
Under review as a conference paper at ICLR 2019

On Regularization and Robustness of Deep
Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

In this work, we study the connection between regularization and robust-
ness of deep neural networks by viewing them as elements of a reproducing
kernel Hilbert space (RKHS) of functions and by regularizing them using
the RKHS norm. Even though this norm cannot be computed, we con-
sider various approximations based on upper and lower bounds. These
approximations lead to new strategies for regularization, but also to exist-
ing ones such as spectral norm penalties or constraints, gradient penalties,
or adversarial training. Besides, the kernel framework allows us to obtain
margin-based bounds on adversarial generalization. We show that our new
algorithms lead to empirical benefits for learning on small datasets and
learning adversarially robust models. We also discuss implications of our
regularization framework for learning implicit generative models.

1 Introduction

Learning predictive models for complex tasks often requires large amounts of annotated
data. Interestingly, successful models such as convolutional neural networks are also huge-
dimensional and typically involve more parameters than training samples. Such a setting
is challenging: besides the fact that training with small datasets is difficult, these models
also lack robustness to small adversarial perturbations (Szegedy et al., 2013; Biggio & Roli,
2018). In the context of perceptual tasks such as vision (Szegedy et al., 2013) or speech
recognition (Carlini & Wagner, 2018), these perturbed examples are often perceived identi-
cally to the original ones by a human, but can lead to arbitrarily different model predictions.
In this paper, we present a unified perspective on regularization and robustness, by viewing
convolutional neural networks as elements of a particular reproducing kernel Hilbert space
(RKHS) following the work of Bietti & Mairal (2018) on deep convolutional kernels. For such
kernels, the RKHS contains indeed deep convolutional networks similar to generic ones—up
to smooth approximations of rectified linear units. Such a point of view is interesting to
adopt for deep networks since it provides a natural regularization function, the RKHS norm,
which allows us to control the variations of the predictive model according to the geometry
induced by the kernel. Besides, the norm also acts as a Lipschitz constant, which provides
a direct control on the stability to adversarial perturbations.
In contrast to traditional kernel methods, the RKHS norm cannot be explicitly computed
in our setup. Yet, these norms admit numerous approximations—lower bounds and upper
bounds—which lead to new strategies for regularization based on penalties, constraints, or
combinations thereof. Additionally, our framework provides an interpretation of some ex-
isting regularization approaches as controlling either upper or lower bounds on the RKHS
norm, such as using penalties or constraints on the spectral norm of the filters (Yoshida &
Miyato, 2017), various forms of robust optimization (Madry et al., 2018), double backprop-
agation (Drucker & Le Cun, 1991), and tangent propagation (Simard et al., 1998).
Moreover, regularization and robustness are tightly linked in our kernel framework. In
particular, we study the connection between adversarial training under `2 perturbations and
penalizing with the RKHS norm, in a similar vein to Xu et al. (2009b); from a statistical
point of view, we extend margin-based generalization bounds in the spirit of Bartlett et al.
(2017); Boucheron et al. (2005) to the setting of adversarially robust generalization (see
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Schmidt et al., 2018). Following these observations, we provide an empirical evaluation
of the different regularization strategies obtained, by considering learning tasks with small
datasets or with adversarial perturbations. Importantly, we find that robust optimization
approaches often lead to a poor control of the RKHS norm, in favor of local stability and data
fit, and that approaches based on spectral norms can be locally unstable. In contrast, our
new lower bound penalties, as well as combined approaches based on both upper and lower
bounds, enable a tighter control of the RKHS norm, yielding empirical benefits in various
regimes and better guarantees. We also provide a new perspective on recent successful
approaches to training generative adversarial networks as optimizing a kernel two-sample
test (see, e.g., Gretton et al., 2012).

Related work. The construction of hierarchical kernels and the study of neural networks
in the corresponding RKHS was studied by Mairal (2016); Zhang et al. (2016; 2017); Bietti &
Mairal (2018). Our study of the relationship between robustness and regularization follows
from Xu et al. (2009a;b), where the main focus is on linear models with quadratic or hinge
losses. Some of the regularization strategies we obtain from our kernel perspective are closely
related to previous approaches to adversarial robustness (Cisse et al., 2017; Madry et al.,
2018; Simon-Gabriel et al., 2018; Roth et al., 2018), to improving generalization (Drucker
& Le Cun, 1991; Miyato et al., 2018b; Sedghi et al., 2018; Simard et al., 1998; Yoshida &
Miyato, 2017), and stable training of generative adversarial networks (Roth et al., 2017;
Gulrajani et al., 2017; Arbel et al., 2018; Miyato et al., 2018a). The notion of adversarial
generalization was considered by Schmidt et al. (2018), who provide lower bounds on a
specific example of data distribution. Sinha et al. (2018) provide generalization guarantees
in the different setting of distributional robustness; compared to our bound, they consider
expected loss instead of classification error, and their bounds do not highlight the dependence
on the model complexity.

2 Regularization strategies for deep neural networks

In this section, we recall the kernel perspective on deep networks introduced by Bietti &
Mairal (2018), and present upper and lower bounds on the RKHS norm of a given model,
leading to various regularization strategies. For simplicity, we first consider real-valued
networks and binary classification, before discussing multi-class extensions.

