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Abstract

In this paper, we consider online learning in generalized linear contextual ban-
dits where rewards are not immediately observed. Instead, rewards are available
to the decision maker only after some delay, which is unknown and stochastic,
even though a decision must be made at each time step for an incoming set of
contexts. We study the performance of upper confidence bound (UCB) based
algorithms adapted to this delayed setting. In particular, we design a delay-adaptive
algorithm, which we call Delayed UCB, for generalized linear contextual bandits
using UCB-style exploration and establish regret bounds under various delay as-
sumptions. In the important special case of linear contextual bandits, we further
modify this algorithm and establish a tighter regret bound under the same delay
assumptions. Our results contribute to the broad landscape of contextual bandits lit-
erature by establishing that UCB algorithms, which are widely deployed in modern
recommendation engines, can be made robust to delays.

1 Introduction

The growing availability of user-specific data has welcomed the exciting era of personalized rec-
ommendation, a paradigm that uncovers the heterogeneity across individuals and provides tailored
service decisions that lead to improved outcomes. Such heterogeneity is ubiquitous across a va-
riety of application domains (including online advertising, medical treatment assignment, prod-
uct/news recommendation (Li et al. (2010), Bubeck et al. (2012),Chapelle (2014),Bastani and Bayati
(2015),Schwartz et al. (2017))) and manifests itself as different individuals responding differently
to the recommended items. Rising to this opportunity, contextual bandits have emerged to be the
predominant mathematical formalism that provides an elegant and powerful formulation: its three
core components, the features (representing individual characteristics), the actions (representing the
recommendation), and the rewards (representing the observed feedback), capture the salient aspects
of the problem and provide fertile ground for developing algorithms that balance exploring and
exploiting users’ heterogeneity.

As such, the last decade has witnessed extensive research efforts in developing effective and efficient
contextual bandits algorithms. In particular, two types of algorithms–upper confidence bounds (UCB)
based algorithms (Li et al. (2010); Filippi et al. (2010); Chu et al. (2011); Jun et al. (2017); Li et al.
(2017)) and Thompson sampling (TS) based algorithms (Agrawal and Goyal (2013a,b); Russo and
Van Roy (2014, 2016); Abeille et al. (2017))–stand out from this flourishing and fruitful line of work:
their theoretical guarantees have been analyzed in many settings, often yielding (near-)optimal regret
bounds; their empirical performance have been thoroughly validated, often providing insights into
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their practical efficacy (including the consensus understanding that TS-based algorithms often suffer
from intensive computation for posterior updates but can leverage a correctly specified prior and have
superior empirical performance; UCB-based algorithms can often achieve tight theoretical regret
bounds but are often sensitive to hyper-parameter tuning in empirical performance). To a large extent,
these two family of algorithms have been widely deployed in many modern recommendation engines.

However, a key assumption therein–both the algorithm design and their analyses–is that the reward
is immediately available after an action is taken. Although useful as a first-step abstraction, this
is a stringent requirement that is rarely satisfied in practice, particularly in large-scale systems
where the time-scale of a single recommendation is significantly smaller than the time-scale of a
user’s feedback. For instance, in E-commerce, a recommendation is typically made by the engine
in milliseconds, whereas a user’s response time (i.e. to buy a product or conversion) is typically
much larger, ranging from hours to days, sometimes even to weeks. Similarly, in clinical trials, it is
infeasible to immediately observe and hence take into account the medical outcome after applying
a treatment to a patient–collecting medical feedback can be a time-consuming and often random
process; and in general, it is common to have applied trial treatments to a large number of patients,
with individual medical outcomes only available much later at different, random points in time. In
both the E-commerce (Kannan et al. (2001); Chapelle (2014); Vernade et al. (2017))and the clinical
trials cases (Chow and Chang (2011)), a random and often significantly delayed reward is present,
thereby requiring adjustments in classical formulations to understand the impact of delays.

1.1 Related Work

The problem of learning on bandits with delays has recently been studied in different settings in the
existing literature, where most of the efforts have concentrated on the multi-armed bandits setting,
including both the stochastic and the adversarial multi-armed bandits. For stochastic multi-armed
bandits with delays, Joulani et al. (2013) show a regret bound O(log T +E[⌧ ] +

p
log TE[⌧ ]) where

E[⌧ ] is the mean of the iid delays. Desautels et al. (2014) consider Gaussian Process bandits with a
bounded stochastic delay. Mandel et al. (2015) follow the work of Joulani et al. (2013) and propose a
queue-based multi-armed bandit algorithm to handle delays. Pike-Burke et al. (2017) match the same
regret bound as in Joulani et al. (2013) when feedback is not only delayed but also anonymous.

