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ABSTRACT

Developing accurate predictive models of sensory neurons is vital to understanding
sensory processing and brain computations. The current standard approach to
modeling neurons is to start with simple models and to incrementally add inter-
pretable features. An alternative approach is to start with a more complex model
that captures responses accurately, and then probe the fitted model structure to un-
derstand the neural computations. Here, we show that a multitask recurrent neural
network (RNN) framework provides the flexibility necessary to model complex
computations of neurons that cannot be captured by previous methods. Specifically,
multilayer recurrent neural networks that share features across neurons outperform
generalized linear models (GLMs) in predicting the spiking responses of parasol
ganglion cells in the primate retina to natural images. The networks achieve good
predictive performance given surprisingly small amounts of experimental training
data. Additionally, we present a novel GLM-RNN hybrid model with separate spa-
tial and temporal processing components which provides insights into the aspects
of retinal processing better captured by the recurrent neural networks.

1 INTRODUCTION

Our understanding of sensory processing in the brain is most straightforwardly reflected in our ability
to model the process by which stimuli presented at the sensory periphery are transformed into the spik-
ing activity of populations of neurons. For decades, researchers have interrogated stimulus-response

∗These authors contributed equally.

1



Published as a conference paper at ICLR 2017

neural properties using simplified targeted stimuli, such as bars, spots, or gratings. While these types
of stimuli uncovered many interesting aspects of visual computation, they have several limitations
(Barlow & Levick, 1965). These stimuli may not fully drive important components of neural re-
sponse, and modeling efforts have often assumed a quasi-linear mapping from stimulus to firing rate.
Subsequent efforts to characterize cells relied on white noise stimulation and building models through
reverse correlation (de Boer R & Kuyper, 1968; Marmarelis & Naka, 1972; Chichilnisky, 2001). A
standard model used to relate white noise to spiking responses is the linear-nonlinear-Poisson (LN)
or generalized linear model (GLM) which consists of a spatiotemporal linear filtering of the stimulus
followed by a nonlinearity and probabilistic spike generation (Chichilnisky, 2001; Simoncelli et al.,
2004; Schwartz et al., 2006). Although this family of models have advanced our understanding,
they do not optimally capture neural responses, especially to natural scenes which can lead to more
complex responses than white noise stimuli (David et al., 2004). Even in the retina, early in the visual
processing stream, these commonly-used models capture retinal ganglion cell (RGC) responses to
natural stimuli less accurately than to white noise (Heitman et al., 2016).

Recently, deep neural networks have been used to dramatically improve performance on a diverse
array of machine learning tasks (Krizhevsky et al., 2012; LeCun et al., 2015). Furthermore, these
networks bear a loose resemblance to real neural networks, and provide a sufficiently rich model class
that can still be roughly constrained to match the biological architecture (Kriegeskorte, 2015). Most
previous research at this intersection of neuroscience and artificial neural networks has focused on
training networks on a certain task, such as object recognition, and then comparing the computations
performed in different layers of the artificial network to those performed by real neurons (Yamins
et al., 2014). Here we take a different approach: we fit multilayer models directly to the spiking
responses of neurons, an approach that has not been explored in detail (but see (McIntosh et al., 2016)
for some recent independent parallel developments).

2 APPROACH

We fit a range of models, detailed below, to spiking responses of primate RGCs. Our baseline
comparisons are the GLM architectures that have been widely used to construct previous neural
models (Pillow et al., 2008), though here we focus on individual neuronal responses (we leave
modeling of correlations between neurons for future work). We focused on RNNs as a flexible
framework in which to model more complex temporal and spatial nonlinearities. We also explored
a number of network architectures involving features or weights shared across observed neurons.
Given the complexity of the network architectures, we reasoned that sharing statistical strength
across neurons by learning a shared feature space might improve predictive performance. This is
conceptually a form of multitask learning - we are using a shared representation to achieve better
generalization (Baxter, 2000). Motivated by previous research showing significant differences in the
processing properties of the two cell types examined, ON and OFF parasol retinal ganglion cells, we
fit separate models for each of these cell types (Chichilnisky & Kalmar, 2002).

