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ABSTRACT

Traditionally, classifying large hierarchical labels with more than 10000 distinct
traces can only be achieved with flatten labels. Although flatten labels is feasi-
ble, it misses the hierarchical information in the labels. Hierarchical models like
HSVM by Vural & Dy (2004) becomes impossible to train because of the sheer
number of SVMs in the whole architecture. We developed a hierarchical architec-
ture based on neural networks that is simple to train. Also, we derived an inference
algorithm that can efficiently infer the MAP (maximum a posteriori) trace guar-
anteed by our theorems. Furthermore, the complexity of the model is only O(n2)
compared to O(nh) in a flatten model, where h is the height of the hierarchy.

1 INTRODUCTION

Large hierarchical classification with more than 10000 categories is a challenging task (Partalas
et al. (2015)). Traditionally, hierarchical classification can be done by training a classifier on the
flattened labels (Babbar et al. (2013)) or by training a classifier at each hierarchical node (Silla Jr
& Freitas (2011)), whereby each hierarchical node is a decision maker of which subsequent node to
route to. However, the second method scales inefficiently with the number of categories (> 10000
categories). Models such as hierarchical-SVM (Vural & Dy (2004)) becomes difficult to train when
there are 10000 SVMs in the entire hierarchy. Therefore for large number of categories, the hierarchy
tree is flattened to produce single labels. While training becomes easier, the data then loses prior
information about the labels and their structural relationships.

In this paper, we model the large hierarchical labels with layers of neurons directly. Unlike the tradi-
tional structural modeling with classifier at each node, here we represent each label in the hierarchy
simply as a neuron.

2 MODEL

HiNet has different procedures for training and inference. During training, as illustrated in Figure 2,
the model is forced to learn MAP (Maximum a Posteriori) hypothesis over predictions at different
hierarchical levels independently. Since the hierarchical layers contain shared information as child
node is conditioned on the parent node, we employ a combined cost function over errors across
different levels. A combined cost allows travelling of information across levels which is equivalent
to transfer learning between levels.

During inference, after predicting the posterior distribution at each level of the hierarchy, we employ
a greedy downpour algorithm to efficiently infer the MAP (Maximum a Posteriori) hierarchical trace
(Figure 4) from the posterior predictions at each level (Figure 2).

2.1 HIERARCHY AS LAYERS OF NEURONS

Using layers of neurons to model hierarchy is very efficient and flexible. It can be easily used
to model a Directed Acyclic Graph (DAG) (Figure 1a) or a Tree (Figure 1b) by masking out the
unnecessary connections. Unlike node-based architecture (Silla Jr & Freitas (2011); Vens et al.
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(a) DAG (b) Tree

Figure 1: Neural network for modeling hierarchical relationships. Figure 1a shows a DAG (Directed
Acyclic Graph) where a child neuron is possible to have more than one parents versus Figure 1b
showing a tree where each child neuron only belongs to one parent. The path will end in a stop
neuron (red neuron).

Figure 2: The above figure illustrates the architecture during training.

(2008); Dumais & Chen (2000)), whereby each node is an object with pointers to its child and parent,
and takes up large memory, neural network models the connections as compact matrix which takes
up much less memory. In order to model hierarchies of different length, we append a stop neuron
(red neuron in Figure 1) at each layer. So a top-down path will end when it reaches the stop neuron.

2.2 TRAINING

Figure 2 shows the model for transfer learning with combined cost function. Given an input feature
X with multiple levels of outputs {y(1),y(2), . . . ,y(n)}, where the outputs may have inter-level
dependencies p(y(k)|y(1:k−1),y(k+1:n)). For each output level from network fθk(X) = y(k) and

its corresponding label ỹ(k). The combined cost is defined as E =
∑n
k

(
ỹ(k) − fθk(X)

)2
allows

the parameters θk from different levels to exchange knowledge.

2.3 INFERENCE

Downpour Algorithm During inference, as illustrated in Figure 4, the model will output a nor-
malized probability distribution at each level {y(1),y(2), . . . ,y(k)}, where y(k) = {y(k)ak } is a vector
with indexes ak ∈ {1, . . . , n}, where n is the size of layer k, and

∑
ak
y
(k)
ak = 1. From the second
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Figure 3: Inference: Downpour Algorithm

Figure 4: The above figure illustrates the downpour algorithm (Algorithm 1) for deriving the MAP
trace.

Given output posteriors y(l) = {y(l)a } at each layer l ∈ {1, . . . ,K}
Define T (l)

i = [ ] as MAP trace of neuron i at level l
T

(1)
i = [i]

for layer l = 2 to k do
Find MAP parent A = argmaxa y

(l)
b y

(l−1)
a

T
(l)
b = T

(l−1)
A .append(b)

Update y(l)b = maxa y
(l)
b y

(l−1)
a

end
Find MAP level for stop neuron s
L = argmaxl y

(l)
s

return T (L)
s

Algorithm 1: Downpour algorithm for inferencing the MAP trace.

level onwards, we include a stop neuron (red neuron) which is used for stopping the hierarchical
trace. The path of the trace from top down ends in a stop neuron (red neuron). Define the MAP
trace up to level k which ends at stop neuron s as T (k)

ak=s = arg max
a1:k−1

p(a1, a2, . . . , ak−1, ak = s).