For adversarial multi-armed bandits with delays, Neu et al. (2010) establish the regret bound of
E[RT ]  O(⌧const) ⇥ E[R0

T (
T

⌧const
)] for Markov decision process, where ⌧const is the constant delay

and R
0
T is the regret without delays. Cesa-Bianchi et al. (2019) consider adversarial bandits with

fixed constant delays on the network graph, with a minimax regret of the order Õ
⇣p

(K + ⌧const)T
⌘

,
where K is the number of arms. Another related line of work is adversarial learning with full
information (all arms’ rewards are observed), where its different variants in the delayed setting have
been studied by Weinberger and Ordentlich (2002), Mesterharm (2005), Quanrud and Khashabi
(2015) and Garrabrant et al. (2016). Very recently, Bistritz et al. (2019) studied adversarial bandits
learning under arbitrary delays using Exp3 and established finite-sample delay-adaptive regret bounds.

On the other hand, learning in contextual bandits with delays are much less explored. Joulani et al.
(2013) consider learning on adversarial contextual bandits with delays and establish an expected
regret bound E [RT ]  (1 + E[M⇤

T ])⇥ E
h
R

0
T

⇣
T

1+E[M⇤
T ]

⌘i
by using a black-box algorithm, where

M
⇤
T is the running maximum number of delays up to round T . Dudik et al. (2011) consider stochastic

contextual bandits with a fixed constant delay. The reward model they consider is general (i.e. not
necessarily parametric); however, they require the policy class to be finite. In particular, they obtain
the regret bound O(

p
K logN(⌧const +

p
T )), where N is the number of policies and ⌧const is again

the fixed constant delay. On a related front, Grover et al. (2018b) studied the problem of best-arm
identification under delayed feedback. There, the objective is to identify the best arm using as few
samples as possible, without taking into account the cost incurred along the way (i.e. a different
objective from regret). In closing, we also mention that there is also a growing literature in offline
contextual bandits learning Swaminathan and Joachims (2015); Kitagawa and Tetenov (2018); Zhou
et al. (2018a). In this domain, delay is typically not a concern as all the data has already been collected
in a single batch before any learning/decision-making takes place.
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1.2 Our Contributions

In this paper, we consider learning on generalized linear (stochastic) contextual bandits with stochastic
delays. More specifically, we design a delay-adaptive algorithm for generalized linear contextual
bandits using UCB-style exploration, which we call Delayed UCB (DUCB, as given in Algorithm 1).
DUCB requires a carefully designed delay-adaptive confidence parameter, which depends on how
many rewards are missing up to the current time step. Next, we give regret characterizations of
DUCB under independent stochastic, unbounded delays. In particular, as a special case of our
results, when the delays are iid with mean µD, we establish a high-probability regret bound of
Õ

⇣�p
µDd+

p
�Gd+ d

�p
T

⌘
on DUCB, where �G is a parameter characterizing the tail bound of

the delays and d is the feature/context dimension. For comparison, the state-of-the-art regret bound
of UCB on generalized linear contextual bandits without delays is Õ

⇣
d
p
T

⌘
(Filippi et al. (2010); Li

et al. (2017)). Regret bounds for more general delays are also given. Note that our analysis here does
not assume the number of actions to be finite, and hence these regret bounds apply to infinite-action
setting as well.

Finally, we consider the important special case of linear contextual bandits with finitely many actions.
In this setting, we provide a different UCB-based algorithm that estimates the underlying parameters
using a biased estimator (as opposed to the unbiased estimator employed in the generalized linear
contextual bandits setting) and provide a more refined analysis that achieves regret bounds which are a
factor of O(

p
d) tighter. More specifically in this setting, as a direct comparison, when the delays are

again iid with mean µD, we establish a high-probability regret bound2 of Õ
⇣
(1 + µD + �G)

p
dT

⌘
.

To the best of our knowledge, these regret bounds provide the first theoretical characterizations in
(generalized) linear contextual bandits with large delays and contribute to the broad landscape of
contextual bandits literature by delineating the impact of delays on performance.

2 Problem Setup

In this section, we describe the formulation for learning in generalized linear contextual bandits
(GLCB) in the presence of delays. We start by reviewing the basics of generalized linear contextual
bandits, followed by a description of the delay model. Before proceeding, we first fix some notation.

