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Abstract

Deep neural networks with discrete latent variables offer the promise of
better symbolic reasoning, and learning abstractions that are more useful
to new tasks. There has been a surge in interest in discrete latent variable
models, however, despite several recent improvements, the training of discrete
latent variable models has remained challenging and their performance has
mostly failed to match their continuous counterparts. Recent work on vector
quantized autoencoders (VQ-VAE) has made substantial progress in this
direction, with its perplexity almost matching that of a VAE on datasets such
as CIFAR-10. In this work, we investigate an alternate training technique
for VQ-VAE, inspired by its connection to the Expectation Maximization
(EM) algorithm. Training the discrete autoencoder with EM and combining
it with sequence level knowledge distillation alows us to develop a non-
autoregressive machine translation model whose accuracy almost matches
a strong greedy autoregressive baseline Transformer, while being 3.3 times
faster at inference.

1 Introduction

Unsupervised learning of meaningful representations is a fundamental problem in machine
learning since obtaining labeled data can often be very expensive. Continuous representations
have largely been the workhorse of unsupervised deep learning models of images (Goodfellow
et al., 2014; van den Oord et al., 2016; Kingma et al., 2016; Salimans et al., 2017; Parmar
et al., 2018), audio (Van Den Oord et al., 2016; Reed et al., 2017), and video (Kalchbrenner
et al., 2016). However, it is often the case that datasets are more naturally modeled as a
sequence of discrete symbols rather than continuous ones. For example, language and speech
are inherently discrete in nature and images are often concisely described by language, see
e.g., Vinyals et al. (2015). Improved discrete latent variable models could also prove useful
for learning novel data compression algorithms (Theis et al., 2017), while having far more
interpretable representations of the data.

We build on Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al.,
2017), a recently proposed training technique for learning discrete latent variables. The
method uses a learned code-book combined with nearest neighbor search to train the discrete
latent variable model. The nearest neighbor search is performed between the encoder output
and the embedding of the latent code using the `2 distance metric. VQ-VAE adopts the
standard latent variable model generative process, first sampling latent codes from a prior,
P (z), which are then consumed by the decoder to generate data from P (x | z). In van den
Oord et al. (2017), the authors use both uniform and autoregressive priors for P (z). The
resulting discrete autoencoder obtains impressive results on unconditional image, speech, and
video generation. In particular, on image generation, VQ-VAE was shown to perform almost
on par with continuous VAEs on datasets such as CIFAR-10 (van den Oord et al., 2017).
An extension of this method to conditional supervised generation, out-performs continuous
autoencoders on WMT English-German translation task (Kaiser et al., 2018).

The work of Kaiser et al. (2018) introduced the Latent Transformer, which set a new state-
of-the-art in non-autoregressive Neural Machine Translation. However, additional training
heuristics, namely, exponential moving averages (EMA) of cluster assignment counts, and
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product quantization (Norouzi & Fleet, 2013) were essential to achieve competitive results
with VQ-VAE. In this work, we show that tuning for the code-book size can significantly
outperform the results presented in Kaiser et al. (2018). We also exploit VQ-VAE’s connec-
tion with the expectation maximization (EM) algorithm (Dempster et al., 1977), yielding
additional improvements. With both improvements, we achieve a BLEU score of 22.4 on
English to German translation, outperforming Kaiser et al. (2018) by 2.6 BLEU. Knowledge
distillation (Hinton et al., 2015; Kim & Rush, 2016) provides significant gains with our best
models and EM, achieving 26.7 BLEU, which almost matches the autoregressive transformer
model with no beam search at 27.0 BLEU, while being 3.3× faster.

Our contributions can be summarized as follows:

1. We show that VQ-VAE from van den Oord et al. (2017) can outperform previous
state-of-the-art without product quantization.

2. Inspired by the EM algorithm, we introduce a new training algorithm for training
discrete variational autoencoders, that outperforms the previous best result with
discrete latent autoencoders for neural machine translation.

3. Using EM training, and combining it sequence level knowledge distillation (Hinton
et al., 2015; Kim & Rush, 2016), allows us to develop a non-autoregressive machine
translation model whose accuracy almost matches a strong greedy autoregressive
baseline Transformer, while being 3.3 times faster at inference.

