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ABSTRACT

We propose a new architecture termed Dual Adversarial Transfer Network (DAT-
Net) for addressing low-resource Named Entity Recognition (NER). Specifically,
two variants of DATNet, i.e., DATNet-F and DATNet-P, are proposed to ex-
plore effective feature fusion between high and low resource. To address the
noisy and imbalanced training data, we propose a novel Generalized Resource-
Adversarial Discriminator (GRAD). Additionally, adversarial training is adopted
to boost model generalization. We examine the effects of different components
in DATNet across domains and languages, and show that significant improvement
can be obtained especially for low-resource data. Without augmenting any ad-
ditional hand-crafted features, we achieve new state-of-the-art performances on
CoNLL and Twitter NER—88.16% F1 for Spanish, 53.43% F1 for WNUT-2016,
and 42.83% F1 for WNUT-20171.

1 INTRODUCTION

Named entity recognition (NER) is an important step in most natural language processing (NLP)
applications. It detects not only the type of named entity, but also the entity boundaries, which
requires deep understanding of the contextual semantics to disambiguate the different entity types
of same tokens. To tackle this challenging problem, most early studies were based on hand-crafted
rules, which suffered from limited performance in practice. Current methods are devoted to develop-
ing learning based algorithms, especially neural network based methods, and have been advancing
the state-of-the-art consecutively (Collobert et al., 2011; Huang et al., 2015; Lample et al., 2016;
Chiu & Nichols, 2016; Ma & Hovy, 2016). These end-to-end models generalize well on new enti-
ties based on features automatically learned from the data. However, when the annotated corpora is
small, especially in the low resource scenario (Zhang et al., 2016), the performance of these methods
degrades significantly since the hidden feature representations cannot be learned adequately.

Recently, more and more approaches have been proposed to address low-resource NER. Early works
(Chen et al., 2010; Li et al., 2012) primarily assumed a large parallel corpus and focused on exploit-
ing them to project information from high- to low-resource. Unfortunately, such a large parallel
corpus may not be available for many low-resource languages. More recently, cross-resource word
embedding (Fang & Cohn, 2017; Adams et al., 2017; Yang et al., 2017) was proposed to bridge
the low and high resources and enable knowledge transfer. Although the aforementioned transfer-
based methods show promising performance in low-resource NER, there are two issues deserved
to be further investigated on: 1) Representation Difference - they did not consider the represen-
tation difference across resources and enforced the feature representation to be shared across lan-
guages/domains; 2) Resource Data Imbalance - the training size of high-resource is usually much
larger than that of low-resource. The existing methods neglect such difference in their models,
resulting in poor generalization.

In this work, we present an approach termed Dual Adversarial Transfer Network (DATNet) to
address the above issues in a unified framework for low-resource NER. Specifically, to handle the
representation difference, we first investigate on two architectures of hidden layers (we use bi-
directional long-short term memory (BiLSTM) model as hidden layer) for transfer. The first one
is that all the units in hidden layers are common units shared across languages/domains. The second

1The implementation details will be available at https://github.com/ after acceptance.
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one is composed of both private and common units, where the private part preserves the independent
language/domain information. Extensive experiments are conducted to show their advantages over
each other in different situations. On top of common units, the adversarial discriminator (AD) loss
is introduced to encourage the resource-agnostic representation so that the knowledge from high re-
source can be more compatible with low resource. To handle the resource data imbalance issue, we
further propose a variant of the AD loss, termed Generalized Resource-Adversarial Discriminator
(GRAD), to impose the resource weight during training so that low-resource and hard samples can be
paid more attention to. In addition, we create adversarial samples to conduct the Adversarial Train-
ing (AT), further improving the generalization and alleviating over-fitting problem. We unify two
kinds of adversarial learning, i.e., GRAD and AT, into one transfer learning model, termed Dual Ad-
versarial Transfer Network (DATNet), to achieve end-to-end training and obtain the state-of-the-art
performance on a series of NER tasks–88.16% F1 for CoNLL-2002 Spanish, 53.43% and 42.83%
F1 for WNUT-2016 and 2017. Different from prior works, we do not use additional hand-crafted
features and do not use cross-lingual word embeddings while addressing the cross-language tasks.

2 RELATED WORK

Named Entity Recognition NER is typically framed as a sequence labeling task which aims
at automatic detection of named entities (e.g., person, organization, location and etc.) from free
text (Marrero et al., 2013). The early works applied CRF, SVM, and perception models with hand-
crafted features (Ratinov & Roth, 2009; Passos et al., 2014; Luo et al., 2015). With the advent
of deep learning, research focus has been shifting towards deep neural networks (DNN), which
requires little feature engineering and domain knowledge (Lample et al., 2016; Zukov Gregoric
et al., 2018). Collobert et al. (2011) proposed a feed-forward neural network with a fixed sized
window for each word, which failed in considering useful relations between long-distance words. To
overcome this limitation, Chiu & Nichols (2016) presented a bidirectional LSTM-CNNs architecture
that automatically detects word- and character-level features. Ma & Hovy (2016) further extended
it into bidirectional LSTM-CNNs-CRF architecture, where the CRF module was added to optimize
the output label sequence. Liu et al. (2018) proposed task-aware neural language model termed LM-
LSTM-CRF, where character-aware neural language models were incorporated to extract character-
level embedding under a multi-task framework.

