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ABSTRACT

Recent theoretical and experimental results suggest the possibility of using current
and near-future quantum hardware in challenging sampling tasks. In this paper,
we introduce free-energy-based reinforcement learning (FERL) as an application
of quantum hardware. We propose a method for processing a quantum annealer’s
measured qubit spin configurations in approximating the free energy of a quantum
Boltzmann machine (QBM). We then apply this method to perform reinforcement
learning on the grid-world problem using the D-Wave 2000Q quantum annealer.
The experimental results show that our technique is a promising method for har-
nessing the power of quantum sampling in reinforcement learning tasks.

1 INTRODUCTION

Reinforcement learning (RL) |Sutton & Barto| (1998)); Bertsekas & Tsitsiklis| (1996) has been suc-
cessfully applied in fields such as engineering Derhami et al.| (2013);|Syafiie et al.|(2007), sociology
Erev & Roth|(1998)); Shteingart & Loewenstein| (2014), and economics |[Matsui et al.|(2011)); Sui et al.
(2010). The training samples in reinforcement learning are provided by the interaction of an agent
with an ambient environment. For example, in a motion planning problem in uncharted territory, it is
desirable for the agent to learn to correctly navigate in the fastest way possible, making the fewest
blind decisions. That is, neither exploration nor exploitation can be pursued exclusively without
either facing a penalty or failing at the task. Our goal is, therefore, not only to design an algorithm
that eventually converges to an optimal policy, but for the algorithm to be able to generate suboptimal
policies early in the learning process.

Free-energy-based reinforcement learning (FERL) using a restricted Boltzmann machine (RBM),
as suggested by |Sallans & Hinton| (2004), relies on approximating a utility function for the
agent, called the Q-function, using the free energy of an RBM. RBMs have the advantage that
their free energy can be efficiently calculated using closed formulae. RBMs can represent any
joint distribution over binary variables Martens et al.| (2013); [Hornik et al.| (1989); |[Le Roux &
Bengio| (2008); however, this property of universality may require exponentially large RBMs
Martens et al.|(2013); [Le Roux & Bengio| (2008)).

General Boltzmann machines (GBM) are proposed in an effort to devise universal Q-function
approximators with polynomially large Boltzmann networks |Crawford et al.| (2018)). Traditionally,
Monte Carlo simulation is used to perform the computationally expensive tasks of approximating the
free energy of GBMs under a Boltzmann distribution. One way to speed up the approximation process
is to represent a GBM by an equivalent physical system and try to find its Boltzmann distribution.
An example of such a physical system is a quantum annealer consisting of a network of pair-wise
interacting quantum bits (qubits). Although quantum annealers have already been used in many
areas of computational science, including combinatorial optimization and machine learning, their
application in RL has not been explored.

In order to use quantum annealing for RL, we first represent the Q-function as the free energy of a
physical system, that is, that of a quantum annealer. We then slowly evolve the state of the physical
system from a well-known initial state toward a state with a Boltzmann-like probability distribution.
Repeating the annealing process sufficiently long can provide us with samples from the Boltzmann
distribution so that we can empirically approximate the free energy of the physical system under this
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distribution. Finally, approximating the free energy of the system would give us an estimate of the
Q-function.

Up until the past few years, studies were limited to the classical Boltzmann machines Recently,
Crawford et al.| (2018) generalized the classical method toward a quantum or quantum-inspired
algorithm for approximating the free energy of GBMs. Using simulated quantum annealing (SQA)
Crawford et al.| (2018)) showed that FERL using a deep Boltzmann machine (DBM) can provide
a drastic improvement in the early stages of learning, yet performing the same procedure on an
actual quantum device remained a difficult task. This is because sampling from a quantum system
representing a quantum Boltzmann machine is harder than the classical case, since at the end of
each anneal the quantum system is in a superposition. Any attempt to measure the final state of the
quantum system is doomed to fail since the superposition would collapse into a classical state that
does not carry the entirety of information about the final state.

In this work, we have two main contributions. We first employ a quantum annealer as a physical
device to approximate the free energy of a classical Boltzmann machine. Second, we generalize the
notion of classical Boltzmann machines to quantum Boltzmann machines within the field of RL and
utilize a quantum annealer to approximate the free energy of a quantum system. In order to deal
with the issue of superposition mentioned above, we propose a novel stacking procedure in that we
attempt to reconstruct the full state of superposition from the partial information that we get from
sampling after each anneal. Finally we report proof-of-concept results using the D-Wave 2000Q
quantum processor to provide experimental evidence for the applicability of a quantum annealer in
reinforcement learning as predicted by |Crawford et al.|(2018).

