Disentangling Motion, Foreground and Background Features in Videos

Xunyu Lin*
Beihang University
Beijing, China

xunyulin2017Q@outlook.com

Jordi Torres

Barcelona Supercomputing Center

Barcelona, Catalonia/Spain

jordi.torres@bsc.es

Abstract

This paper instroduces an unsupervised framework to
extract semantically rich features for video representation.
Inspired by how the human visual system groups objects
based on motion cues, we propose a deep convolutional
neural network that disentangles motion, foreground and
background information. The proposed architecture con-
sists of a 3D convolutional feature encoder for blocks of 16
frames, which is trained for reconstruction tasks over the
first and last frames of the sequence. The model is trained
with a fraction of videos from the UCF-101 dataset taking as
ground truth the bounding boxes around the activity regions.
Qualitative results indicate that the network can successfully
update the foreground appearance based on pure-motion
features. The benefits of these learned features are shown
in a discriminative classification task when compared with
a random initialization of the network weights, providing a
gain of accuracy above the 10%.

1. Introduction

Unsupervised learning has long been an intriguing field in
artificial intelligence. Human and animal learning is largely
unsupervised: we discover the structure of the world by
observing it, not by being told the name of every object,
which is the typical method in supervised learning [12]. A
system capable of predicting what is going to happen by just
watching large collections of unlabeled video data needs to
build an internal representation of the world and its dynamics
[3]. When considering the vast amount of unlabeled data
which is generated every day in contrast to its annotated
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counterpart, unsupervised learning becomes one of the key
challenges to solve in the road towards general artificial
intelligence.

Based on how a human would provide a high level sum-
mary of a video, we hypothesize that there are three key
components to understand such content, namely foreground,
motion and background. These three elements would tell us,
respectively, what are the main objects in the video, what are
the doing and where is it happening. We propose a frame-
work that explicitly disentangles these three components in
order to build strong features for action recognition, where
the supervision signals can be generated without requiring
from expensive and time consuming human annotations.
The proposal is inspired in how infants who have no prior
visual knowledge tend to group things that move as con-
nected wholes and also move separately from one another
[1]. Based on this intuition, we can build a similar unsuper-
vised pipeline to segment foreground and background with
global motion, i.e. the rough moving directions of objects.
Such segmented foregrounds across the video can be used
to model both the global motion (e.g. transition or stretch)
and local motion (i.e. transformation of detailed appearance)
from a pair of foregrounds at different time steps. Since
background motion is mostly given by camera movements,
we restrict the use of motion to the foreground and rely on
appearance to model the former.

The contributions of this work are two-fold: (1) disentan-
gling motion, foreground and background features in videos
by human alike motion aware mechanism and (2) learning
strong video features that improve the performance of action
recognition task.

2. Related Work

Leveraging large collections of unlabeled videos has
proven beneficial for unsupervised training of image models



thanks to the implicit properties they exhibit in the temporal
domain, e.g. visual similarity between patches in consec-
utive frames [10] and temporal coherence and order [4].
Since learning to predict future frames forces the model to
construct an internal representation of the world dynamics,
several works have addressed such task by predicting global
features of future frames with Recurrent Neural Networks
(RNN) [7] or pixel level predictions by means of multi-scale
Convolutional Neural Networks (CNN) trained with an ad-
versarial loss [3]. The key role played by motion has been
exploited for future frame prediction tasks by explicitly de-
composing content and motion [8] and for unsupervised
training of video-level models [2]. Similarly in spirit, sepa-
rate foreground and background streams have been found to
increase the quality of generative video models [9].

Techniques exploiting explicit foreground and back-
ground segmentations in video generally require from expen-
sive annotation methods, limiting their application to labeled
data. However, the findings by Pathak et al. [5] show how
models trained on noisy annotations learn to generalize and
perform well when finetuned for other tasks. Such noisy
annotations can be generated by unsupervised methods, thus
alleviating the cost of annotating data for the target task. In
this work we study our proposed method by using manual
annotations, whereas evaluating the performance drop when
replacing such annotations with segmentations generated in
an unsupervised manner remains as future work.

