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ABSTRACT

In this paper, we propose a novel unsupervised clustering approach exploiting the
hidden information that is indirectly introduced through a pseudo classification
objective. Specifically, we randomly assign a pseudo parent-class label to each
observation which is then modified by applying the domain specific transformation
associated with the assigned label. Generated pseudo observation-label pairs are
subsequently used to train a neural network with Auto-clustering Output Layer
(ACOL) that introduces multiple softmax nodes for each pseudo parent-class. Due
to the unsupervised objective based on Graph-based Activity Regularization (GAR)
terms, softmax duplicates of each parent-class are specialized as the hidden infor-
mation captured through the help of domain specific transformations is propagated
during training. Ultimately we obtain a k-means friendly latent representation.
Furthermore, we demonstrate how the chosen transformation type impacts per-
formance and helps propagate the latent information that is useful in revealing
unknown clusters. Our results show state-of-the-art performance for unsupervised
clustering tasks on MNIST, SVHN and USPS datasets, with the highest accuracies
reported to date in the literature.

1 INTRODUCTION

Clustering, the unsupervised process of grouping similar examples together, is one of the most
fundamental challenges in machine learning research and has been studied extensively in different
aspects such as feature selection, distance functions, grouping methods, etc. (Aggarwal & Reddy,
2014). k-means (MacQueen et al., 1967) and Gaussian Mixture Models (GMM) (Bishop, 2007) are
two well-known conventional clustering algorithms that are applicable to a wide range of problems.
Traditionally, these methods are applied to low-level features such as raw data or gradient-orientation
histograms (HOG) for images. Therefore, their distance metrics are limited to local relations in the
data space and inadequate to represent hidden dependencies in latent spaces. On the other hand,
spectral clustering (von Luxburg, 2007) is another conventional approach producing more flexible
distance metrics than k-means and GMM. However, these types of solutions are not scalable to large
datasets as they need to compute the full graph Laplacian matrix.

In recent years, researchers have focused on the unsupervised learning of high-level features on
which to apply clustering and shown that learning good representations is important for the accuracy
and robustness of the clustering task. Deep Embedding Clustering (DEC) (Xie et al., 2016) was
proposed to simultaneously learn feature representations and cluster assignments using deep neural
networks (DNN). In this approach, first DNN parameters are initialized with a layer-wise trained
deep autoencoder (Vincent et al., 2010) and then the initialized DNN is used to obtain the latent
representation on which to perform k-means clustering for the initialization of cluster centers.
This complicated initialization is followed by a challenging optimization process that minimizes
the Kullback–Leibler (KL) divergence between the centroid-based probability distribution and the
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auxiliary target distribution derived from the soft cluster assignments. Similarly, Joint Unsupervised
Learning (JULE) (Yang et al., 2016) combines agglomerative clustering with convolutional neural
networks (CNN) and formulates them as a recurrent process. Although JULE proposes an end-to-end
learning framework, it suffers scalability issues due to its agglomerative clustering.

Novel deep generative models that can be trained via direct backpropagation have recently been
proposed avoiding the difficulties in preexisting generative models such as Restricted Boltzmann
Machines (RBM), Deep Belief Networks (DBN) and Deep Boltzmann Machines (DBM) that are
trained by MCMC-based algorithms (Hinton et al., 2006; Salakhutdinov & Hinton, 2009). Among
two canonical examples of these models, Variational Autoencoders (VAE) (Kingma & Welling,
2013; Rezende et al., 2014) integrate stochastic latent variables into the conventional autoencoder
architecture while Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) propose
an adversarial training procedure implementing a min-max adversarial game between two neural
networks: the discriminator and the generator. Following these advances, researchers have started to
study new hybrid models with the goal of performing unsupervised clustering through deep generative
models. For example, Variational Deep Embedding (VaDE) (Jiang et al., 2017) proposed a clustering
framework combining VAE and GMM together. Also, Gaussian Mixture Variational Autoencoder
(GMVAE) (Dilokthanakul et al., 2016) built upon the semi-supervised model by Kingma et al. (2014)
to perform unsupervised clustering within the VAE framework with a Gaussian mixture as a prior
distribution. GAN-based methods include: Categorical Generative Adversarial Networks (CatGAN)
(Springenberg, 2015), an approach incorporating neural network classifiers with an adversarial
generative model, and Adversarial Autoencoder (AAE) (Makhzani et al., 2015), a probabilistic
autoencoder variant integrating traditional reconstruction error with adversarial training criterion of
GANs. Besides, Premachandran & Yuille (2016) proposes to fuse the disentangled features learned
by Information Maximizing Generative Adversarial Networks (InfoGAN), an extension to GANs
that uses mutual information to induce representation, with k-means clustering.