2 PRELIMINARIES

We refer the reader to|Sutton & Barto| (1998) and | Yuksel| (2016)) for an exposition on Markov decision
processes (MDP), controlled Markov chains, and the various broad aspects of reinforcement learning.
A Q-function is defined by mapping a tuple (7, s, a) of a given stationary policy , a current state s,
and an immediate action a of a controlled Markov chain to the expected value of the instantaneous
and future discounted rewards of the Markov chain that begins with taking action « at initial state s
and continuing according to 7:

Q(m,s,a) = E[r (s, a)| + E lz vt (I, W<Hf))1 :

Here, 7 (s, a) is a random variable, perceived by the agent from the environment, representing the
immediate reward of taking action a from state s, and II is the Markov chain resulting from restricting
the controlled Markov chain to the policy 7. The fixed real number v € (0, 1) is the discount factor
of the MDP. From Q*(s, a) = max, Q(m, s, a), the optimal policy for the MDP can be retrieved via

7*(s) = argmax, Q*(s,a). (1)

This reduces the MDP task to that of computing Q* (s, a). Through the Bellman optimality equation
Bellman| (1956), we get

Q* (5, ) = Elr (5,0)] +7 3 B(s'|s, 0) max Q* (s, ), @

S

s0 Q* is the fixed point of the following operator defined on L, (S x A):

T(Q): (s,a) — E[r(s,a)] + ’yfmang.

In this paper, we focus on the TD(0) Q-learning method, with the Q-function parametrized by neural
networks in order to find 7*(s) and Q*(s, a), which is based on minimizing the distance between

T(Q) and Q.

'In this paper, restricted, deep, and general Boltzmann machines are referred to as classical Boltzmann
machines to indicate the contrast with guantum Boltzmann machines.
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2.1 CLAMPED BOLTZMANN MACHINES

A clamped Boltzmann machine is a GBM in which all visible nodes v are prescribed fixed assignments
and removed from the underlying graph. Therefore, the energy of the clamped Boltzmann machine
may be written as

Ho(h)=— > whoh— Y wnn, 3)

veV, he H {h,hW}=H

where V' and H are the sets of visible and hidden nodes, respectively, and by a slight abuse of notation,
the letter v stands both for a graph node v € V' and for the assignment v € {0, 1}. The interactions
between the variables represented by their respective nodes are specified by real-valued weighted
edges of the underlying undirected graph represented by w"", and w"" denotes the weights between
visible and hidden, or hidden and hidden, nodes of the Boltzmann machine, respectively.

A clamped quantum Boltzmann machine (QBM) has the same underlying graph as a clamped GBM,
but instead of a binary random variable, qubits are associated to each node of the network. The
energy function is substituted by the quantum Hamiltonian of an induced transverse field Ising model
(TFIM), which is mathematically a Hermitian matrix

Hy== 3 whoi— 3 wMojop ~T ), af, @

veV, he H {h,n’'}cH heH

where o} represent the Pauli z-matrices and oj, represent the Pauli z-matrices. Thus, a clamped
QBM with I' = 0 is equivalent to a clamped classical Boltzmann machine. This is because, in this
case, H is a diagonal matrix in the o*-basis, the spectrum of which is identical to the range of the
classical Hamiltonian (3). We note that (@) is a particular instance of a TFIM.

2.2 FREE-ENERGY-BASED REINFORCEMENT LEARNING

Let us begin with the classical Boltzmann machine case. Following|Sallans & Hinton|(2004), for an
assignment of visible variables v, F'(v) denotes the equilibrium free energy, and is given via

F(v) = SPMME& (D) + 5 I P(hY) logP(hlv) 5)
h h
_ Z ’U)Sh8<h> _ Z w“ha<h> _ Z uhh/<hh/>
sES acA {h,n'}cH
heH heH

+ % ;]}D(h\s, a)logP(hls,a),

where g = ]CB% is a fixed thermodynamic beta. In|Sallans & Hinton| (2004)), it was proposed to use
the negative free energy of a GBM to approximate the Q-function through the relationship

Q(s,a) ~ —F(s,a) = —F(s,a;w)

for each admissible state—action pair (s,a) € S x A. Here, s and a are binary vectors encoding the
state s and action a on the state nodes and action nodes, respectively, of a GBM. In RL, the visible
nodes of a GBM are partitioned into two subsets of state nodes S and action nodes A. Here, w
represents the vector of weights of a GBM as in (3). Each entry w of w can now be trained using the
TD(0) update rule:

Aw™ = e(ry(sn, an) + YQ(sn41,ani1) — Q(sn, an))vChy  and ©)
Awhh/ = €(T7z(5na an) + ’)/Q(STL+17 an+1) - Q(STM an))<h’h/>7 (7)

where (h) and (hh') are the expected values of the variables and the products of the variables,
respectively, in the binary encoding of the hidden nodes with respect to the Boltzmann distribution of
the classical Hamiltonian (3).
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To develop a FERL method using QBMs, let § = kE%T be a fixed thermodynamic beta as in the

classical case. As before, for an assignment of visible variables v, F(v) denotes the equilibrium free
energy, and is given via

1 1

F(v):=—IZ, =Hy)+ >

v) 5 (Hv) 5

Here, Z, = tr(e~#"v) is the partition function of the clamped QBM and p,, is the density matrix

pv = 5—e v The term — tr(py In py) is the entropy of the system. Note that (8) is a generaliza-

tion of (3)). The notation (- - - ) is used for the expected value of any observable with respect to the
Gibbs measure (i.e., the Boltzmann distribution), in particular,

tr(py Inpy). (®)

1
Hyy = 7 tr(Hye P,

This is also a generalization of the weighted sum », P(h|v)é&, (h) in (3). Inspired by the ideas
of [Sallans & Hinton| (2004) and |Amin et al.|(2016), we use the negative free energy of a QBM to
approximate the Q-function exactly as in the classical case:

Q(Sva’) ~ 7F(Saa;w)

for each admissible state—action pair (s,a) € S x A. As before, s and a are binary vectors encoding
the state s and action a on the state nodes and action nodes, respectively, of a Boltzmann machine. In
RL, the visible nodes of a Boltzmann machine are partitioned into two subsets of state nodes S and
action nodes A. Here, w represents the vector of weights of a QBM as in (@)). Each entry w of w can

now be trained using the TD(0) update rule:
oF
A’LU = —6(’/‘n(8n, an) - 'YF(Sn-&-ly an-‘rl) + F(Sna an))% .

As shown in |Crawford et al.| (2018)), from we obtain

Aw'™ = £(rp(sn, an) )
- ’YF(Sn-&-l; a7z+1) + F(Sna an))v<0i> and
A = e(r, (s, an) (10)

- 'YF(Sn+1a an+1) + F(sm an))<0flai,>.

This concludes the development of the FERL method using QBMs. We refer the reader to Algorithm 3
in|Crawford et al.|(2018)) for more details. What remains to be done is to approximate values of the
free energy F'(s, a) and also the expected values of the observables (o} ) and (o} o}, ). In this paper,
we demonstrate how quantum annealing can be used to address this challenge.

2.3 ADIABATIC EVOLUTION OF OPEN QUANTUM SYSTEMS

The evolution of a quantum system under a slowly changing, time-dependent Hamiltonian is char-
acterized by |Born & Fockl (1928)). The quantum adiabatic theorem (QAT) in Born & Fock| (1928))
states that a system remains in its instantaneous steady state, provided there is a gap between the
eigen-energy of the steady state and the rest of the Hamiltonian’s spectrum at every point in time.
QAT motivated [Farhi et al.|(2000) to introduce a paradigm of quantum computing known as quantum
adiabatic computation which is closely related to the quantum analogue of simulated annealing,
namely quantum annealing (QA), introduced by [Kadowaki & Nishimori| (1998).

The history of QA and QAT inspired manufacturing efforts towards physical realizations of adiabatic
evolution via quantum hardware Johnson et al.|(2011). In reality, the manufactured chips are operated
at a non-zero temperature and are not isolated from their environment. Therefore, the existing
adiabatic theory does not cover the behaviour of these machines. A contemporary investigation
in quantum adiabatic theory was therefore initiated to study adiabaticity in open quantum systems
Sarandy & Lidar| (2005); [Venuti et al.| (2016)); |Albash et al.| (2012); |Avron et al.|(2012); [Bachmann
et al| (2016). These sources prove adiabatic theorems for open quantum systems under various
assumptions, in particular when the quantum system is coupled to a thermal bath satisfying the
Kubo-Martin—Schwinger condition, implying that the instantaneous steady state is the instantaneous
Gibbs state. This work in progress shows promising opportunities to use quantum annealers to sample
from the Gibbs state of a TFIM.
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Figure 1: (left) Two adjacent unit cells of the D-Wave 2000Q chip. The intra-cell couplings provide a fully
connected bipartite subgraph. However, there are only four inter-cell couplings. (right) The Chimera graph
representing the connectivity of the two unit cells of qubits.