3. Methodology

We adopt an autoencoder-styled architecture to learn fea-
tures in an unsupervised manner. The encoder maps input
clips to feature tensors by applying a series of 3D convolu-
tions and max-pooling operations. Unlike traditional autoen-
coder architectures, the bottleneck features are partitioned
into three splits which are then used as input for three differ-
ent reconstruction tasks, as depicted in Figure 1.

Disentangling of foreground and background: de-
pending on the nature of the training data, reconstruction of
frames may become dominated either by the foreground or
background. We explicitly split the reconstruction task to
guarantee that none of the parts dominates over the other. Par-
titioned foreground and background features will be passed
into two different decoders for reconstruction. While seg-
mentation masks are often obtained by manual labeling, it
is worth noting they can be obtained without supervision
as well, e.g. by using methods based on motion perceptual
grouping such as uNLC [5]. The latter approach has proven
beneficial for unsupervised pre-training of CNNs [5].

Disentangling of foreground motion: leveraging mo-
tion information can provide a boost in action recognition
performance when paired with appearance models [6]. We
encourage the model to learn motion-related representations
by solving a predictive learning task where the foreground in

the last frame needs to be reconstructed from the foreground
in the first frame. Given a pair of foregrounds at timesteps
t; and t2, namely (f:,, fi,), we aim to estimate a function
M from motion features my, _;, throughout ¢; and ¢2 that
maps f;, to fi, in deep feature space G-

G(ft2):M(G(ft1>7mt1~>t2) (1)

Throughout this work, the space of encoded features is
used for G and M is parametrized by a deterministic version
of cross convolution [11]. The foreground decoder weights
are shared among all foreground reconstruction task. Gradi-
ents coming from the reconstruction of f;, are blocked from
backpropagating through G( f;,) during training to prevent
G(ft,) from storing information about f;,.

Frame selection: assuming that the background seman-
tics stay close throughout the short clips, only the back-
ground in the first frame is reconstructed. First and last
frames are chosen to perform foreground reconstruction,
since they represent the most challenging pair in the clip.

Loss function: the model is optimized to minimize the
L1 loss between the original frames and their reconstruction:

Lrec:Lffg+Lfbg+Llf9 (2)

where Lyrg, Lypg and Ly, represent the reconstruction
loss for the first foreground, first background and last fore-
ground, respectively. During preliminary experiments, we
observed that the reconstruction of first foreground always
outperformed the reconstruction of the last one by a large
margin, given the increased difficulty of the latter task. In
order to get finer reconstruction of the last foreground, we
introduce an L2 1oss L feq on G(ft2). The pseudo ground
truth for this task is obtained by getting first foreground fea-
tures from the encoder fed with the temporally reversed clip.
The final loss to optimize is the following:

Ltotal = Lrec + Lfeat (3)

4. Experimental setup

Please note again we are showing results trained with
ground truth masks to check the feasibility of our proposal
and the pure unsupervised framework generating masks from
ulNLC [5] remains as future work.

Dataset: there are 24 classes out of 101 in UCF-101 with
localization annotations. Following [5], we first evaluate the
proposed framework with supervised annotations and use the
bounding boxes in the subset of UCF-101 for such purpose.
Evaluating the proposal in weak annotations collected by
means of unsupervised methods remains as future work. We
follow the original splits of training and test set and also
split 10% videos out of the training set as validation set in
order to perform early stopping and prevent the network
from overfitting the training data.
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Figure 1: System architecture. Please note that in this work, the masks used to generate ground truth are from manual

annotations while uNLC will be utilized in our future work.