Transfer Learning for NER Transfer learning can be a powerful tool to low resource NER tasks.
To bridge high and low resource, transfer learning methods for NER can be divided into two types:
the parallel corpora based transfer and the shared representation based transfer. Early works mainly
focused on exploiting parallel corpora to project information between the high- and low-resource
language (Yarowsky et al., 2001; Chen et al., 2010; Li et al., 2012; Feng et al., 2018). For example,
Chen et al. (2010) and Feng et al. (2018) proposed to jointly identify and align bilingual named
entities. On the other hand, the shared representation methods do not require the parallel corre-
spondence (Rei & Søgaard, 2018). For instance, Fang & Cohn (2017) proposed cross-lingual word
embeddings to transfer knowledge across resources. Yang et al. (2017) presented a transfer learning
approach based on a deep hierarchical recurrent neural network (RNN), where full/partial hidden
features between source and target tasks are shared. Ni et al. (Ni & Florian, 2016; Ni et al., 2017)
utilized the Wikipedia entity type mappings to improve low-resource NER. Al-Rfou’ et al. (2015)
built massive multilingual annotators with minimal human expertise by using language agnostic
techniques. Mayhew et al. (2017) created a cross-language NER system, which works well for very
minimal resources by translate annotated data of high-resource into low-resource. Cotterell & Duh
(2017) proposed character-level neural CRFs to jointly train and predict low- and high-resource lan-
guages. Pan et al. (2017) proposes a large-scale cross-lingual named entity dataset which contains
282 languages for evaluation. In addition, multi-task learning (Yang et al., 2016; Luong et al., 2016;
Rei, 2017; Aguilar et al., 2017; Hashimoto et al., 2017; Lin et al., 2018) shows that jointly training
on multiple tasks/languages helps improve performance. Different from transfer learning methods,
multi-task learning aims at improving the performance of all the resources instead of low resource
only.

Adversarial Learning Adversarial learning originates from Generative Adversarial Nets (GAN)
(Goodfellow et al., 2014), which shows impressing results in computer vision. Recently, many
papers have tried to apply adversarial learning to NLP tasks. Liu et al. (2017) presented an adver-
sarial multi-task learning framework for text classification. Gui et al. (2017) applied the adversarial
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discriminator to POS tagging for Twitter. Kim et al. (2017) proposed a language discriminator to
enable language-adversarial training for cross-language POS tagging. Apart from adversarial dis-
criminator, adversarial training is another concept originally introduced by (Szegedy et al., 2014;
Goodfellow et al., 2015) to improve the robustness of image classification model by injecting ma-
licious perturbations into input images. Recently, Miyato et al. (2017) proposed a semi-supervised
text classification method by applying adversarial training, where for the first time adversarial per-
turbations were added onto word embeddings. Yasunaga et al. (2018) applied adversarial training
to POS tagging. Different from all these adversarial learning methods, our method integrates both
the adversarial discriminator and adversarial training in an unified framework to enable end-to-end
training.

3 DUAL ADVERSARIAL TRANSFER NETWORK (DATNET)

In this section, we introduce DATNet in more details. We first describe a base model for NER, and
then discuss two proposed transfer architectures for DATNet.
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Figure 1: The general architecture of proposed models.

3.1 BASIC ARCHITECTURE

We follow state-of-the-art models for NER task (Huang et al., 2015; Lample et al., 2016; Chiu &
Nichols, 2016; Ma & Hovy, 2016), i.e., LSTM-CNNs-CRF based structure, to build the base model.
It consists of the following pieces: character-level embedding, word-level embedding, BiLSTM for
feature representation, and CRF as the decoder. The character-level embedding takes a sequence
of characters in the word as atomic units input to derive the word representation that encodes the
morphological information, such as root, prefix, and suffix. These character features are usually
encoded by character-level CNN or BiLSTM, then concatenated with word-level embedding to form
the final word vectors. On top of them, the network further incorporates the contextual information
using BiLSTM to output new feature representations, which is subsequently fed into CRF layer
to predict label sequence. Although both of the word-level layer and the character-level layer can
be implemented using CNNs or RNNs, we use CNNs for extracting character-level and RNNs for
extracting word-level representation. Fig. 1(a) shows the the architecture of the base model.

3.2 DUAL ADVERSARIAL TRANSFER ARCHITECTURE

3.2.1 CHARACTER-LEVEL ENCODER

Previous works have shown that character features can boost sequence labeling performance by cap-
turing morphological and semantic information (Lin et al., 2018). For low-resource dataset to obtain
high-quality word features, character features learned from other language/domain may provide cru-
cial information for labeling, especially for rare and out-of-vocabulary words. Character-level en-
coder usually contains BiLSTM (Lample et al., 2016) and CNN (Chiu & Nichols, 2016; Ma & Hovy,
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2016) approaches. In practice, Reimers & Gurevych (2017) observed that the difference between
the two approaches is statistically insignificant in sequence labeling tasks, but character-level CNN
is more efficient and has less parameters. Thus, we use character-level CNN and share character
features between high- and low-resource tasks to enhance the representations of low-resource.