3 METHODS

3.1 DATA COLLECTION

We fit spiking responses of OFF and ON parasol retinal ganglion cells to natural scenes. Recordings
were performed on isolated retina using a large-scale multi-electrode recording system (Litke et al.,
2004; Frechette et al., 2005; Field et al., 2007). A standard spike sorting algorithm was used to identify
spikes from different cells from the voltage signals on each electrode during visual stimulation (Litke
et al., 2004). We focus on two separate experiments (the same experimental procedure in two separate
retinas) here; analyses of other datasets yielded similar results. Models were fit separately for the two
experiments due to animal to animal variability in cell properties, such as receptive field size and
firing rate. Almost all spike sorted cells were used for training (exp 1 = 118 OFF cells, 66 ON cells;
exp 2 = 142 OFF cells, 103 ON cells): two cells were removed due to data quality issues (see sec
3.3). Performance metrics in this paper are reported for the same subset of cells used in a previous
study (Heitman et al., 2016). These cells passed passed a manual screen for spike sorting accuracy,
demonstrated stable light responses, and met a convergence criteria in prior linear-nonlinear modeling
(exp 1 = 10 OFF cells, 18 ON cells; exp 2 = 65 OFF cells, 14 ON cells). The naturalistic movie
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Figure 1: Example model architectures. (A) Shared LN model. The past few frames of the stimulus
images are presented as inputs which are spatiotemporally filtered and passed through a nonlinearity
to produce a firing rate, which drives a Poisson spiking process. (B) Two-layer RNN. The current
frame of the stimulus feeds into a sequence of RNN layers (history dependence is implicit in the
hidden unit activations) and a Poisson GLM draws weighted inputs from the activations of the hidden
units of the last RNN layer and outputs predicted spike trains. Thus the last RNN layer represents a
shared feature pool that all the RGCs can draw from.

stimulus consisted of images from the Van Hateren database shown for one second each, with spatial
jitter based on eye movements during fixation by awake macaque monkeys (Z.M. Hafed and R.J.
Krauzlis, personal communication), (van Hateren & van der Schaaf, 1998). An example stimulus can
be found at https://youtu.be/sG_18Uz_6OE. 59 distinct natural scenes movies of length
one minute (the training data) were interleaved with 59 repetitions of a 30 second movie (the test
data). Interleaving ensured that the test movie repetitions spanned the same period of time as the
training data and therefore experienced the same range of experimental conditions (in case of neural
response drifts over time). The first 4 movies shown (2 training movies and 2 repetitions of the test
movie) were excluded to avoid initial transients. Test metrics are reported for the last 29 seconds of
the 30 second test movie for the same reason. For further details on the experimental set-up, data
preprocessing, and visual stimulation, see Heitman et al. (2016).

3.2 MODEL TRAINING

All models were implemented in Theano and trained on a combination of CPUs and GPUs (Theano
Development Team, 2016). Training was performed using the Adam optimizer on the mean squared
error (MSE) between predicted firing rate and true spikes (Kingma & Ba, 2014). We also experimented
with optimizing a Poisson likelihood; this led to qualitatively similar results but occasionally less
stable fits, so we focus on the MSE results here. All recurrent dynamics and temporal filters operated
on time bins of 8.33 ms (the frame rate of the movie). Spike history terms and performance metrics
were calculated for 0.833 ms bins. We used the same split of training and validation data for both
experiments: 104 thirty-second movies as training data and 10 thirty-second movies as a held-out
validation set.

During training, the performance on the held-out validation set is checked after every pass through
the training data. After each iteration through the training data, if the model exhibits significantly
better validation performance than our previous best, we reset the minimum number of iterations to be
twice the current iteration number. If we make it through those iterations without another significant
improvement, we stop. We train for a maximum of 150 epochs, where we define one epoch as one
pass through all the training data. The model with the best validation performance is saved and used
to assess test performance. All models with shared parameters were trained on a combined MSE over
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all neurons and the parameters picked were those which minimized validation MSE for all neurons.
For individual LNs/GLMs/RNNs, the validation MSE was minimized for each neuron separately.

3.3 RECEPTIVE FIELD CENTER ESTIMATION

In all models used in this paper, we estimate the receptive field (RF) center of each neuron in order
to identify the appropriate portion of the image to use as input. We calculate a 250 ms long spike
triggered average (STA) using reverse correlation of the neuron’s spikes with a white noise stimulus.
We reduce the noise in this STA by using a rank 1 approximation (singular value decomposition
followed by reconstruction using the primary temporal and spatial components). We then smooth
each frame of the STA via convolution with a Gaussian spatial filter. The center location is defined as
the pixel location that has the maximum absolute magnitude over time. The center locations were
visually assessed to check accuracy of the algorithm. Rare cases where the algorithm failed to identify
the correct center indicated neurons that responded to very little of the image as their receptive field
was more than half-way displaced out of the image. These two neurons (two Exp 1 ON cells) were
removed from further analysis. If the receptive field center is close to the edge of the image, the
image patch is padded with the average training stimulus value.

