
FLOPs as a Direct Optimization Objective for
Learning Sparse Neural Networks

Raphael Tang, Ashutosh Adhikari, Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
{r33tang, ashutosh.adhikari, jimmylin}@uwaterloo.ca

Abstract

There exists a plethora of techniques for inducing structured sparsity in parametric
models during the optimization process, with the final goal of resource-efficient
inference. However, to the best of our knowledge, none target a specific number
of floating-point operations (FLOPs) as part of a single end-to-end optimization
objective, despite reporting FLOPs as part of the results. Furthermore, a one-size-
fits-all approach ignores realistic system constraints, which differ significantly
between, say, a GPU and a mobile phone—FLOPs on the former incur less latency
than on the latter; thus, it is important for practitioners to be able to specify a target
number of FLOPs during model compression. In this work, we extend a state-of-
the-art technique to directly incorporate FLOPs as part of the optimization objective
and show that, given a desired FLOPs requirement, different neural networks can
be successfully trained for image classification.

1 Introduction

Neural networks are a class of parametric models that achieve the state of the art across a broad
range of tasks, but their heavy computational requirements hinder practical deployment on resource-
constrained devices, such as mobile phones, Internet-of-things (IoT) devices, and offline embedded
systems. Many recent works focus on alleviating these computational burdens, mainly falling
under two non-mutually exclusive categories: manually designing resource-efficient models, and
automatically compressing popular architectures. In the latter, increasingly sophisticated techniques
have emerged [4, 5, 6], which have achieved respectable accuracy–efficiency operating points, some
even Pareto-better than that of the original network; for example, network slimming [4] reaches
an error rate of 6.20% on CIFAR-10 using VGGNet [10] with a 51% FLOPs reduction—an error
decrease of 0.14% over the original.

However, to the best of our knowledge, none of the methods impose a FLOPs constraint as part
of a single end-to-end optimization objective. MorphNets [1] apply an L1 norm, shrinkage-based
relaxation of a FLOPs objective, but for the purpose of searching and training multiple models to
find good network architectures; in this work, we learn a sparse neural network in a single training
run. Other papers directly target device-specific metrics, such as energy usage [16], but the pruning
procedure does not explicitly include the metrics of interest as part of the optimization objective,
instead using them as heuristics. Falling short of continuously deploying a model candidate and
measuring actual inference time, as in time-consuming neural architectural search [12], we believe
that the number of FLOPs is reasonable to use as a proxy measure for actual latency and energy
usage; across variants of the same architecture, Tang et al. suggest that the number of FLOPs is a
stronger predictor of energy usage and latency than the number of parameters [13].

Indeed, there are compelling reasons to optimize for the number of FLOPs as part of the training
objective: First, it would permit FLOPs-guided compression in a more principled manner. Second,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

practitioners can directly specify a desired target of FLOPs, which is important in deployment. Thus,
our main contribution is to present a novel extension of the prior state of the art [7] to incorporate the
number of FLOPs as part of the optimization objective, furthermore allowing practitioners to set and
meet a desired compression target.

2 FLOPs Objective

Formally, we define the FLOPs objective Lflops : f × Rm 7→ N0 as follows:
Lflops(h,θθθ) := g(h(·; I(θθθ1 6= 0), I(θθθ2 6= 0), . . . , I(θθθm 6= 0))) |θθθ| = m (1)

where Lflops is the FLOPs associated with hypothesis h(·;θθθ) := p(·|θθθ), g(·) is a function with the
explicit dependencies, and I is the indicator function. We assume Lflops to depend only on whether
parameters are non-zero, such as the number of neurons in a neural network. For a dataset D, our
empirical risk thus becomes
R(h;θθθ) = − log p(D|θθθ) + λf max (0, Lflops (h,θθθ)− T) D = ((x1, y2), . . . , (xn, yn)) (2)

Hyperparameters λf ∈ R+
0 and T ∈ N0 control the strength of the FLOPs objective and the

target, respectively. The second term is a black-box function, whose combinatorial nature prevents
gradient-based optimization; thus, using the same procedure in prior art [7], we relax the objective
to a surrogate of the evidence lower bound with a fully-factorized spike-and-slab posterior as the
variational distribution, where the addition of the clipped FLOPs objective can be interpreted as a
sparsity-inducing prior p(θθθ) ∝ exp(−λf max(0, Lflops(h,θθθ)− T)). Let z ∼ p(z|πππ) be Bernoulli
random variables parameterized by πππ:

L(h;θθθ) = E
p(z|πππ)

[− log p(D|θθθ � z) + λf max (0, Lflops (h,θθθ � z)− T)] (3)

where � denotes the Hadamard product. To allow for efficient reparameterization and exact zeros,
Louizos et al. [7] propose to use a hard concrete distribution as the approximation, which is a
stretched and clipped version of the binary Concrete distribution [8]: if ẑ ∼ BinaryConcrete(α, β),
then z̃ := max(0,min(1, (ζ − γ)ẑ + γ)) is said to be a hard concrete r.v., given ζ > 1 and γ < 0.
Define φφφ := (ααα, β), and let ψ(φφφ) = Sigmoid(logααα − β log −γζ) and z ∼ Bernoulli(ψ(φφφ)). Then,
the approximation becomes

L(h;θθθ) ≈ E
p(z̃|φφφ)

[− log p(D|θθθ � z)] + λf E
p(z|ψ(φφφ))

[max (0, Lflops (h,θθθ � z)− T)] (4)

ψ(·) is the probability of a gate being non-zero under the hard concrete distribution. It is more efficient
in the second expectation to sample from the equivalent Bernoulli parameterization compared to
hard concrete, which is more computationally expensive to sample multiple times. The first term
now allows for efficient optimization via the reparameterization trick [3]; for the second, we apply
the score function estimator (REINFORCE) [15], since the FLOPs objective is, in general, non-
differentiable and thus precludes the reparameterization trick. High variance is a non-issue because
the number of FLOPs is fast to compute, hence letting many samples to be drawn. At inference time,
the deterministic estimator is θ̂θθ := θθθ � max(0,min(1,Sigmoid(logααα)(ζ − γ) + γ)) for the final
parameters θ̂θθ.

2.1 Computing number of FLOPs under group sparsity

In practice, computational savings are achieved only if the model is sparse across “regular” groups
of parameters, e.g., each filter in a convolutional layer. Thus, each computational group uses one
hard concrete r.v. [7]—in fully-connected layers, one per input neuron; in 2D convolution layers,
one per output filter. Under convention in the literature where one addition and one multiplication
each count as a FLOP, the FLOPs for a 2D convolution layer hconv(·;θθθ) given a random draw z is
then defined as Lflops(hconv, z) = (KwKhCin +1)(Iw −Kw +Pw +1)(Ih −Kh +Ph +1)‖z‖0
for kernel width and height (Kw,Kh), input width and height (Iw, Ih), padding width and height
(Pw, Ph), and number of input channels Cin. The number of FLOPs for a fully-connected layer
hfc(·;θθθ) is Lflops(hfc, z) = (In+1)‖z‖0, where In is the number of input neurons. Note that these
are conventional definitions in neural network compression papers—the objective can easily use
instead a number of FLOPs incurred by other device-specific algorithms. Thus, at each training step,
we compute the FLOPs objective by sampling from the Bernoulli r.v.’s and using the aforementioned
definitions, e.g., Lflops(hconv, ·) for convolution layers. Then, we apply the score function estimator
to the FLOPs objective as a black-box estimator.

2

3 Experimental Results

We report results on MNIST, CIFAR-10, and CIFAR-100, training multiple models on each dataset
corresponding to different FLOPs targets. We follow the same initialization and hyperparameters
as Louizos et al. [7], using Adam [2] with temporal averaging for optimization, a weight decay of
5× 10−4, and an initial α that corresponds to the original dropout rate of that layer. We similarly
choose β = 2/3, γ = −0.1, and ζ = 1.1. For brevity, we direct the interested reader to their
repository1 for specifics. In all of our experiments, we replace the original L0 penalty with our FLOPs
objective, and we train all models to 200 epochs; at epoch 190, we prune the network by weights
associated with zeroed gates and replace the r.v.’s with their deterministic estimators, then finetune
for 10 more epochs. For the score function estimator, we draw 1000 samples at each optimization
step—this procedure is fast and has no visible effect on training time.

