
Workshop track - ICLR 2018

EVOLVED POLICY GRADIENTS

Rein Houthooft
OpenAI

Richard Y. Chen
OpenAI

Phillip Isola
OpenAI

Bradly C. Stadie
UC Berkeley

Filip Wolski
OpenAI

Jonathan Ho
OpenAI

Pieter Abbeel
UC Berkeley

ABSTRACT

We propose a meta-learning approach for learning gradient-based reinforcement
learning (RL) algorithms. The idea is to evolve a differentiable loss function,
such that an agent, which optimizes its policy to minimize this loss, will achieve
high rewards. The loss, parametrized via temporal convolutions over the agent’s
experience, enables fast task learning and eliminates the need for reward shaping
at test time. Empirical results show that our evolved policy gradient algorithm
achieves faster learning on several randomized environments compared to an off-
the-shelf policy gradient method.

1 INTRODUCTION

When a human learns to solve a new control task, such as playing the violin, they don’t require external
rewards to start learning. They immediately have a feel for what to try, and for whether or not they
are making progress towards the goal. Effectively, humans have access to a very well shaped internal
reward function, derived from prior experience. Our aim in this paper is to devise reinforcement
learning (RL) agents that similarly have a prior notion of what constitutes making progress on a novel
task. Rather than encoding this knowledge explicitly through memorized behaviors, we encode it
implicitly through a learned loss function.

Figure 1: High-level overview of our
approach. See text for details.

Our method consists of two optimization loops. In the inner
loop, an agent learns to solve a task, sampled from a task dis-
tribution, by minimizing a loss function provided by the outer
loop. In the outer loop, the parameters of the loss function
are adjusted so as to maximize the final returns achieved after
learning by inner loop agents. The inner loop is optimized
via stochastic gradient descent (SGD) while the outer loop is
optimized via evolution strategies (ES) (2; 5; 1; 3). Figure 1
provides a high-level overview of this approach.

2 METHODOLOGY

We assume access to a distribution p(M) over Markov deci-
sion processes (MDPs). Given a sampled MDPM, the inner
loop optimization problem is to minimize the loss Lφ with respect to the agent’s policy πθ:

θ∗ = argmin
θ

Eτ∼M,πθ
[Lφ(πθ, τ)]. (1)

The outer loop objective is to learn Lφ such that an agent policy πθ∗ trained with the loss function
actually does achieve high expected returns, R, in the MDP distribution:

φ∗ = argmax
φ

EM∼p(M)Eτ∼M,πθ∗ [Rτ ]. (2)

1



Workshop track - ICLR 2018

Algorithm 1: Evolved Policy Gradients (EPG)
1 Input: Learning rates δ and α, noise standard deviation σ, environment distribution p(M)
2 [Outer Loop] for epoch e = 1, . . . , E do
3 [Inner Loop] for each worker i = 1, . . . , n do
4 Sample random vector εi ∼ N (0, I) and calculate the loss function parameter φ+ σεi
5 Generate a random environmentMi according to p(M)
6 for trajectory j = 1, . . . ,K do
7 Sample initial state s0
8 for timestep t = 0, . . . ,M do
9 Sample action at from πθ(at|st)

10 Take action at, observe reward rt and next state st+1 fromMi

11 If termination signal is reached, reset environment, resampling initial state s0
12 Update policy parameter θ based on the loss function Lφ+σεi according to Eq. (3)
13 Compute the final return Ri
14 Update the parameter φ for the loss function Lφ according to Eq. (4)

2.1 ALGORITHM

Figure 2: Architecture of a loss computed
for timestep t within a batch of M sequential
samples, using temporal convolutions over a
buffer of size N : dense net on bottom is the
policy π(s), taking as input the observations
(orange), while outputting action probabilities
(green). Green block on the top represents
loss output. Gray blocks are evolved, yellow
blocks are updated through SGD.

The final episodic return Rτ at evaluation cannot be
represented as an explicit function of the loss function
Lφ, and thus we cannot use gradient-based methods
to directly solve Equation (2). Our approach, summa-
rized in Algorithm 1, relies on evolution strategies to
optimize the loss function in the outer loop.

