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Abstract

State of the art sound event classification relies in neural networks to learn the
associations between class labels and audio recordings within a dataset. These
datasets typically define an ontology to create a structure that relates these sound
classes with more abstract super classes. Hence, the ontology serves as a source of
domain knowledge representation of sounds. However, the ontology information is
rarely considered, and specially under explored to model neural network architec-
tures. We propose two ontology-based neural network architectures for sound event
classification. We defined a framework to design simple network architectures that
preserve an ontological structure. The networks are trained and evaluated using
two of the most common sound event classification datasets. Results show an
improvement in classification performance demonstrating the benefits of including
the ontological information.

1 Introduction

Humans can identify a large number of sounds in their environments e.g., a baby crying, a wailing
ambulance siren, microwave bell. These sounds can be related to more abstract categories that
aid interpretation e.g., humans, emergency vehicles, home. These relations and structures can be
represented by ontologies [1], which are defined for most of the available datasets for sound event
classification (SEC). However, sound event classification rarely exploits this additional available
information. Moreover, although neural networks are the state of the art for SEC [2–4], they are
rarely designed considering such ontologies.

An ontology is a formal representation of domain knowledge through categories and relationships
that can provide structure to the training data and the neural network architecture. The most common
type of ontologies are based on abstraction hierarchies defined by linguistics, where a super category
represents its subcategories. Generally, the taxonomies are defined by either nouns or verbs e.g.,
animal contains dog and cat, dog contains dog barking and dog howling. Examples of datasets are
ESC-50 [5], UrbanSounds [6], DCASE [7], AudioSet [8]. Another taxonomy can be defined by
interactions between objects and materials, actions and descriptors e.g., contains Scraping, which
contains Scraping Rapidly and Scraping a Board [9–11]. Another example of this type is given
by physical properties, such as frequency and time patterns [12–14]. There are multiple benefits
of considering hierarchical relations in sound event classifiers. They can allow the classifier to
back-off to more general categories when encountering ambiguity among subcategories. They can
disambiguate classes that are acoustically similar, but not semantically. They can be used to penalize
classification differently, where miss classifying sounds from different super classes is worse than
within the same super class. Lastly, they can be used as domain knowledge to model neural networks.
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Figure 1: Ontology of sound events in the MSoS dataset, level 1 has a total of 97 classes distributed
across 5 super classes in level 2.

In fact, ontological information has been evaluated in computer vision [15] and music [16], but has
rarely been used for sound event classification.

Ontology-based network architectures have showed improvement in performance along with other
benefits. Authors in [17] proposed an ontology-based deep restricted Boltzmann machine for textual
topic classification. The architecture replicates the tree-like structure adding intermediate layers to
model the transformation from a super class to its sub classes. Authors showed improved performance
and reduced overfitting in training data. Another example used a perceptron for each node of the
hierarchy, which classified whether an image corresponded to such class or not [18]. Authors showed
an improvement in performance due to the ability of class disambiguation by comparing predictions
of classes and sub classes. Motivated by these approaches and by the flexibility to adapt structures in
a deep learning model we propose our ontology-based networks detailed in the following section.

2 Methods

In this section we present a framework to deal with ontological information using deep learning
architectures. First, we describe a set of assumptions we consider along this paper. In particular,
we describe the type of ontologies we work and some of their implications. Later, we present
a Feed-forward model that includes the discussed constraints, defining our proposed ontological
layer. Second, in order to preserve an embedding space consistent with the ontological structure, we
extended the learning model to compute ontology-based embeddings using Siamese Neural Networks.

2.1 Framework and Assumptions

The framework is defined to make use of the ontology structure and to model the neural network
architectures. It should be noted that we considered ontologies with two levels, which are the most
common in sound event datasets. Nevertheless, the presented framework can be easily generalized to
more levels.

In our framework, we considered the training data {(x1,y1), ..., (xn,yn)}, where xi ∈ X is an audio
representation, which is associated to a set of labels given by the ontology yi ∈ C1 × C2 × ...× Ck.
In this case, Ci is the set of possible classes at i-level. Assuming a hierarchical relation, we can
consider that each possible class in Ci is mapped to one element in Ci+1. The higher the value of i,
the higher the level in the ontology.

For example, consider the illustration of an ontology in Figure 1. In this case k = 2, C1 = {cat , dog,
breathing , eating , sneezing , violin , drums , piano , beep , boing , train , siren} and C2 = {nature ,
human , music , effects , urban}. As the figure shows, every element in C1 is related to one element
in C2; e.g., cat belongs to nature, or drums belongs to music.