3.2.2 WORD-LEVEL ENCODER

To learn a better word-level representation, we concatenate character-level features of each word
with a latent word embedding as wi = [wchar

i ,wemb
i ], where the latent word embedding wemb

i is
initialized with pre-trained embeddings and fixed during training. One unique characteristic of NER
is that the historical and future input for a given time step could be useful for label inference. To
exploit such a characteristic, we use a bidirectional LSTM architecture (Hochreiter & Schmidhuber,
1997) to extract contextualized word-level features. In this way, we can gather the information
from the past and future for a particular time frame t as follows,

−→
h t = lstm(

−→
h t−1,wt),

←−
h t =

lstm(
←−
h t+1,wt). After the LSTM layer, the representation of a word is obtained by concatenating

its left and right context representation as follows, ht = [
−→
h t,
←−
h t].

To consider the resource representation difference on word-level features, we introduce two kinds of
transferable word-level encoder in our model, namely DATNet-Full Share (DATNet-F) and DATNet-
Part Share (DATNet-P). In DATNet-F, all the BiLSTM units are shared by both resources while word
embeddings for different resources are disparate. The illustrative figure is depicted in the Fig. 1(c).
Different from DATNet-F, the DATNet-P decomposes the BiLSTM units into the shared component
and the resource-related one, which is shown in the Fig. 1(b).

3.2.3 GENERALIZED RESOURCE-ADVERSARIAL DISCRIMINATOR

In order to make the feature representation extracted from the source domain more compatible with
those from the target domain, we encourage the outputs of the shared BiLSTM part to be resource-
agnostic by constructing a resource-adversarial discriminator, which is inspired by the Language-
Adversarial Discriminator proposed by Kim et al. (2017). Unfortunately, previous works did not
consider the imbalance of training size for two resources. Specifically, the target domain consists
of very limited labeled training data, e.g., 10 sentences. In contrast, labeled training data in the
source domain are much richer, e.g., 10k sentences. If such imbalance was not considered during
training, the stochastic gradient descent (SGD) optimization would make the model more biased to
high resource (Lin et al., 2017b). To address this imbalance problem, we impose a weight α on two
resources to balance their influences. However, in the experiment we also observe that the easily
classified samples from high resource comprise the majority of the loss and dominate the gradi-
ent. To overcome this issue, we further propose Generalized Resource-Adversarial Discriminator
(GRAD) to enable adaptive weights for each sample (note that the sample here means each sentence
of resource), which focuses the model training on hard samples.

To compute the loss of GRAD, the output sequence of the shared BiLSTM is firstly encoded into a
single vector via a self-attention module (Bahdanau et al., 2015), and then projected into a scalar r
via a linear transformation. The loss function of the resource classifier is formulated as:

`GRAD = −
∑
i

{Ii∈DS
α(1− ri)γ log ri + Ii∈DT

(1− α)rγi log(1− ri)} (1)

where Ii∈DS
, Ii∈DT

are the identity functions to denote whether a sentence is from high resource
(source) and low resource (target), respectively; α is a weighting factor to balance the loss contribu-
tion from high and low resource; the parameter (1− ri)γ (or rγi ) controls the loss contribution from
individual samples by measuring the discrepancy between prediction and true label (easy samples
have smaller contribution); and γ scales the contrast of loss contribution from hard and easy samples.
In practice, the value of γ does not need to be tuned much and usually set as 2 in our experiment.
Intuitively, the weighting factors α and (1 − ri)γ reduce the loss contribution from high resource
and easy samples, respectively. Note that though the resource classifier is optimized to minimize the
resource classification error, when the gradients originated from the resource classification loss are
back-propagated to the other model parts than the resource classifier, they are negated for parameter
updates so that these bottom layers are trained to be resource-agnostic.
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3.2.4 LABEL DECODER

The label decoder induces a probability distribution over sequences of labels, conditioned on the
word-level encoder features. In this paper, we use a linear chain model based on the first-order
Markov chain structure, termed the chain conditional random field (CRF) Lafferty et al. (2001), as
the decoder. In this decoder, there are two kinds of cliques: local cliques and transition cliques.
Specifically, local cliques correspond to the individual elements in the sequence. And transition
cliques, on the other hand, reflect the evolution of states between two neighboring elements at time
t−1 and t and we define the transition distribution as θ. Formally, a linear-chain CRF can be written
as p(y|h1:T ) = 1

Z(h1:T ) exp
{∑T

t=2 θyt−1,yt +
∑T
t=1 Wytht

}
, where Z(h1:T ) is a normalization

term and y is the sequence of predicted labels as follows: y = y1:T . Model parameters are optimized
to maximize this conditional log likelihood, which acts as the objective function of the model. We
define the loss function for source and target resources as follows, `S = −

∑
i log p(y|h1:T ), `T =

−
∑
i log p(y|h1:T ).