In this paper, we propose a novel unsupervised clustering approach building upon the previous study
on learning of latent annotations in a particular semi-supervised setting where a coarse level of
supervision is available for all observations, i.e. parent-class labels, but the model has to learn a
fine level of latent annotations, i.e. sub-classes, under each one of these parents. For clarification,
assume that we are given a dataset of hand-written digits such as MNIST (LeCun et al., 1998) where
the overall task is the complete categorization of each digit, but the only available supervision is
whether a digit is smaller or greater than 5. To study this particular semi-supervised setting on
neural networks, Kilinc & Uysal (2017a) proposed a novel output layer modification, Auto-clustering
Output Layer (ACOL). ACOL allows simultaneous supervised classification (per provided parent-
classes) and unsupervised clustering (within each parent) where clustering is performed through
Graph-based Activity Regularization (GAR) technique recently proposed in Kilinc & Uysal (2017b).
More specifically, as ACOL duplicates the softmax nodes at the output layer for each class, GAR
allows for competitive learning between these duplicates on a traditional error-correction learning
framework.

To learn latent annotations in a fully unsupervised setup, we substitute the real, yet unavailable, parent-
class information with a pseudo one. More specifically, we choose a domain specific transformation
to be applied to the observations in a dataset to generate examples for a pseudo parent-class. The
transformed dataset constitutes the examples of that pseudo parent-class and every new transformation
generates a new one. Regarding the MNIST example for this fully unsupervised setting, now we
simply augment the dataset by applying a transformation to examples, e.g. rotating by 90o, and label
transformed examples as rotated and non-transformed examples as original. This new augmented
dataset is provided to the network as a two-class classification problem with pseudo classes labeled
as original and rotated as visualized in Figure 1. While being trained over this pseudo supervision,
through ACOL and GAR, the neural network learns the latent representation distinguishing the real
digit identities in an unsupervised manner.

The idea of employing an auxiliary task to learn a good data representation has been previously studied
for different domains (Collobert et al., 2011; Ahmed et al., 2008). Most recent study, Exemplar CNN
(Dosovitskiy et al., 2016), proposed to use a regularizer enforcing the feature representation to be
approximately invariant to the transformations while training the network to discriminate between
a set of pseudo parent-classes (“surrogate classes” with their definition). This approach requires
thousands of transformations to obtain a good representation and also it cannot exploit more than
300 examples per “surrogate class” severely limiting its scalability. Furthermore, some elementary
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Figure 1: Assume that we are given a dataset of hand-written digits such as MNIST where the overall
task is the complete categorization of each digit. Then, we simply augment the dataset by applying
a transformation to examples, e.g. rotating by 90o, and label each of them either as original or as
rotated. This new augmented dataset is provided to the network as a two-class classification problem.
While being trained over this pseudo supervision, through ACOL and GAR, the neural network also
learns the latent representation distinguishing the real digit identities in unsupervised an manner.

transformations, such as rotation, have only a minor impact on the performance. In comparison, in
our approach, only 8 pseudo parent-classes generated by rotation-based transformations provide a
rich latent representation to obtain state-of-the-art unsupervised clustering performance.

2 BACKGROUND

2.1 AUTO-CLUSTERING OUTPUT LAYER

Unlike traditional output layer structure, the Auto-clustering Output Layer (ACOL) (Kilinc & Uysal,
2017a) defines more than one softmax node (ks duplicates) per parent-class. Outputs of ks duplicated
softmax nodes that belong to the same parent are then combined in a subsequent pooling layer for
the final prediction. Training is performed in the configuration shown in Figure 2 where np is the
number of parent-classes. This might look like a classifier with redundant softmax nodes. However,
duplicated softmax nodes of each parent are specialized using GAR throughout the training in a
way that each one of n = npks softmax nodes represent an individual sub-class of a parent, i.e.
annotation.

In order to mathematically describe this modification, let us consider a neural network with L− 1

hidden layers where l denotes the individual index for each layer such that l ∈ {0, ..., L}. Let Y (l)

denote the output of the nodes at layer l. Y (0) = X is the input and f(X) = f (L)(X) = Y (L) = Y

is the output of the entire network. W (l) and b(l) are the weights and biases of layer l, respectively.
Then, the feedforward operation of the neural networks can be written as

f (l)
(
X
)
= Y (l) = h(l)

(
Y (l−1)W (l) + b(l)

)
(1)

where h(l)(.) is the activation function applied at layer l.

For ACOL networks, h(L−1)(.) and h(L)(.) respectively correspond to softmax and linear activation
functions. Also, W (L) := [Inp . . . Inp ]

T and b(L) := 0 where I denotes the identity matrix as
ACOL simply defines constant weights between the augmented softmax layer and the pooling layer
to sum up the output probabilities of the softmax nodes belonging to the same parent. Let Z denote
the activities at the input of augmented softmax layer such that

Z := Y (L−2)W (L−1) + b(L−1) (2)
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Figure 2: Neural network structure with the ACOL. Each softmax node corresponds to an individual
sub-class of a parent, i.e. annotation. During feedforward operation of the network, pooling layer
calculates final parent-class predictions through sub-class probabilities.

corresponding to an m× n matrix where m is the number of examples and n is the total number of
all softmax nodes at the augmented softmax layer such that n = npks, where np is the number of
parent-classes and ks is the clustering coefficient of ACOL. Then, the output of the ACOL applied
network can be written in terms of Z as

Y = softmax
(
Z
)
W (L) (3)

2.2 GRAPH-BASED ACTIVITY REGULARIZATION

Kilinc & Uysal (2017a) adopted the Graph-based Activity Regularization (GAR) technique (Kilinc &
Uysal, 2017b) as the unsupervised regularization term to create competition between the duplicated
softmax nodes of the augmented softmax layer which ultimately results in specialized but equally-
active softmax nodes each representing a latent annotation within a parent.

