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ABSTRACT

Deep neural networks have been shown to be vulnerable to adversarial examples:
very small perturbations of the input having a dramatic impact on the predictions.
A wealth of adversarial attacks and distance metrics to quantify the similarity
between natural and adversarial images have been proposed, recently enlarging the
scope of adversarial examples with geometric transformations beyond pixel-wise
attacks. In this context, we investigate the robustness to adversarial attacks of new
Convolutional Neural Network architectures providing equivariance to rotations.
We found that rotation-equivariant networks are significantly less vulnerable to
geometric-based attacks than regular networks on the MNIST, CIFAR-10, and
ImageNet datasets.

1 INTRODUCTION

Deep learning provided significant breakthroughs in machine learning, and Convolutional Neural
Networks (CNNs) are now being used routinely for computer vision tasks. However, theoretical as
well as practical concerns remain, a prime example being adversarial attacks: very small perturba-
tions of the input causing catastrophic changes in the predictions of the network. Since adversarial
examples were first noticed (Szegedy et al., 2014; Goodfellow et al., 2015), the vast majority of the
studies has focused on pixel-wise attacks for the L0, L2, or L∞ distance metrics on images (for
a review, see, e.g., Akhtar & Mian (2018)). Very recently the notion of adversarial examples on
images was refined to account for the human perception (Luo et al., 2018), and extended to rigid
geometric transformations (Fawzi & Frossard, 2015; Kanbak et al., 2017; Engstrom et al., 2017) and
local geometric distortions (Xiao et al., 2018).

In an independent effort, several groups strived to extend the symmetry properties of CNNs beyond
equivariance to translations. The most natural next step is to equip the models with invariance or
equivariance to rotations, so that a rotation of the input image will either leave the feature maps
unchanged or will rotate them accordingly. Most of the existing approaches fall into two categories:
the ones based on the rotation of the input images (Jaderberg et al., 2015; Laptev et al., 2016;
Henriques & Vedaldi, 2017; Esteves et al., 2018), and the ones based on constraints on the structure
of the filters (Cohen & Welling, 2016; 2017; Dieleman et al., 2016; Worrall et al., 2017; Zhou et al.,
2017; Gonzalez et al., 2017; Li et al., 2017; Weiler et al., 2017).

We assess the robustness to adversarial examples of four distinct rotation-equivariant CNN archi-
tectures: Group Equivariant Convolutional Neural Networks (G-CNNs, Cohen & Welling (2016)),
Harmonic Networks (H-Nets, Worrall et al. (2017)), Deep Rotation Equivariant Networks (DRENs,
Li et al. (2017)) and Oriented Response Networks (ORNs, Zhou et al. (2017)). First, G-CNNs
provide equivariance to 90 degrees rotations and mirror reflections by redefining the convolution
operator over symmetry groups. Second, H-Nets obtain equivariance to rotations of arbitrary angles
using complex-valued filters constrained to the family of circular harmonics. Third, DRENs exploit
the cyclic properties of 90 degrees rotations, using rotated filters instead of rotating feature maps, to
obtain a deep representation of rotation equivariance. Finally, ORNs obtain invariance to rotations
using filters that actively rotate during convolution.
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All of these models have achieved (or defined a new) state-of-the-art performance on the rotated
MNIST dataset (Larochelle et al., 2007), while G-CNNs, DRENs and ORNs have proven to be
competitive on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) as well. All networks provide
patch-wise rotation equivariance, thus might be more robust to local geometric transformations. We
present our experimental setup in Section 2, our results in Section 3, and we conclude in Section 4.

2 EXPERIMENTAL SETUP

We train rotation-equivariant CNNs, as well as regular CNNs for comparison, on the MNIST,
CIFAR-10 and ImageNet (Deng et al., 2009) datasets. We then evaluate those models against adver-
sarial examples generated from the corresponding datasets. In the case of MNIST, we first consider a
model with seven 5× 5 convolutional layers, following closely the definition and training procedure
from Worrall et al. (2017); Cohen & Welling (2016). We suppress as much as possible architecture-
related specificities to compare the models on equal grounds, and consider the same number of
parameters of about 34k for all models.