Table 1: Comparison of LeNet-5-Caffe results on MNIST

Model Architecture Err. FLOPs

GL [14] 3-12-192-500 1.0% 205K
GD [11] 7-13-208-16 1.1% 254K
SBP [9] 3-18-284-283 0.9% 217K
BC-GNJ [6] 8-13-88-13 1.0% 290K
BC-GHS [6] 5-10-76-16 1.0% 158K
L0 [7] 20-25-45-462 0.9% 1.3M
L0-sep [7] 9-18-65-25 1.0% 403K

Lflops, T = 400K 3-13-208-500 0.9% 218K
Lflops, T = 200K 3-8-128-499 1.0% 153K
Lflops, T = 100K 2-7-112-478 1.1% 111K

We choose λf = 10−6 in all of the experiments for LeNet-5-Caffe, the Caffe variant of LeNet-5.1 We
observe that our methods (Table 1, bottom three rows) achieve accuracy comparable to those from
previous approaches while using fewer FLOPs, with the added benefit of providing a tunable “knob”
for adjusting the FLOPs. Note that the convolution layers are the most aggressively compressed,
since they are responsible for most of the FLOPs in this model.

Table 2: Comparison of WideResNet-28-10 results on CIFAR-10 and CIFAR-100

Method
CIFAR-10 CIFAR-100

Err. E[FLOPs] FLOPs Err. E[FLOPs] FLOPs

Orig. 4.00% 5.9B 5.9B 21.18% 5.9B 5.9B
Orig. w/dropout 3.89% 5.9B 5.9B 18.85% 5.9B 5.9B
L0 3.83% 5.3B 5.9B 18.75% 5.3B 5.9B
L0-small 3.93% 5.2B 5.9B 19.04% 5.2B 5.9B

Lflops, T = 4B 3.82% 3.9B 4.6B 18.93% 3.9B 4.6B
Lflops, T = 2.5B 3.91% 2.4B 2.4B 19.48% 2.4B 2.4B

Orig. in Table 2 denotes the original WRN-28-10 model [17], and L0-* refers to the L0-regularized
models [7]; likewise, we augment CIFAR-10 and CIFAR-100 with standard random cropping and
horizontal flipping. For each of our results (last two rows), we report the median error rate of five
different runs, executing a total of 20 runs across two models for each of the two datasets; we use
λf = 3 × 10−9 in all of these experiments. We also report both the expected FLOPs and actual
FLOPs, the former denoting the number of FLOPs, on average, at training time under stochastic gates
and the latter denoting the number of FLOPs at inference time. We restrict the FLOPs calculations
to the penalized non-residual convolution layers only. For CIFAR-10, our approaches result in
Pareto-better models with decreases in both error rate and the actual number of inference-time FLOPs.
For CIFAR-100, we do not achieve a Pareto-better model, since our approach trades accuracy for
improved efficiency. The acceptability of the tradeoff depends on the end application.

1https://github.com/AMLab-Amsterdam/L0_regularization

3

https://github.com/AMLab-Amsterdam/L0_regularization

References

[1] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
MorphNet: Fast & simple resource-constrained structure learning of deep networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[3] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114,
2013.

[4] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

[5] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2755–2763, 2017.

[6] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
Advances in Neural Information Processing Systems, pages 3288–3298, 2017.

[7] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l_0 regularization. In International Conference on Learning Representations, 2018.

[8] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

[9] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured
Bayesian pruning via log-normal multiplicative noise. In Advances in Neural Information
Processing Systems, pages 6775–6784, 2017.

[10] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[11] Suraj Srinivas and R Venkatesh Babu. Generalized dropout. arXiv:1611.06791, 2016.
[12] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. MnasNet: Platform-

aware neural architecture search for mobile. arXiv:1807.11626, 2018.
[13] Raphael Tang, Weijie Wang, Zhucheng Tu, and Jimmy Lin. An experimental analysis of the

power consumption of convolutional neural networks for keyword spotting. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5479–
5483, 2018.

[14] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pages 2074–2082,
2016.

[15] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[16] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional
neural networks using energy-aware pruning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6071–6079, 2017.

[17] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

4

	Introduction
	FLOPs Objective
	Computing number of FLOPs under group sparsity

	Experimental Results