4. On the larger English-French dataset, we show that denoising discrete autoencoders
gives us a significant improvement (1.0 BLEU) on top of our non-autoregressive
baseline (see Section D).

2 VQ-VAE and the Hard EM Algorithm

The connection between K-means, and hard EM, or the Viterbi EM algorithm is well
known (Bottou & Bengio, 1995), where the former can be seen a special case of hard-EM
style algorithm with a mixture-of-Gaussians model with identity covariance and uniform
prior over cluster probabilities. In the following sections we briefly explain the VQ-VAE
discrete autoencoder for completeness and it’s connection to classical EM.

2.1 VQ-VAE discretization algorithm

VQ-VAE models the joint distribution PΘ(x, z) where Θ are the model parameters, x is the
data point and z is the sequence of discrete latent variables or codes. Each position in the
encoded sequence has its own set of latent codes. Given a data point, the discrete latent
code in each position is selected independently using the encoder output. For simplicity,
we describe the procedure for selecting the discrete latent code (zi) in one position given
the data point (xi). The encoder output ze(xi) ∈ RD is passed through a discretization
bottleneck using a nearest-neighbor lookup on embedding vectors e ∈ RK×D. Here K is the
number of latent codes (in a particular position of the discrete latent sequence) in the model.
More specifically, the discrete latent variable assignment is given by,

zi = arg min
j∈[K]

‖ze(xi)− ej‖2 (1)

The selected latent variable’s embedding is passed as input to the decoder,

zq(xi) = ezi

The model is trained to minimize:

L = lr + β ‖ze(xi)− sg (zq(xi))‖2 , (2)

where lr is the reconstruction loss of the decoder given zq(x) (e.g., the cross entropy loss),
and, sg (.) is the stop gradient operator defined as follows:

sg (x) =

{
x forward pass
0 backward pass
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To train the embedding vectors e ∈ RK×D, van den Oord et al. (2017) proposed using a
gradient based loss function

‖sg (ze(xi))− zq(xi)‖2 , (3)

and also suggested an alternate technique of training the embeddings: by maintaining an
exponential moving average (EMA) of all the encoder hidden states that get assigned to
it. It was observed in Kaiser et al. (2018) that the EMA update for training the code-book
embedding, results in more stable training than using gradient-based methods. We analyze
this in more detail in Section 5.1.1.

Specifically, an exponential moving average is maintained over the following two quantities:
1) the embeddings ej for every j ∈ [1, . . . ,K] and, 2) the count cj measuring the number of
encoder hidden states that have ej as it’s nearest neighbor. The counts are updated in a
mini-batch of targets as:

cj ← λcj + (1− λ)
∑
i

1 [zq(xi) = ej ] , (4)

with the embedding ej being subsequently updated as:

ej ← λej + (1− λ)
∑
i

1 [zq(xi) = ej ] ze(xi)

cj
, (5)

where 1[.] is the indicator function and λ is a decay parameter which we set to 0.999 in
our experiments. This amounts to doing stochastic gradient in the space of both code-book
embeddings and cluster assignments. These techniques have also been successfully used in
minibatch K-means (Sculley, 2010) and online EM (Liang & Klein, 2009; Sato & Ishii, 2000).

The generative process for our latent variable NMT model, P (y, z | x), begins by autoregres-
sively sampling a sequence of discrete latent codes from a model conditioned on the input
x,

P (z | x) =

|z|∏
i=1

P
(
zi | z1,...,(i−1), x

)
, (6)

which we refer to as the Latent Predictor model (Kaiser et al., 2018). The decoder then
consumes this sequence of discrete latent variables to generate the target y all at once, where

P (y | z, x) =

|y|∏
j=1

P (yj | z, x). (7)

The autoregressive learned prior prior is fit on the discrete latent variables produced by
the autoencoder. Our goal is to learn a sequence of latents, that is much shorter than the
targets, |z| � |y|, thereby speeding up decoding significantly with no loss in accuracy. The
architecture of the encoder, the decoder, and the latent predictor model are described in
further detail in Section 5.