3.4 PERFORMANCE EVALUATION

To quantitatively evaluate the accuracy of model spike predictions, we used the fraction of explainable
variance, which has been described in previous literature (Heitman et al., 2016). Average firing rates
over time are obtained after generating spikes from the model in 0.833 ms bins and smoothing with a
Gaussian temporal filter (SD=10ms). The fraction of variance is computed as

F (r, rs) = 1−
∑

t(r(t)− rs(t))
2∑

t(r(t)− µ)2
(1)

where r(t) is the smoothed recorded firing rate, rs(t) is the smoothed predicted firing rate, and µ is
the average recorded rate. Finally, to account for the reproducibility of responses over repeated trials,
we normalize by the fraction of variance captured by using the average firing rate on the odd (ro)
trials of the repeated test movie to predict responses on the even (re) trials:

FV =
F (r, rs)

F (re, ro)
. (2)

4 MODEL ANALYSIS

4.1 NETWORK ARCHITECTURES

Individual LNs and GLMs: The linear-nonlinear model (LN) consists of a spatiotemporal filtering
of the 31x31x30 movie patch (Xt, width by height by time) surrounding the estimated center of the
neuron’s receptive field plus a bias term (b), followed by a sigmoid nonlinearity (f ), and Poisson
spike generation to produce the responses rt. The generalized linear model (GLM), given by

rt ∼ Poiss

[
f

(
~wT
s (Xt ~wt) + b+

∑
i

hirt−i

)]
, (3)

has the same architecture with the addition of a post-spike history filter h before the nonlinearity f
(Pillow et al., 2008). We used a rank 1 approximation of the full spatiotemporal filter (higher rank
models did not significantly improve fits on a subset of examined neurons), resulting in a vectorized
31x31 spatial filter (~ws) and a 30 bin temporal filter (~wt) which spans 250 ms (Heitman et al., 2016).
The post-spike history filter consists of a weighted sum of a basis of 20 raised cosines spanning
approximately 100 ms (Pillow et al., 2008). The models with spike history were fit by initializing
with the model fit without spike history. The filter either operates on the recorded spikes (training and
validation) or the spikes generated by the model (testing). The nonlinearity is the logistic sigmoid:
f = L/(1 + exp(−x)), which has been shown to improve fitting over an exponential nonlinearity
for modeling RGC responses to natural scenes (Heitman et al., 2016).
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Figure 2: Model performance. (A) Mean ± std. err. of the fraction of explainable variance for
criteria-passing subset of OFF and ON cells for various model architectures. (B) Scatter plots show
individual neural performance from LN and RNN model; each dot corresponds to one cell. Negative
FV values are shown on relevant axis as FV=0 (C) Hybrid model performance, quantified by the ratio
between the multitask LN to multitask hybrid performance gap and the multitask LN to multitask
RNN performance gap (one high outlier not pictured for both Exp 1 ON and Exp 2 ON )

Shared LN: In this model, the architecture is similar to the individual LNs but all cells of a given
type (OFF or ON) share the same temporal and spatial filters (Figure 1A; note that the spatial filters
are displaced to the RF center of each individual RGC). All other parameters are individually tuned
for each observed neuron. There is an additional gain term that weights the output of the filtering
individually for each observed neuron.

Two-layer RNN, 50 units: In this architecture, there are two recurrent neural network (RNN) layers
between the image patch and Poisson neural unit:

~h
(1)
j,t = max(0, U1~sj,t + V1~h

(1)
j,t−1 + ~c) (4)

~h
(2)
j,t = max(0, U2

~h
(1)
j,t + V2~h

(2)
j,t−1 +

~d) (5)

rj,t ∼ Poiss
[
f(~wT

j
~h
(2)
j,t + bj)

]
. (6)

The activity of the 50 units in the first RNN layer at time t is given by ~h(1)j,t in Eqn. 4. These units
are rectified linear, and receive input from the vectorized 31x31 image patch surrounding the center
of neuron j’s receptive field, ~sj,t, with weights U1, along with input from the other units in the
layer with weights V1 and a bias ~c. The output of the first RNN is then fed into a second RNN with
similar architecture. The firing rate for each observed neuron in the final layer is then given by Eqn.
6, and is a weighted sum of the recurrent units plus a bias bj , followed by a softplus nonlinearity
f = log(1 + exp(−x)). Note that all parameters are shared across neurons except for the weights to
the final layer and the final bias terms (~wj and bj).