Furthermore, for a given representation x ∈ X , if we know the corresponding label y1 in C1, we can
infer its label in C2. This intuition can be formalized using a probabilistic formulation, where it is
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Figure 2: Architecture of the Feed-forward Network with Ontological Layer. The blue column
represents the acoustic feature vector, the red columns are the output probabilities for both levels.

straightforward to see that, assuming p(y2|y1,x) = p(y2|y1), the following is satisfied:

p(y2|x) =
∑
y1

p(y2, y1|x) (1)

=
∑
y1

p(y2|y1,x) · p(y1|x) (2)

=
∑

y1∈ children(y2)

p(y1|x) (3)

Therefore, if we want to estimate p(y2|x) using a model, we just need to compute the estimation of
p(y1|x) and sum the values corresponding to the children of y2. This case is valid for inference time,
however, it is not clear that using the representation and label (x, y1) should be enough to train the
model. If at training time we can make use of knowledge to relate the different classes in y1, it should
improve the performance of the model, specially at making predictions for classes y2.

In the following sections we take our proposed framework and use it to design ontology-based neural
network architectures.

2.2 Feed-forward Network with Ontological Layer

In this section, we describe how we use our proposed framework to design the architecture. Also, we
introduce the ontological layer, which makes use of the ontology structure.

The Feed-forward Network (FFN) with Ontological Layer consists of a base network (Net), an
intermediate vector z, and two outputs, one for each ontology level. The base network weights are
learned at every parameter update. The base network utilizes an input vector of audio features x and
generates a vector z. This vector is used to generate two outputs, p(y1|x) a probability vector for C1

and p(y2|x) a probability vector for C2. First, the vector z is passed to a softmax layer of the size of
C1. Then, this output is multiplied by the ontological layer M and generates a layer of size of C2.
Once the FFN is trained, it can be used to predict any class in C1 and C2 for any input x.

The ontological layer reflects the relation between super classes and sub classes given by the ontology.
To describe how we used this layer, we refer to Equation 3, where p(y2|x) is the sum of all the values
of p(y1|x) corresponding to the children of y2. If we consider this equation as a directed graph where
M is the |C2| × |C1| incidence matrix, then, it is clear that Equation 3 can be rewritten as,

p(y2|x) = M · p(y1|x) (4)

Note that the ontological layer M defines the weights of a standard layer connection. Although we
do not consider that these weights are trainable, they are part of our training data.
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Figure 3: Architecture of the Siamese Neural Network with the Feed-forward Network with Onto-
logical Layer. The blue rows represent the acoustic feature vectors, the white rows represent the
ontological embeddings and the red rows are the output probabilities for both levels. Note that the
SNN is trained with three types of pairs depending on whether the inputs are from the same subclass,
or different subclass, but same super class, or different super class.

In order to train this model, we simply propose to apply gradient-based method to minimize the loss
function L, which is a convex combination between two categorical cross-entropy functions; L1 the
categorical cross entropy corresponding to p(y1|x) and L2 corresponding to p(y2|x). Formally,

L = λL1 + (1− λ) L2 (5)

Hence, we consider λ ∈ [0, 1] as a hyper parameter to be tuned. Note that, when λ = 1, we are
reducing the problem to train a standard classifier just using the information from the first level of the
ontology.

2.3 Ontology-based embeddings for Feed-forward Model with Ontological layer

In this section, we describe how we learned the ontology-based embeddings.

Our goal is to create embeddings that preserved the ontological structure. We used a Siamese neural
network (SNN), which enforces samples of the same class to be closer, while separating samples of
different classes. If two samples belong to different subclasses, but they belong to the same super
class, they are closer than two samples that belong to different super classes. The architecture of
the SNN with the Feed-forward Network with Ontological Layer is shown in Fig. 3. The blue rows
represent the acoustic feature vectors of two different samples; they can be from the same subclass,
different subclass but same super class, or different super class. Then, the twin networks have the
same base architecture (Net) with shared weights. The weights are learned simultaneously at every
parameter update. The white rows represent the ontological embeddings used to compute a Similarity
metric (Euclidean Distance), where the distance of the embeddings z1 and z2 should indicate how
different x1 and x2 are with respect to the ontology. For this work, we imposed that the distance
between z1 and z2 is close to 0 if the samples are from the same subclass, close to 5 if they are from
different sub classes, but the same super class, and close to 10 if they are from different super classes.
Finally, the red rows are the output probabilities for both levels, p(y1|x1), p(y1|x2), p(y2|x1) and
p(y2|x2).