2.1 Relation between deep neural networks and RKHSs

Kernel methods consist of mapping data living in a set X to a RKHS H associated to a
positive definite kernel K through a mapping function Φ : X → H, and then learning simple
machine learning models in H. Specifically, when considering a real-valued regression or
binary classification problem, classical kernel methods find a prediction function f : X → R
living in the RKHS which can be written in linear form, i.e., such that f(x) = 〈f,Φ(x)〉H
for all x in X . While explicit mapping to a possibly infinite-dimensional space is of course
only an abstract mathematical operation, learning f can be done implicitly by computing
kernel evaluations and typically by using convex programming (Schölkopf & Smola, 2001).
Moreover, the RKHS norm ‖f‖H acts as a natural regularization function, which controls
the variations of model predictions according to the geometry induced by Φ:

|f(x)− f(x′)| ≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H. (1)

Unfortunately, traditional kernel methods become difficult to use when the datasets are
large or when evaluating the kernel is intractable. Here, we propose a different approach
that considers explicit parameterized representations of functions contained in the RKHS,
given by generic convolutional neural networks, and leverage properties of the RKHS and
the kernel mapping in order to regularize when learning the network parameters.
Consider indeed a real-valued deep convolutional network f : X → R, where X is simply Rd,
with rectified linear unit (ReLU) activations and no bias units. By constructing an appro-
priate multi-layer hierarchical kernel, Bietti & Mairal (2018) show that the corresponding
RKHS H contains a convolutional network with the same architecture and parameters as f ,
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but with activations that are smooth approximations of ReLU. Although the model pre-
dictions might not be strictly equal, we will abuse notation and denote this approximation
with smooth ReLU by f as well, with the hope that the regularization procedures derived
from the RKHS model will be effective in practice on the original CNN f .
Besides, Bietti & Mairal (2018) show that the mapping Φ(·) is non-expansive:

‖Φ(x)− Φ(x′)‖H ≤ ‖x− x′‖2, (2)

so that controlling ‖f‖H provides some robustness to additive `2-perturbations, by (1). Ad-
ditionally, with appropriate pooling operations, Bietti & Mairal (2018) show that the kernel
mapping is also stable to deformations, meaning that the RKHS norm also controls robust-
ness to translations and other transformations including scaling and rotations (Engstrom
et al., 2017), which can be seen as deformations when they are small.
In contrast to standard kernel methods, where the RKHS norm is typically available in
closed form, this norm is difficult to compute in our setup, and requires approximations.
The following sections present upper and lower bounds on ‖f‖H, with linear convolutional
operations denoted by Wk for k = 1, . . . , L, where L is the number of layers. Defining θ :=
{Wk : k = 1, . . . , L}, we then leverage these bounds to approximately solve the following
penalized or constrained optimization problems on a training set (xi, yi), i = 1, . . . , n:

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) + λ‖fθ‖2H or min
θ:‖fθ‖H≤C

1
n

n∑
i=1

`(yi, fθ(xi)). (3)

We also note that while the construction of Bietti & Mairal (2018) considers VGG-like
networks (Simonyan & Zisserman, 2014), the regularization algorithms we obtain in practice
can be easily adapted to different architectures such as residual networks (He et al., 2016).

2.2 Exploiting Lower bounds of the RKHS norm

In this section, we devise regularization algorithms by leveraging lower bounds on ‖f‖H,
which are obtained by relying on the following variational characterization of Hilbert norms:

‖f‖H = sup
‖u‖H≤1

〈f, u〉H. (4)

At first sight, this definition is not useful since the set U = {u ∈ H : ‖u‖H ≤ 1} may be
infinite-dimensional and the inner products 〈f, u〉H cannot be computed in general. Thus,
we devise tractable lower bound approximations by considering smaller sets Ū ⊂ U .

Adversarial perturbation penalty. The non-expansiveness of Φ allows us to consider
the subset Ū ⊂ U defined as Ū = {Φ(x+ δ)−Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}, leading to the bound

‖f‖H ≥ sup
x∈X ,‖δ‖2≤1

f(x+ δ)− f(x), (5)

which is reminiscent of adversarial perturbations. Adding a regularization parameter ε > 0
in front of the norm then corresponds to different sizes of perturbations:

ε‖f‖H = sup
‖u‖H≤ε

〈f, u〉H ≥ sup
x∈X ,‖δ‖2≤ε

f(x+ δ)− f(x). (6)

Using this lower bound or its square as a penalty in the objective (3) when training a neural
network can then provide a way to regularize. Optimizing over adversarial perturbations
has been useful to obtain robust models (e.g., the PGD method of Madry et al., 2018), yet
our approach differs in two important ways: (i) it involves a global maximization problem
on the input space X , as opposed to only maximizing on perturbations near training data;
(ii) it involves a separate penalty term in the training objective, in contrast to PGD which
encourages a perfect fit of the training data by considering perturbations on the loss term.
We further discuss the links with the robust optimization problem solved by PGD below.
In practice, optimizing over all x in X is difficult, and we can replace X with random
subsets of examples (such as mini-batches), which may be labeled or not, yielding further
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lower bounds on the penalty. In the context of a mini-batch stochastic gradient algorithm,
one can obtain a subgradient of this penalty by first finding maximizers x̂, δ̂ (where x̂ is one
of the examples in the mini-batch), and then simply computing gradients of fθ(x̂+ δ̂)−fθ(x̂)
(or its square) w.r.t. θ using back-propagation. We compute the perturbations δ̂ for each
example x by using a few steps of projected subgradient ascent with constant step-lengths,
in a similar fashion to Madry et al. (2018) in the context of robust optimization.