GLM-RNN Hybrid: The GLM-RNN hybrid model consists of a spatial filter followed by a two-layer
RNN. The architecture resembles that of the full two-layer RNN with 50 units, except the input to the
first layer is a scalar (post multiplication with the spatial filter) at each time step instead of the full
image patch; thus the RNN in this model is responsible for shaping the temporal properties of the
output, but does not affect spatial processing after the first linear spatial filtering stage. All weights
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Figure 3: (A,B) Rasters showing spiking responses for 57 trials (each row corresponds to a single
trial) for an OFF and ON cell from experiment 1 for 10 seconds of a novel natural scenes movie.
Example cells chosen had near average difference between LN and RNN performance. Red ticks
denote time at which one natural image was replaced by another. (C,D) Average predicted spikes
over trials smoothed with Gaussian (SD = 10 ms) for same 10 seconds of the novel natural scenes
movie show qualitative differences among models. Dotted vertical lines align with red ticks in (A,B).

are shared across neurons except for weights to the final layer (~wj) and the final bias terms (bj):

yj,t = ~wT
s ~sj,t (7)

~h
(1)
j,t = max(0, ~u1yj,t + V1~h

(1)
j,t−1 + ~c) (8)

~h
(2)
j,t = max(0, U2h

(1)
j,t + V2~h

(2)
j,t−1 +

~d) (9)

rj,t ∼ Poiss
[
f(~wT

j
~h
(2)
t + bj)

]
. (10)

4.2 MODEL PERFORMANCE

RNNs of varying architectures consistently outperformed LNs and GLMs in predicting neural spiking
responses to a novel natural scene movie for both OFF and ON parasol retinal ganglion cells in both
experiments (Figure 2). A shared two-layer recurrent network consistently captures around 80% of
the explainable variance across experiments and cell types. Other recurrent architectures (1-3 layer
RNNs and a 2 layer LSTM) led to similar levels of performance (Supplementary Figure 6). The
increase in performance according to the fraction of explainable variance metric was not an average
effect: almost all neurons were significantly better predicted by the RNN (Figure 2B). A 2 layer
RNN model with additional trained spike history filters outperformed GLMs and LNs according to a
normalized log likelihood metric (Supplementary Figure 7).

Inspection of the mean predicted firing rate traces for LNs and RNNs in Figure 3 reveals that the
recurrent network seems to be capturing the timing of firing more precisely. The LN often predicts
a general increase in firing rate at the correct times, but the RNN captures the sudden increase in
firing rate followed by decay which often occurs when the image changes. On the other hand, the LN
models sometimes predict modest increases or decreases in firing rate that the recurrent nets miss.

Understanding why the recurrent models improve performance is a challenging task due to the
black-box nature of deep networks. The first layer filters (U1, from image patches to recurrent
units) have an interpretable structure resembling traditional receptive fields expected in the retina
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Figure 4: Model predictive performance on held-out data as a function of the amount of training data.
Error bars show SEM over 3 iterations of the mean FV over all neurons

(Supplementary Figure 8). However, the computations performed by the recurrent units are difficult
to tease apart, because the weights are less interpretable. Thus, instead of attempting a mechanistic
explanation of the internals of the RNN, we focused on what additional captured information resulted
in the improved RNN performance.

One possibility is that capturing nonlinear effects in parts of the image far from the receptive field
center improved predictions (McIlwain, 1964; Passaglia et al., 2009). We restricted the size of the
image patch surrounding each receptive field center from 31x31 to 15x15 (Supplementary Figure 9).
Shared RNNs trained on the smaller image patch size did as well, or better, than those trained on
the larger patch across almost all combinations of cell type and experiment. (We see a similar small
improvement when training the LN models on the small patch.) Thus we concluded that long-range
nonlinear spatial interactions do not contribute to the increased performance produced by the RNNs.

We also investigated whether nonlinear spatial interactions or nonlinear temporal processing primarily
contributed to better predictions. To accomplish this, we constructed a GLM-RNN hybrid, described
previously, in which a single spatial filter precedes a two-layer RNN - effectively allowing only
temporal nonlinearities to be captured. This model improved prediction over the LNs and GLMs
but did not reach full RNN performance. The amount by which this model closed the gap differed
for different experiments and cell types. We quantified this by computing the difference between
multitask RNN and multitask LN performance for each neuron and the difference between multitask
hybrid and multitask LN performance. We divide the latter by the former (on a cell-by-cell basis) to
obtain the ratios summarized in Figure 2C. The hybrid model closed greater than half of the gap on
average between multitask LN and RNN performance, indicating that the richer temporal dynamics
of the RNN model account for a large part of the difference between RNN and LN performance,
though spatial nonlinearities play a role too.