The GAR technique applies the regularization over the positive part of the activities at the input of
softmax nodes such that

g
(
X
)
= B := max

(
0,Z

)
(4)

and defines two terms to turn n× n symmetric matrix N , which is defined as N := BTB, into the
identity matrix. While the affinity term penalizes the non-zero off-diagonal entries of N , balance
attempts to equalize diagonal entries. Let v be a 1× n vector representing the diagonal entries of
N such that v := [N11 . . . Nnn] and V be defined as n× n symmetric matrix such that V := vTv.
Then, the affinity and balance terms can be written as

Affinity = α
(
B
)
:=

n∑
i 6=j

Nij

(n− 1)
n∑
i=j

Nij

(5) Balance = β
(
B
)
:=

n∑
i6=j

Vij

(n− 1)
n∑
i=j

Vij

(6)

which modifies the overall objective function of the training proposed in Kilinc & Uysal (2017a) as

L
(
f
(
X
)
, t
)
+ U

(
g
(
X
))

= L
(
Y , t

)
+ cαα

(
B
)
+ cβ

(
1− β

(
B
))

+ cF ||B||2F (7)

where L(.) is the supervised log loss function, t = [t1 . . . tm]T is the vector of provided parent-class
labels such that ti ∈ {1, ..., np} (recall that, in the semi-supervised setting considered in Kilinc &
Uysal (2017a), there is a real partial supervision available for all examples, e.g. a digit is smaller
or greater than 5), U(.) is the unsupervised regularization term consisting of affinity, balance and
||B||F (the Frobenius norm for B) that is employed to limit the denominators of both affinity and
balance terms not to diminish their effects and cα, cβ , cF are the weighting coefficients.
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GAR has been originally proposed for the classical type of semi-supervised setting where the number
of labeled observations is much smaller than the number of unlabeled observations, but all existing
classes are equally represented by the available labels even at limited numbers. Kilinc & Uysal
(2017b) have shown that defining the objective of the regularization over the matrix N yields a
scalable and efficient graph-based solution and that the entire operation corresponds to propagating
the available labels across the graph GM whose edges are specified by the m×m symmetric matrix
M := BBT that infers the adjacency of the examples based on the predictions of the neural network.
More specifically, it has been shown that as the matrix N turns into the identity matrix, GM becomes
a disconnected graph including n disjoint subgraphs each of which is m/n-regular. This indicates that
the strong adjacencies in the matrix M get stronger, weak ones diminish and each label is propagated
to m/n examples through the strong adjacencies.

On the other hand, in the particular semi-supervised setting considered by Kilinc & Uysal (2017a)
(i.e. a coarse level of labeling is available for all observations but the model still needs to learn a fine
level of latent annotation for each one of them), when applied to an ACOL network, GAR provides
that the latent information introduced by the coarse supervision is propagated from the graph GY
(whose edges are specified by m ×m symmetric matrix Y Y T ) to its spanning subgraph GM to
reveal deeper latent annotations. In other words, although these two graphs are made up of the same
vertices (m examples) while propagating the latent information that is captured through supervised
adjacency introduced by GY across GM, GAR terms eliminate some of the edges of GY from GM in
a way that GM ultimately becomes a disconnected graph of n disjoint subgraphs each of which now
corresponds to a latent annotation.

3 PROPOSED FRAMEWORK

3.1 OBJECTIVE FUNCTION

The unsupervised clustering approach proposed in this paper adopts the same framework introduced
in Kilinc & Uysal (2017a). Since the real parent-class labels (a digit is smaller or greater than 5)
are unavailable in a fully unsupervised setting, we randomly assign pseudo parent-class labels each
of which is associated with a domain specific transformation used to generate the examples of that
pseudo parent-class.

In this setting, np now corresponds to the number of pseudo parent-classes and t̃ = [t̃1 . . . t̃m]T is
a vector of randomly assigned pseudo parent-class labels which are uniformly distributed across
np pseudo parent-classes such that t̃i ∈ {1, ..., np}. Also, there exists a set of transformations
ST = {T1, ..., Tnp}where transformation Tj is used to generate the examples of the jth pseudo parent-
class such that x̃i = Tj(xi). ST also includes non-transformation T1 providing x̃i = T1(xi) = xi
to ensure that the original observations are introduced to the network during training. t̃ is associated
with a vector of transformations T = [T1 . . . Tm]T such that Ti = Tt̃i .
Let � be an element-wise operation defined between the vector of transformations T and the original
input X = [x1 . . .xm]T such that