3.2.5 ADVERSARIAL TRAINING

So far our model can be trained end-to-end with standard back-propagation by minimizing the fol-
lowing loss:

` = `GRAD + `S + `T (2)

Recent works have demonstrated that deep learning models are fragile to adversarial examples
Goodfellow et al. (2015). In computer vision, those adversarial examples can be constructed by
changing a very small number of pixels, which are virtually indistinguishable to human perception
(Pin-Yu et al., 2018). Recently, adversarial samples are widely incorporated into training to improve
the generalization and robustness of the model, which is so-called adversarial training (AT) (Miyato
et al., 2017). It emerges as a powerful regularization tool to stabilize training and prevent the model
from being stuck in local minimum. In this paper, we explore AT in context of NER. To be specific,
we prepare an adversarial sample by adding the original sample with a perturbation bounded by a
small norm ε to maximize the loss function as follows:

ηx = arg max
η:‖η‖2≤ε

`(Θ;x + η) (3)

where Θ is the current model parameters set. However, we cannot calculate the value of η exactly in
general, because the exact optimization with respect to η is intractable in neural networks. Following
the strategy in Goodfellow et al. (2015), this value can be approximated by linearizing it as follows,

ηx = ε
g

‖g‖2
, where g = ∇`(Θ;x) (4)

where ε can be determined on the validation set. In this way, adversarial examples are generated
by adding small perturbations to the inputs in the direction that most significantly increases the
loss function of the model. We find such η against the current model parameterized by Θ, at each
training step, and construct an adversarial example by xadv = x + ηx. Noted that we generate this
adversarial example on the word and character embedding layer, respectively, as shown in the Fig.
1(b) and 1(c). Then, the classifier is trained on the mixture of original and adversarial examples to
improve the generalization. To this end, we augment the loss in Eqn. 2 and define the loss function
for adversarial training as:

`AT = `(Θ;x) + `(Θ;xadv) (5)

where `(Θ;x), `(Θ;xadv) represents the loss from an original example and its adversarial counter-
part, respectively. Note that we present the AT in a general form for the convenience of presentation.
For different samples, the loss and parameters should correspond to their counterparts. For ex-
ample, for the source data with word embedding wS , the loss for AT can be defined as follows,
`AT = `(Θ;wS) + `(Θ;wS,adv) with wS,adv = wS + ηwS

and ` = `GRAD + `S . Similarly, we
can compute the perturbations ηc for char-embedding and ηwT

for target word embedding.
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4 EXPERIMENTS

4.1 DATASETS

In order to evaluate the performance of DATNet, we conduct the experiments on following widely
used NER datasets: CoNLL-2003 English NER (Kim & De, 2003), CoNLL-2002 Spanish & Dutch
NER (Kim, 2002), WNUT-2016 & 2017 English Twitter NER (Zeman, 2017). The statistics of these
datasets are described in Table 1. We use the official split of training/validation/test sets. Since our
goal is to study the effects of transferring knowledge from high-resource dataset to low-resource
dataset, unlike previous works (Collobert et al., 2011; Chiu & Nichols, 2016; Yang et al., 2017) to
append one-hot gazetteer features to the input of the CRF layer, and the works (Partalas et al., 2016;
Limsopatham & Collier, 2016; Aguilar et al., 2017) to introduce orthographic feature as additional
input for learning social media NER in tweets, we do not experiment with hand-crafted features
and only consider words and characters embeddings as the inputs of our model. To be noted, we
used only train set for model training for all datasets except the WNUT-2016 NER dataset. Since
in this dataset, all the previous studies merged the training and validation sets together for training,
we followed the same way for fair comparison. Specifically, we use CoNLL-2003 English NER
dataset as high-resource (i.e., source) for all the experiments on CoNLL and WNUT datasets, while
CoNLL-2002 Spanish & Dutch NER datasets and WNUT-2016 & 2017 Twitter NER datasets as
low-resource (i.e., target) in cross-language and cross-domain NER settings, respectively.

Table 1: Statistics of CoNLL and WNUT Named Entity Recognition Datasets.
Benchmark Resource Language # Training Tokens (# Entities) # Dev Tokens (# Entities) # Test Tokens (# Entities)

CoNLL-2003 Source English 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)

Cross-language NER

CoNLL-2002 Target Spanish 207,484 (18,797) 51,645 (4,351) 52,098 (3,558)
CoNLL-2002 Target Dutch 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)

Cross-domain NER

WNUT-2016 Target English 46,469 (2,462) 16,261 (1,128) 61,908 (5,955)
WNUT-2017 Target English 62,730 (3,160) 15,733 (1,250) 23,394 (1,740)

In addition to the CoNLL and WNUT datasets, we also experiment on the cross-language named
entity dataset described in Pan et al. (2017), which contains datasets for 282 languages, to evaluate
our methods and investigate the transferability of different linguistic families and branches in both
low- and high-resource scenarios. We choose 9 languages in our experiment, where Galician (gl),
West Frisian (fy), Ukrainian (uk) and Marathi (mr) are target languages, the corresponding source
languages are Spanish (es), Dutch (nl), Russian (ru) and Hindi (hi), and Arabic (ar) is also a source
language, which is from different linguistic family. Following the setting in Cotterell & Duh (2017),
we also simulate the low- and high-resource scenarios by creating 100 and 10,000 sentences split for
training target language datasets, respectively. Then we create 1,000 sentences split for validation
and test, respectively. For source languages, we create 10,000 sentence split for training only. For
high-resource scenario, we only conduct experiments on Galician (gl-high) and Ukrainian (uk-high).
The list of selected datasets are described in Table 2.