5 MODEST TRAINING DATA LENGTH SUFFICES FOR GOOD PERFORMANCE

Deep networks can be complex and often require large amounts of data to adequately train: convolu-
tional neural networks used for object recognition are trained on over a million images (Krizhevsky
et al., 2012). Standard neuroscience experiments yield limited data sets, so it is crucial to assess
whether we have enough data to adequately fit our network architectures. We trained the RNN on
varying amounts of data, and ran several different iterations of the network to explore variation over
random initializations and randomly chosen training sets. These results are shown for both ON and
OFF cells in Figure 4. Surprisingly small amounts of training data resulted in good predictive abilities.
For larger amounts of training data, different iterations resulted in very similar mean fraction of
variance values, indicating fairly robust fitting in these models. See Supplementary Figure 10 for
further details.

6 BENEFITS OF MULTITASK FRAMEWORK

We investigated whether the multitask framework with shared parameters across neurons actually
helps to improve predictive performance with reasonable amounts of experimental data. First, we
quantified the benefits of parameter-sharing in the simple LN model. This is a highly constrained
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Figure 5: Shared vs individual fits for LN model (A) and RNN model (B). 10 OFF and 10 ON cells
from each experiment are pictured (Light blue = exp 1, dark blue = exp 2). Negative FV values are
pictured as FV = 0.

framework: every cell has the same spatial and temporal filter. The shared LN does not improve
performance for most neurons (Figure 5A).

We expected the multitask framework to be more helpful applied to the RNN model because in
this case we are sharing features but not all parameters across neurons. Indeed, the multitask RNN
consistently outperformed RNNs trained individually on single neurons (Figure 5B); individually-
trained RNNs also had much more variable losses than did the multitask-trained RNNs. In a realistic
experimental setting with limited data, the multitask framework is a useful way to leverage all of the
data collected for all neurons.

7 CONCLUSION

Using retinal neurons responding to natural scenes as an example, we showed that: using deep
networks to model neural spiking responses can significantly improve prediction over current state-of-
the-art models; sharing information across neurons in a multi-task framework leads to better and more
stable predictions; and these models work well even given relatively small amounts of experimental
data. We believe that the multitask RNN framework presented here will enable new, richer models of
complex nonlinear spiking computations in other brain areas.

While one could argue that we have merely exchanged the black box of the brain for another black
box, just having a more predictive model is an important tool for research: these predictive models
of the primate retina can be used in retinal prosthetics research, to probe decoding, and as a first
stage of processing in the modeling of higher visual areas. Additionally, the recurrent network
is more accessible and available for experimentation and quantitative analysis. For example, the
trained neural network models may guide choices for more accurate simpler models by identifying
key computational features that are important to include. Training smaller models on the denoised
compression of spiking data (the predicted firing rate) may help them to learn features they otherwise
would not (Ba & Caruana, 2014). The deep network approach allows one to determine types of
information important to the neuron without having to build an exact mechanistic model of how
such information is incorporated, as demonstrated by our finding that both spatial and temporal
nonlinearities are not fully captured by the standard pseudo-linear models. We hope in future work
to gain a more thorough and quantitative understanding of the dynamics captured by the recurrent
networks and to extend this approach to higher sensory areas.
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8 SUPPLEMENTARY FIGURES
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Figure 6: Multiple different types of RNN architectures lead to similar levels of performance (Light
blue = exp 1, dark blue = exp 2). We compare (from left to right): 1) 2 layer RNN with 50 units/layer,
2) 1 layer RNN with 100 units, 3) 3 layer RNN with 33 units/layer, 4) LSTM architecture as detailed
in Hochreiter & Schmidhuber (1997)
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Figure 7: RNNs with added spike history filters outperform GLMs and LNs according to a normalized
log-likelihood metric. RNNs without spike history filters underperformed GLMs in some cases: log-
likelihood metrics are calculated using spike history filters generated by actual spikes so these filters
can improve log-likelihood without improving the fraction of explainable variance. The parameters
of a multitask 2 layer RNN trained with a sigmoid nonlinearity were held fixed while the parameters
of the last layer, including spike history filters, were trained. The normalized LL term was computed
as detailed in Heitman et al. (2016) except the ideal model was trained using MSE.
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Figure 8: Filters from image to Layer 1 RNN units in 2 layer RNN. Interpretable structures, including
OFF and ON centers and surrounds, are visible
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Figure 9: The 31x31 shared LN spatial filter is pictured. The white rectangle indicates the boundary
of the smaller 15x15 patch
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Figure 10: Comparison of two different initializations of a 2 layer RNN trained on Exp 1 OFF cells.
Performance differs slightly for individual neurons but the resulting average FV values are very
similar (0.819 vs 0.828)
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