X̃ =


x̃1

x̃2

...
x̃m

 = T �X =


T1
T2
...
Tm

�

x1

x2

...
xm

 =


T1(x1)
T2(x2)

...
Tm(xm)

 =


Tt̃1(x1)
Tt̃2(x2)

...
Tt̃m(xm)

 (8)

where X̃ corresponds to the modified input per randomly assigned pseudo labels t̃. The output of the
entire network and the positive part of the augmented softmax layer activities respectively become
Y = f(X̃) and B = g(X̃). Then, the objective function defined in (7) can simply be adopted by
substituting the real, yet unavailable, observation-label pair (X, t) with a pseudo one (X̃, t̃) such
that

L
(
f
(
X̃), t̃

)
+ U

(
g
(
X̃
))

= L
(
Y , t̃

)
+ cαα

(
B
)
+ cβ

(
1− β

(
B
))

+ cF ||B||2F (9)
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3.2 MODIFIED Affinity AND Balance TERMS

Recall that an n × n symmetric matrix N = BTB specifies the edges of the graph between the
softmax duplicates and that GAR terms have been proposed to regularize the matrix N in a way
that it turns into the identity matrix. While the objective of affinity, i.e. penalizing the non-zero
off-diagonal entries of N , corresponds to assigning an example to only one softmax node with the
probability of 1, the objective of balance, i.e. equalizing diagonal entries of N , corresponds to
preventing collapsing onto a subspace of dimension less than n.

Among the off-diagonal entries of N determining the affinity cost, for each one of n softmax nodes,
there exist ks − 1 entries describing its relation with the other duplicates of the same parent-class (let
us define them as intra-parent entries) and (np − 1)ks entries describing its relation with the softmax
nodes belonging to other parent-classes (let us define them as inter-parent entries). While inter-parent
entries are explicitly affected by the pseudo classification objective as well as the regularization,
intra-parent entries do not experience the classification directly. Therefore, the affinity cost due to
inter-parent entries is minimized at a different rate than the affinity cost due to intra-parent entries.
On the other hand, as it is calculated over the diagonal entries of N , the balance cost does not
either experience the pseudo classification objective explicitly. As a result, due to the direct impact
of the pseudo classification objective which is observed only on the affinity cost, the weighting
between the regularization terms actively alters during the training and needs to be re-tuned through
the hyperparameters cα and cβ . This effect can be observed more clearly as np, the number of
parent-classes, increases.

To ensure a more robust regularization we introduce a modification for the affinity and balance terms:
We discard all inter-parent entries of N and represent the remaining ones as a three dimensional
tensor Ñ . Thus, Ñ is a ks × ks × np tensor such that Ñ :,:,k specifies the relations between ks
softmax duplicates of the kth parent-class where k ∈ {1, ..., np}. Also, Ṽ is another ks × ks × np
tensor defined as

Ṽ :,:,k = [Ñ1,1,k . . . Ñks,ks,k]
T [Ñ1,1,k . . . Ñks,ks,k] (10)

Then, the modified affinity and balance terms can be respectively written as

α̃
(
B
)
:=

1

np

np∑
k=1

ks∑
i 6=j

Ñijk

(ks − 1)
ks∑
i=j

Ñijk

(11) β̃
(
B
)
:=

1

np

np∑
k=1

ks∑
i6=j

Ṽijk

(ks − 1)
ks∑
i=j

Ṽijk

(12)

and simply correspond to calculating the original terms given in (5), (6) on each 2-D ks × ks × 1

slice of Ñ and Ṽ tensors and then averaging the results for np of them.

Replacing these modified terms in (9), the overall modified objective function becomes

L
(
f
(
X̃), t̃

)
+ U

(
g
(
X̃
))

= L
(
Y , t̃

)
+ cαα̃

(
B
)
+ cβ

(
1− β̃

(
B
))

+ cF ||B||2F (13)

3.3 TRAINING AND CLUSTER ASSIGNMENTS

Network parameters are trained by implementing the stochastic optimization method Adam (Kingma
& Ba, 2014) based on the objective given in (13). After training, k-means clustering is performed on
the representation space observed in the hidden layer preceding the augmented softmax layer such
that

F = Y (L−2) = f (L−2)(X) (14)
Recalling that the original examples are already introduced to the network as the examples of first
pseudo parent-class through transformation T1, we obtain the latent space representation only for the
original examples to perform k-means clustering.

One might suggest performing k-means clustering on the representation observed in the augmented
softmax layer (Z or softmax(Z)) rather than F . Properties and respective clustering performances
of these representation spaces are empirically demonstrated in the following sections.