2.2 Hard EM and the K-means algorithm

In this section we briefly recall the hard Expectation maximization (EM) algorithm (Dempster
et al., 1977). Given a set of data points (x1, . . . , xN ), the hard EM algorithm approximately
solves the following optimization problem:

Θ∗ = arg max
Θ

max
z1,...,zN

PΘ(x1, . . . , xN , z1, . . . , zN ), (8)

Hard EM performs coordinate descent over the following two coordinates: the model
parameters Θ, and the hidden variables z1, . . . , zN . In other words, hard EM consists of
repeating the following two steps until convergence:

1. E step: (z1, . . . , zN )← arg maxz1,...,zN PΘ(x1, . . . , xN , z1, . . . , zN ),
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2. M step: Θ← arg maxΘ PΘ(x1, . . . , xN , z1, . . . , zN )

A special case of the hard EM algorithm is K-means clustering (MacQueen et al., 1967;
Bottou & Bengio, 1995) where the likelihood is modelled by a Gaussian with identity
covariance matrix. Here, the means of the K Gaussians are the parameters to be estimated,

Θ = 〈µ1, . . . , µK〉, µk ∈ RD.

With a uniform prior over the hidden variables (PΘ(zi) = 1
K ), the marginal is given by

PΘ(xi | zi) = N (µzi , I)(xi). In this case, equation (8) is equivalent to:

(
µ1, . . . , µK

)∗
= arg max

µ1,...,µK
min

z1,...,zN

N∑
i=1

‖µzi − xi‖22 (9)

Note that optimizing equation (9) is NP-hard, however one can find a local optima by
applying coordinate descent until convergence:

1. E step: Cluster assignment is given by,

zi ← arg min
j∈[K]

∥∥µj − xi∥∥2

2
, (10)

2. M step: The means of the clusters are updated as,

cj ←
N∑
i=1

1[zi = j]; µj ← 1

cj

N∑
i=1

1[zi = j]xi. (11)

We can now easily see the connections between the training updates of VQ-VAE and K-means
clustering. The encoder output ze(x) ∈ RD corresponds to the data point while the discrete
latent variables corresponds to clusters. Given this, Equation 1 is equivalent to the E-step
(Equation 10) and the EMA updates in Equation 4 and Equation 5 converge to the M-step
(Equation 11) in the limit. The M-step in K-means overwrites the old values while the
EMA updates interpolate between the old values and the M step update.

3 VQ-VAE training with EM

In this section, we investigate a new training strategy for VQ-VAE using the EM algorithm.

3.1 Expectation Maximization

First, we briefly describe the EM algorithm. While the hard EM procedure selects one cluster
or latent variable assignment for a data point, here the data point is assigned to a mixture
of clusters. Now, the optimization objective is given by,

Θ∗ = arg max
Θ

PΘ(x1, . . . , xN )

= arg max
Θ

∑
z1,...,zN

PΘ(x1, . . . , xN , z1, . . . , zN )

Coordinate descent algorithm is again used to approximately solve the above optimization
algorithm. The E and M step are given by:

1. E step:

ρ(zi)← PΘ(zi | xi), (12)

2. M step:

Θ← arg max
Θ

Ezi∼ρ[logPΘ(xi, zi)] (13)
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3.2 Vector Quantized Autoencoders trained with EM

Now, we describe vector quantized autoencoders training using the EM algorithm. As
discussed in the previous section, the encoder output ze(x) ∈ RD corresponds to the data
point while the discrete latent variables corresponds to clusters. The E step instead of hard
assignment now produces a probability distribution over the set of discrete latent variables
(Equation 12). Following VQ-VAE, we continue to assume a uniform prior over clusters,
since we observe that training the cluster priors seemed to cause the cluster assignments to
collapse to only a few clusters. The probability distribution is modeled as a Gaussian with
identity covariance matrix,

PΘ(zi | ze(xi)) ∝ e−‖ezi−ze(xi)‖2
2

As an alternative to computing the full expectation term in the M step (Equation 13)
we perform Monte-Carlo Expectation Maximization (Wei & Tanner, 1990) by drawing
m samples z1

i , · · · , zmi ∼ Multinomial
(
−‖e1 − ze(xi)‖22 , . . . ,−‖eK − ze(xi)‖

2
2

)
, where

Multinomial(l1, . . . , lK) refers to the K-way multinomial distribution with logits l1, . . . , lK .
This results in a less diffuse target for the autoregressive prior. Thus, the E step can be
finally written as:

E step: z1
i , . . . , z

m
i ← Multinomial

(
−‖e1 − ze(xi)‖22 , . . . ,−‖eK − ze(xi)‖

2
2

)
The model parameters Θ are then updated to maximize this Monte-Carlo estimate in the M
step given by

M step: cj ←
1

m

N∑
i=1

m∑
l=1

1
[
zli = j

]
; ej ←

1

mcj

N∑
i=1

m∑
l=1

1
[
zli = j

]
ze(xi).

Instead of exactly following the above M step update, we use the EMA version of this update
similar to the one described in Section 2.1.

When sending the embedding of the discrete latent to the decoder, instead of sending the
posterior mode, argmaxzP (z | x), similar to hard EM and K-means, we send the average of
the embeddings of the sampled latents:

zq(xi) =
1

m

m∑
l=1

ezli . (14)

Since m latent code embeddings are sent to the decoder in the forward pass, all of them are
updated in the backward pass for a single training example. In hard EM training, only one
of them is updated during training. Sending averaged embeddings also results in more stable
training using the EM algorithm compared to VQ-VAE as shown in Section 5.

To train the latent predictor model (Section 2.1) in this case, we use an approach similar to
label smoothing (Pereyra et al., 2017): the latent predictor model is trained to minimize the
cross entropy loss with the labels being the average of the one-hot labels of z1

i , . . . , z
m
i .

4 Other Related Work

Variational autoencoders were first introduced by Kingma & Welling (2014) for training con-
tinuous representations; unfortunately, training them for discrete latent variable models has
proved challenging. One promising approach has been to use various gradient estimators for
discrete latent variable models, starting with the REINFORCE estimator of Williams (1992),
an unbiased, high-variance gradient estimator. Subsequent work on improving the variance of
the REINFORCE estimator are REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al.,
2017). An alternate approach towards gradient estimators is to use continuous relaxations of
categorical distributions, for e.g., the Gumbel-Softmax reparametrization trick (Jang et al.,
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2016; Maddison et al., 2016). These methods provide biased but low variance gradients for
training.

Machine translation using deep neural networks have been shown to achieve impressive results
(Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014; Vaswani et al., 2017). The
state-of-the-art models in Neural Machine Translation are all auto-regressive, which means
that during decoding, the model consumes all previously generated tokens to predict the next
one. Recently, there have been multiple efforts to speed-up machine translation decoding. Gu
et al. (2017) attempts to address this issue by using the Transformer model (Vaswani et al.,
2017) together with the REINFORCE algorithm (Williams, 1992), to model the fertilities
of words. The main drawback of the approach of Gu et al. (2017) is the need for extensive
fine-tuning to make policy gradients work, as well as the non-generic nature of the solution.
Lee et al. (2018) propose a non-autoregressive model using iterative refinement. Here, instead
of decoding the target sentence in one-shot, the output is successively refined to produce
the final output. While the output is produced in parallel at each step, the refinement steps
happen sequentially.

5 Experiments

In this section we report our experiments with VQ-VAE and EM on the English-German
translation task, with the aim of improving the decoding speed of autoregressive translation
models. Our model and generative process follows the architecture proposed in Kaiser et al.
(2018) and is depicted in Figure 1. For all our experiments, we use the Adam (Kingma &
Ba, 2014) optimizer and decay the learning rate exponentially after initial warm-up steps.
Unless otherwise stated, the dimension of the hidden states of the encoder and the decoder
is 512, see Table 4 for a comparison of models with lower dimension. For all configurations
we select the optimal hyperparameters by using WMT’13 English-German as the validation
set and reporting the BLEU score on the WMT’14 English-German test set.

5.1 Machine Translation

Figure 1: VQ-VAE model adapted to conditional supervised translation as described in
Kaiser et al. (2018). We use x and y to denote the source and target sentence respectively.
The encoder, the decoder and the latent predictor now additionally condition on the source
sentence x.