To train the Feed-forward Model with Ontological layer using Ontology-based embeddings, we
provided the three types of pairs of audio examples and applied a gradient-based method to minimize
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Figure 4: Ontology of sound events in the US8K dataset, level 1 has a total of 10 classes distributed
across 4 super classes in level 2.

the loss function L. The loss is a linear combination between four categorical cross-entropy functions:
L1
1 and L2

1 are the categorical cross-entropy losses corresponding to level 1 p(y1|x1) and p(y1|x2)
respectively, L1

2 and L2
2 are the categorical cross-entropy losses corresponding to level 2 p(y2|x1)

and p(y2|x2), and the metric Dw given by square of the difference between the Euclidean Distance
between embeddings z1 and z2 and the target value given by the ontology (0, 5 or 10). Formally,

L = λ1(L1
1 + L2

1) + λ2(L1
2 + L2

2) + λ3Dw (6)

3 Experimental Results

In this section, we evaluate the sound event classification performance of the ontological-based
neural network architectures. We present the datasets and its ontologies, the baseline and proposed
architectures, and the classification performance at different levels of the hierarchy.

3.1 Datasets and Ontologies

Making Sense of Sounds Challenge 2 - MSoS: The dataset is designed for a challenge which
objective is to classify the most abstract classes or highest level in its taxonomy. The ontology,
illustrated in Fig. 1 has two levels, the lowest level 1, has 97 classes and the highest level 2, has 5
classes. The audio files were taken from Freesound data base, the ESC-50 dataset and the Cambridge-
MT Multitrack Download Library. The development dataset consists of 1500 audio files divided
into the five categories, each containing 300 files. The number of different sound types within each
category is not balanced. The evaluation dataset consists of 500 audio files, 100 files per category. All
files have an identical format: single-channel 44.1 kHz, 16-bit .wav files. We randomly partitioned
the set in 80% for training and tuning parameters and 10% for testing. All files are exactly 5 seconds
long, but may feature periods of silence. The official blind evaluation set of the challenge consisted
on 500 files distributed among the 5 classes.

Urban Sounds - US8K: The dataset is designed to evaluate classification of urban sounds, which
are organized using a taxonomy with more nodes than the annotated number of classes. Due to this
reason, we adjusted the taxonomy to avoid redundant levels with only one annotated child. The
resulting ontology is illustrated in Fig. 4, with two levels, the lowest level 1, has 10 classes and the
highest level 2, has 4 classes. The audio files were taken from Freesound data base and corresponded
to real field recordings. All files have an identical format: single-channel 44.1 kHz, 16-bit .wav files.
The dataset contains 8,732 audio files divided into 10 stratified subsets. We used 9 folds to train and
tune parameters and one fold for testing.

3.2 Audio Features

We used state-of-the-art Walnet features [2] to represent audio recordings. For each audio, we
computed a 128-dimensional logmel-spectrogram vector and transformed it via a convolutional
neural network (CNN) that was trained separately on the balanced set of AudioSet. The network

2http://cvssp.org/projects/making_sense_of_sounds/site/challenge/
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Dataset Model Accuracy in Level 1 Accuracy in Level 2
Baseline (Challenge) - 0.810

MSoS Baseline 0.686 0.853
FF + Ontology 0.740 0.913

Ontology Embeddings 0.736 0.886
Baseline 0.790 0.861

US8K FF + Ontology 0.825 0.863
Ontology Embeddings 0.818 0.856

Table 1: EDIT THIS: Both proposed methods outperformed the baseline, which does not use any
ontology information.

comprised 8 convolutional layers, resulting in an output feature vector of dimensionality 527. To this,
we concatenated intermediate outputs from the 8th layer of the CNN with dimensionality of 1024.

3.3 Base Network Architecture (Net)

The architecture of the base network (Net) considered in this experiment, shown in Fig. 2, is a
feed-forward multi-layer perceptron network. It consists of 4 layers: the input layer of dimensionality
1024, which takes audio feature vectors, 2 dense layers of dimensionality 512 and 256, respectively,
and the output layer of dimensionality 128, which is the dimensionality of the vector z. The dense
layers utilize Batch Normalization, a dropout rate of 0.5 and the ReLU activation function; max(0, x),
where x is input to the function. We tuned the parameters in the Net box as well as the parameters
that transformed z into p(y1|x).

3.4 Performance of Baseline Models

We considered baseline models in both level 1 and 2 for the different data sets. In this case, the
baseline models did not consider any ontological information, hence the models consist of the Base
Network Architecture with the addition of an output layer that was either for level 1 or level 2.

Note that for level 1 this is equivalent to training the Feed-forward model with Ontological Layer
using λ = 1. Indeed, with λ = 1 the loss function associated to level 2 is not considered. For level
2, the baseline model is different from the Feed-forward model with λ = 0, because in the baseline
model there is no layer corresponding to the prediction of y1. Table 1 shows the results of baseline
models for both, MSoS and US8K data set in level 1 and level 2.