Table 2: List of Named Entity Recognition Datasets in Pan et al. (2017).
Language Resource Linguistic Family Linguistic Branch # Training Sentences # Dev Sentences # Test Sentences

Spanish (es) Source Indo-European Romance 10,000 - -
Galician (gl / gl-high) Target Indo-European Romance 100 / 10,000 1,000 1,000

Dutch (nl) Source Indo-European Germanic 10,000 - -
West Frisian (fy) Target Indo-European Germanic 100 1,000 1,000

Russian (ru) Source Indo-European Slavic 10,000 - -
Ukrainian (uk / uk-high) Target Indo-European Slavic 100 / 10,000 1,000 1,000

Hindi (hi) Source Indo-European Indo-Aryan 10,000 - -
Marathi (mr) Target Indo-European Indo-Aryan 100 1,000 1,000

Arabic (ar) Source Afro-Asiatic Semitic 10,000 - -
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4.2 EXPERIMENTAL SETUP

We use 50-dimensional publicly available pre-trained word embeddings for English, Spanish and
Dutch languages of CoNLL and WNUT datasets in our experiments, which are trained by word2vec
package2 on the corresponding Wikipedia articles (2017-12-20 dumps) (Lin et al., 2018). For the
named entity datasets selected from Pan et al. (2017), we use 300-dimensional pre-trained word
embeddings trained by fastText package3 on Wikipedia (Bojanowski et al., 2017), and the 30-
dimensional randomly initialized character embeddings are used for all the datasets. We set the
filter number as 20 for char-level CNN and the dimension of hidden states of the word-level LSTM
as 200 for both base model and DATNet-F. For DATNet-P, we set 100 for source, share, and target
LSTMs dimension, respectively. Parameters optimization is performed by Adam optimizer (Kingma
& Ba, 2014) with gradient clipping of 5.0 and learning rate decay strategy. We set the initial learn-
ing rate of β0 = 0.001 for all experiments. At each epoch t, learning rate βt is updated using
βt = β0/(1 + ρ× t), where ρ is decay rate with 0.05. To reduce over-fitting, we also apply Dropout
(Srivastava et al., 2014) to the embedding layer and the output of the LSTM layer, respectively.

4.3 COMPARISON WITH STATE-OF-THE-ART RESULTS

In this section, we compare our approach with state-of-the-art (SOTA) methods on CoNLL and
WNUT benchmark datasets. In the experiment, we exploit all the source data (i.e., CoNLL-2003
English NER) and target data to improve performance of target tasks. The averaged results with
standard deviation over 10 repetitive runs are summarized in Table 3, and we also report the best
results on each task for fair comparison with other SOTA methods. From results, we observe that
incorporating the additional resource is helpful to improve performance. DATNet-P model achieves
the highest F1 score on CoNLL-2002 Spanish and second F1 score on CoNLL-2002 Dutch dataset
while DATNet-F model beats others on WNUT-2016 and WNUT-2017 English Twitter datasets.
Different from other state-of-the-art models, DATNets do not use any addition features4.

Table 3: Comparison with State-of-the-art Results in CoNLL and WNUT datasets (F1-score).

Mode Methods Additional Features CoNLL Datasets WNUT Datasets
POS Gazetteers Orthographic Spanish Dutch WNUT-2016 WNUT-2017

Mono-language
/domain

Gillick et al. (2016) × × × 82.59 82.84 - -
Lample et al. (2016) ×

√
× 85.75 81.74 - -

Partalas et al. (2016)
√ √ √

- - 46.16 -
Limsopatham & Collier (2016) × ×

√
- - 52.41 -

Lin et al. (2017a)
√ √

× - - - 40.42

Our Base Model Best
Mean & Std × × × 85.53

85.35±0.15
85.55

85.24±0.21
44.96

44.37±0.31
35.20

34.67±0.34

Cross-language
/domain

Yang et al. (2017) ×
√

× 85.77 85.19 - -
Lin et al. (2018) ×

√
× 85.88 86.55 - -

Feng et al. (2018)
√

× × 86.42 88.39 - -
von Däniken & Cieliebak (2017) ×

√
× - - - 40.78

Aguilar et al. (2017)
√

×
√

- - - 41.86

DATNet-P Best
Mean & Std × × × 88.16

87.89±0.18
88.32

88.09±0.13
50.85

50.41±0.32
41.12

40.52±0.38

DATNet-F Best
Mean & Std × × × 87.04

86.79±0.20
87.77

87.52±0.19
53.43

53.03±0.24
42.83

42.32±0.32

Table 4 summarizes the results of our methods under different cross-language transfer settings as
well as the comparison with Cotterell & Duh (2017). In this experiment, we study the transferability
between languages not only from same linguistic family and branch, but also from different lin-
guistic families or branches. According to the results, DATNets outperform the transfer method of
Cotterell & Duh (2017) for both low- and high-resource scenarios within the same linguistic family
and branch (i.e., in-family in-branch) transfer case. We also observe that: 1) For the low-resource
scenario, transfer learning is significantly helpful for improving the performance of target datasets