For a vector x 2 Rd, we use kxk to denote its l2-norm and x
0 its transpose. Bd := {x 2 Rd : kxk 

1} is the unit ball centered at the origin. The weighted l2-norm associated with a positive-definite
matrix A is defined by kxkA :=

p
x0Ax. The minimum and maximum singular values of a matrix

A are written as �min(A) and kAk respectively. For two symmetric matrices A and B the same
dimensions, A ⌫ B means that A-B is positive semi-definite. For a real-valued function f, we use ḟ

and f̈ to denote its first and second derivatives. Finally, [n] := {1, 2, · · · , n}.

2.1 Generalized Linear Contextual Bandits

Decision procedure. We consider the generalized linear contextual bandits problem with K arms.
At each round t, the agent observes a context consisting of a set of K feature vectors xt := {xt,a 2

Rd
|a 2 [K]}, which is drawn iid from an unknown distribution � with kxt,ak  1. Each feature

vector xt,a is associated with an unknown stochastic reward yt,a 2 [0, 1]. If the agent selects one
action at, there is a reward yt,at 2 [0, 1] associated with the selected arm at and the associated xt,at .
Under the classic setting, the reward is immediately observed after the decision and the information
can be utilized to make decision in the next round.

Relationship between reward Y and context X . In terms of the relationship between yt,at and
xt,at (t � 1), we follow the standard generalized linear contextual bandits literature (Filippi et al.

2In this case, the number of actions being finite is important. In particular, the regret bound has a O(logK)
dependence. Consequently, strictly speaking, if K is not viewed as a constant, we would also need K to not
be too large compared to d in order to retain the same regret bound of Õ

⇣
(µD + �G + 1)

p
dT

⌘
. A common

(and rather weak) assumption is the K is polynomial in d.
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(2010); Li et al. (2017)). Define H
0
t = {(s, xs, as, ys,as), s  t � 1} [ {xt} as the information at

the beginning of round t. The agent maximizes the cumulative expected rewards over T rounds
with information H

0
t at each round t (t � 1). Suppose the agent takes action at at round t. Denote

by Xt = xt,at , Yt = yt,at and we assume the conditional distribution of Yt given Xt is from the
exponential family. Therefore its density is given by

P✓⇤(Yt|Xt) = exp

✓
YtX

0
t✓

⇤
�m(X 0

t✓
⇤)

h(⌘)
+A(Yt, ⌘)

◆
. (1)

Here, ✓⇤ is an unknown number under the frequentist setting; ⌘ 2 R+ is a given parameter; A, m and
h are three normalization functions mapping from R to R.

For exponential families, m is infinitely differentiable, ṁ(X 0
✓
⇤) = E[Y |X], and m̈(X 0

✓
⇤) =

V(Y |X). Denote g(X 0
✓
⇤) = E[Y |X] , one can easily verify that g(x0

✓) = x
0
✓ for linear model,

g(x0
✓) = 1

1+exp(�x0✓) for logistic model and g(x0
✓) = exp(x0

✓) for Poisson model. In the general-
ized linear model (GLM) literature (Nelder and Wedderburn (1972); McCullagh (2018)), g is often
referred to as the inverse link function. Note that (1) can be rewritten as the GLCB form,

Yt = g(X 0
t✓

⇤) + ✏t, (2)
where {✏t, t 2 [T ]} are independent zero-mean noise, H0

t -measurable with E[✏t|H0
t ] = 0. Data

generated from (1) automatically satisfies the sub-Gaussian condition:

E
⇥
exp(�✏t)|H

0
t

⇤
 exp

✓
�
2
�
2

2

◆
. (3)

Throughout the paper, we denote � > 0 as the sub-Gaussian parameter of the noise ✏t.
Remark 1. In this paper, we focus on the GLM with exponential family (1). In general, one can work
with model (2) under the sub-Gaussian assumption (3). Our analysis will still hold by considering
maximum quasi-likelihood estimator for (2). See more explanations in the appendix.

2.2 The Delay Model

Unlike the traditional setting where each reward is immediately observed, here we consider the
case where stochastic and unbounded delays are present in revealing the rewards. Let T be the
number of total rounds. At round t, after the agent takes action at, the reward yt,at may not be
available immediately. Instead, it will be observed at the end of round t+Dt where Dt is the delay
at time t. We assume Dt is a non-negative random number which is independent of {Ds}st�1 and
{xs, ys,as , as}st. First, we define the available information for the agent at each round.

Information structure under delays. At any round t, if Ds+ s  t�1 (reward occurred in round
s is available at the beginning of round t), then we call (s, xs, ys,as , as) the complete information
tuple at round t. If Ds + s � t, we call (s, xs, as) the incomplete information tuple at the beginning
of round t. Define

Ht = {(s, xs, ys,as , as) | s+Ds  t� 1} [ {(s, xs, as) | s  t� 1, s+Ds � t} [ {xt} ,

then Ht is the information (filtration) available at the beginning of round t for the agent to choose
action at. In other words, Ht contains all the incomplete and complete information tuples up to round
t� 1 and the content vector xt at round t.