The objective of the downpour in finding the MAP from the hierarchy is equivalent to finding the
maximum MAP trace out of all MAP traces that ends in a stop neuron from different levels which is
T

(L)
aL=s where L = argmaxk T

(k)
ak=s. The probability of MAP trace at level k can be derived greedily

from the MAP trace at level k − 1 as

p(T (k)
ak

) = max
ak−1

p(ak|ak−1)p(T
(k−1)
ak−1

) (1)
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From Equation 1, we can derive Theorems 2.1-2.3 which prove that Downpour Algorithm will
always yield the MAP trace of T (L)

aL=s = maxn p(T
(n)
an=s) ≥ p(a1, a2, . . . , am = s) ∀m.

Theorem 2.1. For a greedy downpour that ends at a stop neuron at level n with MAP trace T (n)
an ,

then p(Sm) ≤ p(T
(n)
an ) for every sequence Sm = {a1, a2, . . . , an, . . . , am} of m ≥ n that pass

through an or ends at an. Refer to Appendix A for proof.

Theorem 2.2. For a MAP trace T (n)
an=s that ends at stop neuron s at level n such that p(T (n)

an=s) ≥
p(T

(n)
an ) ∀an 6= s, then p(Sm) ≤ p(T

(n)
an=s) for every sequence Sm = {a1, a2, . . . , am} of m > n.

Refer to Appendix A for proof.

Theorem 2.3. The maximum of the MAP traces that end in a stop neuron from each level is T (L)
ak=s

where L = argmaxk p(T
(k)
ak=s) is the MAP for the hierarchy, which means p(T (L)

ak=s) ≥ p(Sm) ∀m.
Refer to Appendix A for proof.

3 RESULTS AND CONCLUSION

DMOZ (Tree) No. of Params
Flatten Network 39.2 O(knh)

HiNet 41.4 O(kn+ hn2)

Table 1: Accuracy on the DMOZ dataset (Partalas et al. (2015)) with 11947 classes. k: dimension
of the first feature layer connected to the first hierarchical layer. n: dimension of each hierarchical
layer. h: height of the hierarchy. For a fully dense hierarchy, the total number of classes is nh.

We compared HiNet with a Flatten Network which have the same architecture except the output
layer for HiNet is hierarchical as illustrated in Figure 2 and flatten for Flatten Network. The num-
ber of outputs for Flatten Network corresponds to the number of classes in the dataset. From the
results, HiNet out-performs Flatten Network for both a Tree hierarchical dataset with much lesser
parameters. We see that the number of parameters in the classification layer for Flatten Network
is exponential to the maximum length of the trace. Thus for very deep hierarchies, the number
of parameters in Flatten Network will be exponentially large while HiNet is always polynomial.
This makes HiNet not only better architecture in terms of accuracy but also way more efficient in
parameters space.
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4 APPENDIX A

Proof for Theorem 2.1 For a greedy downpour that ends at a stop neuron at level n with MAP
trace T (n)

an , then p(Sm) ≤ p(T
(n)
an ) for every sequence Sm = {a1, a2, . . . , an, . . . , am} of m ≥ n

that pass through an or ends at an.

Proof. for m = n, that is p(T (n)
an ) ≥ p(Sn). By definition T (1)

a1 = a1

p(T (n)
an ) = max

an−1

p(an|an−1)p(T
(n−1)
an−1

)

= max
an−1

p(an|an−1)max
an−2

p(an−1|an−2)p(T
(n−2)
an−2

)

= max
a1:n−1

p(an|an−1)p(an−1|an−2) . . . p(a1)

= max
a1:n−1

p(an, an−1, . . . , a1)

≥ p(an, an−1, . . . , a1)

(2)

for m > n, we just need to prove that p(Sm) ≤ p(Sn)

p(Sm) = p(Sn)p(an+1, an+2, . . . , am|Sn)
≥ p(Sn)

(3)

since p(an+1, an+2, . . . , am|Sn) ≤ 1

Proof for Theorem 2.2 For a MAP trace T (n)
an=s that ends at stop neuron s at level n such that

p(T
(n)
an=s) ≥ p(T

(n)
an ) ∀an 6= s, then p(Sm) ≤ p(T (n)

an=s) for every sequence Sm = {a1, a2, . . . , am}
of m > n.

Proof. from Theorem 2.1, p(Sm) ≤ p(T (n)
an ) ≤ p(T (n)

an=s).

Proof for Theorem 2.3 The maximum of the MAP traces that end in a stop neuron from each level
is T (L)

ak=s where L = argmaxk p(T
(k)
ak=s) is the MAP for the hierarchy, which means p(T (L)

ak=s) ≥
p(Sm) ∀m.

Proof. From Theorem 2.2, we have p(T (n)
an=s) ≥ p(Sm) for every m > n, and from Theorem 2.1,

we have p(T (n)
an=s) ≥ p(a1, a2, . . . , an = s). Therefore maxn p(T

(n)
an=s) ≥ p(a1, a2, . . . , am = s)

∀m.
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