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ABSTRACT

Generative modeling of high-dimensional data is a key problem in machine learn-
ing. Successful approaches include latent variable models and autoregressive
models. The complementary strengths of these approaches, to model global and
local image statistics respectively, suggest hybrid models combining the strengths
of both models. Our contribution is to train such hybrid models using an auxiliary
loss function that controls which information is captured by the latent variables
and what is left to the autoregressive decoder. In contrast, prior work on such hy-
brid models needed to limit the capacity of the autoregressive decoder to prevent
degenerate models that ignore the latent variables and only rely on autoregressive
modeling. Our approach results in models with meaningful latent variable repre-
sentations, and which rely on powerful autoregressive decoders to model image
details. Our model generates qualitatively convincing samples, and yields state-
of-the-art quantitative results.

1 INTRODUCTION

Unsupervised modeling of complex distributions with unknown structure is a landmark challenge in
machine learning. The problem is often studied in the context of learning generative models of the
complex high-dimensional distributions of natural image collections. Latent variable approaches can
learn disentangled and concise representations of the data (Bengio et al., 2013), which are useful for
compression (Gregor et al., 2016) and semi-supervised learning (Kingma et al., 2014; Rasmus et al.,
2015). When conditioned on prior information, generative models can be used for a variety of tasks,
such as attribute or class-conditional image generation, text and pose-based image generation, image
colorization, etc. (Yan et al., 2016; van den Oord et al., 2016; Reed et al., 2017; Deshpande et al.,
2017). Recently significant advances in generative (image) modeling have been made along several
lines, including adversarial networks (Goodfellow et al., 2014; Arjovsky et al., 2017), variational
autoencoders (Kingma & Welling, 2014; Rezende et al., 2014), autoregressive models (Oord et al.,
2016; Reed et al., 2017), and non-volume preserving variable transformations (Dinh et al., 2017).

In our work we seek to combine the merits of two of these lines of work. Variational autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) can learn latent variable representations
that abstract away from low-level details, but model pixels as conditionally independent given the
latent variables. This renders the generative model computationally efficient, but the lack of low-
level structure modeling leads to overly smooth and blurry samples. Autoregressive models, such as
pixelCNNs (Oord et al., 2016), on the other hand, estimate complex translation invariant conditional
distributions among pixels. They are effective to model low-level image statistics, and yield state-
of-the-art likelihoods on test data (Salimans et al., 2017). This is in line with the observations of
Kolesnikov & Lampert (2017) that low-level image details account for a large part of the likelihood.
These autoregressive models, however, do not learn a latent variable representations to support, e.g.,
semi-supervised learning. See Figure 1 for representative samples of VAE and pixelCNN models.

The complementary strengths of VAEs and pixelCNNs, modeling global and local image statistics
respectively, suggest hybrid approaches combining the strengths of both. Prior work on such hybrid
models needed to limit the capacity of the autoregressive decoder to prevent degenerate models that
completely ignore the latent variables and rely on autoregressive modeling only (Gulrajani et al.,
2017; Chen et al., 2017). In this paper we describe Auxiliary Guided Autoregressive Variational
autoEncoders (AGAVE), an approach to train such hybrid models using an auxiliary loss function
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Figure 1: Randomly selected samples from unsupervised models trained on 32×32 CIFAR10
images: (a) IAF-VAE Kingma et al. (2016), (b) pixelCNN++ Salimans et al. (2017), and (c) our
hybrid AGAVE model. For our model, we show the intermediate high-level representation based on
latent variables (left), that conditions the final sample based on the pixelCNN decoder (right).

that controls which information is captured by the latent variables and what is left to the AR decoder,
rather than limiting the capacity of the latter. Using high-capacity VAE and autoregressive compo-
nents allows our models to obtain quantitative results on held-out data that are on par with the state
of the art, and to generate samples with both global coherence and low-level details, see Figure 1.