Training details: videos are split into clips of 16 frames
each. These clips are then resized to 128 x 128 and their pixel
values are scaled and shift to [—1, 1]. The clips are randomly
temporally or horizontally flipped for data augmentation.
Weight decay with rate of 1073 is added as regularization.
The network is trained for 125 epochs with Adam optimizer
and a learning rate of 10~ on batches of 40 clips.

5. Results

We tested our model on test set for reconstruction task.
For better demonstrating the efficiency of our proposed pre-
training pipeline, we also trained the network to do action
recognition with pretrained features.

Reconstruction task: reconstruction results on test set
are shown in Figure 2. From these results, we can clearly
see that the network already can predict similar foreground
segmentation as ground truth. However, the image recon-
structions are still blurry. We argue that this is due to the
properties of the L1 loss we are adopting [3]. One interesting
fact is that the network has learned to generalize foreground
to some other moving objects in the scene even though they
are not included in the annotations. For example, the result
shown in the top-right corner: instead of only segmenting the
person, the dog walking beside the person is also included.
This fact suggests that the network has successfully learned
to identify foreground from motion cues.

Besides from foreground and background features, these
results also demonstrate a good extraction of motion features.
The learned motion features contain both global motions,
e.g. transition of foreground, and local motions, e.g. change
of human pose. In the bottom-center result, the generated
kernels from motion feature successfully shift the object
from right to the left and change its gesture.

Action recognition: a good pretraining pipeline should
show better performance on some typical discriminative
tasks than random initialization, especially when training
data is scarce [4, 2, 5, 9, 10]. We also conducted comparative
experiments on the task of action recognition. By discarding
the decoders in our framework and training a linear softmax
layer on top of the disentangled features, we can obtain a sim-
ple network for action recognition. For the first experiment,
we first pretrain our encoder on the subset of UCF-101 with
the settings discussed above and then fine-tune the whole
action recognition network with added softmax layer on
the same dataset. As a baseline, we trained another action
recognition network with all weights initialized randomly.

During training, we observed that the pretrained model
reached 90% accuracy on training set immediately after
one epoch while the randomly initialized network took 130
epochs to achieve it. Both of the network reached around
96% accuracy in later training phase and encountered severe
overfitting problems. The accuracy of different methods on
the validation set during training time is shown in Figure
3. The best accuracy obtained on the test set with the pre-
trained model is 62.5%, while it drops to 52.2% when using
a random initialization as depicted in Table 1. We observe a
margin of more than 10% on accuracy between our proposed
method and random initialization on both validation set and
test set. This further demonstrates that with our proposal, the
network can learn better generalized features. These results
are specially promising given the reduced size of the dataset
used during pretraining, which is just a fraction of UCF-101.
While this demonstrates the efficiency of the approach, using
a larger dataset for pretraining should provide additional
gains and better generalization capabilities.



Figure 2: Reconstruction results on the test set. For each example, the top row shows the reconstruction while the bottom one
contains the ground truth. Each column shows the segmentation of foreground in first frame, background in first frame and

foreground in last frame, respectively.

Method Accuracy
Random initialization 52.2%
Pretrained (ours) 62.5%

Table 1: Test action recognition accuracy of different meth-
ods on the subset of UCF-101.
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Figure 3: Action recognition results on validation set. This
figure shows the accuracy of each method on validation set
during the training time.

6. Conclusions

This work has proposed a novel unsupervised framework
to disentangle motion, foreground and background features
in videos. Our method mostly exploits motion in videos and

is inspired by human perceptual grouping with motion cues.
Our experiments using ground truth boxes render convincing
results on both frame reconstruction and action recognition,
showing the potential of the proposed architecture.

However, multiple aspects still need to be explored in our
work. As our plans for the future work, we decide to (1)
introduce unsupervised learning for foreground segmenta-
tion as well, as proposed in uNLC [5]; (2) train with a larger
amount of unlabeled data; (3) introduce adversarial loss to
improve the sharpness of the reconstructed frames [3]; and
(4) fill the gap of absent motion features between the first
frame and the last frame by reconstructing any random frame
in the clip.
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