
Workshop track - ICLR 2018

DEEP CONVOLUTIONAL MALWARE CLASSIFIERS CAN
LEARN FROM RAW EXECUTABLES AND LABELS ONLY

Marek Krčál
Czech Academy of Sciences
krcal@cs.cas.cz

Ondřej Švec∗, Otakar Jašek
Avast Interns
{ond.svec,jasek.ota}@gmail.com

Martin Bálek
Avast
balek@avast.com

ABSTRACT

We propose and evaluate a simple convolutional deep neural network architecture
detecting malicious Portable Executables (Windows executable files) by learning
from their raw sequences of bytes and labels only, that is, without any domain-
specific feature extraction nor preprocessing. On a dataset of 20 million unpacked
half megabyte Portable Executables, such end-to-end approach achieves perfor-
mance almost on par with the traditional machine learning pipeline based on hand-
crafted features of Avast.

1 INTRODUCTION

One of the cornerstones of modern deep networks is the approach of end-to-end learning, or equiva-
lently, automatic feature extraction where only the labels and raw data are presented to the network
with no hand-crafted features provided and close to no preprocessing.

The end-to-end approach has not yet gained the dominance in the field of malware detection, which
is a field of growing importance and market value driven by ever growing malicious software (mal-
ware) development.1 Despite several interesting results we mention below, we are aware of no
published attempts to train end-to-end neural network classifiers on an industrial-sized dataset of
clean and malicious files. In this paper, we present simple but successful convolutional networks
trained and evaluated on 20 million Windows executable files (so-called Portable Executables) rep-
resented as plain sequences of bytes. This work explores the limits to which a standard (baseline)
architecture can get: embedding layer followed by four convolutions with strides and a max pooling
in the middle, global average pooling and four fully connected layers. See Section 2 for details and
the additional discussion of our design choices that tuned the architecture for the regime of very
small false positive rates. Our approach is the end-to-end counterpart of so-called static malware
analysis: the network is given mere sequence of bytes that the executable consists of. Nonethe-
less, we expect that similar architectures would give good results on the end-to-end variant of the
dynamic malware analysis, where the network would be given the machine code or other low level
representation to which an emulator or a sandbox unwraps the portable executable. A result in that
direction by Huang and Stokes (2016) combines some general feature extraction from a sandboxed
emulation and intensive representation learning.

Portable Executables—unconventional data type for deep learning. The Portable Executable
is a complex format with only local sequentiality (1-D structure) and with the meaning of its byte
symbols very diverse and context dependent—e.g., in the context of header, in sections of various
types, resources or relocation tables. Hence it is natural to ask to which extent the well established
deep learning architectures can learn from such raw input. In addition, we have chosen the Portable
Executables as they are by far the most severe channel for security threats on a PC. We believe that
large scale experiments on such a relevant and under-investigated data domain could be of interest
to the whole community of deep learning research.

The dataset. Out of the Avast’s repository of PE files we have chosen all those collected during re-
cent 16 months of size between 12 and 512 kilobytes excluding files with some obfuscation methods

∗Currently in Google.
1Business Insider estimated that $386 billion will be spent on securing PCs—see Insider (2016)—and mal-

ware detection is a major segment in there.

1

Workshop track - ICLR 2018

such as compression or encryption detected.2 The train, validation and test sets consists of the first
12 months, the next 2 months and the last 2 months, respectively, so that we measure how the model
generalizes into the future. For the sake of simplicity, we use binary labels clean and malware only
with roughly balanced occurrence throughout our dataset.

A great obstacle hindering the public research on learning malware classifiers (and deep network
classifiers in particular) is the lack of an industrial-sized publicly available datasets. This causes
fragmentation of the research where different results are mutually directly incomparable, if repro-
ducible at all. It is our longer-term vision to make available some of our data in a form and volume
that would be appealing to the deep learning community.