Moreover define
Ft = {(s, xs, as, ys,as) | s+Ds  t}. (4)

Then Ft contains all the complete information tuples (s, xs, as, ys,as) up to the end of round t.
Denote It = Ft � Ft�1, It is the new complete information tuples revealed at the end of round t.

Performance criterion. Under the frequentist setting, assume there exists an unknown true param-
eter ✓⇤ 2 Rd. The agent’s strategy can be evaluated by comparing her rewards to the best reward. To
do so, define the optimal action at round t by a

⇤
t = argmaxa2[K] g(x

0
t,a✓

⇤). Then, the agent’s total
regret of following strategy ⇡ can be expressed as follows

RT (⇡) :=
TX

t=1

⇣
g

⇣
x
0
t,a⇤

t
✓
⇤
⌘
� g

�
x
0
t,at

✓
⇤�
⌘
,

where at ⇠ ⇡t and policy ⇡t maps Ht to the probability simplex�K := {(p1, · · · , pK) |
PK

i=1 pi =
1, pi � 0}. Note that RT (⇡) is in general a random variable due to the possible randomness in ⇡.
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Assumptions. Through out the paper, we assume the following assumption on distribution � and
function g, which is standard in the generalized linear bandit literature (Filippi et al. (2010); Li et al.
(2017); Jun et al. (2017)).
Assumption 1 (GLCB). • �min(E[ 1K

P
a2[K] xt,ax

0
t,a]) � �

2
0 for all t 2 [T ].

•  := inf{kxk1,k✓�✓⇤k1} ġ(x
0
✓) > 0.

• g is twice differentiable. ġ and g̈ are upper bounded by Lg and Mg , respectively.

In addition, we assume the delay sequence {Dt}
T
t=1 satisfies the following assumption.

Assumption 2 (Delay). Assume {Dt}
T
t=1 are independent non-negative random variables with tail-

envelope distribution (⇠D, µD,MD). That is, there exists a constant MD > 0 and a distribution ⇠D

with mean µD <1 such that for any m �MD and t 2 [T ],

P(Dt � m)  P(D � m),

where D ⇠ ⇠D and E[D] = µD. Furthermore, assume there exists q > 0 such that

P(D � µD � x)  exp

✓
�x

1+q

2�2
D

◆
.

Note that when q = 1, D is sub-Gaussian with parameter �D. When q 2 (0, 1), D has near-heavy
tail distribution. When Di’s are iid, the following condition guarantees Assumption 2:

P(Di � E[Di] � x) 

✓
�x

1+q

2�̃2
D

◆
,

with some �̃D > 0 and q > 0.

For ease of reference (as there are many floating parameters in this paper), we summarize all the
parameter definitions in Table 1.

Notation Definition Notation Definition

K number of arms ⇠D tail-envelope distribution for the delays
d feature dimension q parameter of ⇠D
 inf{kxk1,k✓�✓⇤k1} ġ(x

0
✓) µD expectation of ⇠D

✓
⇤ unknown true parameter MD parameter of ⇠D
� sub-Gaussian parameter for ✏t �D parameter of ⇠D

Lg upper bound on ġ �G sub-Gaussian parameter of Gt

Mg upper bound on g̈ µ
0
D expectation of iid delays

�
2
0 lower bound on Dmax upper bound on bounded delays

�min(E[ 1K
P

a2[K] xt,ax
0
t,a])

Table 1: Parameters in the GLCB model with delays.

3 Delayed Upper Confidence Bound (DUCB) for GLCB

In this section, we propose a UCB type of algorithm for GLCB, adapting the delay information in an
online version. Let us first define some variables and state the main algorithm.

3.1 Algorithm: DUCB-GLCB

Denote Gt =
Pt�1

s=1 I{s +Ds � t} as the number of missing reward when the agent is making a
prediction at round t. Denote Tt = {s : s  t� 1, Ds + s  t� 1} as the set containing timestamps
with complete information tuples at the beginning of round t. Further denote Wt =

P
s2Tt

XsX
0
s as

the matrix consisting feature information with timestamps in Tt and Vt =
Pt�1

s=1 XsX
0
s as the matrix

consisting all available features at the end of round t� 1. The main algorithm is given below.
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Algorithm 1 DUCB-GLCB

1: Input: the total rounds T , model parameters d and , and tuning parameters ⌧ and �.
2: Initialization: randomly choose ↵t 2 [K] for t 2 [⌧ ], set V⌧+1 =