2 RELATED WORK

Generative image modeling has recently taken significant strides forward, leveraging deep neural
networks to learn complex density models using a variety of approaches. These include the varia-
tional autoencoders and autoregressive models that form the basis of our work, but also generative
adversarial networks (GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017) and variable trans-
formation with invertible functions (Dinh et al., 2017). While GANs produce visually appealing
samples, they suffer from mode dropping and their likelihood-free nature prevents measuring how
well they model held-out test data. In particular, GANs can only generate samples on a non-linear
manifold in the data space with dimension equal to the number of latent variables. In contrast, prob-
abilistic models such as VAEs and autoregressive models generalize to the entire data space, and
likelihoods of held-out data can be used for compression, and to quantitatively compare different
models. The non-volume preserving (NVP) transformation approach of Dinh et al. (2017) chains
together invertible transformations to map a basic (e.g. unit Gaussian) prior on the latent space to a
complex distribution on the data space. This method offers tractable likelihood evaluation and exact
inference, but obtains likelihoods on held-out data below the values reported using state-of-the-art
VAE and autoregressive models. Moreover, it is restricted to use latent representations with the same
dimensionality as the input data, and is thus difficult to scale to model high-resolution images.

Autoregressive density estimation models, such as pixelCNNs (Oord et al., 2016), admit tractable
likelihood evaluation, while for variational autoencoders (Kingma & Welling, 2014; Rezende et al.,
2014) accurate approximations can be obtained using importance sampling (Burda et al., 2016).
Naively combining powerful pixelCNN decoders in a VAE framework results in a degenerate model
which ignores the VAE latent variable structure, as explained through the lens of bits-back coding
by Chen et al. (2017). To address this issue, the capacity of the the autoregressive component can be
restricted. This can, for example, be achieved by reducing its depth and/or field of view, or by giv-
ing the pixelCNN only access to grayscale values, i.e. modeling p(xi|x<i, z) = p(xi|gray(x<i), z)
(Chen et al., 2017; Gulrajani et al., 2017). This forces the model to leverage the latent variables z
to model part of the dependencies among the pixels. This approach, however, has two drawbacks.
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(i) Curbing the capacity of the model is undesirable in unsupervised settings where training data is
abundant and overfitting unlikely. (ii) Balancing what is modeled by the VAE and the pixelCNN
by means of architectural design choices requires careful hand-design and tuning of the architec-
tures. To overcome these drawbacks, we propose to instead control what is modeled by the VAE
and pixelCNN with an auxiliary loss on the VAE decoder output before it is used to condition the
autoregressive decoder. This allows us to “plug in” powerful high-capacity VAE and pixelCNN
architectures, and balance what is modeled by each component by means of the auxiliary loss.

In a similar vein, Kolesnikov & Lampert (2017) force pixelCNN models to capture more high-level
image aspects using an auxiliary representation y of the original image x, e.g. a low-resolution
version of the original. They learn a pixelCNN for y, and a conditional pixelCNN to predict x
from y, possibly using several intermediate representations. This approach forces modeling of more
high-level aspects in the intermediate representations, and yields visually more compelling samples.
Reed et al. (2017) similarly learn a series of conditional autoregressive models to upsample coarser
intermediate latent images. By introducing partial conditional independencies in the model they
scale the model to efficiently sample high-resolution images of up to 512×512 pixels. Gregor et al.
(2016) use a recurrent VAE model to produces a sequence of RGB images with increasing detail
derived from latent variables associated with each iteration. Like our work, all these models work
with intermediate representations in RGB space to learn accurate generative image models.

3 AUXILIARY GUIDED AUTOREGRESSIVE VARIATIONAL AUTOENCODERS

We give a brief overview of variational autoencoders and their limitations in Section 3.1, before we
present our approach to learn variational autoencoders with autoregressive decoders in Section 3.2.