Relationship with robust optimization. In some contexts, our penalized approach is
related to solving the robust optimization problem

min
θ

1
n

n∑
i=1

sup
‖δ‖2≤ε

`(yi, fθ(xi + δ)), (7)

which is commonly considered for training adversarially robust classifiers (Kolter & Wong,
2017; Madry et al., 2018; Raghunathan et al., 2018). In particular, Xu et al. (2009b) show
that the penalized and robust objectives are equivalent in the case of the hinge loss with
linear predictors, when the data is non-separable. They also show the equivalence for kernel
methods when considering the (intractable) full perturbation set U around each point in the
RKHS Φ(xi), that is, predictions 〈f,Φ(xi) + u〉H with u in U . Intuitively, when a training
example (xi, yi) is misclassified, we are in the “linear” part of the hinge loss, so that

sup
‖u‖H≤ε

`(yi, 〈f,Φ(xi) + u〉H) = `(yi, 〈f,Φ(xi)〉H) + sup
‖u‖H≤ε

〈f, u〉H = `(yi, f(xi)) + ε‖f‖H.

For other losses such as the the logistic loss, a regularization effect is still present even for
correctly classified examples, though it may be smaller since the loss has a reduced slope
for such points, leading to a more adaptive regularization mechanism which may automati-
cally reduce the amount of regularization when the data is easily separable. However, this
approach might only encourage local stability, while the global quantity ‖f‖H may grow
uncontrolled in order to better fit the data. Nevertheless, it is easy to show that the robust
objective (7) lower bounds the penalized objective with penalty ε‖f‖H.

Gradient penalties. Taking Ū = {Φ(x)−Φ(y)
‖x−y‖2

: x, y ∈ X}, which is a subset of U by
Eq. (2)—it turns out that this is the same set as above, since Φ is homogeneous (Bietti &
Mairal, 2018) and X = Rd—we obtain a lower bound based on the Lipschitz constant of f :

‖f‖H ≥ ‖f‖L := sup
x,y∈X

f(x)− f(y)
‖x− y‖2

≥ sup
x∈X
‖∇f(x)‖2

where the last inequality becomes an equality when X is convex, and the supremum is
taken over points where f is differentiable. Although we are unaware of previous work using
such a lower bound for a generic regularization penalty, we note that variants replacing
the supremum over x by an expectation over data have been recently used to stabilize
the training of generative adversarial networks (Gulrajani et al., 2017; Roth et al., 2017),
and we provide insights in Section 3.2 on the benefits of RKHS regularization in such a
setting. Related penalties have been considered in the context of robust optimization, for
regularization or robustness, noting that a penalty based on the gradient of the loss can give
a good approximation of (7) when ε is small (Drucker & Le Cun, 1991; Lyu et al., 2015; Roth
et al., 2018; Simon-Gabriel et al., 2018). This has the advantage of overcoming the difficulties
of the maximization problem over δ by leveraging the closed-form expression of the gradient
norm, but it may only provide a poor approximation when ε is large, and exhibits the same
concerns as other robust optimization approaches in terms of poorly controlling ‖f‖H.

Penalties based on deformation stability. We may also obtain new penalties by con-
sidering sets Ū = {Φ(x̃)−Φ(x) : x ∈ X , x̃ is a small deformation of x}, where the amount
of deformation is dictated by the stability bounds of Bietti & Mairal (2018) in order to
ensure that Ū ⊂ U . In particular, such bounds depend on the maximum displacement and
maximum Jacobian norm of the diffeomorphisms considered. These can be easily computed
for various parameterized families of transformations, such as translations, scaling or rota-
tions, leading to simple ways to control the regularization strength through the parameters
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of these transformations. One can also consider infinitesimal deformations from such param-
eterized transformations, and by replacing the supremum over X by an expectation over
training data, we then obtain a gradient penalty that resembles the tangent propagation
regularization strategy of Simard et al. (1998). If instead we consider robust optimization
formulation (7), we obtain a form of data augmentation where transformations are optimized
instead of sampled, as in Engstrom et al. (2017).
One advantage of these approaches based on lower bounds is that the obtained penalties are
independent of the model parameterization, making them flexible enough to use with more
complex architectures in practice. In addition, the connection with robust optimization can
provide a useful mechanism for adaptive regularization. However, these lower bounds do not
guarantee a control on the RKHS norm, and this is particularly true for robust optimization
approaches, which may favor small training loss and local stability over global stability
through ‖f‖H. Nevertheless, our experiments suggest that our new approaches based on
separate penalties often do help in controlling upper bounds as well (see Section 4).