P⌧
i=1 XsX

0
s, T⌧+1 := {s :

s  ⌧, s+Ds  ⌧}, G⌧+1 = ⌧ � |T⌧+1| and W⌧+1 =
P

s2T⌧+1
XsX

0
s

3: for t = ⌧ + 1, ⌧ + 2, · · · , T do

4: Update Statistics: calculate the MLE ✓̂t by solving
P

s2Tt
(Ys � g(X 0

s✓))Xs = 0

5: Update Parameter: �t =
�


r
d
2 log

⇣
1 + 2(t�Gt)

d

⌘
+ log( 1� ) +

p
Gt

6: Select Action: choose at = argmaxa2[K]

⇣
x
0
t,a✓̂t + �tkxt,akV �1

t

⌘

7: Update Observations: Xt  xt,at , Vt+1  Vt+XtX
0
t and Tt+1  Tt[{s : s+Ds = t},

Gt+1 = t� |Tt+1|, and W⌧+1 = W⌧ +
P

s:s+Ds=t XsX
0
s

8: end for

Remark 2. In step 4, we use Maximum Likelihood Estimators (MLEs) for the parameter estimation
step at each round t. For more details on the derivation and explanation, we refer to the appendix.
Remark 3 (Comparison to UCB-GLM Algorithm in Li et al. (2017)). We make several adjustments
to the UCB-GLM Algorithm in Li et al. (2017). First, in step 4 (statistics update), we only use data
with timestamps in Tt to calculate the estimator using MLE. In this step, using data without reward
will cause bias in the estimation. Second, when selecting the action in step 5, parameter �t is updated
adaptively at each round whereas in Li et al. (2017), the corresponding parameter is constant over
time. Moreover, in step 4, we choose to use Vt to normalize the context vector Xt,a instead of Wt.

3.2 Preliminary Analysis

Denote G
⇤
t = max1st Gs as the running maximum number of missing reward up to round t. The

property of Gt and G
⇤
t is the key to analyze the regret bound for UCB algorithm. We next characterize

the tail behavior of Gt and G
⇤
t .

Proposition 1 (Properties of Gt and G
?
t ). Assume Assumption 2. Denote �G =

q
I
4 +

�2
D(1+q)

q with

I = max

⇢
1+q
p
2 log(2)�2

D,
q

q
2�2

D
1+q + 1

�
. Then,

1. Gt is sub-Gaussian. Moreover, for all t � 1,

P (Gt � 2(µD +MD) + x)  exp

✓
�x

2

2�2
G

◆
. (5)

2. With probability 1� �,

G
⇤
T  2(µD +MD) + �G

p
2 log(T ) + �G

s

2 log

✓
1

�

◆
, (6)

where G
⇤
T = max1sT Gs.

3. Define Wt =
P

s2Tt
XsX

0
s where Xt is drawn iid. from some distribution � with support

in the unit ball Bd. Furthermore, let ⌃ := E[XtX
0
t] be the second moment matrix, and B

and � > 0 be two positive constants. Then there exist positive, universal constants C1 and
C2 such that �min(Wt) � B with probability at least 1� 2�, as long as

t �

0

@
C1

p
d+ C2

q
log( 1� )

�min(⌃)

1

A

2

+
2B

�min(⌃)
+ 2(µD +MD) + �G

s

2 log

✓
1

�

◆
. (7)

The proof of Proposition 1 is deferred to the appendix. This Note that Gt is sub-Gaussian even when
D has near-heavy tail distribution when p 2 (0, 1).
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3.3 Regret Bounds

Theorem 2. Assume Assumptions 1-2. Fix any �. There exists a universal constant C :=
C(C1, C2,MD, µD,�0,�G, �,) > 0, such that if we run DUCB-GLCB with ⌧ := C

�
d+ log( 1� )

�

and �t =
�


r
d
2 log

⇣
1 + 2(t�Gt)

d

⌘
+ log( 1� )+

p
Gt, then, with probability at least 1�5�, the regret

of the algorithm is upper bounded by

RT  ⌧ + Lg

"
4
p
µD +MD

s

Td log

✓
T

d

◆
+ 27/4

p
�G

✓
log

✓
1

�

◆◆1/4
s

d log

✓
T

d

◆
T

+ 27/4
p
�G (log (T ))1/4

s

d log

✓
T

d

◆
T +

2d�


log

✓
T

d�

◆
p

T

#
. (8)

For parameter definition, we refer to Table 1.The proof of Theorem 2 is deferred to the appendix.