3.1 VARIATIONAL AUTOENCODERS

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) learn deep generative
latent variable models using two neural networks. The “decoder” network implements a conditional
distribution pθ(x|z) over observations x given a latent variable z, with parameters θ. Together with
a basic prior on the latent variable z, e.g. a unit Gaussian, the generative model on x is obtained by
marginalizing out the latent variable:

pθ(x) =

∫
p(z)pθ(x|z) dz. (1)

The marginal likelihood can, however, not be optimized directly since the non-linear dependen-
cies in pθ(x|z) render the integral intractable. To overcome this problem, an “encoder” network is
used to compute an approximate posterior distribution qφ(z|x), with parameters φ. The approxi-
mate posterior is used to define a variational bound on the data log-likelihood, by subtracting the
Kullback-Leibler divergence between the true and approximate posterior:

ln pθ(x) ≥ L(θ,φ;x) = ln(pθ(x))−DKL(qφ(z|x)||pθ(z|x)) (2)
= IEqφ [ln(pθ(x|z)]︸ ︷︷ ︸

Reconstruction

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

. (3)

The decomposition in (3) interprets the bound as the sum of a reconstruction term and a regulariza-
tion term. The first aims to maximize the expected data log-likelihood pθ(x|z) given the posterior
estimate qφ(z|x). The second term prevents qφ(z|x) from collapsing to a single point, which would
be optimal for the first term.

Variational autoencoders typically model the dimensions of x as conditionally independent,

pθ(x|z) =
D∏
i=1

pθ(xi|z), (4)

for instance using a factored Gaussian or Bernoulli model, see e.g. Kingma & Welling (2014);
Kingma et al. (2016); Yan et al. (2016). The conditional independence assumption makes sampling
from the VAE efficient: since the decoder network is evaluated only once for a sample z ∼ p(z) to
compute all the conditional distributions pθ(xi|z), the xi can then be sampled in parallel.
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A result of relying on the latent variables to account for all pixel dependencies, however, is that all
low-level variability must also be modeled by the latent variables. Consider, for instance, a picture
of a dog, and variants of that image shifted by one or a few pixels, or in a slightly different pose,
with a slightly lighter background, or with less saturated colors, etc. If these factors of variability
are modeled using latent variables, then these low-level aspects are confounded with latent variables
relating to the high-level image content. If the corresponding image variability is not modeled using
latent variables, it will be modeled as independent pixel noise. In the latter case, using the mean of
pθ(x|z) as the synthetic image for a given z results in blurry samples, since the mean is averaged
over the low-level variants of the image. Sampling from pθ(x|z) to obtain synthetic images, on the
other hand, results in images with unrealistic independent pixel noise.

3.2 AUTOREGRESSIVE DECODERS IN VARIATIONAL AUTOENCODERS

Autoregressive density models, see e.g. (Larochelle & Murray, 2011; Germain et al., 2015), rely on
the basic factorization of multi-variate distributions,

pθ(x) =

D∏
i=1

pθ(xi|x<i) (5)

with x<i = x1, . . . , xi−1, and model the conditional distributions using a (deep) neural network. For
image data, PixelCNNs (Oord et al., 2016; van den Oord et al., 2016) use a scanline pixel ordering,
and model the conditional distributions using a convolution neural network. The convolutional filters
are masked so as to ensure that the receptive fields only extend to pixels x<i when computing the
conditional distribution of xi.

PixelCNNs can be used as a decoder in a VAE by conditioning on the latent variable z in addition to
the preceding pixels, leading to a variational bound with a modified reconstruction term:

L(θ,φ;x) = IEqφ

[
D∑
i=1

ln pθ(xi|x<i, z)

]
−DKL(qφ(z|x)||p(z)). (6)

The regularization term can be interpreted as a “cost” of using the latent variables. To effectively
use the latent variables, the approximate posterior qφ(z|x) must differ from the prior p(z), which
increases the KL divergence.

Chen et al. (2017) showed that for loss in (6) and a decoder with enough capacity, it is optimal
to encode no information about x in z by setting q(z|x) = p(z). To ensure meaningful latent
representation learning Chen et al. (2017) and Gulrajani et al. (2017) restrict the capacity of the
pixelCNN decoder. In our approach, in contrast, it is always optimal for the autoregressive decoder,
regardless of its capacity, to exploit the information on x carried by z. We rely on two decoders in
parallel: the first one reconstructs an auxiliary image y from an intermediate representation fθ(z)
in a non-autoregressive manner. The auxiliary image can be either simply taken to be the original
image (y = x), or a compressed version of it, e.g. with lower resolution or with a coarser color
quantization. The second decoder is a conditional autoregressive model that predicts x conditioned
onfθ(z). Modeling y in a non-autoregressive manner ensures a meaningful representation z and
renders x and z dependent, inducing a certain non-zero KL “cost” in (6). The uncertainty on x
is thus reduced when conditioning on z, and there is no longer an advantage in ignoring the latent
variable for the autoregressive decoder. We provide a more detailed explanation of why our auxiliary
loss ensures a meaningful use of latent variables in powerful decoders in Appendix A. To train the
model we combine both decoders in a single objective function with a shared encoder network:

L(θ,φ;x,y) = IEqφ

[
D∑
i=1

ln pθ(xi|x<i, z)

]
︸ ︷︷ ︸

Primary Reconstruction

+ IEqφ

 E∑
j=1

ln pθ(yj |z)


︸ ︷︷ ︸

Auxiliary Reconstruction

−λ DKL (qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

. (7)

Treating x and y as two variables that are conditionally independent given a shared underlying latent
vairable z leads to λ = 1. Summing the lower bounds in Eq. (3) and Eq. (6) of the marginal log-
likelihoods of y and x, and sharing the encoder network, leads to λ = 2. Larger values of λ result
in valid but less tight lower bounds of the log-likelihoods. Encouraging the variational posterior to
be closer to the prior, this leads to less informative latent variable representations.
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VAE encoder Latent
variables z

VAE decoder f(z) PixelCNN decoder Reconstruction
original image x

KL divergence
regularization
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auxiliary image y

Figure 2: Schematic illustration of our auxiliary guided autoregressive variational autoencoder
(AGAVE). The objective function has three components: KL divergence regularization, per-pixel
reconstruction with the VAE decoder, and autoregressive reconstruction with the pixelCNN decoder.

Sharing the encoder across the two decoders is the key of our approach. The factored auxiliary VAE
decoder can only model pixel dependencies by means of the latent variables, which ensures that a
meaningful representation is learned. Now, given that the VAE encoder output is informative on
the image content, there is no incentive for the autoregressive decoder to ignore the intermediate
representation f(z) on which it is conditioned. The choice of the regularization parameter λ and
auxiliary image y provide two levers to control how much and what type of information should be
encoded in the latent variables. See Figure 2 for a schematic illustration of our approach.

4 EXPERIMENTAL EVALUATION

In this section we describe our experimental setup, and present results on CIFAR10.

4.1 DATASET AND IMPLEMENTATION

The CIFAR10 dataset (Krizhevsky, 2009) contains 6,000 images of 32×32 pixels for each of the 10
object categories airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The images are
split into 50,000 training images and 10,000 test images. We train all our models in a completely
unsupervised manner, ignoring the class information.

We implemented our model based on existing architectures. In particular we use the VAE architec-
ture of Kingma et al. (2016), and use logistic distributions over the RGB color values. We let the
intermediate representation f(z) output by the VAE decoder be the per-pixel and per-channel mean
values of the logistics, and learn per-channel scale parameters that are used across all pixels. The
cumulative density function (CDF), given by the sigmoid function, is used to compute probabilities
across the 256 discrete color levels, or fewer if a lower quantization level is chosen in y. Using RGB
values yi ∈ [0, 255], we let b denote the number of discrete color levels and define c = 256/b. The
probabilities over the b discrete color levels are computed from the logistic mean and variance µi
and si as

p(yi|µi, si) = σ (c+ cbyi/cc|µi, si)− σ (cbyi/cc|µi, si) . (8)

For the pixelCNN we use the architecture of Salimans et al. (2017), and modify it to be conditioned
on the VAE decoder output f(z), or possibly an upsampled version if y has a lower resolution than
x. In particular, we apply standard non-masked convolutional layers to the VAE output, as many
as there are pixelCNN layers. We allow each layer of the pixel-CNN to take additional input using
non-masked convolutions from the feature stream based on the VAE output. This ensures that the
conditional pixelCNN remains autoregressive.