In practice, due to additional complications (e.g., level crossings and gap closure, described in the
references above), the samples gathered from the quantum annealer are far from the Gibbs state of the
final Hamiltonian. In fact,|Amin/ (2015) suggests that the distribution of the samples would instead
correspond to an instantaneous Hamiltonian at an intermediate point in time, called the freeze-out
point. Unfortunately, this point and, consequently, the strength I" of the transverse field at this point,
is not known a priori, and also depends on the TFIM undergoing evolution. Our goal is simply to
associate a single (average) virual I' to all TFIMs constructed through FERL. Another unknown
parameter is the inverse temperature 3, at which the Gibbs state, the partition function, and the
free energy are attained. In a similar fashion, we wish to associate a single virtual (5 to all TFIMs
encountered.

The quantum annealer used in our experiments is the D-Wave 2000Q, which consists of a chip of
superconducting qubits connected to each other according to a sparse adjacency graph called the
Chimera graph. The Chimera graph structure looks significantly different from the frequently used
models in machine learning, for example, RBMs and DBMs, which consist of consecutive fully
connected bipartite graphs. Fig. [1|shows two adjacent blocks of the Chimera graph which consist of
16 qubits, which, in this paper, serve as the clamped QBM used in FERL.

Another complication when using a quantum annealer as a QBM is that the spin configurations of the
qubits can only be measured along a fixed axis (here the z-basis of the Bloch sphere). Once % is
measured, all of the quantum information related to the projection of the spin along the transverse
field (i.e., the spin ¢*) collapses and cannot be retrieved. Therefore, even with a choice of virtual
T, virtual $3, and all of the measured configurations, the energy of the TFIM is still unknown. We
propose a method for overcoming this challenge based on the Suzuki—Trotter expansion of the TFIM,
which we call replica stacking, the details of which are explained in In §4] we perform a grid
search over values of the virtual parameters 3 and I'. The accepted virtual parameters are the ones
that result in the most-effective learning for FERL in the early stages of training.

3 FREE ENERGY OF QUANTUM BOLTZMANN MACHINES

3.1 SUZUKI-TROTTER REPRESENTATION

By the Suzuki-Trotter decomposition |[Suzuki| (1976), the partition function of the TFIM defined
by the Hamiltonian (d) can be approximated using the partition function of a classical Hamiltonian
denoted by H<! and called an effective Hamiltonian, which corresponds to a classical Ising model of
one dimension higher. More precisely,

r hh' r vh
H ) == Y, X T—hihi =) ) (1)

{h,h'}H k=1 v,h k=1
—w? (Z D Pl + ) mm) ,
h k=1 h
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Figure 2: (left) A TFIM consisting of 16 qubits arranged on a two-dimensional lattice with nearest-neighbour
couplings. (right) The corresponding effective classical Ising model with ten replicas arranged in a three-
dimensional solid torus.

where r is the number of replicas, w* = % log coth (%) , and hy, represent spins of the classical

system of one dimension higher. Note that each hidden node’s Pauli z-matrices o} are represented by
r classical spins, denoted by Ay, with a slight abuse of notation. In other words, the original Ising
model with a non-zero transverse field represented through non-commuting operators can be mapped
to a classical Ising model of one dimension higher. Fig. [2 shows the underlying graph of a TFIM on
a two-dimensional lattice and a corresponding 10-replica effective Hamiltonian in three dimensions.

The intuition behind the Suzuki—Trotter decomposition is that the superposition of the spins in a
quantum system is represented classically by replicas in the z-basis. In other words, the measurement
of the quantum system in the z-basis is interpreted as choosing one replica at random. Note that
the probabilities of measuring +1 or —1 for each individual spin are preserved. This way, each
hidden node in the quantum Boltzmann machine carries more information than a classical one; in
fact, a classical representation of this system requires 7 classical binary units via the Suzuki—Trotter
decomposition. Consequently, the connections between the hidden nodes become more complicated
in the quantum case as well and can carry more information on the correlations between the hidden
nodes. Note that the coupling strengths between the replicas are not arbitrary, but come from
the mathematical decomposition following the Suzuki—Trotter formula. As a result, the quantum
Boltzmann machine can be viewed as an undirected graphical model but in one dimension higher
than the classical Boltzmann machine.