2https://github.com/tmikolov/word2vec
3https://github.com/facebookresearch/fastText
4Although our model performance on CONLL-2002 Dutch NER dataset is only comparable to the SOTA

result, on the one hand, we do not use any addition features while the SOTA method did use; on the other, we
are not sure if the SOTA method has incorporated the validation set into training. And if we merge training and
validation sets, we can push the F1 score to 88.71, which outperforms the SOTA method.
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within both same and different linguistic family or branch (i.e., in/cross-family in/cross-branch)
transfer cases, while the improvements are more prominent under the in-family in-branch case. 2)
For the high-resource scenario, say, when the target language data is sufficient, the improvements of
transfer learning are not very distinct compared with that for low-resource scenario under in-family
in-branch case. We also find that there is no effect by transferring knowledge from Arabic to Gali-
cian and Ukrainian. We suspect that it is caused by the great linguistic differences between source
and target languages, since, for example, Arabic and Galician are from totally different linguistic
families.

Table 4: Results of Varying Cross-language Transfer Settings in Pan et al. (2017) Datasets (F1-score).
Language Transferring Strategy Cotterell & Duh (2017) Our Methods

Source Target Base Model Transfer Base Model DATNet-P DATNet-F
nl fy In-Family In-Branch 58.43 72.12 57.47 75.08 76.05
hi fy In-Family Cross-Branch - - 57.47 69.25 68.44
ar fy Cross-Family Cross-Branch - - 57.47 67.89 66.05
hi mr In-Family In-Branch 39.02 60.92 43.55 68.55 64.87
nl mr In-Family Cross-Branch - - 43.55 63.83 60.50
ar mr Cross-Family Cross-Branch - - 43.55 63.28 59.76
es gl In-Family In-Branch 49.19 76.40 49.94 79.60 86.01
hi gl In-Family Cross-Branch - - 49.94 60.57 61.68
ar gl Cross-Family Cross-Branch - - 49.94 59.18 60.43
es gl-high In-Family In-Branch 89.42 89.46 92.78 93.14 93.02
ar gl-high Cross-Family Cross-Branch - - 92.78 92.63 92.21
ru uk In-Family In-Branch 60.65 76.74 61.48 79.02 80.76
hi uk In-Family Cross-Branch - - 61.48 72.73 73.84
ar uk Cross-Family Cross-Branch - - 61.48 71.55 72.24
ru uk-high In-Family In-Branch 87.39 87.42 93.29 93.62 93.51
ar uk-high Cross-Family Cross-Branch - - 93.29 92.83 92.42

* Base model means the model is trained by using target language dataset only.
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Figure 2: Comparison with Different Target Data Ratio, where AT stands for adversarial training, F(P)-
Transfer denotes the DATNet-F(P) without AT.

4.4 TRANSFER LEARNING PERFORMANCE

In this section, we investigate on improvements with transfer learning under multiple low-resource
settings with partial target data. To simulate a low-resource setting, we randomly select subsets
of target data with varying data ratio at 0.05, 0.1, 0.2, 0.4, 0.6, and 1.0. For example, 20,748
training tokens are sampled from the training set under a data ratio of r = 0.1 for the dataset
CoNLL-2002 Spanish NER (Cf. Table 1). The results for cross-language and cross-domain transfer
are shown in Fig. 2(a) and 2(b), respectively, where we compare the results with each part of
DATNet under various data ratios. From those figures, we have the following observations: 1)
both adversarial training and adversarial discriminator in DATNet consistently contribute to the
performance improvement; 2) the transfer learning component in the DATNet consistently improve
over the base model results and the improvement margin is more substantial when the target data
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Table 5: Experiments on Extremely Low Resource (F1-score).
Tasks CoNLL-2002 Spanish NER WNUT-2016 Twitter NER
# Target train sentences 10 50 100 200 500 1000 10 50 100 200 500 1000
Base 21.53 42.18 48.35 63.66 68.83 76.69 3.80 14.07 17.99 26.20 31.78 36.99
+ AT 19.23 41.01 50.46 64.83 70.85 77.91 4.34 16.87 18.43 26.32 35.68 41.69
+ P-Transfer 29.78 61.09 64.78 66.54 72.94 78.49 7.71 16.17 20.43 29.20 34.90 41.20
+ F-Transfer 39.72 63.00 63.36 66.39 72.88 78.04 15.26 20.04 26.60 32.22 38.35 44.81
DATNet-P 39.52 62.57 64.05 68.95 75.19 79.46 9.94 17.09 25.39 30.71 36.05 42.30
DATNet-F 44.52 63.89 66.67 68.35 74.24 78.56 17.14 22.59 28.41 32.48 39.20 45.25

ratio is lower. For example, when the data ratio is 0.05, DATNet-P model outperforms the base
model by more than 4% absolutely in F1-score on Spanish NER and DATNet-F model improves
around 13% absolutely in F1-score compared to base model on WNUT-2016 NER.