At the start of each iteration in the outer loop,
we generate a standard multivariate normal vector
εi ∈ N (0, I) with the same dimension as the loss
function parameter φ for each inner loop worker
i ∈ {1, . . . , n}. The outer loop gives each inner
loop worker a perturbed loss function

Li = Lφ+σ∗εi ,

with perturbed parameters φ+ σ ∗ εi where σ is the
standard deviation.

Given a loss functions Li from the outer loop, each
inner loop worker i samples a random MDP from
the task distribution,Mi ∼ p(M). The worker then
trains a policy πθ inMi over K trajectories {τj}Kj=1
of M timesteps of experience. After each trajectory,
the policy takes a gradient step with respect to min-
imizing the loss function Li:

θ ← θ − δ · ∇θLi
(
πθ, τj

)
. (3)

At the end of the inner-loop training, each worker
returns the final return Ri1 to the outer loop. The
outer-loop aggregates the final returns {Ri}ni=1 from
all workers and updates the loss function parameter
φ as follows:

φ← φ+ α · 1

nσ

∑n

i=1
Riεi, (4)

where α is the outer loop learning rate.

1 More specifically, Ri = Ri,K + 1
K

∑K
t=0

(t+1)
K

Ri,t with Ri,j the undiscounted return of episode t in
worker i.

2



Workshop track - ICLR 2018

2.2 ARCHITECTURE

The agent is parametrized using an MLP policy. The agent has a memory unit to assist learning in
the inner loop. The memory parameters are updated during training in the inner loop but does not
directly impact the agent’s policy output. Instead, the memory is feed as an input to the loss, which
modulates the learning process. An experience buffer stores the agent’s N most recent timesteps.

The loss function does not observe the environment rewards directly. However, in cases where the
reward cannot be fully inferred from the environment, such as the forward-backward random Hopper
in Section 3, we augment the inputs to the loss function with reward.

In practice to bootstrap the learning process, we initially add to L(φ) a guidance PPO (4) surrogate
loss function, making the total loss

L̂φ = (1− α)Lφ + αLPPO,

with α annealed from 1 to 0, so that by the end of training L̂φ = Lφ.

3 EXPERIMENTS

We apply our method to two randomized MuJoCo environments, namely Hopper (with randomized
gravity, friction, body mass, and link thickness) and Reacher (with randomized link lengths). We
compare learning performance using EPG versus PPO (4). Figure 3 shows learning curves for these
two methods on the randomized Hopper and Reacher environments.

Figure 3: Learning curves for PPO (black) vs no-reward EPG algorithm (red). Left two subplots
are two different randomizations of Random Hopper, right two are two different randomizations for
Random Reacher.

Figure 4: Exploratory behavior of EPG (red)
in forward-backward random Hopper in com-
parison to PPO (black). The EPG agent goes
backwards for a while, then going forward
and exploiting. Inlays indicate qualitative be-
havior observed in these two phases.

In both cases, the PPO agent observes reward signals
whereas the EPG agent does not observe rewards.
Nonetheless, the EPG agent learns more quickly and
obtains higher returns compared to the PPO agent.
This indicates that our method generates an objective
that is more effective at training agents, within these
task distributions, than PPO. This is true even though
the learned loss does not observe rewards at test time.
This demonstrates the potential to use our method
when rewards are only available at training time.

To understand whether EPG trains agents that ex-
plore, we test EPG and PPO on a specialized forward-
backward random Hopper environment, with random
reward for either forward or backward hopping. Note
that without observing the reward, the agent cannot
infer whether the Hopper environment desires for-
ward or backward hopping. Thus we provide the
environment reward to the loss function in this set-
ting. Figure 4 shows the learning curves of a PPO
agent and an EPG agent, and shows that EPG manages to explore both forward and backward hopping
whereas PPO does not.

3



Workshop track - ICLR 2018

REFERENCES

[1] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

[2] I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. 1973.

[3] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[5] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolu-
tionsstrategie: mit einer vergleichenden Einführung in die Hill-Climbing-und Zufallsstrategie.
Birkhäuser, 1977.

4


	Introduction
	Methodology
	Algorithm
	Architecture

	Experiments