To speed up training, we independently pretrain the VAE and pixelCNN in parallel, and then con-
tinue training the full model with both decoders. We use the Adamax optimizer (Kingma & Ba,
2015) with a learning rate of 0.002 without learning rate decay. We will release our TensorFlow-
based code to replicate our experiments upon publication.
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Model BPD .|z .|xj<i

NICE (Dinh et al., 2015) 4.48 X
Conv. DRAW (Gregor et al., 2016) ≤ 3.58 X
Real NVP (Dinh et al., 2017) 3.49 X
MatNet (Bachman, 2016) ≤ 3.24 X
PixelCNN (Oord et al., 2016) 3.14 X
VAE-IAF (Kingma et al., 2016) ≤ 3.11 X
Gated pixelCNN (van den Oord et al., 2016) 3.03 X
Pixel-RNN (Oord et al., 2016) 3.00 X
Aux. pixelCNN (Kolesnikov & Lampert, 2017) 2.98 X
Lossy VAE (Chen et al., 2017) ≤ 2.95 X X
AGAVE, λ = 12 (this paper) ≤ 2.92 X X
pixCNN++ (Salimans et al., 2017) 2.92 X

Table 1: Bits per dimension (lower is better) of models on the CIFAR10 test data.
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λ = 12
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Figure 3: Effect of the regularization parameter λ. Reconstructions (a) and samples (b) of the VAE
decoder (VR and VS, respectively) and corresponding conditional samples from the pixelCNN (PS).

4.2 EXPERIMENTAL RESULTS

Quantitative performance evaluation. Following previous work, we evaluate models on the test
images using the bits-per-dimension (BPD) metric: the negative log-likelihood divided by the num-
ber of pixels values (3×32×32). It can be interpreted as the average number of bits per RGB value
in a lossless compression scheme derived from the model.

The comparison in Table 1 shows that our model performs on par with the state-of-the-art results
of the pixelCNN++ model (Salimans et al., 2017). Here we used the importance sampling-based
bound of Burda et al. (2016) with 150 samples to compute the BPD metric for our model.1 We
refer to Figure 1 for qualitative comparison of samples from our model and pixelCNN++, the latter
generated using the publicly available code.

Effect of KL regularization strength. In Figure 3 we show reconstructions of test images and
samples generated by the VAE decoder, together with their corresponding conditional pixelCNN
samples for different values of λ. As expected, the VAE reconstructions become less accurate for
larger values of λ, mainly by lacking details while preserving the global shape of the input. At
the same time, the samples become more appealing for larger λ, suppressing the unrealistic high-
frequency detail in the VAE samples obtained at lower values of λ. Note that the VAE samples and

1The graphs in Figure 4 and Figure 5 are based on the bound in Eq. (7) to reduce the computational effort.
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Figure 4: Bits per dimension of the VAE decoder and pixelCNN decoder, as well as decomposition
in KL regularization and reconstruction terms.

reconstructions become more similar as λ increases, which makes the input to the pixelCNN during
training and sampling more consistent.

For both reconstructions and samples, the pixelCNN clearly takes into account the output of the VAE
decoder, demonstrating the effectiveness of our auxiliary loss to condition high-capacity pixelCNN
decoders on latent variable representations. Samples from the pixelCNN faithfully reproduce the
global structure of the VAE output, leading to more realistic samples, in particular for higher values
of λ. In Appendix B we provide more samples of the autoregressive component conditioned on the
same output of the VAE decoder. These confirm the dependence on the intermediate representation
f(z). Moreover, the samples show that their variability is structured, and could not be modeled by a
simple factored decoder.

For λ = 2 the VAE reconstructions are near perfect during training, and the pixelCNN decoder does
not significantly modify the appearance of the VAE output. For larger values of λ, the pixelCNN
clearly adds significant detail to the VAE outputs.

Figure 4 traces the BPD metrics of both the VAE and pixelCNN decoder as a function of λ. We
also show the decomposition in regularization and reconstruction terms. By increasing λ, the KL
divergence can be pushed closer to zero. As the KL divergence term drops, the reconstruction term
for the VAE rapidly increases and the VAE model obtains worse BPD values, stemming from the
inability of the VAE to model pixel dependencies other than via the latent variables. The reconstruc-
tion term of the pixelCNN decoder also increases with λ, as the amount of information it receives
drops. However, in terms of BPD which sums KL divergence and pixelCNN reconstruction, a sub-
stantial gain of 0.2 is observed increasing λ from 1 to 2, after which smaller but consistent gains are
observed.