In Neural Machine Translation with latent variables, we model P (y, z | x), where y and x are
the target and source sentence respectively. Our model architecture, depicted in Figure 1,
is similar to the one in Kaiser et al. (2018). The encoder function is a series of strided
convolutional layers with residual convolutional layers in between and takes target sentence y
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as input. The source sentence x is converted to a sequence of hidden states through multiple
causal self-attention layers. In Kaiser et al. (2018), the encoder of the autoencoder attends
additionally to this sequence of continuous representation of the source sentence. We use
VQ-VAE as the discretization algorithm. The decoders, applied after the bottleneck layer
uses transposed convolution layers whose continuous output is fed to a transformer decoder
with causal attention, which generates the output.

The results are summarized in Table 1. Our implementation of VQ-VAE achieves a sig-
nificantly better BLEU score and faster decoding speed compared to Kaiser et al. (2018).
We found that tuning the code-book size (number of clusters) for using 212 discrete latents
achieves the best accuracy which is 16 times smaller as compared to the code-book size in
Kaiser et al. (2018). Additionally, we see a large improvement in the performance of the
model by using sequence-level distillation (Hinton et al., 2015; Kim & Rush, 2016), as has
been observed previously in non-autoregressive models (Gu et al., 2017; Lee et al., 2018).
Our teacher model is a base Transformer (Vaswani et al., 2017) that achieves a BLEU score
of 28.1 and 27.0 on the WMT’14 test set using beam search decoding and greedy decoding
respectively. The distilled data is decoded from the base Transformer using a beam size of
4. Our VQ-VAE model trained with soft EM and distillation, achieves a BLEU score of
26.7, without noisy parallel decoding (Gu et al., 2017). This perforamce is 1.4 bleu points
lower than an autoregressive model decoded with a beam size of 4, while being 4.1× faster.
Importantly, we nearly match the same autoregressive model with beam size 1 (greedy
decoding), with a 3.3× speedup.

The length of the sequence of discrete latent variables is shorter than that of target sentence
y. Specifically, at each compression step of the encoder we reduce its length by half. We
denote by nc, the compression factor for the latents, i.e. the number of steps for which we do
this compression. In almost all our experiments, we use nc = 3 reducing the length by 8. We
can decrease the decoding time further by increasing the number of compression steps. As
shown in Table 1, by setting nc to 4, the decoding time drops to 58 milliseconds achieving
25.4 BLEU while a NAT model (Gu et al., 2017) with similar decoding speed achieves only
18.7 BLEU. Note that, all NAT models also train with sequence level knowledge distillation
from an autoregressive teacher.

5.1.1 Analysis

Attention to Source Sentence Encoder: While the encoder of the discrete autoencoder
in Kaiser et al. (2018) attends to the output of the encoder of the source sentence, we find
that to be unnecessary, with both models achieving the same BLEU score with 212 latents.
Removing this attention step results in more stable training (see Figure 3) and is the
main reason why VQ-VAE works in our setup (see Table 1) without the use of Product
Quantization (DVQ) (Kaiser et al., 2018). Note that the decoder of the discrete autoencoder
in both Kaiser et al. (2018) and our work does not attend to the source sentence.

Size of Discrete Latent Variable code-book: Table 2 shows the BLEU score for
different code-book sizes for models trained using VQ-VAE without distillation. While Kaiser
et al. (2018) use 216 as their code-book size, we find that 212 gives the best performance.

Number of samples in Monte-Carlo EM update: While training with EM, we per-
form a Monte-Carlo update with a small number of samples (Section 3.2). Table 3 shows
the impact of number of samples on the final BLEU score.