3.2 APPROXIMATION OF FREE ENERGY USING GIBBS SAMPLING

In the case of classical GBMs without further restrictions on the graph structure, (h), (hh’), and
Q(s,a) ~ —F(s,a;w) are not tractable. Consequently, to perform the weight update in (6) one
requires samples from the Boltzmann distribution corresponding to energy function (3) to estimate
{h), (hh'), and F (s, a; w) empirically. To approximate the right-hand side of (9) and (10), we sample
from the Boltzmann distribution of the energy function represented by the effective Hamiltonian
using (Suzuki, 1976, Theorem 6). We find the expected values of the observables (¢ ) and (o} 07, )
by averaging the corresponding classical spin values. To approximate the free energy of a QBM and
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consequently a Q-function, we use (Suzukil, |1976, Theorem 4) to substitute @) by

F(v) = (HST + % 2 P(cer|v) log P(cest| V)

Ceff

r whh/ r ,wvh,v
= 2 2 =3 Y (12)

{h.h'}CH k=1 vk k=1
N 1
—w? (Z Z<hkhk+1> + Z<h1h7'>> + 3 Z P(ceit|s, a) log P(cost|s, a),
h k=1 h Ceff

where 1< is the effective Hamiltonian and c.g ranges over all spin configurations of the effective
classical Ising model of one dimension higher, defined by H<™. Here, (h) and (hh') are the expected
values of the variables and the products of the binary variables, respectively, with respect to the
Boltzmann distribution of the classical effective Hamiltonian (TT).

3.3 SIMULATED QUANTUM ANNEALING

One way to sample spin values from the Boltzmann distribution of the effective Hamiltonian is to
use the simulated quantum annealing algorithm (SQA) (see (Brabazon et al.,[2015] p. 422) for an
introduction). SQA is one of the many flavours of quantum Monte Carlo methods, and is based on
the Suzuki-Trotter expansion described above. This algorithm simulates the quantum annealing
phenomena of a TFIM by slowly reducing the strength of the transverse field at finite temperature to
the desired target value. In our implementation, we have used a single spin-flip variant of SQA with a
linear transverse-field schedule as inMartonak et al.|(2002) and Heim et al.| (2015). Experimental
studies have shown similarities in the behaviour of SQA and that of quantum annealing Isakov et al.
(2015); |Albash et al.| (2014) and its physical realization by D-Wave Systems Brady & van Dam
(2016)); Shin et al.|(2014).

The classical counterpart of SQA is conventional simulated annealing (SA), which is based on thermal
annealing. This algorithm can be used to sample from Boltzmann distributions that correspond to an
Ising spin model in the absence of a transverse field. Unlike SA, it is possible to use SQA not only to
approximate the Boltzmann distribution of a classical Boltzmann machine, but also that of a quantum
Hamiltonian in the presence of a transverse field. This can be done by reducing the strength of the
transverse field to the desired value defined by the model, rather than to zero. It has been proven
by Morita & Nishimori| (2006) that the spin system defined by SQA converges to the Boltzmann
distribution of the effective classical Hamiltonian of one dimension higher that corresponds to the
quantum Hamiltonian. Therefore, it is straightforward to use SQA to approximate the free energy in
(I2) as well as the observables (o7 ) and (o707}, ). However, any Boltzmann distribution sampling
method based on Markov chain Monte Carlo (MCMC) has the major drawback of being extremely
slow and computationally involved. Actually, it is an NP-hard problem to sample from the Boltzmann
distribution. Another option is to use variational approximation |Salakhutdinov & Hinton|(2009),
which suffers from lack of accuracy and works in practice only in limited cases. As explained above,
quantum annealers have the potential to provide samples from Boltzmann distributions (in the z-basis)
corresponding to TFIM in a more efficient way. In what follows, we explain how to use quantum
annealing to approximate the free energy corresponding to an effective Hamiltonian which in turn
can be used to approximate the free energy of a QBM.