2.3 Exploiting upper bounds: optimization with spectral norms

In contrast to lower bounds, upper bounds can provide a guaranteed control on the RKHS
norm. Bietti & Mairal (2018) show the following upper bound:

‖f‖H ≤ ω(‖W1‖, . . . , ‖WL‖), (8)
where ω is increasing in all of its arguments, and ‖Wk‖ is the spectral norm of the linear
operator Wk. Here, we simply consider the spectral norm on the filters, given by ‖W‖ :=
sup‖x‖2≤1 ‖Wx‖2. Other generalization bounds relying on similar quantities have been
proposed for controlling complexity (Bartlett et al., 2017; Neyshabur et al., 2018), suggesting
that using them for regularization is relevant even beyond our kernel perspective, as observed
in previous work (Cisse et al., 2017; Sedghi et al., 2018; Yoshida & Miyato, 2017).

Penalizing the spectral norms. One way to control the upper bound (8) when learning
a neural network fθ is to consider a regularization penalty based on spectral norms

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) + λ

L∑
l=1
‖Wl‖2, (9)

where λ is a regularization parameter. In the context of a stochastic gradient algorithm,
one can obtain (sub)gradients of the penalty by computing singular vectors associated to
the highest singular value of each Wl. We consider the method of Yoshida & Miyato (2017),
which computes such singular vectors approximately using one or two iterations of the power
method, as well as a more costly approach using the full SVD.

Constraining the spectral norms with a continuation approach. In the constrained
setting, we want to optimize:

min
θ

1
n

n∑
i=1

`(yi, fθ(xi)) s.t ‖Wl‖ ≤ τ ; l ∈ 1, . . . , L ,

where τ is a user-defined constraint. This objective may be optimized by projecting eachWl

in the spectral norm ball of radius τ after each gradient step. Such a projection is achieved
by truncating the singular values to be smaller than τ (see Appendix A). We found that
the loss was hardly optimized with this approach, and therefore introduce a continuation
approach with an exponentially decaying schedule for τ reaching a constant τ0 after a few
epochs, which we found to be important for good empirical performance.

Combining with lower bounds. While these upper bound strategies are useful for
limiting model complexity, we found them less effective for robustness in our experiments
(see Section 4.2). However, we found that combining with lower bound approaches can
overcome this weakness, perhaps due to a better control of local stability. In particular,
such combined approaches often provide the best generalization performance in small data
scenarios, as well as better guarantees on adversarially robust generalization thanks to a
tighter control of the RKHS norm compared to robust optimization alone.
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2.4 Extension to multiple classes and non-Euclidian geometries

We now discuss how to extend the regularization strategies to multi-valued networks, in
order to deal with multiple classes. First, the upper bound strategies of Section 2.3 are easy
to extend, by simply considering spectral norms up to the last layer. This is also justified
by the generalization bound of Bartlett et al. (2017), which applies to the multi-class setup.
In the context of lower bounds, we can consider a multi-class penalty ‖f1‖2H + . . .+ ‖fK‖2H
for an RK-valued function f = (f1, f2, . . . , fK). One can then consider lower bounds on this
penalty by leveraging lower bounds on each individual fk. In particular, we define:

‖f‖2M :=
K∑
k=1

sup
x∈X ,‖δ‖2≤ε

(fk(x+ δ)− fk(x))2 and ‖∇f‖2 :=
K∑
k=1

sup
x∈X
‖∇fk(x)‖22,

where we use mini-batches of training data instead of X in our experiments. For robust
optimization formulations (7), the extension is straightforward, given that standard multi-
class losses such as the cross-entropy loss can be directly optimized in an adversarial training
or gradient penalty setup.
Finally, we note that while the kernel approach introduced in this section mainly considers
the Euclidian geometry in the input space, it is possible to consider heuristic alternatives
for other geometries, such as `∞ perturbations, as discussed in Appendix B.

3 Theoretical guarantees and insights

In this section, we study how standard margin-based generalization bounds can be extended
to an adversarial setting in order to provide theoretical guarantees on adversarially robust
generalization. We then discuss how our kernel approach provides novel interpretations for
training generative adversarial networks.

3.1 Guarantees on adversarial generalization

While various methods have been introduced to empirically gain robustness to adversarial
perturbations, the ability to generalize with such perturbations, also known as adversarial
generalization (Schmidt et al., 2018), still lacks theoretical understanding and useful guar-
antees. Margin-based bounds have been useful to explain the generalization behavior of
learning algorithms that can fit the training data well, such as kernel methods, boosting
and neural networks (Koltchinskii et al., 2002; Boucheron et al., 2005; Bartlett et al., 2017).
Here, we show how such arguments can be adapted to obtain guarantees on adversarial
generalization, i.e., on the expected classification error in the presence of an `2-bounded
adversary, based on the RKHS norm of a given model learned from data. For a binary
classification task with labels in Y = {−1, 1} and data distribution D, we would like to
bound the expected adversarial error of a classifier f , given for some ε > 0 by

errD(f, ε) := P(x,y)∼D(∃‖δ‖2 ≤ ε : yf(x+ δ) < 0). (10)
Leveraging the fact that f is ‖f‖H-Lipschitz, we now show how to further bound this
quantity using empirical margins, following the usual approach to obtaining margin
bounds for kernel methods (e.g., Boucheron et al., 2005). Consider a training dataset
(x1, y1), . . . , (xn, yn) ∈ X × Y. Define

Lγn(f) := 1
n

n∑
i=1

1{yif(xi) < γ}.