In Appendix C we present the results of a control experiment where during training we first optimize
our objective function in Eq. (7), i.e. including the auxiliary reconstruction term, and then switch to
optimize the standard objective function of Eq. (6) without the auxiliary term. This leads to models
that completely ignore the latent variable structure, as predicted by the analysis of Chen et al. (2017).

Effect of different auxiliary images. We assess the effect of using coarser RGB quantizations
and lower spatial resolutions in the auxiliary image. Both make the VAE reconstruction task easier,
and transfer modeling of color nuances and/or spatial detail to the pixelCNN.

The VAE reconstructions in Figure 5 (a) obtained using coarser color quantization carry less detail
than reconstructions based on the original images using 256 color values, as expected. To under-
stand the relatively small impact of the quantization level on the reconstruction, recall that the VAE
decoder outputs the continuous means of the logistic distributions regardless of the quantization
level. Only the reconstruction loss is impacted by the quantization level via the computation of the
probabilities over the discrete color levels in Eq. (8). In Figure 5 (b) we observe small but consistent
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Figure 5: Impact of the color quantization in the auxiliary image. (a) Reconstructions of the VAE
decoder for different quantization levels (λ = 8). (b) BPD as a function of the quantization level.

(a) (b)

(c) (d)

Figure 6: Samples from models trained with 32×32 auxiliary images with 256 (a) and 32 (b) color
levels, and at reduced resolutions of 16×16 (c) and 8×8 pixels (d) with 256 color levels. For each
model the VAE sample is displayed above the corresponding conditional pixelCNN sample.

gains in the BPD metric as the number of color bins is reduced, showing that it is more effective to
model color nuances using the pixelCNN, rather than the latent variables. We trained models with
auxiliary images down-sampled to 16×16 and 8×8 pixels, which yield 2.94 and 2.93 BPD, respec-
tively. Which is comparable to the 2.92 BPD obtained using our best model at scale 32×32. In
Figure 6 (a) and (b) we show samples obtained using models trained with 256 and 32 color levels in
the auxiliary image, and in Figure 6 (c) and (d) with auxiliary images of size 16×16 and 8×8. The
samples are qualitatively comparable, showing that in all cases the pixelCNN is able to compensate
the less detailed outputs of the VAE decoder.

5 CONCLUSION

We presented a new approach to training generative image models that combine a latent variable
structure with an autoregressive model component. Unlike prior approaches, it does not require
careful architecture design to trade-off how much is modeled by latent variables and the autoregres-
sive decoder. Instead, this trade-off can be controlled using a regularization parameter and choice
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of auxiliary target images. We obtain quantitative performance on par with the state of the art on
CIFAR10, and samples from our model exhibit globally coherent structure as well as fine details.
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A ON THE INFORMATION PREFERENCE PROPERTY

In this appendix we begin by presenting the information preference property from a bits-back
coding perspective. We then show that in our setting, unlike in the standard one, it is always optimal
for the autoregressive decoder to use the latent variables it is conditioned on.

Combining a VAE with a flexible decoder (for instance an autoregressive one) leads to the latent
code being ignored. That is commonly attributed to optimization challenges: at the start of training
q(z|x) carries little information about x, the KL term pushes the model to set it to the prior to
avoid any penalty, and training never recovers from falling in that local minimum. Chen et al.
(2017) have proposed extensive explanations showing that if a sufficiently expressive decoder
is used, ignoring the latents actually is the optimal behavior. Because of that, it is necessary to
restrict the expressivity of the decoder so that there can be benefits from using the latents. Our
main contribution is to propose a method with which it is always optimal for the autoregressive
decoder to use the latents it is conditioned on regardless of the expressivity of the decoder. For
self-containedness, we begin by presenting the information preference property, using the bits-back
coding perspective given in Chen et al. (2017). We then show that with our formulation, using
the latent variables is always the optimal behavior. This is true no matter how expressive the de-
coder might be, and so our solution can use autoregressive models to the full extent of their potential.