3.4 REPLICA STACKING

As explained in a quantum annealer provides measurements of o* spins for each qubit in the
TFIM. The observables (o} and (o} 0}, ) can therefore be approximated by averaging over the spin
configurations measured by the quantum annealer. Moreover, by (Suzukil, |1976, Theorem 6) and
translation invariance, each replica of the effective classical model is an approximation of the spin
measurements of the TFIM in the measurement bases o*. Therefore, a o*-configuration sampled by
a quantum annealer that operates at a given virfual inverse temperature 3, and anneals up to a virtual
transverse-field strength I', may be viewed as an instance of a classical spin configuration from a
replica of the classical effective Hamiltonian of one dimension higher.
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This suggests the following method to approximate the free energy from (I2)) for a TFIM. We gather
a pool ¥ of configurations sampled by the quantum annealer for the TFIM considered, allowing
repetitions. Let r be the number of replicas. We write cog = (¢, .. ., ¢, to indicate an effective
configuration ceg with the classical configurations c; to ¢, as its replicas. We write ceg to denote the
underlying set {c1, ..., ¢, } of replicas of c.s (Without considering their ordering). We have

Plcer = (c1,...,¢)]
ZP[Ceﬂ =(C1,...,¢)|Cet = {017...,cr}] xIP’[cLlcfz {cl,...,cT}]

=P[ceff=(cl,...,cr)\cei={cl,...,cr}] xP[qei:{cl,...,cr}\Ceig%] XP[CeiE%].

The argument in the previous paragraph can now be employed to allow the assumption

P@Q%]zl.

In other words, the probability mass function of the effective configurations is supported in the subset
of those configurations synthesized from the elements of € as candidate replicas.

The conditional probability P[ceg = {ci,...,¢r}|ceg & €] can be sampled from by drawing

r elements ¢y, ..., ¢, from €. We then sample from P [Ceﬁ‘ =(c1,...,¢r)|cesr = {c1, - 7cr}],
according to the following distribution over ceg:

A
m(co) = P [Ceff =(c1,...,¢r)|cet = {€1,. .-, cr}]
€Bw+ 2 (223 hey, hﬂk+1+hﬂ1h0r)

Bwt Xy (22;1 heyheyyq They th) .

chff={01~,~~~;ck} €

We consider 7(cer) our target distribution and construct the following MCMC method for which
the limiting distribution is 7 (ces). We first attach the r classical spin configurations to the SQA’s
effective configuration structure uniformly at random. We then transition to a different arrangement
with a Metropolis acceptance probability. For example, we may choose two classical configurations
at random and exchange them with probability

plcest; o) = min {1, exp (B(E(cg) — E(cet))) } (13)

where E(cer) = wt Y, ( Z: heyh
the detailed balance condition. Consequently, the MCMC method allows us to sample from the
effective spin configurations. This procedure of sampling and then performing the MCMC method
creates a pool of effective spin configurations, which are then employed in equation (I2) in order to
approximate the free energy of the TFIM empirically.

e T Pey hCT) . Such a stochastic process is known to satisfy

However, we consider a relatively small number of hidden nodes in our experiments, so the number
of different o*-configurations sampled by the quantum annealer is limited. As a consequence, there
is no practical need to perform the MCMC method defined above. Instead, we attach classical spin
configurations from the pool to the SQA effective configuration structure at random. In other words,
in r iterations, a spin configuration is sampled from the pool of classical spin configurations described
above and inserted as the next replica of the effective classical Hamiltonian consisting of r replicas.

It is worthwhile to reiterate that this replica stacking technique yields an undirected graphical model.
Specifically, the structure described in Fig. [2] (right) is an undirected graphical model in the space of
hidden nodes, where the node statistics are obtained from the Boltzmann distribution. One difference
between this model and a classical Boltzmann machine is that each hidden node activation is governed
by a series of r replicas in one dimension higher, and the undirected, replica-to-replica connections
calculated therein. Moreover, the energy function of this extended model differs from the energy
function of the classical Boltzmann machine (compare (T1)) and (3)). The free energy of the extended
graphical model serves as the function approximator to the Q-function.

4 THE EXPERIMENTS

We benchmark our various FERL methods on a 3 x 5 grid-world problem Sutton| (1990) with an
agent capable of taking the actions up, down, left, or right, or standing still, on a grid-world with
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Algorithm 1 FERL-QBM

initialize weights of QBM
for all training samples (s1,a1) do
59 <= ay(s1), az < argmax Q(s2,a)
calculate (07, ), <0h Thr ) <7—l§ﬂa ), andP(ccf|si, a;) using Algorlthml 2l for (i = 1,2)
calculate F(sl, a;) using . 12) for (i = 1,2)
Q(si,a;) — —F(s;,a;) for (i = 1,2)
update QBM weights using (9) and
m(s1) < argmax, Q(s1,a)
end for
return 7