We then have the following bound, proved in Appendix C:
Proposition 1. With probability 1 − δ over a dataset {(xi, yi)}i=1,...,n, we have, for all
choices of γ > 0 and f ∈ H,

errD(f, ε) ≤ Lγ+2ε‖f‖H
n (f) +O

‖f‖H
γ
√
n

√√√√ 1
n

n∑
i=1

K(xi, xi) +
√

log(C(‖f‖H, γ)/δ)
n

 , (11)

where C(‖f‖H, γ) = (1 + 4(log2 ‖f‖H)2) · (1 + 4(log2(1/γ))2).
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When ε = 0, this leads to the usual margin bound, while ε > 0 yields a bound on adversarial
error errD(f, ε), for some neural network f learned from training data. We note that other
complexity measures based on products of spectral norms may be used instead of ‖f‖H, as
well as multi-class extensions, following Bartlett et al. (2017); Neyshabur et al. (2018).
One can then study the effectiveness of a regularization algorithm by inspecting cumula-
tive distribution (CDF) plots of the normalized margins γ̄i = yif(xi)/‖f‖H, for different
strenghts of regularization (an example is given in Figure 2, Section 4.2). According to
the bound (11), one can assess expected adversarial error with ε-bounded perturbations by
looking at the part of the plot to the right of γ̄ = 2ε.In particular, the value of the CDF
at such a value of γ̄ is representative of the bound for large n (since the second term is
negligible), while for smaller n, the best bound is obtained for a larger value of γ̄, which
also suggests that the right side of the plots is indicative of performance on small datasets.
When the RKHS norm can be well approximated, then our bound provides a certificate on
test error in the presence of adversaries. While such an approximation is difficult to obtain in
general, the guarantee is most useful when lower and upper bounds are controlled together.
We found this to be the case in our experiments for our new lower bound penalties based on
adversarial perturbations or gradient norms (see Section 4.2). In contrast, we found that the
upper bound is poorly controlled for robust optimization approaches such as PGD, possibly
because these approaches mainly encourage local robustness around training points. In
such settings, our guarantee is less meaningful, and one would likely need local verification
on each test example in order to guarantee robustness to all adversaries, a possibly costly
procedure. Nevertheless, our guarantee can be made more useful in such settings as well by
explicitly controlling the upper bound with spectral norm constraints.

3.2 Regularization of generative adversarial networks

Generative adversarial networks attempt to learn a generator neural network Gφ : Z → X ,
so that the distribution ofGφ(z) with z ∼ Dz a noise vector resembles a data distributionDx.
Various recent approaches have relied on regularization strategies on a discriminator network
in order to improve the stability of GAN training and the quality of the produced samples.
Some of these resemble our approaches from Section 2 such as gradient penalties (Gulrajani
et al., 2017; Roth et al., 2017) and spectral norm regularization (Miyato et al., 2018a).
While these regularization methods had different motivations originally, we suggest that
viewing them as approximations of an RKHS norm constraint provides some insight into
their effectiveness in practice; specifically, we provide an interpretation as optimizing a
kernel two-sample test such as MMD with the convolutional kernel introduced in Section 2:

min
φ

sup
f∈H:‖f‖H≤1

Ex∼Dx [f(x)]− Ez∼Dz [f(Gφ(z))]. (12)

In contrast to the Wasserstein GAN interpretation of a similar objective where all 1-Lipschitz
functions are considered (Arjovsky et al., 2017), the MMD interpretation yields a paramet-
ric statistical rate O(n−1/2) when learning from an empirical distribution with n samples,
which is significantly better than the O(n−1/d) rate of the Wasserstein-1 distance for high-
dimensional data such as images (Sriperumbudur et al., 2012). While the MMD approach
has been used for training generative models, it generally relies on a generic kernel function,
such as a Gaussian kernel, that appears explicitly in the objective (Dziugaite et al., 2015;
Li et al., 2017; Bińkowski et al., 2018). Although using a learned feature extractor can
improve this, the Gaussian kernel might be a poor choice when dealing with natural signals
such as images, while the hierarchical kernel of Bietti & Mairal (2018) is better suited for
this type of data, by providing useful invariance and stability properties. Leveraging the
variational form of the MMD (12) with this kernel suggests using convolutional networks as
the discriminator f , with constraints on the spectral norms in order to ensure ‖f‖H ≤ C
for some C, as done by Miyato et al. (2018a) through normalization.
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Table 1: Regularization on CIFAR10 with 5 000 or 1 000 examples for VGG-11 and ResNet-
18. Each entry shows the test accuracy with/without data augmentation when all hyper-
parameters are optimized on a validation set.
Method 5k VGG-11 5k ResNet-18 1k VGG-11 1k ResNet-18
No weight decay 71.13/57.88 68.14/53.01 50.68/42.82 42.19/38.18
Weight decay 73.13/57.71 71.59/54.71 51.16/44.11 43.93/37.84
SN penalty (PI) 74.23/62.26 73.25/53.19 53.38/45.29 46.93/38.67
SN penalty (SVD) 74.7/60.87 73.49/55.46 52.32/44.52 47.03/40.04
SN projection 74.58/63.36 75.87/55.31 53.52/46.0 45.11/38.56
‖f‖2M penalty 72.95/60.16 70.61/55.47 51.71/45.0 45.23/44.44
‖∇f‖2 penalty 73.45/60.55 73.01/57.45 54.32/46.48 48.86/44.0
VAT 72.45/59.16 73.07/55.75 52.06/43.21 46.6/42.46
PGD-`2 72.7/59.37 72.72/54.99 51.52/43.74 46.83/39.3
PGD-`∞ 73.29/58.04 72.81/54.13 51.92/43.74 46.27/40.97
grad-`1 75.13/58.92 71.11/54.46 53.86/43.65 48.49/41.01
grad-`2 75.13/58.63 73.83/55.39 54.79/42.73 47.56/42.06
PGD-`2 + SN projection 75.02/61.42 76.06/56.99 53.74/45.93 46.96/40.19
grad-`2 + SN projection 74.67/63.12 76.17/55.53 55.98/46.68 48.94/43.26
‖f‖2M + SN projection 74.08/63.52 75.23/58.8 54.03/46.65 47.86/42.88
‖∇f‖2 + SN projection 72.33/63.25 75.89/56.86 54.8/46.73 48.63/44.57