As for CIFAR-10, we consider a 44-layer residual network, ResNet-44, and its corresponding G-
CNN version which we call G-ResNet. We follow the exact same procedure as Cohen & Welling
(2016), and adjust the number of filters per layer in order to obtain the same number of parameters
for both models (2.6M). We were not able to achieve a competitive accuracy with H-Nets.

In the case of ImageNet, to the best of our knowledge only ORNs have public results. A pre-trained
residual model with 18 convolutional layers, OR-ResNet-18, was provided by the authors. We
compare its performances to the standard Torch implementation of ResNet-18. Both models have
a total of 1.4M parameters. For the training and validation of all networks, we have used publicly
available implementations.1

We consider recently proposed adversarial attacks based on geometric transformations. First, rigid
geometric transformations (global rotations and translations), following closely the procedure of
Engstrom et al. (2017), but considering a different range: translations of±3 pixels on both axes, and
rotation of ±10 degrees by step of one degree for all datasets. In the case of CIFAR-10, we have
compared zero and edge paddings, and found no significant difference. For ImageNet, we perform
rotation and translation of the 256× 256 images before cropping to 224× 224.

Next, we consider spatially transformed adversarial examples (stAdv, Xiao et al. (2018)), which are
white-box targeted attacks based on Spatial Transformer Networks (Jaderberg et al., 2015). The
generated adversarial examples are designed to be misclassified while keeping the spatial transfor-
mation distance low. To balance adversarial and flow losses, as defined in Xiao et al. (2018), we take
τ = 0.10. For each sample we generate a set of stAdv attacks, taking each possible wrong label as
a target.

We also wanted to assess the robustness of rotation-equivariant networks to popular pixel-wise at-
tacks on the Lp norm, and to that end we considered the Fast Gradient Sign (Goodfellow et al.,
2015) and DeepFool (Moosavi-Dezfooli et al., 2017) attacks. They managed to completely fool
the classifiers in almost all our cases, showing that there is no significant added robustness to these
attacks from rotation-equivariant architectures.

3 RESULTS

For every model and dataset, we report results on the single-crop error rate on the natural test set
(i.e., with no adversarial perturbation). The robustness to adversarial attacks is quantified with the
attack success rate (ASR): the average fraction of attacks fooling a classifier, for a given type of
attack. In the computation of the ASR, we exclude samples from the test set which are misclassified
even if no perturbation is applied.

For the models trained on MNIST, we obtained a test error of less than 0.7% for all cases. The results
are shown in Table 1 (top). We find that H-Nets perform worse than the baseline on rotation-based

1 See tscohen/GrouPy, tscohen/gconv experiments (G-CNN), microljy/DREN (DREN),
deworrall92/harmonicConvolutions (H-Net), ZhouYanzhao/ORN (ORN), and
facebook/fb.resnet.torch (ResNet baseline on ImageNet) on GitHub.com.
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Table 1: Error on the natural test set and attack success rate (ASR) on the MNIST (top), CIFAR-10
(bottom left), and ImageNet (bottom right) datasets. R+T indicates that the attacks are made from
a combination of rotations and translations, while R and T are for rotation- and translation-only
attacks, respectively. stAdv are spatially transformed adversarial attacks.