Algorithm 2 Replica stacking

initialize the structure of the effective Hamiltonian in one dimension higher
for : =1,2,...,mdo
for j =1,2,...,7do
obtain spin configuration sample in z-basis from QA
attach this spin configuration to j-th replica of the ¢-th effective configuration structure
end for
perform the MCMC technique described in with transition probabilities (T3] to obtain the
i-th instance of effective spin configurations
end for
obtain <7—l 'a;» from the average energy of the m effective spin configurations
obtain (h) and (hh') by averaging over all h and &' replicas in each spin configuration
gather statistics from IP)(CCH|Si, a;) using the m effective spin configurations
return (hy, Chh'), (HER, S, and P(ceg|si, a3)

one deterministic reward, one wall, and one penalty, as shown in Fig. [3](top). The task is to find an
optimal policy, as shown in Fig. [3] (bottom), for the agent at each state in the grid-world. All of the
Boltzmann machines used in our algorithms consist of 16 hidden nodes.

The discount factor, as explained in §2} is set to 0.8. The agent attains the reward R = 200 in the
top-left corner, the neutral value of moving to any empty cell is 100, and the agent is penalized by
not receiving any reward if it moves to the penalty cell with value P = 0.

For T,. independent runs of every FERL method, 7 training samples are used. The fidelity measure
at the ¢-th training sample is defined by

S

fidelity (i) = (T} x |S|)~ Z Z T a(s,i,)en* (s)s (14)

=1 s€eS

where 7* denotes the best known policy and A(s, 4,1) denotes the action assigned at the {-th run and
i-th training sample to the state s. In our experiments, each algorithm is run 100 times.

it w4
P td = 4

Figure 3: (left) A 3 x 5 grid-world problem instance with one reward, one wall, and one penalty. (right)
An optimal policy for this problem instance can be represented as a selection of directional arrows indicating
movement directions.
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Fig.[d]demonstrates the performance of a fully connected deep Q-networkMnih et al.| (2015)) consisting
of an input layer of 14 state nodes, two layers of eight hidden nodes each, and an output layer of five
nodes representing the values of the Q-function for different actions, given a configuration of state
nodes. We use the same number of hidden nodes in the fully connected deep Q-network as in the
other networks described in this paper.

4.1 GRID SEARCH FOR VIRTUAL PARAMETERS ON THE D-WAVE 2000Q

We treat the network of superconducting qubits represented in Fig.[T|as a clamped QBM with two
hidden layers, represented using blue and red colours. The state nodes are considered fully connected
to the blue qubits and the action nodes are fully connected to the red qubits.

For a choice of virtual parameters I" # 0 and 3, which appear in and (12), and for each query to
the D-Wave 2000Q chip, we construct 150 effective classical configurations of one dimension higher,
out of a pool of 3750 reads, according to the replica stacking method introduced in The 150
configurations are, in turn, employed to approximate the free energy of the quantum Hamiltonian.
We conduct 10 independent runs of FERL in this fashion, and find the average fidelity over the 10
runs and over the T; = 300 training samples.

Fig. [5|shows a heatmap of the average fidelity of each choice of virtual parameters 5 and I'. In the
I" = 0 row, each query to the D-Wave 2000Q is considered to be sampling from a classical GBM
with Fig.[T] as the underlying graph.

4.2 FERL FOR THE GRID-WORLD PROBLEM

Fig. [6] shows the growth of the average fidelity of the best known policies generated by different
FERL methods. For each method, the fidelity curve is an average over 100 independent runs, each
with Ty = 500 training samples.

In this figure, the “D-Wave I' = 0.5, 8 = 2.0” curve corresponds to the D-Wave 2000Q replica
stacking-based method with the choice of the best virtual parameters I' = 0.5 and 8 = 2.0, as shown
in the heatmap in Fig. [5] The training is based on formulae (9), (I0), and (I2). The “SQA Bipartite
I' =0.5, 8 = 2.0” and “SQA Chimera I' = 0.5, 8 = 2.0” curves are based on the same formulae
with the underlying graphs being a bipartite (DBM) and a Chimera graph, respectively, with the same
choice of virtual parameters, but the effective Hamiltonian configurations generated using SQA as

explained in

The “SA Bipartite 5 = 2.0” and “SA Chimera 5 = 2.0” curves are generated by using SA to train
a classical DBM and a classical GBM on the Chimera graph, respectively, using formulae (6), (7),
and (3). SA is run with a linear inverse temperature schedule, where 8 = 2.0 indicates the final
value. The “D-Wave Classical 5 = 2.0” curve is generated using the same method, but with samples