In the second experiment, we further investigate DATNet on the extremely low resource cases, e.g.,
the number of training target sentences is 10, 50, 100, 200, 500 and 1,000. The setting is quite chal-
lenging and fewer previous works have studied before. The results are summarized in Table 5. We
have two interesting observations 5: 1) DATNet-F outperforms DATNet-P on cross-language transfer
when the target resource is extremely low, however, this situation is reversed when the target dataset
size is large enough (here for this specific dataset, the threshold is 100 sentences); 2) DATNet-F
is always superior to DATNet-P on cross-domain transfer. For the first observation, it is because
DATNet-F with more shared hidden units is more efficient to transfer knowledge than DATNet-P
when data size is extremely small. For the second observation, because cross-domain transfer are in
the same language, more knowledge is common between the source and target domains, requiring
more shared hidden features to carry with these knowledge compared to cross-language transfer.
Therefore, for cross-language transfer with an extremely low resource and cross-domain transfer,
we suggest using DATNet-F model to achieve better performance. As for cross-language transfer
with relatively more training data, DATNet-P model is preferred.
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Figure 3: The visualization of extracted features from shared bidirectional-LSTM layer. The left, middle,
and right figures show the results when no Adversarial Discriminator (AD), AD, and GRAD is performed,
respectively. Red points correspond to the source CoNLL-2003 English examples, and blue points correspond
to the target CoNLL-2002 Spanish examples.

4.5 ABLATION STUDY OF DATNET

In the proposed DATNet, both GRAD and AT play important roles in low resource NER. In
this experiment, we further investigate how GRAD and AT help transfer knowledge across lan-
guage/domain. In the first experiment6, we used t-SNE (Maaten & Hinton, 2008) to visualize the
feature distribution of BiLSTM outputs without AD, with normal AD (GRAD without considering
data imbalance), and with the proposed GRAD in Figure 3. From this figure, we can see that the
GRAD in DATNet makes the distribution of extracted features from the source and target datasets

5 For other tasks/languages we have the similar observation, we only report CoNLL-2002 Spanish and
WNUT-2016 Twitter results due to the page limit.

6We used data ratio ρ = 0.5 for training model and randomly selected 10k testing data for visualization.
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much more similar by considering the data imbalance, which indicates that the outputs of BiLSTM
are resource-invariant.

Table 6: Quantitative Performance Comparison between Models with Different Components.
CoNLL-2002 Spanish NER WNUT-2016 Twitter NER

Model F1-score Model F1-score Model F1-score Model F1-score
Base 85.35 +AT 86.12 Base 44.37 +AT 47.41
+P-T (no AD) 86.15 +AT +P-T (no AD) 86.90 +P-T (no AD) 47.66 +AT +P-T (no AD) 48.44
+F-T (no AD) 85.46 +AT +F-T (no AD) 86.17 +F-T (no AD) 49.79 +AT +F-T (no AD) 50.93
+P-T (AD) 86.32 +AT +P-T (AD) 87.19 +P-T (AD) 48.14 +AT +P-T (AD) 49.41
+F-T (AD) 85.58 +AT +F-T (AD) 86.38 +F-T (AD) 50.48 +AT +F-T (AD) 51.84

+P-T (GRAD) 86.93 +AT +P-T (GRAD)
(DATNet-P) 88.16 +P-T (GRAD) 48.91 +AT +P-T (GRAD)

(DATNet-P) 50.85

+F-T (GRAD) 85.91 +AT +F-T (GRAD)
(DATNet-F) 87.04 +F-T (GRAD) 51.31 +AT +F-T (GRAD)

(DATNet-F) 53.43

* AT: Adversarial Training; P-T: P-Transfer; F-T: F-Transfer; AD: Adversarial Discriminator; GRAD: Generalized
Resource-Adversarial Discriminator.

To better understand the working mechanism, Table 6 further reports the quantitative performance
comparison between models with different components. We observe that GRAD shows the stable
superiority over the normal AD regardless of other components. There are no always winner be-
tween DATNet-P and DATNet-F on different settings. DATNet-P architecture is more suitable to
cross-language transfer while DATNet-F is more suitable to cross-domain transfer.

Table 7: Analysis of Maximum Perturbation εwT in AT with Varying Data Ratio ρ (F1-score).
εwT

1.0 3.0 5.0 7.0 9.0

Ratio CoNLL-2002 Spanish NER
ρ = 0.1 75.90 76.23 77.38 77.77 78.13
ρ = 0.2 81.54 81.65 81.32 81.81 81.68
ρ = 0.4 83.62 83.83 83.43 83.99 83.40
ρ = 0.6 84.44 84.47 84.72 84.04 84.05

From the previous results, we know that AT helps enhance the overall performance by adding per-
turbations to inputs with the limit of ε = 5, i.e., ‖η‖2 ≤ 5. In this experiment, we further investigate
how target perturbation εwT

with fixed source perturbation εwS
= 5 in AT affects knowledge trans-

fer and the results on Spanish NER are summarized in Table 7. The results generally indicate that
less training data require a larger ε to prevent over-fitting, which further validates the necessity of
AT in the case of low resource data.