MNIST CNN H-Net G-CNN DREN

Error 0.68% 0.69% 0.55% 0.51%

ASR

R+T 6.2% 20.5% 3.4% 1.3%
R 1.2% 4.8% 0.9% 0.5%
T 2.6% 17.6% 1.4% 0.5%

stAdv 92.6% 77.7% 87.1% 91.9%

CIFAR-10 ResNet G-ResNet

Error 8.9% 6.1%

ASR

R+T 88.4% 70.1%
R 77.9% 52.1%
T 88.8% 66.5%

stAdv 83.4% 83.1%

ImageNet ResNet OR-ResNet

Error 30.6% 28.9%

ASR
R+T 6.8% 5.7%

R 6.5% 5.4%
T 3.4% 4.3%

attacks, which is consistent with the observations of Li et al. (2017). However, they tend to be more
accurate against spatially transformed adversarial attacks, which could show that H-nets are robust
to local deformations due to their equivariance to local rotations of arbitrary angles. G-CNNs are
shown to be more robust to rigid geometric transformations than the CNN baseline, which shows
that the learned representations are useful against these types of attacks. Overall DRENs perform
best against rotation-based attacks, with 0.5% ASR for pure rotations. The superiority of DRENs
might be coming from their intensive use of each rotated filter in the isotonic layers.

Second, on the CIFAR-10 dataset, we trained a ResNet-44 and obtained a test error of 8.9%, and
trained a rotation-equivariant G-ResNet and obtained a test error of 6.1%. Results are shown in
Table 1 (bottom left). All attacks are much more successful than on MNIST since CIFAR-10 images
have a much richer content while having a comparable size. Overall, the G-ResNet achieves far
lesser vulnerability to attacks by rotation and translation than the regular ResNet, and is marginally
better against the stAdv attacks. For pure rotations, we have a drop in the ASR of 33%.

Finally, on the larger ImageNet dataset, we used a pre-trained ResNet-18 (resp. OR-ResNet-18) that
achieves 30.6% error (resp. 28.9%) on the test set. We tested rotation and translation-based attacks
on those models. Results are shown in Table 1 (bottom right). We can see that ORNs bring an
improvement against rotation attacks, and are slightly worse than a regular ResNet with translation
attacks. For combined rotations and translations, there is a drop in the ASR of 19%.

4 CONCLUSIONS

The investigation of changes in the architecture of CNNs as a defense against adversarial examples
is a relatively unexplored area. In order to evaluate the robustness of rotation-equivariant networks
to adversarial examples, we conducted experiments on four different types of CNN architectures: G-
CNNs, H-Nets, DRENs, and ORNs, on three different datasets: MNIST, CIFAR-10, and ImageNet.
The networks which are equivariant to rotations by discrete angles were found to be significantly
more robust to attacks based on small translations and rotations and, more marginally, to attacks
based on local geometric distortions. We hope that this work will serve as a motivation for further
studies on CNNs with extended symmetries, as well as for exploring the interplay between the
natural robustness of the rotation-equivariant architectures to geometric-based adversarial attacks
and other mechanisms of defense against adversarial examples.
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APPENDIX A ANALYSIS OF THE ATTACK SUCCESS RATE

We also analyzed the distribution of the attack success rate (ASR) on the test set for the three
datasets: MNIST, CIFAR-10, and ImageNet. Results are shown in Fig. 1. We can see that the
attack produces different distributions for H-Nets and regular CNNs, but G-CNNs and DRENs are
fairly similar to the regular one. In the case of CIFAR-10, there is a strong asymmetry in the regular
case that is less pronounced in the G-ResNet case. As for ImageNet, both distributions are smoothly
falling but as a much lower rate than for MNIST. Further investigation is needed to fully understand
these results.
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Figure 1: Distributions of the attack success rate on the test set for MNIST (top left), CIFAR-10 (top
right), and ImageNet (bottom).
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Finally, we checked the correlation coefficient between the ASR and the absolute value of the rota-
tion angle. In the case of MNIST, all rotation-equivariant networks are less sensitive to the rotation
angle than the regular CNN. We observe the opposite behavior in the case of the residual networks
we consider for CIFAR-10, while there is no significant difference for the two models tested on
ImageNet.

Table 2: Correlation coefficient between the attack success rate and the absolute value of the rotation
angle.

MNIST CNN H-Net G-CNN DREN

Corr. coeff. 0.28 0.12 0.18 0.10

CIFAR-10 ResNet G-ResNet

Corr. coeff. 0.07 0.33

ImageNet ResNet OR-ResNet

Corr. coeff. 0.06 0.05
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