The baseline performance of the development set in the MSoS challenge was reported to be 0.81 for
level 2 and no baseline was provided for level 1.

3.5 Performance of Feed-forward Model with Ontological layer

To validate the architecture presented in Section 2.2 and analyze the utility of the ontological layer,
we trained models taking different values of λ. Figure 5 shows the effect of λ in both data sets. In
general, we observe that considering values different from 0 and 1 helps to increase the performance.
Note that the classification in both level is affected by the ontological layer.

In the case of MSoS data set, the best performance was obtained using λ = 0.8, getting 0.74 and
0.913 of accuracy in level 1 and 2 respectively. Thus, using the ontological structure we can get an
absolute improvement of 5.4% and 6% respect baseline models.

Running the same experiment on the US8K data set, we observe a smaller improvement. The best
performance was obtained using λ = 0.7, being the accuracy of 0.82 and 0.86 for level 1 and 2
respectively. This means an improvement of 2.5% and 0.2% only, respect baseline models.
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Figure 5: Results in different level prediction of Feed-forward Network with Ontological Layer using
different values of λ in training phase. (Left) Results in MSoS data set. Best result is achieved using
λ = 0.8 (Right) Results in US8K data set. Best result is achieved using λ = 0.7

Figure 6: The MSoS t-SNE plots of the samples in classes from level 2 (1st and 3rd) and level 1 (2nd
and 4th). The first two boxes are from the base network vectors and the second two boxes are the
ontology-based embeddings. We observe in 1st and 3rd, the groups of classes in level 2 and in 2nd
and 4th the same level 2 groups, but using the level 1 class samples. The ontology-based embeddings
results in tighter and better defined clusters.

3.6 Performance of Ontology-based Embeddings with Feed-forward Model with
Ontological layer

We tested the architecture described in Section 2.3 to evaluate the performance of the ontology-based
embeddings for sound event classification. Additionally, we include t-SNE plots, to illustrate how the
embeddings cluster at different levels.

We processed the Walnet audio features and chose different super and sub class pairs to train the
Siamese neural network to produce the ontology-based embeddings. The embeddings are passed to
the architecture of the base network (Net), which is the same as the one used in the previous section.
We trained the SNN for 50 epochs using the Adam algorithm. We also tuned the hyper-parameters of
the SNN to achieve good performance with the input features that are described in the next section.
We also tried different number of pairs for the input training data, from 100 to 1,000,000 pairs and
found that 100,000 yielded the best performance. For the loss function we used the values derived
in the previous experiment. We used the value of 0.8 for the lambda of the classifiers of level 2 and
0.2 for the classifiers in level 1, and 0.2 for the similarity metric. Modifying the lambdas in the loss
function affected the overall performance.

The results in Table 1 show that the accuracy performance of MSoS and US8K were respectively
as follows, in level 1 0.736 and 0.818, and in level 2 0.886 and 0.856. Based on these results we
made the following conclusions. The performance of this architecture is better than the baseline,
but slightly under performed the method without the embeddings. Nevertheless, the ontology-based
embeddings have the benefit of better grouping as illustrated in Figure6. We took the MSoS data and
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created the t-SNE plots (perplexity=30) of the classes in level 2 and level 1. We observed that the FF
+ Ontology vectors and the ontology-based embeddings provided clustered groups of level 2 classes.
However, the ontology-based embeddings have tighter and better defined clusters.

In the case of the US8K data set performance was limited. We think this was because the number of
sub classes was similar to the number of super classes. We had 10 sub classes for 4 classes unlike
the MSoS data set, where we had 97 sub classes and 5 classes. It seems when the ratio between
the number of sub classes and the number of classes is not large, the contribution of the ontology is
negligible.

Both approaches were used to compete in the Making Sense of Sounds Challenge. The baseline for
the blind evaluation set was 0.80 accuracy for level 2. The Feed-forward Network with Ontological
Layer achieved 0.88 while using the ontological-embeddings achieved 0.89. Again, both architectures
outperformed significantly the baseline.

4 Conclusions and Future work

In this paper we proposed a framework to design neural networks for sound event classification using
hierarchical ontologies. We have shown two methods to add such structure into deep learning models
in a simple manner without adding more learnable parameters. We used a Feed-forward Network
with an ontological layer to relate predictions of different levels in the hierarchy. Additionally, we
proposed a Siamese neural Network to compute ontology-based embeddings to preserve the ontology
in an embedding space. The embeddings plots showed clusters of super classes containing different
sub classes. Our results in the datasets and MSoS challenge improved over the baselines. We expect
that our results pave the path to further explore ontologies and other relations, which is fundamental
for sound event classification due to wide acoustic diversity and limited lexicalized terms to describe
sounds.
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