Algorithm 1 below describes the entire training and cluster assignment procedure.
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Algorithm 1: Model training and cluster assignments
Input :X = [x1 . . .xm]T , np,

a set of transformations ST = {T1, ..., Tnp},
batch size b, weighing coefficients cα, cβ , cF , the number of clusters k

repeat
t̃←− random(np) // Randomly assign labels across np classes
T ←− [Tt̃1 , ..., Tt̃m ] // Obtain the vector of transformations corresponding

to t̃

X̃ ←− T �X // Obtain the modified input{
(X́1, t́1), ..., (X́m/b, t́m/b)

}
←− (X̃, t̃) // Shuffle and create batch pairs

for i← 1 to m/b do
Take ith pair (X́i, t́i)

Forward propagate for Ý i = f(X́i) and B́i = g(X́i)

Take a gradient step for L
(
Ý i, t́i

)
+ cαα̃

(
B́i

)
+ cβ

(
1− β̃

(
B́i

))
+ cF ||B́i||2F

until stopping criteria is met
F ←− f (L−2)(X) // Obtain latent space representation F for the original
examples

y ←− kmeans(F , k) // Assign clusters by performing k-means on F
return :Cluster assignments y

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND DATASETS

The models have been implemented in Python using Keras (Chollet, 2015) and Theano (Theano
Development Team, 2016). Open source code is available at http://github.com/ozcell/LALNets that
can be used to reproduce the experimental results obtained on three benchmark image datasets,
MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011) and USPS. Specifications of these datasets
are presented in Table 1.

Table 1: Datasets used in the experiments.

Data type Number of examples Dimension Number of classes

MNIST Image: Hand-written digits Train: 60000, Test: 10000 1× 28× 28 10
USPS Image: Hand-written digits Train: 7291, Test: 2007 1× 16× 16 10
SVHN Image: Street-view digits Train: 73257, Test: 26032 3× 32× 32 10

All experiments have been performed on a 6-layer convolutional neural network (CNN) model
whose specifications are given in Table 2 where coefficients of GAR terms have been chosen as
ks = 20, cα = 0.1, cβ = 1, cF = 0.000001. During training, pseudo supervised objective is
introduced as an 8 pseudo parent-class classification problem, i.e. np = 8, through the following
rotation-based transformations:

Ti =



i = 1 : No transformation
i = 2 : Rotate by 90o

i = 3 : Rotate by 180o

i = 4 : Rotate by 270o

i = 5 : Flip horizontally
i = 6 : Flip horizontally + Rotate by 90o

i = 7 : Flip horizontally + Rotate by 180o

i = 8 : Flip horizontally + Rotate by 270o

(15)

For all experiments, we used a batch size of 400 and each experiment has been repeated 10 times.
To ensure that the representation obtained through the proposed approach is well-generalized for
never-seen-before data, we train the neural network parameters using only the training set examples
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of each dataset and obtain the clustering performances using k-means with k = 10 on the latent space
representation F of the untransformed test set examples (through T1).

Table 2: Specifications of the CNN model used in the experiments.
Model name Specification

6-layer CNN 2*(32x3x3) - MP2x2 - Drop(0.2) - 2*(64x3x3) - MP2x2 - Drop(0.3) - FC 2048 - Drop(0.5) - FC 8*20

4.2 QUANTITATIVE COMPARISON

Following Jiang et al. (2017) and Yang et al. (2016), we evaluate the test performances using
unsupervised clustering accuracy given as

ACC = max
f∈F

∑m
i=1 1{t∗i = f(yi)}

m
(16)

where t∗i is the ground-truth label, yi is the assigned cluster, and F is the set of all possible one-to-one
mappings between assignments and labels. Both metrics range between [0, 1] where a larger value
indicates more precise clustering results.

Figure 3 presents the t-SNE (Maaten & Hinton, 2008) visualizations of the latent space F throughout
the training for 2000 untransformed test examples from MNIST. Each group corresponds to a cluster
(i.e. a digit) under the first pseudo parent-class (i.e. the class of untransformed examples including all
ten digits). Color codes denote the ground-truths for the digits. From epoch 1 to epoch 400 of the
unsupervised (but pseudo supervised) training, clusters become well-separated and simultaneously
the clustering accuracy increases. As clearly observed from this figure, using the pseudo supervision,
the neural network also reveals some hidden patterns useful to distinguish the real digit identities and
ultimately learns to categorize each one of them. It is also worth noting that a high level of clustering
accuracy is achieved relatively quickly (after only 50 epochs) as seen both in the t-SNE and test
accuracy plots.

Before training Epoch 1 Epoch 10 Epoch 50

Epoch 100 Epoch 200 Epoch 400

0 1 10 50 100 200 400
Epoch

0.40
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0.70

0.85

1.00

Te
st
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Figure 3: t-SNE visualization of the latent space F throughout the training for 2000 untransformed
test examples from MNIST. Color codes denote the ground-truths for the digits. Note the separation
of clusters from epoch 1 to epoch 400 of the unsupervised (but pseudo supervised) training. For
reference, clustering accuracy for the entire test set is also provided. This figure is best viewed in
color.