A.1 THE INFORMATION PREFERENCE PROPERTY EXPLAINED WITH BITS-BACK CODING

Given a random variable X and a a density model p(X) a message x can be encoded with an
average code length of − log p(x). Given an encoder q(z|x), a decoder p(x|z) and a prior p(z), the
following lossless, two-part coding scheme can be used: i) Sample z ∼ q(z|x) and encode it in a
lossless manner 2 using p(z). ii) Encode x losslessly using p(x|z). iii) The receiver can decode the
message provided he has access to p(z) and p(x|z). The expected length of the message is

CNaive = Ex∼D,z∼q(.|x)[− log(p(z))− log(p(x|z))].

This coding scheme is inefficient because the message is encoded using p(z) while it is sampled from
q(z|x) 3. It is necessary because the receiver does not know x, so does not have access to q(z|x).
However once the receiver has decoded x, q(z|x) becomes available and a secondary message can
be decoded from it. This yields and average code length of:

CBitsBack = Ex∼D,z∼q(.|x)[log(q(z|x))− log(p(z))− log(p(x|z))].

Notice that CBitsBack corresponds to the standard VAE objective. Let us examine the efficiency
of this coding scheme. The lower-bound on the expected code length for the data being encoded is

2Note that z can be encoded without loss using any model p(z) but the average code length − log(p(z)) is
minimized if p(z) matches the frequency of messages q(z|x).

3The coding could be optimal in the degenerate case where p(z) = q(z|x), but then z is independent from
x ie no information about x is encoded
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given by the Shannon entropy: H(D) = Ex∼D[− log pD(x)]. The following derivation shows that
the bits-back coding scheme cannot reach that lower-bound if q(z|x) is imperfect:

CBitsBack = Ex∼D,z∼q(.|x)[log(q(z|x))− log(p(z))− log(p(x|z))]
= Ex∼D[− log(p(x)) +DKL(q(z|x)||p(z|x))]
≥ Ex∼D[− log(pD(x)) +DKL(q(z|x)||p(z|x))]
= H(D) + Ex∼D[DKL(q(z|x)||p(z|x))].

If p(.|xj<i) is expressive enough, or if q(.|x) is poor enough, the following inequality can be veri-
fied:

H(D) ≤ Ex∼D[− log p(x|xj<i)] < H(D) + Ex∼D[DKL(q(z|x)||p(z|x))]
In that case, any use of the latents that p make, would make the KL divergence worse. The optimal
behavior is to set q(z|x) = p(z) to avoid the extra KL cost. Then z becomes independent from x
and no information about x is encoded in z. Let us denote p∗(x|xj<i) the best autoregressive model
that could be trained without using the latents. If the approximate posterior q(.|x) is precise enough,
or if p∗(x|xj<i) is poor enough, then the following inequation can be verified:

H(D) ≤ H(D) + Ex∼D[DKL(q(z|x)||p(z|x))] ≤ Ex∼D[− log p∗(x|xj<i)]
In that case it is possible to achieve better performance by using the latent variables. This situation
can be achieved by improving q or by restraining the capacity of the autoregressive model p∗. The
conclusion is that given an encoder, the latent variables will only be used if the capacity of the
autoregressive decoder is sufficiently restricted. This is the approach taken by Chen et al. (2017) and
Gulrajani et al. (2017). This approach works: it has obtained competitive quantitative and qualitative
performance. However, it is not satisfactory in the sense that autoregressive models cannot be used
to the full extent of their potential, while learning a meaningful latent variable representation.

A.2 OUR MODEL CIRCUMVENTS THE INFORMATION PREFERENCE PROPERTY.

We now show that in our setup, it is optimal to use the latent representations no matter how expres-
sive the autoregressive model may be. This justifies that in theory our model should always learn
meaningful latent structure.