VQ-VAE vs Other Discretization Techniques: We compare the Gumbel-Softmax of
(Jang et al., 2016; Maddison et al., 2016) and the improved semantic hashing discretization
technique proposed in Kaiser et al. (2018) to VQ-VAE. When trained with sequence level
knowledge distillation, the model using Gumbel-Softmax reached 23.2 BLEU, the model
using improved semantic hashing reached 24.1 BLEU, and the model using VQ-VAE reached
26.4 BLEU on WMT’14 English-German.
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Model nc ns BLEU Latency Speedup

Autoregressive Model (beam size=4) - - 28.1 331 ms 1×
Autoregressive Baseline (no beam-search) - - 27.0 265 ms 1.25×

NAT + distillation - - 17.7 39 ms 15.6× *

NAT + distillation + NPD=10 - - 18.7 79 ms 7.68× *

NAT + distillation + NPD=100 - - 19.2 257 ms 2.36× *

LT + Semhash - - 19.8 105 ms 3.15×
Our Results

VQ-VAE 3 - 21.4 81 ms 4.08×
VQ-VAE with EM 3 5 22.4 81 ms 4.08×
VQ-VAE + distillation 3 - 26.4 81 ms 4.08×
VQ-VAE with EM + distillation 3 10 26.7 81 ms 4.08×
VQ-VAE with EM + distillation 4 10 25.4 58 ms 5.71×

Table 1: BLEU score and decoding times for different models on the WMT’14 English-
German translation dataset. The baseline is the autoregressive Transformer of Vaswani
et al. (2017) with no beam search, NAT denotes the Non-Autoregressive Transformer
of Gu et al. (2017), and LT + Semhash denotes the Latent Transformer from van den
Oord et al. (2017) using the improved semantic hashing discretization technique of
Kaiser & Bengio (2018). NPD refers to noisy parallel decoding as described in Gu et al.
(2017). We use the notation nc to denote the compression factor for the latents, and
the notation ns to denote the number of samples used to perform the Monte-Carlo
approximation of the EM algorithm. Distillation refers to sequence level knowledge
distillation from Hinton et al. (2015); Kim & Rush (2016). We used a code-book of
size 212 for VQ-VAE (for with and without EM) with a hidden dimension of size 512.
Decoding is performed on a single CPU machine with an NVIDIA GeForce GTX 1080
with a batch size of 1

* Speedup reported for these items are compared to the decode time of 408 ms for an
autoregressive Transformer from Gu et al. (2017).
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6 Conclusion

We investigate an alternate training technique for VQ-VAE inspired by its connection
to the EM algorithm. Training the discrete autoencoder with EM and combining it
with sequence level knowledge distillation, allows us to develop a non-autoregressive
machine translation model whose accuracy almost matches a greedy autoregressive
baseline, while being 3.3 times faster at inference. While sequence distillation is very
important for training our best model, we find that the improvements from EM on
harder tasks is quite significant. We hope that our results will inspire further re-
search on using vector quantization for fast decoding of autoregressive sequence models.
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A Image Reconstruction

Figure 2: VQ-VAE model as described in van den Oord et al. (2017) for image reconstruction.
We use the notation x to denote the input image, with the output of the encoder ze(x) ∈ RD
being used to perform nearest neighbor search to select the (sequence of) discrete latent
variable. The selected discrete latent is used to train the latent predictor model, while the
embedding zq(x) of the selected discrete latent is passed as input to the decoder.

Figure 3: Samples of original and reconstructed images from CIFAR-10 using EM trained
with a code-book of size 28.

In this section we report additional experiments we performed using VQ-VAE and EM for
the task of image reconstruction. We train a discrete autoencoder with VQ-VAE (van den
Oord et al., 2017) and EM on the CIFAR-10 data set, modeling the joint probability P (x, z),
where x is the image and z are the discrete latent codes. We use a field of 8× 8 × 10 latents
with a code-book of size 28 each containing 512 dimensions. We maintain the same encoder
and decoder as used in Machine Translation. For the encoder, we use 4 convolutional layers,
with kernel size 5× 5 and strides 2× 2, followed by 2 residual layers, and a single dense layer.
For the decoder, we use a single dense layer, 2 residual layers, and 4 deconvolutional layers.
Figure 3 shows that our reconstructions are on par with hard EM training.