Table 8: Analysis of Discriminator Weight α in GRAD with Varying Data Ratio ρ (F1-score).
α 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Ratio CoNLL-2002 Spanish NER
ρ = 0.1 78.37 78.63 78.70 78.32 77.96 77.92 77.88 77.78 77.85 77.90 77.65 77.57 77.38 77.49 77.29
ρ = 0.2 80.99 81.71 82.18 81.57 81.53 81.55 81.44 81.25 81.32 81.16 81.02 81.16 80.63 80.79 80.54
ρ = 0.4 83.76 83.73 84.18 84.48 84.26 84.12 83.54 83.40 83.52 84.18 83.42 83.47 83.28 83.33 83.19
ρ = 0.6 85.18 85.24 85.85 85.68 85.84 86.10 85.71 85.74 85.42 85.60 85.20 85.40 85.26 85.24 84.98

Finally, we analyze the discriminator weight α in GRAD and results are summarized in Table 8.
From the results, it is interesting to find that α is directly proportional to the data ratio ρ, basically,
which means that more target training data requires larger α (i.e., smaller 1 − α to reduce training
emphasis on the target domain) to achieve better performance.

5 CONCLUSION

In this paper we develop a transfer learning model DATNet for low-resource NER, which aims at
addressing two problems remained in existing work, namely representation difference and resource
data imbalance. We introduce two variants of DATNet, DATNet-F and DATNet-P, which can be
chosen for use according to the cross-language/domain user case and the target dataset size. To
improve model generalization, we propose dual adversarial learning strategies, i.e., AT and GRAD.
Extensive experiments show the superiority of DATNet over existing models and it achieves new
state-of-the-art performance on CoNLL NER and WNUT NER benchmark datasets.
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Berbı́s. Named entity recognition: Fallacies, challenges and opportunities. Computer Standards
& Interfaces, (5):482–489, 2013.

Stephen Mayhew, Chen-Tse Tsai, and Dan Roth. Cheap translation for cross-lingual named entity
recognition. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 2536–2545. Association for Computational Linguistics, 2017.

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-
supervised text classification. In ICLR, 2017.

Jian Ni and Radu Florian. Improving multilingual named entity recognition with wikipedia entity
type mapping. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 1275–1284, 2016.

12



Under review as a conference paper at ICLR 2019

Jian Ni, Georgiana Dinu, and Radu Florian. Weakly supervised cross-lingual named entity recogni-
tion via effective annotation and representation projection. In ACL, pp. 1470–1480, 2017.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. Cross-
lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946–1958. As-
sociation for Computational Linguistics, 2017.

Ioannis Partalas, Cédric Lopez, Nadia Derbas, and Ruslan Kalitvianski. Learning to search for rec-
ognizing named entities in twitter. In Proceedings of the 2nd Workshop on Noisy User-generated
Text (WNUT), pp. 171–177, 2016.

Alexandre Passos, Vineet Kumar, and Andrew McCallum. Lexicon infused phrase embeddings for
named entity resolution. arXiv preprint arXiv:1404.5367, 2014.

Chen Pin-Yu, Sharma Yash, Zhang Huan, Yi Jinfeng, and Cho-Jui Hsieh. Ead: Elastic-net attacks
to deep neural networks via adversarial examples. In AAAI, 2018.

Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity recognition.
In Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pp.
147–155, 2009.

Marek Rei. Semi-supervised multitask learning for sequence labeling. In ACL, pp. 2121–2130,
2017.

Marek Rei and Anders Søgaard. Zero-shot sequence labeling: Transferring knowledge from sen-
tences to tokens. In NAACL HLT, pp. 293–302, 2018.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In EMNLP, pp. 338–348, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, pp. 1929–1958,
2014.

Christian Szegedy, Wojciech Zaremba, Dumitru Erhan Ian Goodfellow Ilya Sutskever, Joan Bruna,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Pius von Däniken and Mark Cieliebak. Transfer learning and sentence level features for named
entity recognition on tweets. In Proceedings of the 3rd Workshop on Noisy User-generated Text,
pp. 166–171, 2017.

Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. Multi-task cross-lingual sequence tag-
ging from scratch. CoRR, abs/1603.06270, 2016.

Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. Transfer learning for sequence tagging
with hierarchical recurrent networks. In ICLR, 2017.

David Yarowsky, Grace Ngai, and Richard Wicentowski. Inducing multilingual text analysis tools
via robust projection across aligned corpora. In Proceedings of the first international conference
on Human language technology research, pp. 1–8, 2001.

Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev. Robust multilingual part-of-speech tagging
via adversarial training. In NAACL HLT, pp. 976–986, 2018.

Daniel et al. Zeman. Conll 2017 shared task: Multilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pp. 1–19, 2017.

Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish Vaswani, Heng Ji, Kevin Knight, and Daniel
Marcu. Name tagging for low-resource incident languages based on expectation-driven learning.
In NAACL HLT, pp. 249–259, 2016.

Andrej Zukov Gregoric, Yoram Bachrach, and Sam Coope. Named entity recognition with parallel
recurrent neural networks. In ACL, pp. 69–74, 2018.

13


	Introduction
	Related Work
	Dual Adversarial Transfer Network (DATNet)
	Basic Architecture
	Dual Adversarial Transfer Architecture
	Character-level Encoder
	Word-level Encoder
	Generalized Resource-Adversarial Discriminator
	Label Decoder
	Adversarial Training


	Experiments
	Datasets
	Experimental Setup
	Comparison with State-of-The-Art Results
	Transfer Learning Performance
	Ablation Study of DATNet

	Conclusion