4 Experiments

We tested the regularization strategies presented in Section 2 in the context of improving
generalization on small datasets and training adversarially robust models. Our goal is to use
common convolutional architectures used for large datasets and improve their performance
in different settings through regularization.
For the adversarial training strategies, the inner maximization problems are solved with
5 steps of projected gradient ascent (Madry et al., 2018) with a randomly chosen starting
point. In the case of the multi-class lower bound penalties ‖f‖2M and ‖∇f‖2 (see Section 2.4),
we also maximize over examples in the mini-batch, only considering the maximal element
when computing gradients w.r.t. parameters. For the robust optimization problem (7), we
consider the PGD approach for `2 and `∞ perturbations (Madry et al., 2018), as well as the
corresponding `2 (squared) and `1 gradient norm penalties. For the upper bound approaches
with spectral norms (SNs), we consider the SN projection strategy with decaying τ , as well as
the SN penalty (9), either using power iteration (PI) or a full SVD for computing gradients.

4.1 Improving generalization on small datasets

In this setting, we use 1 000 and 5 000 examples of the CIFAR10 dataset, with or without data
augmentation. We consider a VGG network (Simonyan & Zisserman, 2014) with 11 layers,
as well as a residual network (He et al., 2016) with 18 layers, which achieve 91% and 93%
test accuracy respectively when trained on the full training set with data augmentation. We
do not use any batch normalization layers in order to prevent any interaction with spectral
norms. Each regularization strategy derived in Section 2 is trained for 500 epochs using
SGD with momentum and batch size 128, halving the step-size every 40 epochs from a fixed
initial step-size (0.05 for VGG-11, 0.1 for ResNet-18), a strategy we found to work relatively
well for all methods. In order to study the potential effectiveness of each method, we assume
that a fairly large validation set is available to select hyper-parameters; thus, we keep 10 000
annotated examples for this purpose.
Table 1 shows the test accuracies we obtain for upper and lower bound approaches, as well
as combined approaches and different geometries. We also include virtual adversarial train-
ing (VAT, Miyato et al., 2018b). Among upper bound strategies, the constrained approach
often works best, perhaps thanks to a more explicit control of the SNs compared to the
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Figure 1: Robustness trade-off curves of different regularization methods for VGG11 on
CIFAR10. Each plot shows test accuracy vs adversarial test accuracy for `2-bounded, 40-
step PGD adversaries with a fixed εtest. The bottom plots consider PGD-`2 + SN projection,
with different values of the constraint radius τ . Different points on a curve correspond to
training with different regularization strengths, with the leftmost points corresponding to
the strongest regularization.

penalized approach. The SN penalty can work well nevertheless, and provides computa-
tional benefits when using the PI variant. For lower bound approaches, we found our ‖f‖2M
and ‖∇f‖2 penalties to often work best, particularly without data augmentation, while the
robust optimization gradient `1 and `2 norm penalties can be preferable with data aug-
mentation. We note that the best regularization parameters are often quite small on such
datasets, making the gradient penalties good approximations of the robust objective (7)
used by PGD. Because gradient penalties have closed form gradients while PGD only ob-
tains them by solving (7) approximately, they may work better in this setting thanks to
optimization benefits. The adaptive nature of the regularization through robust optimiza-
tion may also be beneficial on these datasets which are often easily separable with CNNs,
however the explicit penalization by ‖f‖2M or‖∇f‖2 seems to be more helpful in the case
of 1 000 examples with no data augmentation, which is plausibly the hardest setting in our
experiments. Finally, we can see that the combined approaches of lower bounds (either ro-
bust optimization, or separate penalties) together with SN constraints often yield the best
results. Indeed, lower bound approaches alone do not necessarily control the upper bounds
(and this is particularly true for PGD, as discussed in Section 4.2), which might explain
why the additional constraints on SNs are helpful.