0.0

0 10000 20000 30000 40000
Training Sample

Figure 4: The learning curve of a fully connected deep Q-network with two hidden layers, each with eight
hidden nodes, for the grid-world problem instance shown in Fig. E}
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Figure 5: Heatmap of average fidelity observed using various choices of virtual parameters 8 and I'. The
I" = 0 row tests the performance of FERL with samples obtained from the quantum annealer treated as classical
configurations of a GBM. In all other rows, samples are interpreted as o*-measurements of a QBM.

fidelity

0 100 200 300 400 500
Training Sample

—— D-WaveI'=0.5,=2.0 —— SQA Chimeral'=0.5,3 =2.0
D-Wave Classical f =2.0 =~ —— SQA Bipartite ' = 0.5, =2.0
—— SA Chimera § =2.0 —— RBM

—— SA Bipartite § = 2.0

Figure 6: Comparison of different FERL methods for the grid-world problem instance in Fig‘

obtained using the D-Wave 2000Q. The “RBM” curve is generated using the method in
(2004).

5 DISCUSSION

We solve the grid-world problem using various Q-learning methods with the Q-function parametrized
by different neural networks. For comparison, we demonstrate the performance of a fully connected
deep Q-network method that can be considered state of the art. This method efficiently processes
every training sample, but, as shown in Fig. [d] requires a very large number of training samples
to converge to the optimal policy. Another conventional method is free-energy-based RL using an
RBM. This method is also very successful at learning the optimal policy at the scale of the RL task

11
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considered in our experiment. Although this method does not outperform other FERL methods
that take advantage of a highly efficient sampling oracle, the processing of each training sample is
efficient, as it is based on closed formulae. In fact, for the size of problem considered, the RBM-based
FERL outperforms the fully connected deep Q-network method.

The comparison of results in Fig. []suggests that replica stacking is a successful method for estimating
effective classical configurations obtained from a quantum annealer, given that the spins can only be
measured in measurement bases. For practical use in RL, this method provides a means of treating
the quantum annealer as a QBM. FERL using the quantum annealer, in conjunction with the replica
stacking technique, provides significant improvement over FERL using classical Boltzmann machines.
The curve representing SQA-based FERL using a Boltzmann machine on the Chimera graph is almost
coincident with the one obtained using the D-Wave 2000Q, whereas the SQA-based FERL using a
DBM slightly outperforms it. This suggests that quantum annealing chips with greater connectivity
and more control over annealing time can further improve the performance of the replica stacking
method applied to RL tasks. This is further supported by comparing the performance of SA-based
FERL using a DBM versus SA-based FERL using the Chimera graph. This result shows that DBM is,
due to its additional connections, a better choice of neural network compared to the Chimera graph.

For practical reasons, we aim to associate an identical choice of virtual parameters $ and I to all
of the TFIMs constructed using FERL. [Benedetti et al.|(2016) and Raymond et al.| (2016) provide
methods for estimating the effective inverse temperature [ for other applications. However, in both
studies, the samples obtained from the quantum annealer are matched to the Boltzmann distribution
of a classical Ising model. In fact, the transverse-field strength is a second virtual parameter that we
consider. The optimal choice I" = 0.5 corresponds to 2/3 of the annealing time, in agreement with
the work of |/Amin| (2015)), who also considers TFIM with 16 qubits.

The agreement of FERL using quantum annealer reads treated as classical Boltzmann samples with
that of FERL using SA and classical Boltzmann machines suggests that, at least for this task and this
size of Boltzmann machine, the measurements provided by the D-Wave 2000Q can be considered
good approximations of Boltzmann distribution samples of classical Ising models.

The extended undirected graphical model developed in this paper using the replica stacking method is
not limited to Q-function approximation in RL tasks. Potentially, this method can be applied to tasks
where Boltzmann machines can be used. This method provides a mechanism for approximating the
activations and partition functions of quantum Boltzmann machines that have a significant transverse
field.

6 CONCLUSION

In this paper, we describe a free-energy-based reinforcement learning algorithm using an existing
quantum annealer, namely the D-Wave 2000Q. Our method relies on the Suzuki—Trotter decompo-
sition and the use of the measured configurations by the D-Wave 2000Q as replicas of an effective
classical Ising model of one dimension higher. The results presented here are first-step proofs of
concept of a proposed quantum algorithm with a promising path towards outperforming reinforcement
learning algorithms devised for digital hardware. Given appropriate advances in quantum annealing
hardware, future research can employ the proposed principles to solve larger-scale reinforcement
learning tasks in the emerging field of quantum machine learning.
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