proposed a cost to penalize G2 such that it generates only the succinct
part when changing the condition of an image.

Lld = Ezu,zv,zl

[∑
|Gc(zu, zv, zl)−Gc(zu, zv, zfl )|

]
(5)
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, where zfl (label flip) is any label code that is different from zl, and the summation is over all pixels
in an image. Since only G2 is accessible to the condition information, G2 is forced to generate the
succinct part of condition changes when we apply this cost.

2.2.3 EXCLUSIVE PRIOR

In the above model, except that m1+m2 = 1, we do not have any prior on these masks. In practice,
if one pixel is generated by a generator, we want it to take a full responsibility for generating it, that
is, the value of its mask for that pixel should be close to 1. Here we proposed an exclusive prior on
the two masks.

Lex = Ezu,zv,zl

[∑
|m1 �m2|

]
(6)

, where the summation is over all pixels in an image. We found adding this prior makes G1 and G2

generate a part of an image separately.

2.2.4 OBJECTIVE FUNCTION

The overall loss function for 3C-GAN is:

Lall =W + Lrc + Lfc + Lpc + αLld + βLex (7)

The definition of W,Lrc , L
f
c is the same as that in conditional GAN. Lpc is defined in the model

definition for 3C-GAN. α and β are additional hyper-parameters that need to be tuned. In practice,
we first tune α with β fixed to 0, find the best alpha, then tune β with the best α. We can tune both
α, β qualitatively or quantitatively. If we visualize xf , we can see if it is generated according to
labels. If not, alpha for that setting is too high. Also, if we visualize m1 or m2, we can see if they
are near zero or one. On the other hand, if the loss Lfc and Lpc becomes too high, we know the alpha
is set too high.

3 EXPERIMENT

We conduct experiments on three datasets 1)MNIST LeCun et al. (1998) 2)SVHN Netzer et al.
(2011) 3)CelebA Liu et al. (2015). To display our method can separately generate the part
of an image with its label, we modify MNIST data making the image background a uniform
grayscale value between [0, 200], and resize it to 32*32. We name this modified version ”MNIST-
BACKGROUND”. For SVHN, we use the extra set of the cropped digits. For CelebA, we focus on
the label of smile/not smile, and use the set of aligning face. We implement our method based on
open source code1. The details of parameters of each experiment will be discussed in each section.

3.1 RESULTS FOR MNIST-BACKGROUND DATASET

MNIST-BACKGROUND is similar to MNIST, with 10 different digits and 50000 images for train-
ing. We set the channel number of the model to be 32, and the input noise code number to be 30.
There are 15 context codes (zu), 15 object codes (zv), and 10 label codes (zl). Therefore, the input
dimensionality for G1 is 15 and for G2 is 40. The weight for label difference cost (Lld) is set to be
1 (α = 1), and the weight for exclusive cost (Lex) is set to be 0 (β = 0). The two generators shared
all structure except the bottom layer, and model is trained for 100000 iterations.

The results are shown in figure 2 to figure 4. The three figures are generated with the same input
noise code so we can compare them. The samples are generated conditional on digit class 0, 1, ...
to 9. There are totally 128 samples, each digit sample repeats 12 times, and the rest is fed with digit
class 0. Since this dataset is simple, the training is converged, and the model shows good generation
result (2). In addition, we show the results generated by G1 and G2 in figure 3 and figure 4. For
visualization purpose, we let a checkerboard pattern c composite with the output from G1, such that
figure 3 shows f1 �mn

1 + c� (1−mn
1 ). Similarly, figure 4 shows f2 �mn

2 + c� (1−mn
2 ). The

obvious checkerboard pattern in both figures means the mask is zero in those pixels. We can see G1

only generate the context while G2 generate the part of the image related to the label.

1https://github.com/igul222/improved_wgan_training
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Figure 2: composite generated samples xf for MNIST-BACKGROUND dataset

Figure 3: generated samples from G1 for MNIST-BACKGROUND dataset

3.2 RESULTS FOR SVHN DATASET

SVHN is also a dataset with 10 different digits classes. In an image, a digit with the class label is in
the center; however, there could be digits on the side of an image that does not related to the image’s
label. When training on this dataset, we set the channel number of the model to be 64, and the input
noise code number to be 64. There are 32 context codes (zu), 32 object codes (zv), and 10 label
codes (zl). Therefore, the input dimensionality for G1 is 32 and for G2 is 74. α is set to 10, and β is
set to 0.5. The two generators also shared all structure except the bottom layer, and model is trained
for 100000 iterations.

The results are shown in figure 5 to figure 7. The setting is the same as before: the three figures
are generated with the same input noise code, and the samples are generated conditional on digit
class 0, 1, ... to 9. Figure 5 shows the model generates fairly reasonable images. In figure 6 and
figure 7, we see G2 only generates the center digit in an image that is labeled, other digits are left to
G1. Compared to the results for MNIST-BACKGROUND, one major difference is the digits in G2

include the context other than the digit itself. We suspect this happens because sometimes the digits
are dark while the background is light, and sometimes vice versa. And the digits generated by G2

need to include the context around to have the classifier C give it a high probability.
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Figure 4: generated sample from G2 for MNIST-BACKGROUND dataset

Figure 5: composite generated samples xf for SVHN dataset

3.3 RESULTS FOR CELEBA DATASET

There are 20599 images on this dataset. We pre-process the dataset by resizing the images to 64-
by-64. We choose the attribute of smiling as image label for the conditional generator in our model
because the number of images of smiling and not-smiling is similar. When training on this dataset,
we set the channel number of the model to be 128, and the input noise code number to be 128 ( 64
context codes (zu), 64 object codes (zv), and 2 label codes (zl). α is set to 100, and β is set to 0.5.

The results are shown in figure 8 to figure 10. There are 100 samples, with the first fifty samples
belong to the class ”not smiling”, and the second fifty belongs to ”smiling”. The results show
G2 focus on face generation while G1 focus on background generation. Since the condition of
smiling/not smiling is determined by the face, it makes sense that G2 take the responsibility to
generate the faces. However, the separation is not as clear as the results on SVHN and MNISTB.
We suspect this happens because we use the attribute smiling/not smiling as a condition, which only
affects a small fraction of pixels in an image, and that is not strong enough to provide G2 a solution
to generate the whole face.
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Figure 6: generated samples from G1 for SVHN dataset

Figure 7: generated sample from G2 for SVHN dataset

4 CONCLUSION

In this paper, we present a novel GAN structure that has one generator generates the context while
the other conditional generator generate the part of the image based on the label it has. Compared
to previous multi-generators model, our model has fewer parameters and generate the different part
simultaneously. In addition, we proposed a new cost that makes the conditional generator learns to
generate only the essential part of the condition changing. Also, we proposed an exclusive prior so
that the two generators do not generate the same pixel. Experiments show our model separated the
data as mentioned, and therefore; provide more controllability over original GAN.
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