4.2 Training adversarially robust models

We consider the same VGG architecture as in Section 4.1, trained on CIFAR10 with data
augmentation, with different regularization strategies. Each method is trained for 300 epochs
using SGD with momentum and batch size 128, dividing the step-size in half every 30 epochs.
This strategy was successful in reaching convergence for all methods.
Figure 1 shows the test accuracy of the different methods in the presence of `2-bounded
adversaries, plotted against standard accuracy. We can see that the robust optimization
approaches tend to work better in high-accuracy regimes, perhaps because the local stability
and data fit that they encourage are sufficient on this dataset, while the ‖f‖2M penalty can be
useful in some regimes where robustness to large perturbations is needed. We find that upper
bound approaches alone do not provide robust models, but Figure 1(bottom) shows that
combining the SN projection approach with a lower bound strategy (in this case PGD-`2)
helps improve robustness, perhaps thanks to a better control of margins and stability. The
plots also confirm that gradient penalties are preferable for small regularization strengths
(they achieve higher accuracy while improving robustness for small εtest), possibly due to
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Figure 2: (left) Comparison of lower and upper bound quantities (‖f‖M vs the product of
spectral norms). (right) CDF plot of normalized empirical margins for the ‖∇f‖2 penalty
with different regularization strengths, normalized by ‖f‖M . We consider 1000 fixed training
examples when computing ‖f‖M .

better optimization, while for stronger regularization, the gradient approximation no longer
holds and the adversarial training approaches such as PGD are preferred.
These results suggest that a robust optimization approach such as PGD can work very
well on the CIFAR10 dataset, perhaps because the training data is easily separable with a
large margin and the method adapts to this “easiness”. However, this raises the question of
whether the approach is actually controlling ‖f‖H, given that it only attempts to minimize
a lower bound, as discussed in Section 2.2. Figure 2(left) casts some doubt on this, showing
that for PGD in contrast to other methods, the product of spectral norms (representative of
an upper bound on ‖f‖H) increases when the lower bound ‖f‖M decreases. This suggests
that a network learned with PGD with large ε may have large RKHS norm, possibly because
the approach tries to separate ε-balls around the training examples, which may require a
more complex model than simply separating the training examples (see also Madry et al.,
2018). This large discrepancy between upper and lower bounds highlights the fact that such
models may only be stable locally near training data, though this happens to be enough
for robustness on many test examples on CIFAR10. Moreover, guaranteeing robustness at
test time against all adversaries would likely require expensive verification procedures, given
that the global guarantee given by the product of spectral norms is weak in this case.
In constrast, for other methods, and in particular the lower bound penalties ‖f‖2M
and ‖∇f‖2, the upper and lower bounds appear more tightly controlled, suggesting a more
appropriate control of the RKHS norm. This makes our guarantees on adversarial general-
ization more meaningful, and thus we may look at the empirical distributions of normalized
margins γ̄ obtained using ‖f‖M for normalization, shown in Figure 2(right). The curves
suggest that for small γ̄, smaller values of λ are preferred, while stronger regularization
helps when γ̄ increases, yielding lower test error when an adversary is present according to
our bounds in Section 3.1. This qualitative behavior is indeed observed in the results of
Figure 1 on test data for the ‖∇f‖2 penalty approach.

5 Discussion

Making generic machine learning techniques more data efficient is crucial to reduce the costs
related to annotation. While other approaches may also be important to solve this grand
challenge, such as incorporating more prior knowledge in the architecture (e.g., Oyallon
et al., 2017), semi-supervised learning (Chapelle et al., 2006) or meta-learning (when mul-
tiple tasks or datasets are available, see, e.g., Thrun, 1998), basic regularization principles
will be needed and those are crucially missing today. Such principles are also essential for
obtaining robust models in applications where security is a concern, such as self driving
cars. Our paper presents various algorithmic strategies for regularization on generic deep
convolutional networks, by leveraging the structure of an appropriate RKHS, leading to
many existing approaches to regularization, as well as new ones, in addition to providing
theoretical guarantees and insights on different methods.
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A Details on optimization with spectral norms

This section details our optimization approach presented in Section 2.3 for learning with
spectral norm constraints. In particular, we rely on a continuation approach, decreasing the
size of the ball constraints during training, towards a final value τ . The method is presented
in Algorithm 1. We use an exponentially decreasing schedule for τ , and found using 2 epochs
for κ to work well in practice. In the context of convolutional networks, we simply consider
the SVD of a reshaped filter matrix, but we note that alternative approaches based on the
singular values of the full convolutional operation may also be used (Sedghi et al., 2018).

B Extensions to non-Euclidian geometries

The kernel approach from previous sections is well-suited for input spaces X equipped with
the Euclidian distance, thanks to the non-expansiveness property (2) of the kernel mapping.
In the case of linear models, this kernel approach corresponds to using `2-regularization
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Algorithm 1 Stochastic projected gradient with continuation
Input: τ , κ, step-sizes ηt
for t = 1, . . . do
Sample mini-batch and compute gradients of the loss w.r.t. each W l, denoted Glt
τt = τ(1 + exp

(−t
κ

)
)

for l = 1, . . . , L do
W̃ l
t := W l

t − ηtGlt
Compute SVD: W̃ l

t = Udiag(σ)V T
σ̂ := proj‖.‖∞≤τt (σ)
W l
t+1 := Udiag(σ̂)V T

end for
end for

by taking a linear kernel. However, other forms of regularization and geometries can often
be useful, for example to encourage sparsity with an `1 regularizer. Such a regularization
approach presents tight links with robustness to `∞ perturbations on input data, thanks to
the duality relation ‖w‖1 = sup‖u‖∞

〈w, u〉 (see Xu et al., 2009a).