Table 3 summarizes quantitative unsupervised clustering performances observed on three datasets in
terms of unsupervised clustering accuracy (ACC). Results of a broad range of recent existing solu-
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tions are also presented for comparison. These solutions are grouped according to their approaches
to unsupervised clustering. Following the very recent developments in deep generative models,
VaDE (Jiang et al., 2017) and GMVAE (Dilokthanakul et al., 2016) employ variational autoencoders
while CatGAN (Springenberg, 2015), AAE (Makhzani et al., 2015) and IMSAT (Hu et al., 2017)
adopt adversarial training. DEC (Xie et al., 2016) simultaneously learns feature representations and
cluster assignments using DNNs. On the other hand, JULE (Yang et al., 2016) combines agglom-
erative clustering with CNNs. Also, the performances of two conventional approaches, applying
k-means on raw data space and applying k-means on the autoencoder representation, are provided to
show a baseline for unsupervised clustering performances. Our approach statistically significantly
outperforms all the contemporary methods that reported unsupervised clustering performance on
MNIST except IMSAT (Hu et al., 2017) displaying very competitive performance with our approach,
i.e. 98.32%(±0.08) vs. 98.40%(±0.40). However, results obtained on the SVHN dataset, i.e.
76.80%(±1.30) vs. 57.30%(±3.90), show that our approach statistically significantly outperforms
IMSAT on this realistic dataset and defines the current state-of-the-art for unsupervised clustering on
SVHN. Besides, the USPS dataset provides another basis of comparison between our approach and
JULE.

Table 3: Quantitative unsupervised clustering performance (ACC) on MNIST, USPS and SVHN
datasets. Results of a broad range of recent existing solutions are also presented for comparison. The
last row demonstrates the benchmark scores of the proposed framework in this article.

k MNIST-test USPS-full† SVHN-test

VaDE (Jiang et al., 2017) 10 94.06% - -
GMVAE (Dilokthanakul et al., 2016) 10 82.31%(±3.75) - -
GMVAE (Dilokthanakul et al., 2016) 16 87.82%(±5.33) - -
GMVAE (Dilokthanakul et al., 2016) 30 92.77%(±1.60) - -

CatGAN (Springenberg, 2015) 20 90.30% - -
AAE (Makhzani et al., 2015) 16 90.45%(±2.05) - -
AAE (Makhzani et al., 2015) 30 95.90%(±1.13) - -
IMSAT (Hu et al., 2017) 10 98.40%(±0.40) - 57.30%(±3.90)

k-means (Xie et al., 2016) 10 53.49% - -
AE+k-means (Xie et al., 2016) 10 81.84% - -

DEC (Xie et al., 2016) 10 84.30% - 11.9%(±0.40)††

JULE (Yang et al., 2016) 10 96.10% 95.00% -

Our approach 10 98.32%(±0.08) 96.51%(±0.26) 76.80%(±1.30)
† Only for USPS dataset, following JULE (Yang et al., 2016), we reported unsupervised clustering performance over the full dataset for a fair comparison.
†† Excerpted from (Hu et al., 2017).

4.3 REPRESENTATION PROPERTIES

Recall that, for the 6-layer CNN model employed in the experiments, F = Y (L−2) corresponds to
the output of the fully-connected layer of 2048 ReLU nodes, Z = FWL−1 + bL−1 is the input
of the augmented softmax layer of 160 nodes, i.e. n = npks, where 8 pseudo parent-classes are
represented by 20 softmax duplicates each.

Figure 4 provides the average value for each dimension of F , Z and softmax(Z) observed with
respect to untransformed test set examples and the norm of the associated weights. Note that the
representation on F is not distributed to the entire space but the weights associated to these unused
dimensions do not decay. On the other hand, due to the pseudo supervision task, the output of the
augmented softmax layer i.e. softmax(Z), becomes a one-hot encoded representation of which 140
dimensions, i.e. (np− 1)ks, are inactive for the untransformed examples; however, the representation
at its input is distributed to all dimensions. Figure 4 also summarizes how the dimension size of
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F , i.e. the number of ReLU nodes in the fully-connected layer, affects the clustering performance.
Decreasing the number of dimensions of F up to a point, i.e. ≈ 1024, does not significantly
affect the clustering accuracy. However, further decrease beyond this point dramatically reduces the
performance.

0 512 1024 1536 2048
Latent dimension i

0.0

0.1

0.2

0.3

0.4
Average value of F : , i

Rescaled (outgoing) weight norm

0 40 80 120 160
Latent dimension i

0

1

2

3

4
Average value of norm of Z : , i

Rescaled (incoming) weight norm
Rescaled average value of softmax(Z : , i)

2048 1024 512 256 128 64 32
The number of dimensions of F

0.2

0.4

0.6

0.8

1.0
Clustering accuracy

Figure 4: The average value for each dimension of F , Z and softmax(Z) observed with respect to
untransformed test set examples and the norm of the associated weights. Note that the representation
on F is not distributed to the entire space but the weights associated to these unused dimensions
do not decay. On the other hand, due to the pseudo supervision task, the output of the augmented
softmax layer i.e. softmax(Z), becomes a one-hot encoded representation of which 140 dimensions
are inactive for the untransformed examples; however, the representation at its input is distributed to
all dimensions. The last plot shows how the dimension size of F affects the clustering performance.
This figure is best viewed in color.