Corollary 3 (Expected regret). Assume Assumptions 1-2. The expected regret is bounded by

E[RT ] = O

⇣
d

p

T log(T ) +
p
µD +MD

p
Td log (T ) +

p
�G

p

Td (log(T ))3/4
⌘
. (9)

Given the result in (8), (9) holds by choosing � = 1
T and using the fact that RT  T .

The highest order term O(d
p
T log(T )) does not depend on delays. Delay impacts the expected

regret bound in two folds. First, the sub-Gaussian parameter �G appears in the second-highest order
term. Second, the mean-related parameter µD +MD appears in the third-order term. Note that here
we include the log factors in deciding the highest order term, the second higest order term and so on.
If we exclude the log terms, then both delay parameters impact the regret bound multiplicatively.

3.4 Tighter Regret Bounds for Special Cases

When the sequence {Ds}
T
s=1 satisfies some specific assumptions, we are able to provide tighter high

probability bounds on the regret.

Proposition 4. Under Assumption 1, we have:

1. If there exists a constant Dmax > 0 such that P(Ds  Dmax) = 1 for all s 2 [T ]. Fix �.
There exists a universal constant C > 0 such that by taking ⌧ = Dmax + C(d+ log( 1� )),
with probability 1� 3�, the regret of the algorithm is upper bounded by

RT  ⌧ + Lg

 
2
p
Dmax

s

2Td log

✓
T

d

◆
+

2d�


log

✓
T

d�

◆
p

T

!
. (10)

Therefore, E[RT ] = O

⇣p
Dmax

p
dT log(T ) + d

p
T log(T )

⌘
.

2. Assume D1, · · · , DT are iid non-negative random variables with mean µ
0
D that satisfy

Assumption (2). There exists C > 0 such that by taking ⌧ := C
�
d+ log( 1� )

�
, with

probability 1� 5�, the regret of the algorithm is upper bounded by

RT  ⌧ + Lg

"
4
q
µ0
D

s

Td log

✓
T

d

◆
+ 27/4

p
�G

✓
log

✓
1

�

◆◆1/4
s

d log

✓
T

d

◆
T

+ 27/4
p
�G (log (T ))1/4

s

d log

✓
T

d

◆
T +

2d�


log

✓
T

d�

◆
p

T

#
.

Therefore, E[RT ] = O

⇣⇣p
µ0
D +
p
�G log (T )3/4

⌘p
Td+ d log (T )

p
T

⌘
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4 Tighter Regret Bounds on Linear Contextual Bandits with Finite Actions

We now consider the important special case of linear contextual bandits. and tighten the O(d)
dependence from previous bounds to O(

p
d). This requires two new elements that we incorporate

into DUCB-GLCB in Algorithm 1. First, instead of using MLE which is unbiased, here we use an
unbiased estimator that incorporates all the contexts (including those contexts for which the rewards
have not been received). In the linear contextual bandits setting, one can obtain analytical formulas
for the estimation procedure. Second, we extend the Sup-Base UCB decomposition framework (first
devised in Auer (2002) and subsequently adapted in Chu et al. (2011); Li et al. (2017)) to the current
setting in order to resolve the reward dependency issue. This framework is a commonly used one in
the literature that deals with the dependency issue, and provides a O(

p
dT ) regret bound instead of a

O(d
p
T ) regret bound. Here we adapt this framework in the delayed reward setting.

In summary, the algorithm has two components, Delayed BaseLinUCB (Algorithm 2) and Delayed
SupLinUCB (Algorithm 3). Delayed BaseLinUCB performs estimation and the confidence bound
computation, using a subset  t of the past time steps as opposed to the set of all past time steps (note
that when t = 1, the chosen subset  t is necessarily the empty set). This subset is carefully chosen
in Delayed SupLinUCB to make sure rewards are indepenent when conditioned on the past selected
contexts. Delayed SupLinUCB is further responsible for selecting an action at each time step.

Algorithm 2 Delayed BaseLinUCB at Step t

1: Input:  t ⇢ {1, 2, · · · , t� 1}.
2: At = Id +

P
⌧2 t

xt,a⌧x
0
t,a⌧

3: ct =
P

⌧2 t
1(D⌧ + ⌧  t� 1)y⌧,a⌧x⌧,a⌧

4: ✓t = A
�1
t ct

5: Observe K arm features, xt,1, xt,2, · · · , xt,K 2 Rd

6: for a 2 [K] do

7: wt,a = ↵t

q
xT
t,aA

�1
t xt,a

8: ŷt,a  ✓
T
t xt,a

9: end for

Algorithm 3 Delayed SupLinUCB

1: Input: T 2 N, S  log(T )
2:  s

1  ; for all s 2 [T ]
3: for t = 1, 2, · · · , T do

4: s 1 and Â1  [K]
5: repeat

6: Use Delayed BaseLinUCB with  s
t to calculate the width, ws

t,a, and upper confidence
bound, ŷst,a + w

s
t,a, for all a 2 Âs

7: if w
s
t,a  1/

p
T for all a 2 Âs then

8: Choose at = argmaxa2Âs

�
ŷ
s
t,a + w

s
t,a

�
, Update  s0

t+1   s0
t for all s0 2 [S].