In the context of deep networks, we can leverage such insights to obtain new regularizers,
expressed in the same variational form as the lower bounds in Section 2.2, but with different
geometries on X . For `∞ perturbations, we obtain

sup
x,y∈X

f(x)− f(y)
‖x− y‖∞

≥ sup
x∈X
‖∇f(x)‖1. (13)

The Lipschitz regularizer (l.h.s.) can also be taken in an adversarial perturbation form,
with `∞-bounded perturbations ‖δ‖∞ ≤ ε. When considering the corresponding robust
optimization problem

min
θ

1
n

n∑
i=1

sup
‖δ‖∞≤ε

`(yi, fθ(xi + δ)), (14)

we may consider the PGD approach of Madry et al. (2018), or the associated gradient
penalty approach with the `1 norm, which is a good approximation when ε is small (Lyu
et al., 2015; Simon-Gabriel et al., 2018).
As most visible in the gradient `1-norm in (13), these penalties encourage some sparsity in
the gradients of f , which is a reasonable prior for regularization on images, for instance,
where we might only want predictions to change based on few salient pixel regions. This
can lead to gains in interpretability, as observed by Tsipras et al. (2018).
We note that in the case of linear models, our robust margin bound of Section 3.1 can
be adapted to `∞-perturbations, by leveraging Rademacher complexity bounds for `1-
constrained models (Kakade et al., 2009). Obtaining similar bounds for neural networks
would be interesting but goes beyond the scope of this paper.

Experiments with `∞ adversaries. Figure 3 shows similar curves to Figure 1 from
Section 4.2, but where the attacker is constrained in `∞ norm instead of `2 norm. We can
see that using the right metric in PGD indeed helps against an `∞ adversary, nevertheless
controlling global stability through the RKHS norm as in the ‖f‖2M and ‖∇f‖2 penalties
can still provide some robustness against such adversaries, even with large εtest. For gra-
dient penalties, we find that the different geometries behave quite similarly, which may
suggest that more appropriate optimization algorithms than SGD could be needed to better
accommodate the non-smooth case of `1/`∞, or perhaps that both algorithms are actually
controlling the same notion of complexity on this dataset.

C Details on generalization guarantees

This section presents the proof of Proposition 1, which relies on standard tools from statis-
tical learning theory (e.g., Boucheron et al., 2005).
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Figure 3: `∞ robustness trade-off curves of different regularization methods for VGG11 on
CIFAR10. Each plot shows test accuracy vs adversarial test accuracy for `∞ bounded 40-step
PGD adversaries with a fixed εtest. Different points on a curve correspond to training with
different regularization strengths, with the leftmost points corresponding to the strongest
regularization.

C.1 Proof of Proposition 1

Proof. Assume for now that γ is fixed in advance, and let Fλ := {f ∈ H : ‖f‖H ≤ λ}. Note
that for all f ∈ Fλ we have

errD(f, ε) = P (∃‖δ‖ ≤ ε : yf(x+ δ) < 0) ≤ P (yf(x) < λε) =: Lλε(f),
since ‖f‖H ≤ λ is an upper bound on the Lipschitz constant of f . Consider the function

φ(x) =


0, if x ≤ −γ − λε
1, if x ≥ −λε
1 + (x+ λε)/γ, otherwise.

Defining A(f) = Eφ(−yf(x)) ≥ Lλε(f) and An(f) = 1
n

∑n
i=1 φ(−yif(xi)) ≤ Lλε+γn (f), and

noting that φ is upper bounded by 1 and 1/γ Lipschitz, we can apply similar arguments
to (Boucheron et al., 2005, Theorem 4.1) to obtain, with probability 1− δ,

Lλε(f) ≤ Lλε+γn (f) +O

(
1
γ
Rn(Fλ) +

√
log 1/δ
n

)
,

where Rn(Fλ) denotes the empirical Rademacher complexity of Fλ on the dataset
{(xi, yi)}i=1,...,n. Standard upper bounds on empirical Rademacher complexity of kernel
classes with bounded RKHS norm yield the following bound

errD(f, ε) ≤ Lλε+γn (f) +O

 λ

γ
√
n

√√√√ 1
n

n∑
i=1

K(xi, xi) +
√

log 1/δ
n

 .

Note that the bound is still valid with γ′ ≥ γ instead of γ in the first term of the r.h.s.,
since Lγn(f) is non-decreasing as a function of γ.
In order to establish the final bound, we instantiate the previous bound for values λi = 2i
and γj = 2−j . Defining δi,j = δ

(1+4i2)·(1+4j2) , we have that w.p. 1− δi,j , for all f ∈ Fλi and
all γ ≥ γj ,

errD(f, ε) ≤ Lλiε+γn (f) +O

 λi
γj
√
n

√√√√ 1
n

n∑
i=1

K(xi, xi) +
√

log 1/δi,j
n

 . (15)

By a union bound, this event holds jointly for all integers i, j w.p. greater than 1− δ, since∑
i,j δi,j ≤ δ. Now consider an arbitrary f ∈ H and γ > 0 and let i = dlog2 ‖f‖He and

j = dlog2(1/γ)e. We have
λi ≤ 2‖f‖H
1
γj
≤ 2
γ

log(1/δi,j) ≤ log(C(‖f‖H, γ)/δ).
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Applying this to the bound in (15) yields the desired result.
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