Staying with the message coding point of view, with an AGAVE model both (Y,X) have to be sent
to and decoded by the receiver. If one were to only send the auxiliary representation, the setup
would be that of a standard VAE: p(y|z) is factorial, and dependencies among the variables can
only be modeled through the latent variables. If z were ignored, this would be detrimental to the
reconstruction performance, and in practice VAEs with factorial decoder never ignore their latent
code. Let us denote CV AE the expected code length required to send the auxiliary message:

CV AE = Ex∼D,z∼q(.|x)[log(q(z|x))− log(p(z))− log(p(y|z))]

We now show that using the latents is optimal no matter the choice of autoregressive decoder in our
setup. Once y has been sent, sending x costs Ez∼q(z|x)[−

∑
i log(p(xi|z,xj<i))], so the full cost

is:

CAGAV E = CV AE + Ez∼q(z|x)[−
∑
i

log(p(xi|z,xj<i))].

Suppose that the autoregressive decoder ignores Z. Using the fact that the Shannon entropy is the
optimal expected code length, we obtain the following lower-bound, denoted Lx:

CAGAV E ≥ CV AE +H(X)

= Lx

If the autoregressive decoder is allowed to use z a new lower-bound Lx,z, on CAGAV E is obtained
(attained if our decoder and coding schemes are perfect):

CAGAV E ≥ CV AE +H(X|Z)
= Lx,z
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The entropy of a random variable decreases when it is conditioned on an other, so: H(X|Z) ≤
H(X) and Lx,z ≤ Lx

Conclusion: in our setup it is always better for the autoregressive model to make use of the latent
and auxiliary representation it is conditioned on. That is true no matter how expressive the model
is, which is why our setup circumvents the information preference property problem. It also shows
that in theory our model should learn meaningful latent structure.

B ADDITIONAL VISUALIZATION OF PIXELCNN DECODER SAMPLES

In our model, the VAE decoder is in charge of controlling the global structure of the samples,
and the autoregressive decoder is in charge of modeling low level detail. Figure 7 displays aux-
iliary reconstructions f(z) and ten different samples from the autoregressive decoder conditioned
on f(z). This qualitatively shows that the low level detail added by the pixelCNN, which is crucial
for log-likelihood performance, always respects the global structure of the image it is conditioned
on. Moreover, the differences between the pixelCNN decoder samples also shows that the decoder
is able to model variations well beyond independent per-pixel variations captured by simple factored
decoders.

C CONTROL EXPERIMENT: FINE-TUNING WITHOUT AUXILIARY LOSS

In this section we present the results of a control experiment where during training we first optimize
our objective function in Eq. (7), i.e. including the auxiliary reconstruction term, and then switch to
optimize the standard objective function of Eq. (6) without the auxiliary term.

This strong initialization could point the model towards good use of the latent variables, and cir-
cumvent optimization issues that would lead to discarding the latents. In that setting, the full model
is trained to convergence then the auxiliary loss is removed and the model is fine-tuned from there.
When doing this, however, the approximate posterior immediately collapses to the prior and the
pixel CNN samples become independent of the latent variables.

Figure 8 displays ground-truth images, with corresponding auxiliary reconstructions and conditional
samples. The reconstructions have become meaningless and independent from the ground truth
images. Figure 9 displays the same behavior with samples: for each auxiliary representation four
samples from the autoregressive component are displayed: they are independent from one another.

Quantitatively, the KL cost immediately drops to zero when removing the auxiliary loss, in approxi-
mately two thousand steps of gradient descent. This shows that the auxiliary loss is indeed necessary
to enable the use of the latent variables by the expressive prior. Confirming the analysis of Chen et al.
(2017), which we recall in Appendix A.
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f(z) Conditional PixelCNN samples

Figure 7: The column labeled f(z) displays auxiliary representations, with z sampled from the unit
Gaussian prior p(z), accompanied by ten samples of the conditional pixelCNN.
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GT f(z) PS GT f(z) PS GT f(z) PS

Figure 8: Auxiliary reconstructions obtained after dropping the auxilliary loss. (GT) denotes ground
truth images unseen during training, f(z) is the corresponding intermediate reconstruction, (PS)
denotes pixelCNN samples, conditionned on f(z).

f(z) PixCNN samples f(z) PixCNN samples

Figure 9: f(z) denotes auxiliary representations obtained after dropping the auxiliary loss, where
z is sampled from the prior p(z), and 4 corresponding samples from the pixelCNN component
conditioned on f(z).
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