9: else if w
s
t,a  2�s for all a 2 Âs then

10: Âs+1  {a 2 Âs | ŷ
s
t,a + w

s
t,a � maxa02Âs

(ŷst,a0 + w
s
t,a0)� 21�s

}, s s+ 1
11: else

12: Choose at 2 Âs such that ws
t,at

> 2�s, Update

�s0

t+1  

⇢
�s0

t ,[{t} if s = s
0

�s0
t , otherwise

13: end if

14: until an action at is found.
15: end for
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Remark 4. There are two modifications compared to Algorithm 2 in Chu et al. (2011). First, the
estimator ✓t (in step 4) is a biased estimator. We use all the features in matrix At and only use
features with observed rewards in vector ct. In particular, when the indicator 1(D⌧ + ⌧  t � 1)
evaluates to 1, the reward corresponding to the action taken at time step ⌧ has been received by
the end of (and possibly prior to) t � 1 (and hence available at the beginning of t); all the other
rewards (i.e. those that have not been received by t � 1) are excluded. In comparison, Chu et al.
(2011) construct an unbiased estimator in each time step. Second, the width parameter ↵t (in step 7)
is time-dependent and adapts to new information (based on the delays) in each round. In comparison,
the width parameter is constant in Chu et al. (2011) that only depends on the horizon T .
Theorem 5 (Regret on Delayed SupLinUCB-BaseLinUCB). If Delayed SupLinUCB is run with

↵t = ↵̄+Gt + 1, where ↵̄ =

r
1
2 ln

⇣
2TK log(T )

�

⌘
, then with probability at least 1� 2�, the regret

of the algorithm is

O

 
p

Td

 
(�G + 1) log3/2(

TK log T

�
) + log(

TK log T

�
)(1 + µD +MD + �G

r
log

1

�
)

!!
. (11)

The proof of Theorem 5 requires of modification of two lemmas in Chu et al. (2011). Lemma 6 is
a modification of (Chu et al., 2011, Lemma 1) and Lemma 7 is a modification of (Chu et al., 2011,
Lemma 6). We defer the detailed proofs of Lemmas 6-7 to the appendix. Proof of Theorem 5 is also
given in the appendix.

In the regret bound (11), the delay parameters (µD,MD,�D) appear on the highest order term
p
Td.

Although the highest order term
p
Td is removed from (8), the delay on order O(

p
Td) is essential

and this is also true for (8).
Lemma 6. Suppose the input index set �t in Delayed BaseLinUCB is constructed so that for fixed
x⌧,a⌧ with ⌧ 2 �t, the rewards y⌧,a⌧ are independent random variables with means E[y⌧,a⌧ ] =
x
0
⌧,a⌧

✓
⇤. Suppose {Gt} is fixed and given. Then, with probability at least 1� �/T , we have for all

a 2 [K] that

|ŷt,a � x
0
t,a✓

⇤
| 

 
1 +

s
1

2
ln

✓
2TK

�

◆
+Gt

!
st,a.

Lemma 7. Assume G
⇤
T is fixed and given. For all s 2 [S],

 s
T+1  5 · 2s

⇣p
2↵̄(G⇤

T + ↵̄)
⌘q

d| s
T+1|

Remark 5 (Why Assumption 1 can be dropped in Theorem 5). There are essentially two methods to
guarantee a positive lower bound �min(

Pt
s=1 XsX

0
s). One method is to randomly sample actions

for ⌧ rounds. In this way, (Li et al., 2017, Proposition 1) guarantees a positive lower bound on
�min(

Pt
s=1 XsX

0
s). This is the method adopted in Algorithm 1 and Theorem 2. The other method

adds a regularization term. This is adopted in the definition of At (See Algorithm 2 and Theorem 5).
This method corresponds to the Ridge regression when estimating parameter ✓t.