We also train discrete autoencoders on the SVHN dataset (Netzer et al., 2011), with both
VQ-VAE (van den Oord et al., 2017) and EM. The autoencoder is similar to our CIFAR-10
model, where each nx = 32× 32× 3 image is encoded into 640 discrete latents from a shared
codebook of size 256. By contrasting the reconstructions from several training runs for
VQ-VAE (left) and EM (right), we find that training with EM is more reliable and the
reconstructions are of high quality (Figure 4)
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Figure 4: On the left are reconstructions from a model trained with VQ-VAE (van den Oord
et al., 2017) and the right figure shows reconstructions from EM training, our approach.

B Ablation Tables

Model Code-book size BLEU

VQ-VAE 210 20.8
VQ-VAE 212 21.6
VQ-VAE 214 21.0
VQ-VAE 216 21.8

Table 2: Results showing the impact of the discrete vocabulary on the BLEU score for the
WMT’14 English-German dataset. The hidden dimension is 512 for all runs.
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Model nc ns BLEU Latency Speedup

VQ-VAE with EM + distillation 3 1 25.8 81 ms 4.08×
VQ-VAE with EM + distillation 3 5 26.4 81 ms 4.08×
VQ-VAE with EM + distillation 3 10 26.7 81 ms 4.08×
VQ-VAE with EM + distillation 3 25 26.6 81 ms 4.08×
VQ-VAE with EM + distillation 3 50 26.5 81 ms 4.08×
VQ-VAE with EM + distillation 3 100 25.8 81 ms 4.08×
VQ-VAE with EM + distillation 4 1 24.1 58 ms 5.71×
VQ-VAE with EM + distillation 4 5 24.7 58 ms 5.71×
VQ-VAE with EM + distillation 4 10 25.4 58 ms 5.71×
VQ-VAE with EM + distillation 4 25 25.1 58 ms 5.71×
VQ-VAE with EM + distillation 4 50 23.6 58 ms 5.71×
VQ-VAE with EM + distillation 4 100 24.8 58 ms 5.71×

Table 3: Results showing the impact of number of samples used to perform the Monte-Carlo
EM update on the BLEU score for the WMT’14 English-German dataset. The codebook
size for all runs in this table is 212 × 512.

Model Hidden dimension ns BLEU Latency Speedup

VQ-VAE + distillation 256 - 24.5 76 ms 4.36×
VQ-VAE with EM + distillation 256 10 21.9 76 ms 4.36×
VQ-VAE with EM + distillation 256 25 25.8 76 ms 4.36×
VQ-VAE + distillation 384 - 25.6 80 ms 4.14×
VQ-VAE with EM + distillation 384 10 22.2 80 ms 4.14×
VQ-VAE with EM + distillation 384 25 26.2 80 ms 4.14×

Table 4: Results showing the impact of the dimension of the word embeddings and the
hidden layers of the model on the BLEU score for the WMT’14 English-German dataset
with a discrete vocabulary of size 212.

C Additional Analysis

Gradient based update vs EMA update of code-book: The original VQ-VAE paper
(van den Oord et al., 2017) proposed a gradient based update rule for learning the code-book
where the code-book entries are trained by minimizing ‖sg (ze(x))− zq(x)‖2. However, it
was found in Kaiser et al. (2018) that the EMA update worked better than this gradient
based loss. Note that if the gradient based loss was minimized using SGD then the update
rule for the embeddings is

ej ← (1− η)ej + η

(∑
i 1 [zq(xi) = ej ] ze(xi)∑

i 1 [zq(xi) = ej ]

)
, (15)

for a learning rate η. This is quite similar to the EMA update rule of Equation 5, with the
only difference being that the latter also maintains an EMA over the counts cj . When using
SGD with momentum or Adam, the update rule becomes quite different however, since we
now take the moving average of the gradient term itself, before subtracting it from current
value of the embedding ej . This is similar to the issue of using weight decay with Adam,
where using the `2 penalty in the loss function results in worse performance (Loshchilov &
Hutter, 2017).

Model Size: The effect of model size on BLEU score for models trained with EM and
distillation is shown in Table 4.
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Robustness of EM to Hyperparameters: While EM training gives a small performance
improvement, we find that it also leads to more robust training for machine translation.

Our experiments on image reconstruction on SVHN (Netzer et al., 2011) in section A also
highlight the robustness of EM training. The training approach from van den Oord et al.
(2017) exhibits high variance on reconstruction quality, while EM is much more stable,
resulting in good reconstructions in almost all training runs.