2 ARCHITECTURES

Embedding

192× (N/

4096︷ ︸︸ ︷
4 · 4 · 4 · 8 · 8)

Fully Connected

Fully Connected

Fully Connected

Fixed Embedding

Conv 32 (stride 4)

Conv 32 (stride 4)

Max pooling 4

Conv 16 (stride 8)

Conv 16 (stride 8)

Global Average

8×N

48

96

96

128

192

192

160

128

2
Fully Connected

Embedding

Fully Connected

Fully Connected

Fully Connected

Global Average
192

192

160

128

2
Fully Connected

Fixed Embedding

S
E
L
U

R
eL

U

Figure 1: Our convnet.

The scheme of our network is visualized in Figure 1; several re-
marks follow.

Fixed embedding. Each byte of the input sequence is first embed-
ded to an 8-dimensional vector of the form (±1/16, . . . ,±1/16)
according to its binary representation where constant 1/16 was
found empirically. We observed no performance difference between
learnable and non-learnable embeddings.

Convolutions with stride—reducing the computational load. To
mitigate the computational burden, we apply experimentally tuned
strides of 4 and 8 at the first and the second block of convolutions,
respectively. We have verified that using strides of 3,5,7 and 9 (non-
powers of two) in the respective order causes relative drop roughly
by 6–10 percents in all the metrics we have measured.3

Details on training. We initialize the convolutional layers by ran-
dom values drawn from the uniform distribution according to Glo-
rot and Bengio (2010) and the fully connected layers according
to Klambauer et al. (2017). The training loss is the usual cross-
entropy with every clean sample contributing to the loss 7 times as much as every malicious sample.
We group the executables into batches of 128 similarly sized files padded by zeros at the end (right
padding). The network is trained by the Adam optimizer (Kingma and Ba (2014)) with the default
parameters. According to the scores on the validation set, we stop the training shortly after the third
epoch.

EmbeddingFixed Embedding
8×N

Conv 512 Conv 512

×
EmbeddingGlobal Max

128× (N/512)

Fully Connected
128

2
Fully Connected

Figure 2: MalConv 1.1. Both
kernel size and stride is 512.

Choices specifically driven by the zero false positives target.
Malware detectors are tuned for low false positive rates so that they
do not overwhelm users by false malware detections under the real
distribution with the vast dominance of clean files. We formalize
this target score as the area under the Receiver Operator Curve re-
stricted to the interval [0, 0.001] of the false positive rate. For con-
venience the area is reported in percentages of the maximal possi-
ble such area—0.001. We will refer to such score as the restricted
AUC. Below we list possible changes in our architecture and the
corresponding estimated drops in the restricted AUC score. On the
other hand, each of the variations improves cross-entropy and/or
accuracy:

1. Global Max instead of Global Average: -20% relative
drop.

2. Clean and malware files with equal weight: -10% relative
drop.

2Our pipeline could be extended to cover majority of the obfuscated files by using unpackers.
3Strides and pooling lengths is the only hyper parameter of our network consciously tailored to the executa-

bles: all compilers (e.g., Microsoft Visual C++) align the beginnings of so-called sections within the executable
to multiples of powers of two (e.g., 4096).

2

Workshop track - ICLR 2018

Table 1: Reported scores based on 10 (the third row) or 4 independent runs (the rest)

classifier restricted AUC cross-entropy accuracy
MalConv 66.1%± 0.9 0.204± 0.028 94.6%± 0.6

Our convolutional network 70.4%± 0.5 0.165± 0.020 96.0%± 0.6
FNN on handcrafted features 73.2%± 2.3 0.151± 0.015 96.2%± 0.3

FNN on enriched features 76.1%± 1.0 0.114± 0.006 97.1%± 0.2

3. ReLU instead of SELU in the fully connected layers: -4%
relative drop.

Related work—baseline. Raff et al. (2017) have recently developed a convolutional architecture
called MalConv for exactly the same task but using a dataset order-of-magnitude smaller than ours.
The presented architecture has been developed completely independently and we found no improve-
ment by employing elements from MalConv. On the contrary, we have slightly increased the perfor-
mance of MalConv on our dataset by using power-of-two strides, SELU activation and removing the
DeCov regularization, see Figure 2. Nonetheless, the MalConv’s performance is very good given
the limited dataset used for the development, see Table 1.