5 Conclusion

Beyond contextual bandits and looking at the broader landscape of data-driven decision making, de-
lays have emerged to be an important phenomenon in several domains, including, among other things,
distributed stochastic optimization (Bertsekas and Tsitsiklis (1997); Zhou et al. (2018b)), multi-
agent game-theoretical and reinforcement learning (Zhou et al. (2017); Grover et al. (2018a); Guo
et al. (2019); Mertikopoulos and Zhou (2019)), real-time scheduling in large-scale systems (Pinedo;
Mehdian et al. (2017); Mahdian et al. (2018)). Data-driven decision making with imperfect infor-
mation is an emerging research paradigm and much remains to be understood in regards to how
decision-making needs to be adapted in the presence of delays.

9



References

Abeille, M., Lazaric, A., et al. (2017). Linear thompson sampling revisited. Electronic Journal of
Statistics, 11(2):5165–5197.

Agrawal, S. and Goyal, N. (2013a). Further optimal regret bounds for thompson sampling. In
Artificial intelligence and statistics, pages 99–107.

Agrawal, S. and Goyal, N. (2013b). Thompson sampling for contextual bandits with linear payoffs.
In International Conference on Machine Learning, pages 127–135.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422.

Bastani, H. and Bayati, M. (2015). Online decision-making with high-dimensional covariates.

Bertsekas, D. P. and Tsitsiklis, J. N. (1997). Parallel and distributed computation: Numerical methods.

Bistritz, I., Zhou, Z., Chen, X., Bambos, N., and Blanchet, J. (2019). Online exp3 learning in
adversarial bandits with delayed feedback. In Advances in Neural Information Processing Systems.

Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends R� in Machine Learning, 5(1):1–122.

Cesa-Bianchi, N., Gentile, C., and Mansour, Y. (2019). Delay and cooperation in nonstochastic
bandits. The Journal of Machine Learning Research, 20(1):613–650.

Chapelle, O. (2014). Modeling delayed feedback in display advertising. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1097–1105. ACM.

Chen, K., Hu, I., Ying, Z., et al. (1999). Strong consistency of maximum quasi-likelihood estimators
in generalized linear models with fixed and adaptive designs. The Annals of Statistics, 27(4):1155–
1163.

Chow, S.-C. and Chang, M. (2011). Adaptive design methods in clinical trials. Chapman and
Hall/CRC.

Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011). Contextual bandits with linear payoff functions.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208–214.

Desautels, T., Krause, A., and Burdick, J. W. (2014). Parallelizing exploration-exploitation tradeoffs
in gaussian process bandit optimization. The Journal of Machine Learning Research, 15(1):3873–
3923.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., and Zhang, T. (2011).
Efficient optimal learning for contextual bandits. arXiv preprint arXiv:1106.2369.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. (2010). Parametric bandits: The generalized
linear case. In Advances in Neural Information Processing Systems, pages 586–594.

Garrabrant, S., Soares, N., and Taylor, J. (2016). Asymptotic convergence in online learning with
unbounded delays. arXiv preprint arXiv:1604.05280.

Grover, A., Al-Shedivat, M., Gupta, J. K., Burda, Y., and Edwards, H. (2018a). Learning policy
representations in multiagent systems. arXiv preprint arXiv:1806.06464.

Grover, A., Markov, T., Attia, P., Jin, N., Perkins, N., Cheong, B., Chen, M., Yang, Z., Harris, S.,
Chueh, W., et al. (2018b). Best arm identification in multi-armed bandits with delayed feedback.
arXiv preprint arXiv:1803.10937.

Guo, X., Hu, A., Xu, R., and Zhang, J. (2019). Learning mean-field games. In Advances in Neural
Information Processing Systems.

10



Joulani, P., Gyorgy, A., and Szepesvári, C. (2013). Online learning under delayed feedback. In
International Conference on Machine Learning, pages 1453–1461.

Jun, K.-S., Bhargava, A., Nowak, R., and Willett, R. (2017). Scalable generalized linear bandits:
Online computation and hashing. In Advances in Neural Information Processing Systems, pages
99–109.

Kannan, P., Chang, A.-M., and Whinston, A. B. (2001). Wireless commerce: marketing issues
and possibilities. In Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, pages 6–pp. IEEE.

Kitagawa, T. and Tetenov, A. (2018). Who should be treated? empirical welfare maximization
methods for treatment choice. Econometrica, 86(2):591–616.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide
web, pages 661–670. ACM.

Li, L., Lu, Y., and Zhou, D. (2017). Provably optimal algorithms for generalized linear contextual
bandits. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2071–2080. JMLR. org.

Mahdian, S., Zhou, Z., and Bambos, N. (2018). Robustness of join-the-shortest-queue scheduling to
communication delay. In 2018 Annual American Control Conference (ACC), pages 3708–3713.
IEEE.

Mandel, T., Liu, Y.-E., Brunskill, E., and Popović, Z. (2015). The queue method: Handling delay,
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