For comparison, Figure 5 presents t-SNE visualizations of these latent representations observed with
respect to 2000 untransformed test examples from MNIST. One can clearly see that clusters are
not well-separated on one-hot encoded softmax(Z); however, separations of the clusters are quite
similar and clear on the representation spaces F and Z. Hence, one can also obtain similar clustering
accuracy, i.e. = 98.16%± (0.14), by applying k-means on the representation space Z.

F Z softmax(Z)

Figure 5: Comparison of t-SNE visualizations of the latent spaces F , Z and softmax(Z) for 2000 test
examples from MNIST. Color codes denote the ground-truths for the digits and each label represents
the major digit of a cluster. Clusters are not well-separated on one-hot encoded softmax(Z); however,
separations of the clusters are quite similar and clear on the representation spaces F and Z. This
figure is best viewed in color.

4.4 GRAPH INTERPRETATION OF THE LATENT INFORMATION PROPAGATION THROUGH GAR

Recall that GAR terms have been originally proposed to propagate the available labels towards
the unlabeled examples in a semi-supervised setting and Kilinc & Uysal (2017a) have shown that
these terms can also be adopted to propagate the hidden information that is introduced by a coarse

10
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level of supervision and which is useful to discover a deeper level of latent annotations. In the
fully unsupervised setting considered in this paper, as no real supervision is available, hidden
information useful to discover unknown clusters is now captured through the help of domain specific
transformations and propagated by GAR terms as well.

Figure 6 visualizes the realization of this propagation using the real predictions obtained on MNIST.
Colored circles denote the ground-truths for the vertices, i.e. examples, and gray lines denote the
edges, i.e. non-zero weighted connections between the examples representing their similarity. Note
that, for vertices in graph GY , there are two different colors indicating true pseudo parent-class labels
assigned per the applied transformation (for simplicity, out of 8, only the examples of the first two
pseudo parent-classes are used for this illustration), albeit ten different colors indicating the real digit
identity for vertices in graph GM. Recall that edges of these two graphs, EY and E , are respectively
inferred by matrices Y Y T and BBT where B = max(0,Z) and that GM is the spanning subgraph
of GY . That is, GM = (M, E) shares the same verticesM with graph GY = (M, EY), which is
constructed per the pseudo supervision; however, E is a subset of EY as some of the edges in graph
GY , such as those between the examples of digit 0 and 1, are eliminated in graph GM due to GAR
regularization terms. As training continues, pseudo supervision eliminates the edges between the
examples of different pseudo parent-classes and turns graph GY into a disconnected graph of np = 8
disjoint subgraphs (only two of them are illustrated). Simultaneously, GAR terms eliminate the edges
between the examples of the same parent-class in graph GM to discover previously unknown clusters.
Ultimately, GM becomes disconnected graphs of δ disjoint subgraphs where np ≤ δ ≤ npks and
each disjoint subgraph corresponds to a cluster.

GY GM

Figure 6: Visualizations of the graph GY and its spanning subgraph GM for randomly chosen 500
test examples from MNIST (this selection is performed only for the simplicity of the visualization).
Colored circles denote the ground-truths for the vertices, i.e. examples, and gray lines denote the
edges, i.e. non-zero weighted connections between the examples representing their similarity. Note
that, for vertices in graph GY , there are two different colors indicating true pseudo parent-class labels
assigned according to the applied transformation (for simplicity, out of 8, only the examples of first
two pseudo parent-classes are used for this illustration), albeit ten different colors indicating the real
digit identity for vertices in graph GM. As training continues, pseudo supervision eliminates the edges
between the examples of different pseudo parent-classes and turns graph GY into a disconnected graph
of np = 8 disjoint subgraphs (only two of them are illustrated). Simultaneously, GAR terms eliminate
the edges between the examples of the same parent-class in graph GM to discover previously unknown
clusters. Ultimately, GM becomes disconnected graphs of δ disjoint subgraphs where np ≤ δ ≤ npks
and each disjoint subgraph corresponds to a cluster. This figure is best viewed in color.

4.5 THE IMPACT OF THE NUMBER OF CLUSTERS k

For the quantitative clustering results, we set the number of clusters for the k-means to the number
of classes assuming a prior knowledge, i.e. k = 10. To demonstrate the representation power of
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the proposed approach as an unsupervised clustering model, on MNIST, we deliberately choose
different k values for the k-means clustering applied on the representation space F . For two different
k settings i.e. 7 and 20, Figure 7 illustrates a few examples of each cluster. One can see that when k
is smaller than the actual number of classes, digits with similar appearances are grouped together,
such as digits 4 and 9, 5 and 8, 0 and 6. When k is set to a bigger value than the number of classes,
some digits are divided into subclasses based on visually identifiable image properties such as digit
tilt, roundness, etc. Note the differences between upright and oblique digit 1 as shown in clusters 2
and 20, between two styles of digit 6 as shown in clusters 18 and 19, and between two styles of digit
2 as shown in clusters 7 and 12.

k= 7

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

k= 20

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12

Cluster 13

Cluster 14

Cluster 15

Cluster 16

Cluster 17

Cluster 18

Cluster 19

Cluster 20

Figure 7: Illustration of a few examples of each cluster for two different k settings i.e. 7 and 20.
When k is smaller than the actual number of classes, digits with similar appearances are grouped
together, such as digits 4 and 9, 5 and 8, 0 and 6. When k is set to a bigger value than the number
of classes, some digits are divided into subclasses based on visually identifiable image properties
such as digit tilt, roundness, etc. Note the differences between upright and oblique digit 1 as shown
in clusters 2 and 20, between two styles of digit 6 as shown in clusters 18 and 19, and between two
styles of digit 2 as shown in clusters 7 and 12.