3 EVALUATION

Learned versus handcrafted representations. We compared the learned convolutional features
against a collection of in-house 538 static features from a machine learning system aimed at rapid
feature prototyping by the malware analysts at Avast. To this end we trained and evaluated feedfor-
ward network (FNN) of the shape 538–512–256–192–168–128–2 with SELU activation and wight
decay of 3 ·10−7 on the same collection of files. Finally, to measure how much the learned represen-
tation is complementary to the hand-engineered one, we ran a slightly wider feedforward network
on the enriched feature vector obtained by adding the 192 features output by the average operation
of our convnet. For the results see Table 1.

The best results of the ensemble approach demonstrate that learning from raw executables serves as
a valuable new feature engineering process. Remarkably, learning jointly from raw executables and
the hand-engineered features might give even better results.

Localization with grad-CAM. We use the gradient-weighted class activation mapping (Grad-
CAM) (Selvaraju et al. (2017)) to find the blocks within files that contribute the most to the malware
prediction of our convolutional network. We let the malware analysts to judge the relevance of the
highlighted blocks on several selected executables. Not always, but very often they found some-
thing suspicious there: header of a Portable Executable embedded within a Portable Executable or
a “VERSION INFO” segment with a fake vendor and software name in a Xindl virus or list of very
unusual imported API functions in the case of the ransomware Locky.

Conclusion. On the one hand, the end-to-end learning from raw executables and labels only is still
slightly behind the reference ML pipeline even on a dataset chosen favourably for the convolutional
networks. On the other hand, judging from the long-lasting improvement rate of deep learning
models in the fields like computer vision, machine translation or speech recognition, we forecast
significant performance gains by new architectures and also by learning from larger and more care-
fully crafted datasets. There is an orthogonal production-aimed direction of inserting some domain
knowledge while leaving room for intensive representation learning: using malware families as re-
fined labels (Huang and Stokes (2016)), enriching the byte sequence by other signals such as entropy
rate (Saxe and Berlin (2015)) or tailoring the architecture more specifically to the format of Portable
Executables. A speedup of training would be an important catalyst for further improvements and
production applicability: here innovations like depth-wise separable convolutions by Chollet (2017)
or sparsely gated mixture of experts by Shazeer et al. (2017) might help. Last but not least, we
believe that deep learning can eventually benefit its human teachers by observing and localizing
previously unseen patterns in malware and clean files.

3

Workshop track - ICLR 2018

REFERENCES

Bussiness Insider. http://www.businessinsider.com/cybersecurity-report-
threats-and-opportunities-2016-3. 2016.

Wenyi Huang and Jack W. Stokes. Mtnet: A multi-task neural network for dynamic malware
classification. In Proceedings of the 13th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016, pages 399–418, New
York, NY, USA, 2016. Springer-Verlag New York, Inc. ISBN 978-3-319-40666-4. doi: 10.1007/
978-3-319-40667-1 20. URL http://dx.doi.org/10.1007/978-3-319-40667-1_
20.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. CoRR, abs/1706.02515, 2017. URL http://dblp.uni-trier.de/db/
journals/corr/corr1706.html#KlambauerUMH17.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://dblp.uni-trier.de/db/journals/corr/
corr1412.html#KingmaB14.

Edward Raff, J. Barker, Jared Sylvester, Robert Brandon, Brian Catanzaro, and Charles Nicholas.
Malware Detection by Eating a Whole EXE. ArXiv e-prints, October 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 618–626, 2017.

Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection using two dimen-
sional binary program features. In Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on, pages 11–20. IEEE, 2015.

François Chollet. Xception: Deep learning with depthwise separable convolutions. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807, 2017.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

4

http://dx.doi.org/10.1007/978-3-319-40667-1_20
http://dx.doi.org/10.1007/978-3-319-40667-1_20
http://dblp.uni-trier.de/db/journals/corr/corr1706.html#KlambauerUMH17
http://dblp.uni-trier.de/db/journals/corr/corr1706.html#KlambauerUMH17
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14

	Introduction
	Architectures
	Evaluation