Figure 5: Comparison of VQ-VAE (green curve) vs EM with different number of samples
(yellow and blue curves) on the WMT’14 English-German translation dataset with a code-
book size of 214, with the encoder of the discrete autoencoder attending to the output
of the encoder of the source sentence as in Kaiser et al. (2018). The y-axis denotes the
teacher-forced BLEU score on the test set, which is used only for evaluation while training.
Notice that the VQ-VAE run collapsed (green curve), while the EM runs (yellow and blue
curves) exhibit more stability.

Emergence of EOS/PAD latent: We observe that all the latent sentences for a specific
experiment with VQ-VAE or EM end with a fixed latent indicating the end of the sequence.
Since we always fix the length of the latent sentence to be 2nc times smaller than the true
sentence, the model learns to pad the remainder of the latent sequence with this special code
(see Table 5 for examples). Note that one can speed up decoding even further by stopping
the Latent Predictor (LP) model as soon as it outputs this special code.

7 89 517 3773 760 760 760 760
607 1901 1901 3051 760 760 760 760
2388 15 850 2590 760 760 760 760
670 127 17 3773 760 760 760 760
2335 26 129 2986 760 760 760 760
10 45 1755 766 760 760 760 760
3773 1082 13 91 760 760 760 760
1790 38 270 554 760 760 760 760
2951 2015 91 2418 760 760 760 760
2951 27 760 760 760 760 760 760
463 201 3410 3051 760 760 760 760

Table 5: Example latent codes for sentences from the WMT’14 English-German dataset
highlighting the emergence of the EOS/PAD latent (760 in this case).
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Denoising autoencoder: We also use word dropout with a dropout rate of 0.3 and word
permutation with a shuffle rate of 0.5 as in Lample et al. (2018). On the WMT English-
German we did not notice any improvement from using these regularization techniques, but
on the larger WMT English-French dataset, we observe that using a denoising autoencoder
significantly improves performance with a gain of 1.0 BLEU on VQ-VAE and 0.9 BLEU over
EM (see Table 6).

Additional analysis on latents: In order to compute correlations between the discrete
latents and n-grams in the original text, we computed Point-wise Mutual Information (PMI)
and tf-idf scores where the latents are treated as documents. However, we were unable to
see any semantic patterns that stood out in this analysis.

D Preliminary Results on English French

In this section we report preliminary results on the WMT English-French dataset without
using knowledge distillation from an autoregressive teacher (Hinton et al., 2015; Kim &
Rush, 2016). We use a Transformer base model from Vaswani et al. (2017). Our best
non-autoregressive base model trained on non-distilled targets gets 30.0 BLEU compared
to the autoregressive base model with the same choice of hyperparameters, which gets 33.3
BLEU (see Table 6). As in the case of English-German, we anticipate that using knowledge
distillation Hinton et al. (2015) will likely close this gap.

Model nc ns Code-book size BLEU Latency Speedup

Autoregressive Baseline - - - 33.3 771 ms 1×
Our Results

VQ-VAE 3 - 12 29.0 215 ms 3.58×
VQ-VAE with EM 3 10 12 29.2 215 ms 3.58×
VQ-VAE with reg. 3 - 12 30.0 215 ms 3.58×
VQ-VAE with EM, reg. 3 10 12 29.9 215 ms 3.58×
VQ-VAE with reg. 3 - 14 29.0 228 ms 3.38×
VQ-VAE with EM, reg. 3 10 14 29.5 228 ms 3.38×

Table 6: BLEU score and decoding times for different models on the WMT’13 English-
French translation dataset. The baseline is the autoregressive Transformer of Vaswani
et al. (2017) with no beam search, We use the notation nc to denote the compression
factor for the latents, and the notation ns to denote the number of samples used to
perform the Monte-Carlo approximation of the EM algorithm. Reg. refers to word
dropout with rate 0.3 and word permutation with shuffle rate 0.5 as described in Section C.
The hidden dimension of the codebook is 512. Decoding is performed on a single CPU
machine with an NVIDIA GeForce GTX 1080 with a batch size of 1.
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