4.6 THE IMPACT OF TRANSFORMATIONS

As the revealed unknown clusters are directly related with the captured latent information through
pseudo parent-classes, choosing the right set of transformations for the clustering task of concern
is crucial for the performance. Figure 8 presents t-SNE visualizations of the representation spaces
observed when different sets of transformations are adopted.

The first row of Figure 8 illustrates the clustering results when one of four different transformation
types, i.e. scaling, shearing, translation and random permutation of the pixels, is applied variably
to generate 8 pseudo parent-classes. One can observe some level of grouping with scaling and
shearing-based transformations; however, the clusters defined by these groupings do not represent
real digit identities (as shown by the colored dots) and may indicate other features of images. On
the other hand, translating the images or randomly permuting the pixel positions do not provide any
useful knowledge to discover any well-defined clustering.

The second row of Figure 8 presents the results obtained when rotation-based transformations listed in
(15) are adopted. One can easily observe that only two or four pseudo parent-classes generated using
rotation-based transformations are sufficient to obtain decent clustering representing the real digit
identities. Considering that, for MNIST, the clustering accuracy obtained using all 8 transformations
in (15) is 98.32%(±0.08), we have achieved 97.80%(±0.18) accuracy using ST = {T1, T2, T3, T4},
72.52%(±6.20) accuracy using ST = {T1, T2} and 96.84%(±0.29) accuracy using ST = {T1, T3}.
Recalling that T2 and T3 respectively correspond to rotating the images by 90o and 180o, one can
say that comparing the untransformed images with their 180o rotated versions is more effective in
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terms of capturing the latent information that is useful to distinguish the real digit identities. In
fact, T3 alone is sufficient to achieve state-of-the-art clustering accuracy on MNIST. Adding more
rotation-based transformations to ST further improves the clustering performance. To summarize, the
type of the transformation generating the pseudo parent-classes is more important than their number
and different transformations can reveal different clustering patterns. Therefore, finding the right
transformation type for the clustering task of concern is crucial for the proposed approach in this
paper and it remains an important research question how to identify the kind of transformation most
optimized for the clustering task at hand.

Scaling np = 8 Shearing np = 8 Translation np = 8 Random permutation np = 8

Rotation np = 2: ST =
{
T1, T2

}
Rotation np = 2: ST =

{
T1, T3

}
Rotation np = 4: ST =

{
T1, , T4

}
Rotation np = 8: ST =

{
T1, , T8

}
Figure 8: t-SNE visualizations of the representation spaces observed when different sets of trans-
formations are adopted. The first row illustrates the clustering results when one of four different
transformation types, i.e. scaling, shearing, translation and random permutation of the pixels, is
applied variably to generate 8 pseudo parent-classes. The second row presents the results obtained
when rotation-based transformations listed in (15) are adopted. To summarize, the type of the trans-
formation generating the pseudo parent-classes is more important than their number and different
transformations can reveal different clustering patterns. Therefore, finding the right transformation
type for the clustering task of concern is crucial for the proposed approach in this paper.

5 CONCLUSION

In this paper, we introduced a novel unsupervised clustering approach building upon the previous
study on an output layer modification, ACOL, which is proposed to learn latent annotations on
neural networks when a partial supervision is provided. To discover unknown clusters in a fully
unsupervised setup, we substitute the real, yet unavailable, partial supervision with a pseudo one.
More specifically, we randomly assign pseudo parent-class labels each of which is associated with a
different domain specific transformation. Each observation is modified by applying the transformation
corresponding to the assigned pseudo label. Generated observation-label pairs are used to train an
ACOL network that introduces multiple softmax nodes for each pseudo parent-class. Due to the
unsupervised regularization based on GAR terms, each softmax duplicate under a parent-class is
specialized as the latent information captured by the help of domain specific transformations is
propagated throughout the training. Ultimately we obtain a k-means friendly latent representation.
Furthermore, we demonstrate that the neural network can learn by comparing differently transformed
examples and translate that knowledge to reveal unknown clusters. The proposed approach was
validated on three image benchmark datasets, MNIST, SVHN and USPS, through t-SNE visualizations
and unsupervised clustering accuracy exceeds those reported by well-accepted approaches in the
literature. Future work will extend this approach to other domains such as sequential data. We
will also explore how to optimize domain specific transformations based on known or otherwise
identifiable characteristics of the dataset being considered for clustering.
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